

Modulhandbuch

Bachelor

Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen -Metalltechnik

Studienordnungsversion: 2013

Vertiefung: IN

gültig für das Wintersemester 2019/20

Erstellt am: 05. November 2019

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Rektor der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhb-15603

Inhaltsverzeichnis

	1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS 8.FS 9.FS 10.F	Ab-
Name des Moduls/Fachs	VSPVSPVSPVSPVSPVSPVSPVSPVSP	hluss LP
Informatik	FP	60
Grundlagen und Diskrete Strukturen	FP	6
Grundlagen und Diskrete Strukturen	4 2 0 PL	6
Programmierparadigmen und Kommunikationsmodelle	FP	7
Kommunikationsmodelle	2 1 0 VL	3
Programmierparadigmen	2 2 0 VL	4
Softwaretechnik	FP	6
Softwaretechnik 1	2 1 0 PL 9	90min 3
Softwaretechnik 2	2 1 0 PL :	90min 3
Telematik 1	FP	5
Telematik 1	3 1 0 PL 9	90min 5
Datenbank- und Betriebssysteme	FP	8
Betriebssysteme	2 1 0 VL	4
Datenbanksysteme	2 1 0 VL	4
Algorithmen, Automaten und Komplexität	FP	6
Algorithmen und Datenstrukturen 1	2 1 0 VL	3
Automaten und Komplexität	2 1 0 VL	3
Proseminar für IN Bsc	MO	2
Proseminar für IN Bsc	0 2 0 SL	2
Computergrafik	FP FP	5
Computergrafik	3 1 0 PL (60min 5
Logik und Logikprogrammierung	FP FP	5
Logik und Logikprogrammierung	3 2 0 PL 150	5 min
Wahlpflichtmodul	FP	8
Rechnerarchitekturen für IN	FP	8
Rechnerarchitekturen 1	220 PL	4
Rechnerarchitekturen 2	210 PL	3
Praktikum Rechnerarchitekturen 1 und 2	0 0 1 SL	1
Neuroinformatik und Schaltsysteme	FP	8
Neuroinformatik	VL	3
Schaltsysteme	VL	3
Praktikum Neuroinformatik und Schaltsysteme	0 0 2 SL	2

Modul: Informatik

Modulnummer: 101211

Modulverantwortlich: Prof. Dr. Martin Dietzfelbinger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibungen, für die im Studienplan zu diesem Modul angegebenen Fächer

Vorraussetzungen für die Teilnahme

Modul: Grundlagen und Diskrete Strukturen

Modulnummer: 100541

Modulverantwortlich: Prof. Dr. Matthias Kriesell

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Grundlagen und Diskrete Strukturen

Grundlagen und Diskrete Strukturen

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Deutsch/Englisch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100542 Prüfungsnummer:240251

Fachverantwortlich: Prof. Dr. Matthias Kriesell

Leistungspu	nkte	e: 6				W	orkl	oad	d (h):18	30		Α	nte	il Se	elbs	tstı	ıdiu	m (h):1	12		,	SW	S:6.	0			
Fakultät für N	Mat	her	nati	k u	nd I	Nati	urw	isse	enso	cha	fter	1										Fa	achg	ebie	et:24	111			
SWS nach	-	1.F	S	2	2.F	S	3	3.FS	3	4	1.F	S	5	5.F	S	6	S.FS	3	7	.FS		8.	FS		9.F	S	10).F	S
Fach-	٧	s	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	>	٧	SF	V	S	Р	٧	S	Р
semester							4	2	0										·										

Lernergebnisse / Kompetenzen

Kenntnisse in Grundlagen der Mathematik, grundlegende mathematische Arbeitsweisen (Beweise)

Vorkenntnisse

Abiturwissen Mathematik

Inhalt

Logik und Mengenlehre; Funktionen und Relationen; Gruppen, Ringe, Körper; Boolesche Algebren; diskrete Wahrscheinlichkeitsräume; elementare Graphentheorie

Medienformen

Tafel

Literatur

Wird in der Vorlesung bekanntgegeben

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Modul: Programmierparadigmen und Kommunikationsmodelle

Modulnummer: 100333

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden lernen in diesem Modul grundlegende Paradigmen und Modelle zur Programmierung von Softwaresystemen und ihrer Kommunikation kennen. Sie verstehen die Grundlagen moderner Programmiersprachen und Middleware-Plattformen und sind in der Lage, sie bezüglich ihrer Leistung in unterschiedlichen Anwendungsdomänen der Informatik zu analysieren und bewerten.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

schriftliche Modulprüfung aus zwei Teilen (120 min)

Modul: Programmierparadigmen und Kommunikationsmodelle

Kommunikationsmodelle

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 255 Prüfungsnummer:2200378

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspu	nkte	e: 3				W	ork	load	d (h):90)		A	ntei	l Se	elbs	tstu	ıdiu	m (h):5	6			S	WS	:3.0)			
Fakultät für I	nfo	rma	atik	und	ΙΑι	uton	nati	sier	ันทรู)												F	acl	hge	biet	:22	55			
SWS nach	-	1.F	S	2	2.F	S	3	3.F	S	4	l.F	3	5	5.FS	3	6	6.F	3	7	.FS	;	8	3.F	S	9).F	3	1	0.F	S
Fach-	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester										2	1	0							·											

Lernergebnisse / Kompetenzen

Die Fähigkeit der Kommunikation ist eine der grundlegenden Eigenschaften verteilter IT-Systeme. In diesem Kurs erwerben die Studierenden Grundlagenwissen über die zum Einsatz kommenden Kommunikationsmodelle in einem breiten Spektrum an Einsatzszenarien, beginnend bei eingebetteten verteilten Systemen bis hin zu globalen Informationssystemen. Sie lernen die grundlegenden Aufgaben, Funktionsweisen und Eigenschaften von Kommunikationsmodellen kennen, begreifen verteilte Systeme als strukturierte Systeme aus Komponenten mit individuellen Aufgaben und komplexen Kommunikationsbeziehungen und erwerben die Fähigkeit, problemspezifische Interaktionsmuster verteilter Systeme zu entwickeln und bezüglich ihrer Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren und bewerten.

Vorkenntnisse

Pflichtveranstaltung des Bachelor-Studiengangs Informatik der Semester 1-3

Inhalt

Thematische Schwerpunkte sind

- · Grundprinzipien, Paradigmen und Eigenschaften verteilter Systeme
- Kommunikationsmodelle (botschaftenbasierte/ ereignisbasierte/ strombasierte/ wissensbasierte/ auftragsorientierte/ funktionsaufruforientierte Modelle)
- Fallbeispiele, an denen die Anwendungen von Kommunikationsmodellen und Algorithmen in der Praxis veranschaulicht werden

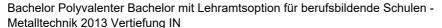
Medienformen

Präsentationen mit Projektor und Tafel, Bücher und Fachaufsätze, Übungsaufgaben und Diskussionsblätter

Literatur

- George Coulouris et al.: Distributed Systems Concepts and Design. 5th Ed., Addison-Wesley, 2012.
- Andrew S. Tanenbaum et al.: Distributed Systems Principles and Paradigms. 2nd Ed., Pearson / Prentice Hall, 2007.
- Michel Raynal: Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed Systems. 1st Ed., Morgan & Claypool Publishers, 2010.
- Ingo Melzer et al.: Service-orientierte Architekturen mit Web Services Konzepte Standards Praxis. 4. Auflage, Spektrum Akademischer Verlag, 2010.

Detailangaben zum Abschluss


Teil der Modulprüfung (60 min)

verwendet in folgenden Studiengängen:

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung Master Mathematik und Wirtschaftsmathematik 2008

TECHNISCHE UNIVERSITÄT
ILMENAU

Modul: Programmierparadigmen und Kommunikationsmodelle

Programmierparadigmen

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5378 Prüfungsnummer:2200377

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspu	nkte	4				W	ork	load	d (h):12	20		Aı	ntei	Se	elbs	tstı	ıdiu	m (ł	า):7	5			S	WS	:4.0)		
Fakultät für I	nfor	nati	ikι	ınd	Αu	ıton	nati	siei	ันทรู)												F	ach	nge	biet	:22	56		
SWS nach	1.	FS		2	.FS	3	3	3.F	S	4	.FS	3	5	.FS	3	6	.FS	3	7	.FS	;	8	.FS	3	9).F	S	10	.FS
Fach-	V	S I	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	٧	S	Р	V :	SP
semester	•									2	2	0																	

Lernergebnisse / Kompetenzen

Die Studierenden erwerben Basiswissen über Programmiersprachparadigmen, einschließlich der zugrunde liegenden Denk- und Verarbeitungsmodelle. Sie können Programmiersprachen und deren Konzepte nach wesentlichen Paradigmen klassifizieren (Fachkompetenz). Die Studierenden sind in der Lage, zu gegebenen Problemen geeignete Paradigmen kritisch auszuwählen. Sie können einfache Programme sowohl im funktionalen als auch im objektrorientierten Programmierstil systematisch entwerfen und implementieren (Methodenkompetenz). Die Studierenden verstehen verschiedene Programmiersprachkonzepte im Kontext einer Programmiersprache (Systemkompetenz). Die Studierenden können erarbeitete Lösungen einfacher Programmieraufgaben in der Gruppe analysieren und bewerten (Sozialkompetenz).

Vorkenntnisse

Algorithmen und Programmierung (1. Semester)

Inhalt

Übersicht über behandelte Programmierparadigmen:

- · Objektorientiertes Paradigma (Schwerpunkt)
- Funktionales Paradigma (Schwerpunkt)
- Nebenläufiges Paradigma (Schwerpunkt)
- · Paralleles Paradigma
- · Generisches Paradigma
- · Aspektorientiertes Paradigma
- Generatives Paradigma

Demonstriert werden alle Schwerpunkt-Konzepte an der auf Java basierenden multi-paradigmatischen Sprache Scala.

Medienformen

Präsentationen, Handouts

Literatur

wird aktuell im Web veröffentlicht

Detailangaben zum Abschluss

schriftliche Prüfung (60 min)

verwendet in folgenden Studiengängen:

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Modul: Softwaretechnik

Modulnummer: 100334

Modulverantwortlich: Prof. Dr. Armin Zimmermann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz: Die Studierenden erwerben grundlegendes Wissen über Vorgehens- und Prozessmodelle der Softwareentwicklung, sowie über deren Methodik und Basiskonzepte. Sie können größere

Entwicklungsaufgaben strukturieren, Lösungsmuster erkennen und anwenden, und verstehen den Entwurf von der Anforderungsermittlung bis hin zur Implementierung.

Methodenkompetenz: Den Studierenden wird Entscheidungskompetenz hinsichtlich möglicher Prinzipien, Methoden und Werkzeuge des ingenieurmäßigen Softwareentwurfs vermittelt.

Systemkompetenz: Die Studierenden verstehen das grundlegende Zusammenwirken unterschiedlicher Softwareentwicklungsphasen; anwendungsorientierte Kompetenzen bezüglich Modellierungsfähigkeit und Systemdenken werden geschult.

Sozialkompetenz: Die Studierenden verfügen über Fähigkeiten zur entwicklungsbezogenen, effektiven Teamarbeit.

Vorraussetzungen für die Teilnahme

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen -

Metalltechnik 2013 Vertiefung IN

Modul: Softwaretechnik

Softwaretechnik 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100533 Prüfungsnummer:2200369

Fachverantwortlich: Prof. Dr. Armin Zimmermann

Leistungspu	nkte: 3	W	orkload (h):90	Anteil Se	elbststudiu	ım (h):56	S	WS:3.0	
Fakultät für I	Informatik	und Auton	natisierung	j				Fachge	biet:2236	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester			2 1 0							

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden erwerben grundlegendes Wissen über Vorgehens- und Prozessmodelle der Softwareentwicklung, sowie über deren Methodik und Basiskonzepte. Sie können größere

Entwicklungsaufgaben strukturieren, Lösungsmuster erkennen und anwenden, und verstehen den Entwurf von der Anforderungsermittlung bis hin zur Implementierung.

Methodenkompetenz: Den Studierenden wird Entscheidungskompetenz hinsichtlich möglicher Prinzipien, Methoden und Werkzeuge des ingenieurmäßigen Softwareentwurfs vermittelt.

Systemkompetenz: Die Studierenden verstehen das grundlegende Zusammenwirken unterschiedlicher Softwareentwicklungsphasen; anwendungsorientierte Kompetenzen bezüglich Modellierungsfähigkeit und Systemdenken werden geschult.

Sozialkompetenz: Die Studierenden verfügen über Fähigkeiten zur entwicklungsbezogenen, effektiven Teamarbeit.

Vorkenntnisse

Algorithmen und Programmierung

Inhali

In der Lehrveranstaltung werden grundlegende Methoden, Modelle und Vorgehensweisen der Softwaretechnik bzw. des Software Engineering erlernt. Vorrangig wird die objektorientierte Sichtweise betrachtet, und in den Übungen anhand praktischer Beispiele vertieft. Für Implementierungsbeispiele wird vor allem JAVA verwendet.

- Einführung
- Modellierungskonzepte
- . Überblick Modellierung
- . klassische Konzepte (funktional, datenorientiert, algorithmisch, zustandsorientiert)
- . Grundlagen Objektorientierung
- . Unified Modeling Language (UML)
- Analyse
- . Anforderungsermittlung
- . Glossar, Geschäftsprozesse, Use Cases, Akteure
- . Objektorientierte Analyse und Systemmodellierung
- . Dokumentation von Anforderungen, Pflichtenheft
- Entwurf
- . Software-Architekturen
- . Objektorientiertes Design
- . Wiederverwendung (Design Patterns, Komponenten, Frameworks, Bibliotheken)
- Implementierung
- . Konventionen und Werkzeuge
- . Codegenerierung
- . Testen
- Vorgehensmodelle
- . Überblick, Wasserfall, Spiralmodell, V-Modell XT, RUP, XP
- Projektmanagement
- . Projektplanung
- . Projektdurchführung

Medienformen

Vorlesungsfolien, auf den Webseiten verfügbar Übungsaufgaben, auf den Webseiten verfügbar

Literatur

- Brügge, Dutoit: Objektorientierte Softwaretechnik. Pearson 2004
- · Balzert: Lehrbuch der Software-Technik Basiskonzepte und Requirements Engineering.
- sowie ergänzende Literatur, siehe Webseiten und Vorlesung

Detailangaben zum Abschluss

schriftliche Prüfung

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsinformatik 2015

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen -

Metalltechnik 2013 Vertiefung IN Modul: Softwaretechnik

erufsbildende Schulen - TEC

TECHNISCHE UNIVERSITÄT

Softwaretechnik 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100564 Prüfungsnummer:2200379

Fachverantwortlich: Dr. Detlef Streitferdt

Leistungspu	nkte:	3		W	orkl	oad	(h)):90)		Aı	ntei	l Se	elbs	tstı	ıdiu	m (h):5	6			S	WS	:3.0)		
Fakultät für I	nforr	natik	und A	utor	natis	sieru	ıng													F	ach	ge	biet	:22	3A		
SWS nach	1.	FS	2.F	S	3	.FS		4	.FS	3	5	.FS	3	6	6.F	S	7	.FS	3	8	.FS	3	9).FS	3	10	.FS
Fach-	V	S P	V S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S P
semester								2	1	0																	

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über anwendungsorientiertes Wissen zu Werkzeugen der

Anforderungserhebung und -modellierung, der Prozessmodellierung und - anpassung, der

Aufwandsschätzung, des Softwaretests, der Produktlinienentwicklung und der Wartung von Software.

Methodenkompetenz: Die Studierenden kennen den methodischen Hintergrund zu den vorgestellten

Werkzeugen / Verfahren und sind daher in der Lage auch neue Problemstellungen zu lösen. Sie können aus den vorgestellten Methoden jeweils die passenden auswählen.

Systemkompetenz: Die Studierenden können die vorgestellten Methoden und Werkzeuge in Projekten unterschiedlicher Domänen anwenden.

Sozialkompetenz: Die Studierenden kennen die Bedeutung und den Einfluss der erlernten Methoden und Werkzeuge innerhalb einen Firma. Sie können daher Ihr jeweiliges Vorgehen und die

Ergebnisse auf die Erfordernisse eines Projektes in einer Organisation abstimmen.

Vorkenntnisse

Softwaretechnik 1

Inhalt

Diese Vorlesung vertieft die Inhalte der Softwaretechnik. Durch den Anwendungsbezug und die vorgestellten Entwicklungswerkzeuge werden theoretische Kenntnisse umgesetzt. Die bekannten Phasen des Softwareentwicklungszyklus werden durch Themen vertieft, deren Bedeutung im industriellen Praxiseinsatz hoch ist.

- Requirements Engineering (RE) Als eine der wichtigen Grundvoraussetzungen für hochwertige Systeme gilt die Requirements Engineering Phase. Die wichtigsten Technologien werden vorgestellt und eingesetzt.
- Elicitation, Modeling, Validation/Verification
- Goal-Oriented RE
- Traceability
- RE Tool Support
- Softwareprozessmodellierung Nutzung und Anpassung von Entwicklungsprozessen mit zugehörigen Artefakten (z. B. Checklisten, Dokumentvorlagen, Werkzeugen, Rollenkonzept, ...). Je nach Anforderung, sollen einzelne oder ganze Prozesse erzeugt und effizient eingesetzt werden, um eine Entwicklergruppe bestmöglich zu unterstützen.
- Modellierung von Softwareentwicklungsprozessen (Wiederverwendung von Methoden- / Prozessschritten)
- Tailoring von SW-Entwicklungsprozessen
- Langlebige Systeme Das Wissen um den Lebenszyklus von Softwaresystemen ist entscheidend für deren Entwicklung und zukünftigen Erfolg. Die geforderte Stabilität langlebiger Systeme (z. B. mehr als 30 Jahre) muss sich im Entwurf der Systeme wiederfinden.
- Design for Stability
- Reengineering
- Refactoring

- SW Wartung, Wartbarkeit
- Automatisiertes Testen Veränderungen in den Anforderungen oder auch Fehlerbereinigungen führen zu der Notwendigkeit das System erneut testen zu müssen. Hierbei sind automatisierte Testansätzehilfreich. Zum einen lassen sie Änderungen an Testmodellen zu, aus denen Testfälle generiert werden. Zum anderen können Testfälle mit unterschiedlichen Zielen generiert werden, z. B. der Verbesserung der Codeabdeckung.
- Einordnung in den SW-Entwicklungsprozess
- Testmodellierung
- Testfallableitung
- Analyse von Testergebnissen
- Software Produktlinien Der immer häufiger angewandte Produktlinienansatz erfordert ein Umdenken während des gesamten Entwicklungszyklus. Sollen später Produkte generiert und nicht jeweils als Eigenentwicklung entstehen, sind folgende Themen relevant:
- Merkmalmodelle (variable / gemeinsame Systemanteile)
- Produktlinien Architekturen
- Domänenspezifische Sprachen
- Testen von Produktlinien
- Generieren von Applikationen aus einer Produktlinie

Medienformen

Bücher, Webseiten, Wissenschaftliche Paper, Open Source/Kommerzielle - Werkzeuge

Literatur

[Boec 2004] Günter Böckle, Peter Knauber, Klaus Pohl, Klaus Schmid, "Software-Produktlinien: Methoden, Einführung und Praxis", dpunkt. Verlag GmbH, 2004.

[Broo 1995] Frederick P. Brooks, Jr., "The Mythical Man Month", Addison-Wesley, 1995.

[Fowl 1999] Martin Fowler, "Refactorings – Improving the Design of Existing Code", Addison Wesley, 1999. [Gamm 1995] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Pattern – Elements of Reusable Object-Oriented Software", Addison Wesley, 1995.

[Lams 2009] Axel van Lamsweerde, "Requirements Engineering: From System Goals to UML Models to Software Specifications", John Wiley & Sons, 2009.

[McCo 2006] Steve McConnell, "Software Estimation", Microsoft Press, 2006.

[Pohl 2005] Klaus Pohl, Günter Böckle, Frank van der Linden, "Software Product Line Engineering – Foundations, Principles, and Techniques", Springer, Heidelberg 2005.

[Pohl 2008] Klaus Pohl, "Requirements Engineering: Grundlagen, Prinzipien, Techniken", dpunkt. Verlag GmbH, 2008.

[Robe 1999] Suzanne Robertson, James Robertson, "Mastering the Requirements Process", Addison-Wesley, 1999.

[Rooc 2004] Stefan Roock, Martin Lippert, "Refactorings in großen Softwareprojekten", dpunkt. Verlag GmbH, 2004.

[Somm 2007] Ian Sommerville,"Software Engineering", Pearson Studium, 2007.

[Wieg 1999] Karl E. Wiegers, "Software Requirements", Microsoft Press, 1999.

[Your 1997] Edward Yourdon, "Death March", Prentice-Hall, 1997.

Detailangaben zum Abschluss

Schriftliche Prüfung.

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Telematik 1

Modulnummer: 100322

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Hochschulzulassung;

Grundlagenvorlesung in Informatik oder Programmierung (z.B. "Algorithmen und Programmierung" oder eine vergleichbare Grundlagenvorlesung)

Detailangaben zum Abschluss

Schriftliche Prüfung

Metalitechnik 2013 Vertiefur Modul: Telematik 1

TECHNISCHE UNIVERSITÄT

Telematik 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100575 Prüfungsnummer:2200383

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspu	nkte: 5			W	orklc	ad (ł	າ):15	50		Ar	nteil	Se	elbs	tstu	ıdiu	ım (l	h):1	05			S	WS	:4.0)		
Fakultät für I	nforma	tik	und A	utor	natis	ierun	g												F	acl	nge	biet	:22	53		
SWS nach	1.FS	3	2.F	S	3.	FS		1.F	3	5	.FS		6	.FS	3	7	.FS	3	8	3.F	S	Ć).FS	3	10	.FS
Fach-	v s	Р	v s	Р	V	SP	Р	٧	s	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	V (SP		
semester							3	1	0				·													

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu Aufbau und Funktionsweise von Netzen, insbesondere des Internet.
- Methodenkompetenz: Die Studierenden sind in der Lage, einfache Protokollfunktionen zu spezifizieren und in Programmfragmente umzusetzen. Sie können die Auswirkungen bestimmter Entwurfsentscheidungen bei der Realisierung einzelner Protokollfunktionen auf grundlegende Leistungskenngrößen einschätzen. Sie kennen Darstellung von Protokollabläufen in Form von Message Sequence Charts und können gültige Protokollabläufe auf der Grundlage von Zustandsautomaten nachvollziehen.
- Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenwirken der Komponenten eines Netzes als System.
- Sozialkompetenz: Die Studierenden erarbeiten Problemlösungen einfacher Protokollfunktionen (z.B. Routing, Fehlerkontrolle, Flusskontrolle etc.) durch Bearbeiten von Übungsaufgaben in Gruppen und vertiefen bei Behandlung des Themas Geteilter Medienzugriff die technische Motivation für die Vorteile einer koordinierten Zusammenarbeit.
- Die Studierenden verfügen über Kenntnisse und Überblickswissen zu den anwendungsorientierten Schichten von Netzen und deren Protokolle, insbesondere des Internet. Die Studierenden kennen die grundlegenden Sicherheitsanforderungen an Kommunikationsdienste und Mechanismen zu ihrer Erfüllung.

Vorkenntnisse

Hochschulzulassung;

Grundlagenvorlesung in Informatik oder Programmierung (z.B. "Algorithmen und Programmierung" oder eine vergleichbare Grundlagenvorlesung)

Inhalt

- 1. Einführung und Überblick: Grundsätzlicher Netzaufbau; Protokollfunktionen; Spezifikation; Architektur; Standardisierung; OSI- und Internet-Architekturmodell
- 2. Physikalische Schicht: Begriffe: Information, Daten und Signale; Physikalische Eigenschaften von Übertragungskanälen (Dämpfung, Verzerrung, Rauschen); Grenzen erreichbarer Datenübertragungsraten (Nyquist, Shannon); Taktsynchronisation; Modulationsverfahren (Amplituden-, Frequenz- und Phasenmodulation, kombinierte Verfahren)
- 3. Sicherungsschicht: Rahmensynchronisation; Fehlererkennung (Parität, Checksummen, Cyclic Redundancy Code; Fehlerbehebung (Forward Error Correction, Automatic Repeat Request); ARQ-Protokolle: Stop and Wait, Go-Back-N, Se-lective Reject; Medienzugriffsverfahren (ALOHA, Slotted ALOHA, Token-Ring, CSMA/CD); Ethernet; Internetworking: Repeater, Brücken und Router
- 4. Netzwerkschicht: Virtuelle Verbindungen vs. Datagramnetze; Aufgaben, Funktion und Aufbau eines Routers; Internet Procol (IP): Paketaufbau und Protokollfunktionen, Hilfsprotokolle und Protokollversionen;
- Routingalgorithmen: Distanzvektor- und Link-State-Verfahren; Routingprotokolle des Internet (RIP, OSPF, BGP)
- 5. Transportschicht: Adressierung und Multiplexing; Verbindungsloser vs. verbindungsorientierter
- Transportdienst; Fehlerkontrolle; Flusskontrolle; Staukontrolle; Transportprotokolle des Internet (TCP, UDP)
- 6. Anwendungsorientierte Schichten: Sitzungsschicht, Darstellungsschicht und Anwendungsschicht, Grundarchitekturen verteilter Anwendungen: Client-Server, Peer-to-Peer, hybride Ansätze, Konkrete Protokolle der Anwendungsschicht: HTTP, SMTP, DNS;
- 7. Netzsicherheit

Medienformen

Vorlesung mit Tafel und Folien-Präsentationen, Arbeitsblätter, Lehrbuch

Literatur

A. S. Tanenbaum. Computernetzwerke. Pearson Education. \cdot J. F. Kurose, K. W. Ross. Computernetze. Pearson Education.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Datenbank- und Betriebssysteme

Modulnummer: 100335

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Thema in diesem Modul sind die grundlegenden Aufgaben, Paradigmen, funktionalen und nichtfunktionalen Eigenschaften zweier elementarer Themenkomplexe in der Informatik: den Datenbank- und Betriebssystemen. Die Teilnehmer lernen Datenbank- und Betriebssysteme als strukturierte parallele Systeme aus Komponenten mit individuellen Aufgaben und hochgradig komplexen Beziehungen kennen. Sie lernen die theoretischen Grundlagen, Abstraktionen und Paradigmen kennen und erwerben Kenntnisse über Prinzipien, Methoden, Algorithmen und Datenstrukturen, mit denen funktionale und nichtfunktionale Eigenschaften von Datenbank- und Betriebssystemen realisiert werden.

Auf dieser Grundlage besitzen Studierende nach Abschluss dieses Moduls die Fähigkeit, Datenbank- und Betriebssysteme bezüglich ihrer Eignung und Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren, zu bewerten und einzusetzen und kennen grundlegende Methoden und Verfahren zu ihrem Entwurf und ihrer Implementierung.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Schriftliche Prüfung

Modul: Datenbank- und Betriebssysteme

Betriebssysteme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 252 Prüfungsnummer:2200322

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspu	nkt	e: 4				W	ork	load	d (h):12	20		Α	nte	il Se	elbs	ststu	ıdiu	m (h):8	6			S	WS	:3.0)			
Fakultät für I	nfo	rma	atik	unc	lΑι	uton	nati	sier	ันทรู)												F	acl	hge	biet	:22	55			
SWS nach	•	1.F	S	2	2.F	S	3	3.F	3	4	l.F	3	5	5.F	S	6	3.F	S	7	.FS	3	8	3.F	S	9	.FS	S	1	0.F	S
Fach-	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester							2	1	0																					

Lernergebnisse / Kompetenzen

Betriebssysteme bilden das Software-Fundament aller informationstechnischen Systeme. Ihre funktionalen und vor allem ihre nichtfunktionalen Eigenschaften wie Robustheit, Sicherheit oder Effizienz üben einen massiven Einfluss auf sämtliche Softwaresysteme aus, die unter ihrer Kontrolle ablaufen.

Dieser Kurs vermittelt Wissen über die grundlegenden Aufgaben, Funktionen und Eigenschaften von Betriebssystemen. Er stellt ihre elementaren Abstraktionen und Paradigmen vor und erklärt Prinzipien, Algorithmen und Datenstrukturen, mit denen funktionale und nichtfunktionale Eigenschaften realisiert werden. Die Kursteilnehmer lernen Betriebssysteme als strukturierte parallele Systeme aus Komponenten mit individuellen Aufgaben und hochgradig komplexen Beziehungen verstehen; sie erwerben die Fähigkeit, Betriebssysteme bezüglich ihrer Eignung und Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren, zu bewerten und einzusetzen.

Vorkenntnisse

Algorithmen und Programmierung, Algorithmen und Datenstrukturen, Rechnerarchitekturen, Programmier- und Kommunikationsparadigmen

Inhalt

Kursinhalte sind

- Nebenläufigkeit und Parallelität, Prozess- und Threadmodelle, Scheduling, Synchronisation und Kommunikation
 - · Ressourcenmanagement, Prozessoren, virtueller Speicher, Kommunikation
 - Dateisysteme
 - Netzwerkmanagement
 - Ein-/Ausgabesysteme
 - Architekturprinzipien

Medienformen

Präsentationen mit Projektor und Tafel, Bücher und Fachaufsätze, Übungsaufgaben und Diskussionsblätter

Literatur

- Andrew S. Tanenbaum: Modern Operating Systems. Pearson / Prentice Hall.
- · William Stallings: Operating Systems Internals and Design Principles. Pearson / Prentice Hall.
- Brian L. Stuart: Principles of Operating Systems. Thomson Learning / Course Technology
- Gary Nutt: Operating Systems A Modern Perspective. Addison-Wesley.
- Gadi Taubenfeld: Synchronization Algorithms and Concurrent Programming. Pearson / Prentice Hall.
- David Mosberger, Stephane Eranian: IA-64 Linux Kernel Design and Implementation. Prentice Hall.
- Daniel P. Bovet, Marco Cesati: Understanding the Linux Kernel. O'Reilly & Associates.
- · Jonathan Levin: Mac OS X and iOS Internals. John Wiley & Sons.

Detailangaben zum Abschluss

schriftliche Modulprüfung

verwendet in folgenden Studiengängen:

Bachelor Informatik 2010 Bachelor Informatik 2013 Bachelor Ingenieurinformatik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung

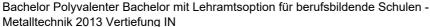
Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011


Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsinformatik 2015

Master Mathematik und Wirtschaftsmathematik 2008

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Datenbank- und Betriebssysteme

Datenbanksysteme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 244 Prüfungsnummer:2200323

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspu	nkte: 4	W	orkload (h):120	Anteil Se	elbststudiu	ım (h):86	S	WS:3.0	
Fakultät für I	nformatik	und Auton	natisierung	j				Fachge	biet:2254	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester			2 1 0							

Lernergebnisse / Kompetenzen

Nach dem Besuch dieser Veranstaltung können die Studierenden Datenbanksysteme anwenden. Sie kennen die Schritte des Entwurfs von Datenbanken und können die relationale Entwurfstheorie beschreiben. Weiterhin können sie deklarative Anfragen in SQL und XPath/XQuery formulieren sowie Integritätsbedingungen definieren. Die Studierenden sind in der Lage, gegebene praktische Problemstellungen zu analysieren, im ER-Modell zu modellieren und in einer relationalen Datenbank abzubilden sowie SQL zur Anfrageformulierung zu nutzen.

Vorkenntnisse

Vorlesung Algorithmen und Programmierung

Inhalt

Grundbegriffe von Datenbanksystemen; Phasen des Datenbankentwurfs, Datenbankentwurf im Entity-Relationship-Modell, Relationaler Datenbankentwurf, Entwurfstheorie, Funktionale Abhängigkeiten und Normalformen; Grundlagen von Anfragen: Algebra und Kalküle; SQL: relationaler Kern und Erweiterungen, rekursive Anfragen mit SQL; Transaktionen und Integritätssicherung; Sichten und Zugriffsknotrolle; XPath & XQuery als Anfragesprachen für XML

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle

Literatur

Saake, Sattler, Heuer: Datenbanken - Konzepte und Sprachen, 4. Auflage, mitp-Verlag, 2010.

Detailangaben zum Abschluss

schriftliche Modulprüfung

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2013

Bachelor Medientechnologie 2008

Bachelor Medientechnologie 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsinformatik 2015

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Algorithmen, Automaten und Komplexität

Modulnummer: 100321

Modulverantwortlich: Prof. Dr. Dietrich Kuske

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden

- · können grundlegende Algorithmen und Datenstrukturen anhand von Beispielen beschreiben,
- sind in der Lage, die Effizienz von Algorithmen zu bestimmen und
- · können geeignete Algorithmen auswählen bzw. anpassen.

Die Studierenden

- kennen die Stufen 0,2 und 3 der Chomsky-Hierarchie, ihre automatentheoretischen Charakterisierungen und können die Umwandlungen ausführen,
 - · sind in der Lage, Nachweise der Nicht-Regularität zu führen,
- sind mit Abschluß- und algorithmischen Eigenschaften der regulären und kontextfreien Sprachen vertraut. Die Studierenden
- kennen die Klassen der semi-entscheidbaren und der entscheidbaren Probleme mit wesentlichen Beispielen,
- sind in der Lage, die Church-Turing-These zu formulieren, ihre Bedeutung darzustellen und Argumente zu ihrer Begründung anzugeben.

Die Studierenden

- kennen die Komplexitätsklassen P und NP und einige NP-vollständige Probleme,
- können erläutern, warum die NP-schweren Probleme nicht effizient lösbar sind.

Vorraussetzungen für die Teilnahme

Modul: Algorithmen, Automaten und Komplexität

Algorithmen und Datenstrukturen 1

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100534 Prüfungsnummer:2200370

Fachverantwortlich: Prof. Dr. Martin Dietzfelbinger

Leistungspu	nkt	e: 3				W	ork	load	d (h):90)		A	nte	il Se	elbs	tstu	ıdiu	m (h):5	6			S	WS	:3.0)			
Fakultät für I	nfc	rma	atik	und	ΙΑι	uton	nati	sier	ันทรู	3												F	ach	ngel	biet	:22	42			
SWS nach		1.F	S	2	2.F	S	3	3.F	S	4	l.F	S	5	5.F	S	6	6.F	3	7	.FS		8	.FS	3	9	.FS	S	10).F	S
Fach-	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р
semester							2	1	0																					

Lernergebnisse / Kompetenzen

Die Studierenden kennen beispielhaft Methoden für die Spezifikation von Berechnungsproblemen und von abstrakten Datentypen und können sie für die grundlegenden Aufgaben und Datentypen anwenden. Sie können unter Verwendung der O-Notation die Laufzeit von (auch zusammengesetzten) iterativen und rekursiven Algorithmen analysieren. Sie können auf iterative und rekursive Algorithmen Induktionsargumente anwenden, um die Korrektheit zu zeigen. Die Studierenden kennen die grundlegenden Datenstrukturen "Array", "Liste", "Stack", "Queue", "gerichteter Baum" und "Binärbaum" mit ihren Implementierungsmöglichkeiten und können die zentralen Perfomanzparameter benennen und begründen. Sie kennen den Datentyp "binärer Suchbaum" mit seinen Methoden für Einfügen und Suchen und den Datentyp "Mehrwegsuchbaum". Die Studierenden kennen die Algorithmen für eine Variante von balancierten Binärbäumen und können sie an Beispielen durchführen. Die Studierenden kennen das Prinzip von einfachen Hashverfahren, verstehen die Funktionsweise und können das zu erwartende Verhalten für die verschiedenen Verfahren beschreiben. Sie kennen Konstruktionen einfacher randomisierter Hashklassen. Die Studierenden kennen die grundlegenden Sortieralgorithmen (Quicksort, Heapsort, Mergesort sowie Radixsort), können die Korrektheit der Verfahren begründen und ihre Laufzeit berechnen. Sie kennen den grundlegenden Datentyp "Priority Queue" und seine Implementierung auf der Basis von binären Heaps. Die Studierenden kennen die Grundbegriffe der Graphentheorie und können mit ihnen umgehen. Sie kennen die wesentlichen Datenstrukturen für die Darstellung von Graphen und Digraphen mit den zugehörigen Methoden und Performanzparametern, sowie einfache Graphdurchmusterungsverfahren (Breitensuche, Tiefensuche), Sie kennen einen Algorithmus für die Ermittlung eines minimalen Spannbaums, Sie können die Korrektheit dieses Verfahrens begründen.

Vorkenntnisse

Algorithmen und Programmierung, Mathematik I.

Inhalt

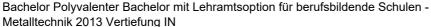
Spezifikation von Berechnungsproblemen und von abstrakten Datentypen. Analyse von Algorithmen: Korrektheitsbeweise für iterative und rekursive Verfahren, Laufzeitbegriff, O-Notation, Laufzeitanalyse. Grundlegende Datenstrukturen (Listen, Stacks, Queues, Bäume). Binäre Suchbäume, Mehrwegsuchbäume, balancierte Suchbäume (AVL- und/oder Rot-Schwarz-B¨aume, B-Bäume). Einfache Hashverfahren, universelles Hashing. Sortierverfahren: Quicksort, Heapsort, Mergesort, Radixsort. Priority Queues mit der Implementierung als Binärheaps. Grundbegriffe der Graphentheorie (ungerichtete und gerichtete Graphen, Markierungen an Knoten und Kanten, Wege und Kreise, Bäume und Wälder, Zusammenhangskomponenten). Datenstrukturen für Graphen (Adjazenzmatrix, Kantenliste, Adjazenzlisten, Adjazenzarrays). Durchmustern von Graphen: Breitensuche, Tiefensuche, Zusammenhangskomponenten, Entdecken von Kreisen. Minimale Spannbäume. Begleitend: Methoden für die Analyse von Laufzeit und Korrektheit.

Medienformen

Projektion von Folien.

Literatur

- * G. Saake, K.-U. Sattler, Algorithmen und Datenstrukturen, 4. Auflage, dpunkt, 2010.
- * R. Sedgewick, Algorithmen in C++, Pearson Studium, 2001.
- * T. Ottmann, P. Widmayer, Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag, 4., überarb. Aufl. 2002
- * R. H. Güting, S. Dieker: Datenstrukturen und Algorithmen, Teubner, 2004


- * T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, Second Edition, MIT Press 2001. (Auch auf deutsch erhältlich.)
- * M. T. Goodrich, R. Tamassia, Data Structures and Algorithms in Java, 2. Auflage, Wiley, 2003.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Modul: Algorithmen, Automaten und Komplexität

Automaten und Komplexität

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100535 Prüfungsnummer:2200371

Fachverantwortlich: Prof. Dr. Dietrich Kuske

Leistungspu	nkte: 3	W	orkload (h):90	Anteil Se	elbststudiu	m (h):56	S	WS:3.0	
Fakultät für I	nformatik	und Auton	natisierung	j				Fachge	biet:2241	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester				2 1 0						

Lernergebnisse / Kompetenzen

Die Studierenden

- kennen die Stufen 0, 2 und 3 der Chomsky-Hierarchie, ihre automatentheoretischen Charakterisierungen und können die Umwandlungen ausführen,
 - · sind in der Lage, Nachweise der Nicht-Regularität zu führen,
- sind mit Abschluss- und algorithmischen Eigenschaften der regulären und kontextfreien Sprachen vertraut. Die Studierenden
- kennen die Klassen der semi-entscheidbaren und der entscheidbaren Probleme mit wesentlichen Beispielen.
- sind in der Lage, die Church-Turing These zu formulieren, ihre Bedeutung darzustellen und Argumente zu ihrer Begründung anzugeben.

Die Studierenden

- kennen die Komplexiätsklassen P und NP und einige NP-vollständige Probleme,
- können erläutern, warum die NP-schweren Probleme nicht effizient lösbar sind.

Vorkenntnisse

Umgang mit mengentheoretischen Begriffen und Notationen (z.B. erworben in "Mathematik 1")

Inhalt

- reguläre Sprachen: deterministische und nichtdeterministische endliche Automaten, reguläre Ausdrücke, effektiver Abschluss unter Booleschen Operationen, Verkettung und Iteration, Entscheidbarkeit von Leerheit, Inklusion und Äquivalenz, Pumping-Lemma
- kontextfreie Sprachen: Kellerautomaten, Parsing, effektiver Abschluss unter positiven Booleschen Operationen, Verkettung und Iteration, Entscheidbarkeit der Leerheit, Pumping-Lemma, Nichtabschluss unter Schnitt
 - · semi-entscheidbare Sprachen: Turing-Maschine
- Berechenbarkeit: Church-Turing These, Unentscheidbarkeit des Halteproblems und der Universalität von kontextfreien Sprachen
 - Komplexitätstheorie: die Klassen P und NP, NP-Vollständigkeit, 3-SAT, graphentheoretische Probleme

Medienformen

Tafel, Übungsblätter

Literatur

Schöning "Theoretische Informatik kurzgefasst"

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung

Modul: Proseminar für IN Bsc

Modulnummer: 100346

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss:

Lernergebnisse

Ein Proseminar im Bachelorstudium dient dem Erlernen und Einüben des Umgangs mit technisch/wissenschaftlichen Texten. Hauptaufgabe eines Studierenden ist die eigenständige, aber betreute Erarbeitung wissenschaftlicher Literatur bis zum eigenen Verständnis und die geschlossene Darstellung dieses Materials in einem Vortrag vor anderen Studierenden und dem Veranstalter mit anschließender Diskussion. Eine schriftliche Zusammenfassung wird gefordert. Das Proseminar dient auch dazu, die Kommunikationsfähigkeit der Studierenden in einem fachlichen Kontext zu trainieren. Für die Bewertung werden also das erzielte Verständnis des Stoffes, die Selbständigkeit der Vorbereitung, die schriftliche Zusammenfassung und besonders die Qualität des Vortrages in fachlicher und in gestalterischer Hinsicht herangezogen.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Fachgebietsindividuelle Prüfungsleistung

 ${\it Bachelor\ Polyvalenter\ Bachelor\ mit\ Lehramtsoption\ f\"ur\ berufsbildende\ Schulen\ -}$

Metalltechnik 2013 Vertiefung IN Modul: Proseminar für IN Bsc

Proseminar für IN Bsc

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100956 Prüfungsnummer:2200410

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspu	nkte	: 2				W	ork	load	d (h):60)		Aı	ntei	l Se	elbs	tstu	ıdiu	m (l	ո)։3	8			S	WS	:2.0)		
Fakultät für I	nfoı	ma	atik ı	und	Αι	ıton	nati	siei	ันทรู	3												F	acl	hge	biet	:22	55		
SWS nach	1	.FS	S	2	.FS	S	3	3.F	3	4	l.F	S	5	.FS	3	6	6.F	3	7	.FS	,	8	.F	S	Ĝ).F	S	10	.FS
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V 5	S P
semester													0	2	0				·										

Lernergebnisse / Kompetenzen

Das Proseminar dient dem Einüben des Umgangs mit wissenschaftlichen und/oder anspruchsvollen technischen Texten in rezipierender und darstellender Weise. Hauptaufgabe eines Studierenden ist also die eigenständige, aber betreute Erarbeitung eines Stückes oder mehrerer Stücke fremder wissenschaftlicher Literatur bis zum eigenen Verständnis und die geschlossene Darstellung dieses Materials in einem Vortrag vor anderen Studierenden und dem Veranstalter, mit Befragung und Diskussion auf wissenschaftlichem Niveau (Fachkompetenz, Methodenkompetenz). Eine schriftliche Zusammenfassung wird gefordert. Das Hauptseminar dient auch dazu, die Kommunikationsfähigkeit der Studierenden in einem fachlichen Kontext zu trainieren und zu bewerten (Sozialkompetenz). Für die Bewertung sind also der erzielte Grad von Verständnis des Stoffes, die Selbständigkeit der Vorbereitung und besonders die Qualität des Vortrages in fachlicher und in gestalterischer Hinsicht heranzuziehen.

Vorkenntnisse

fachspezifisch

Inhalt

Wechselndes Angebot aus den Informatik-Fachgebieten

Medienformen

fachspezifisch

Literatur

fachspezifisch

Detailangaben zum Abschluss

keine

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Modul: Computergrafik

Modulnummer: 100680

Modulverantwortlich: Prof. Dr. Beat Brüderlin

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

schriftlich 60. min.

Metalltechnik 2013 Vertiefung IN Modul: Computergrafik

Computergrafik

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5367 Prüfungsnummer:2200060

Fachverantwortlich: Prof. Dr. Beat Brüderlin

Leistungspunkte: 5					Workload (h):150								Anteil Selbststudium (h):105									SWS:4.0								
Fakultät für Informatik und Automatisierung																					F	acl	nge	biet	:22	52				
SWS nach	1	l.F	S	2	2.F	S	3	3.FS	3	4	l.F	S	5	5.F	3	6	3.FS	S	7	.FS	3	8	3.F	S	ξ).F	S	1	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester													3	1	0															

Lernergebnisse / Kompetenzen

Vermitteln der Grundlagen der Computergrafik bestehend aus Lineare Algebra/homogene Vektorräumen, Physik des Lichts, Rasteroperationen, Bildsynthese, Bildverarbeitung und effiziente geometrische Algorithmen und Datenstrukturen. Die Vorlesung bildet die Grundlagen für "photorealistische" Bildsynthese, wie sie in der Industrie sowie bei den Medien Verwendung finden (z. B. Filmindustrie, Computer-Aided Design, Computerspiele, Styling). Vermittlung von Grundlagen für weiterführende Vorlesungen: Geometrisches Modellieren, Interaktive Grafische Systeme / Virtuelle Realität, Technisch-wissenschaftliche Visualisierung, Fortgeschrittene Bildsynthese, Bildverarbeitung I & II.

Vorkenntnisse

Programmierkenntnisse Grundlagen Algorithmen & Datenstrukturen

Inhalt

Einführung: Überblick über das Fach Grafische Datenverarbeitung. Einführung: Vektoren und Matrizen, Transformationen, Homogene Vektorräume, 2D, 3D-Primitiven und Operationen, View-Transformationen Farbwahrnehmung, Tristimulus Ansatz, Farbmodelle: RGB, CMY, HSV, CIE. Spektrale Ansätze. Additive und Subtraktive Mischung, Lichtquellen und Filter, Rastergrafik-Hardware; Farbdiskretisierung, Farbbildröhre, LCD, Laserprinter, Ink-jet, etc. Rastergrafik: Rasterkonvertierung von Linien und Polygonen (Bresenham-Algorithmus, Polygonfüll-Algorithmus). Bildbearbeitung und Erkennung: Operationen auf dem Bildraster, Bildtransformationen (Skalierung, Drehung), Resampling und Filterung (Bilinear, Gauß) Dithering, Antialiasing, Flood Filling, Kantenverstärkung (Kantenerkennung) Licht und Beleuchtung: (physikalische Größen: Wellenlänge, Leuchtdichte, Leuchtstärke), Wechselwirkung von Licht und Material, Lichtausbreitung und Reflexion, Refraktion, Beleuchtungsmodelle, Materialeigenschaften (geometrische Verteilung) Farbige Lichtquellen (spektrale Verteilung) (Phong: diffuse, spekulare Reflexion). Cook-Torrance, Mehrfachreflexion, Lichteffekte: Schatten, Halbschatten, Kaustik. Bildsynthese: Rendering basierend auf Rasterkonvertierung: Z-Buffer, Flat-Shading, Gouraud shading, Phong Shading Global Illumination, Raytracing, Photontracing, Radiosity Texturemapping / Image-based Rendering: Affines und perspektivisches Texturemapping, projektives Texturemapping, Environment Mapping, Bumpmaps Effiziente Datenstrukturen zum räumlichen Sortieren und Suchen. Kd-Tree, Hüllkörper-Hierarchie, Anwendungen in der Grafik Ray-tracing, Kollisionserkennung. OpenGL, GPU-Renderpipeline, Szenegraphen, Effizientes Rendering grosser Szenen. Ausblick: Überblick geometrischer und physikalischer Modelldatenstrukturen: CSG, B-Rep, Voxel, Octree, parametrische Flächen Computergrafische Animation: (Key frame, motion curve, physikalisch basiertes Modellieren, Kollisionserkennung, Molekülmodelle)

Medienformen

Tafel, Folien, Buch Brüderlin, Meier: Computergrafik und geometrisches Modellieren (s. unten)

Literatur

Brüderlin, B., Meier, A., Computergrafik und geometrisches Modellieren, Teubner-Verlag, 2001 Weiterführende Literatur: José Encarnação, Wolfgang Straßer, Reinhard Klein: Graphische Datenverarbeitung 1: Gerätetechnik, Programmierung und Anwendung graphischer Systeme. 4th, revised and extended edition, Oldenbourg, Munich, Germany, 1996. José Encarnação, Wolfgang Straßer, Reinhard Klein: Graphische Datenverarbeitung 2: Modellierung komplexer Objekte und photorealistische Bilderzeugung. 4th, revised and extended edition, Oldenbourg, Munich, Germany, 1997. James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes: Computer Graphics: Principles and Practice, Second Edition in C. - 2nd edition, Addison-Wesley, Reading, MA, USA, 1990. Alan Watt: 3D-Computergrafik. 3rd edition, Addison-Wesley, Reading, MA, USA, 2001.

Detailangaben zum Abschluss

schriftlich 60. min.

verwendet in folgenden Studiengängen:

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

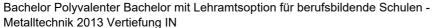
Master Mathematik und Wirtschaftsmathematik 2008

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Logik und Logikprogrammierung

Modulnummer: 100339


Modulverantwortlich: Prof. Dr. Dietrich Kuske

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können zentrale Begriffe der Aussagen- und der Prädikatenlogik darstellen und auf konkrete Problemstellungen anwenden. Sie verstehen das Zusammenspiel von Syntax und Semantik formaler Systeme und argumentieren dabei präzise und folgerichtig. Sie kennen klassische Entscheidungsverfahren für die genannten Kalküle und können sie hinsichtlich ihrer Anwendbarkeit beurteilen. Sie haben ein grundlegendes Verständnis für die Logik-Programmierung und sind in der Lage, typische Probleme durch Prolog-Programme zu lösen

Vorraussetzungen für die Teilnahme

Modul: Logik und Logikprogrammierung

Logik und Logikprogrammierung

Fachabschluss: Prüfungsleistung schriftlich 150 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100574 Prüfungsnummer:2200381

Fachverantwortlich: Prof. Dr. Dietrich Kuske

Leistungspunkte: 5 Wo					orkload (h):150						Anteil Selbststudium (h):94									SWS:5.0										
Fakultät für Informatik und Automatisierung																				F	acl	hge	biet	:22	41					
SWS nach	1.FS			1.FS 2.FS				3.FS 4			4.FS		5.FS			6.FS			7.FS			8.FS			9.FS			10.FS		S
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р
semester																3	2	0												

Lernergebnisse / Kompetenzen

Die Studierenden können zentrale Begriffe der Aussagen- und der Prädikatenlogik darstellen und auf konkrete Problemstellungen anwenden. Sie verstehen das Zusammenspiel von Syntax und Semantik formaler Systeme und argumentieren dabei präzise und folgerichtig. Sie kennen klassische Entscheidungsverfahren für die genannten Kalküle und können sie hinsichtlich ihrer Anwendbarkeit beurteilen. Sie haben ein grundlegendes Verständnis für die Logik-Programmierung und sind in der Lage, typische Probleme durch Prolog-Programme zu lösen.

Vorkenntnisse

sicherer Umgang mit mengentheoretischen Begriffen und Notationen (z.B. erworben in "Grundlagen und Diskrete Strukturen")

Inhalt

Aussagenlogik: Syntax und Semantik, Erfüllbarkeit, Allgemeingültigkeit, Folgerung, Normalformen, Wahrheitswerttabellen, Resolution, natürliches Schließen, Tableau-Methode

Prädikatenlogik: Syntax und Semantik, Erfüllbarkeit, Allgemeingültigkeit, Folgerung, Normalformen, Resolution, Kompaktheitssatz, natürliches Schließen, Unentscheidbarkeit der Allgemeingültigkeit von Formeln der Prädikatenlogik und der Theorie der natürlichen Zahlen

PROLOG-Programmierung an typischen Problemklassen

Medienformen

Folien, Übungsblätter, Vorlesungsmitschnitte (online)

Literatur

M. Huth, M. Ryan: Logic in Computer Science, Cambridge 2010 S. Hölldobler: Logik und Logikprogrammierung, Krottenmühl 2009

Ivan Bratko: Prolog Programming for Artificial Intelligence. 4th edition, ISBN-10: 0321417461, ISBN-13: 9780321417466, Addison-Wesley, 2012.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Modul: Wahlpflichtmodul(Wahl eines Moduls)

Modulnummer: 101210

Modulverantwortlich: Prof. Dr. Wolfgang Fengler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Modulbeschreibung ergibt sich aus den Beschreibungen der Module, die in diesem Modul enthalten sind.

Vorraussetzungen für die Teilnahme

Die Modulbeschreibung ergibt sich aus den Beschreibungen der Module, die in diesem Modul enthalten sind.

Modul: Rechnerarchitekturen für IN

Modulnummer: 100331

Modulverantwortlich: Prof. Dr. Wolfgang Fengler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Allgemein:

Umfassende Kenntnisse über Grundlagen und fortgeschrittene Konzepte von Rechnerarchitekturen, praktische Erfahrungen aus Übungsbeispielen und Laborversuchen

Detailliert:

Siehe Einzelfächer

Vorraussetzungen für die Teilnahme

- Schriftliche Prüfungen "Rechnerachitekturen 1" und "Rechnerarchitekturen 2"
- · Testat aus dem Praktikum
- Notenbildung erfolgt aus den Prüfungen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen -

Metalltechnik 2013 Vertiefung IN

Modul: Rechnerarchitekturen für IN

Rechnerarchitekturen 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5382 Prüfungsnummer:2200265

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspu	nkte: 4	W	orkload (h):120	Anteil Se	elbststudiu	ım (h):75	SWS:4.0						
Fakultät für I	Informatik	und Auton	natisierun	j				Fachge	biet:2231					
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS				
Fach-	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P				
semester				2 2 0										

Lernergebnisse / Kompetenzen

Fachkompetenz:

Die Studierenden verstehen detailliert Aufbau und Funktionsweise von Prozessoren, typischen Rechnerbaugruppen und deren Zusammenwirken.

Methodenkompetenz:

Die Studierenden sind in der Lage, ein Beschreibungsmittel für die Modellierung von Strukturen und Abläufen mit formalen Mitteln anzuwenden. Die Studierenden entwerfen und analysieren einfache maschinennahe

Programme. Die Studierenden konzipieren und entwerfen einfache Speicher- und E/A-Baugruppen.

Systemkompetenz:

Die Studierenden verstehen das Zusammenwirken der Funktionsgruppen von Rechnern als System und in Rechnersystemen. Sie erkennen den Zusammenhang zwischen Architektur und Anwendung auf dem Maschinenniveau anhand praktischer Übungen.

Sozialkompetenz:

Die Studierenden sind in der Lage, Problemstellungen der Rechnerarchitektur in der Gruppe zu lösen.

Vorkenntnisse

Vorlesung und Übung "Rechnerorganisation"

Inhalt

- Begriff der Rechnerarchitektur,
- · Architekturmodellierung mit Systemen gekoppelter Automaten,
- · Innenarchitektur von Prozessoren,
- Befehlssatzarchitektur und Assemblerprogramme,
- · Außenarchitektur von Prozessoren,
- · Aufbau und Funktion von Speicherbaugruppen
- · Aufbau und Funktion von Ein- und Ausgabebaugruppen,
- · Zusammenwirken von Rechnerbaugruppen im Gesamtsystem

Medienformen

Vorlesung: Folien, Arbeitsblätter (Online und Copyshop)

Übung: Arbeitsblätter und Aufgabensammlung (Online und Copyshop)

Selbststudium: Teleteaching-Kurs

Allgemein: Webauftritt (Materialsammlung, Teleteaching-Kurs, Literaturhinweise, Links und weiterführende Infos)

Literatur

Primär:

W. Fengler und O. Fengler: Grundlagen der Rechnerarchitektur. Ilmenau 2016. ilmedia.

Weiteres eigenes Material: Materialsammlung zum Download - Materialsammlung im Copyshop - Teleteaching-Kurs

Sekundär:

- W. Fengler, I. Philippow: Entwurf Industrieller Mikrocomputer-Systeme. ISBN 3-446-16150-3, Hanser 1991.
- C. Märtin: Einführung in die Rechnerarchitektur Prozessoren und Systeme. ISBN 3-446-22242-1, Hanser 2003.

- T. Flik: Mikroprozessortechnik und Rechnerstrukturen. ISBN 3-540-22270-7, Springer 2005. Allgemein: Webauftritt! http://tu-ilmenau.de/?r-ra1

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Mathematik 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Modul: Rechnerarchitekturen für IN

Rechnerarchitekturen 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5383 Prüfungsnummer:2200055

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspu	ngspunkte: 3 Workload (h):90												Anteil Selbststudium (h):56										SWS:3.0								
Fakultät für l	kultät für Informatik und Automatisierung																				F	acl	hge	biet	:22	31					
SWS nach	1.	FS		2.F	S	3	3.F	3	4	4.FS			5.FS	3	6.FS			7.FS			8.FS			9.FS			10.FS		S		
Fach-	V S P V S P						S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р		
semester												2	2 1 0																		

Lernergebnisse / Kompetenzen

Fachkompetenz:

Die Studierenden verstehen detailliert Aufbau und Funktionsweise von fortgeschrittenen Prozessoren und Rechnern. Die Studierenden verstehen Entwicklungstendenzen der modernen Rechner- und Systemarchitektur. Methodenkompetenz:

Die Studierenden sind in der Lage, Anwendungsbeispiele und Architekturvarianten zu entwickeln. Die Studierenden analysieren Leistungskennwerte von Rechnern und Rechnersystemen.

Systemkompetenz:

Die Studierenden verstehen das Zusammenwirken der Funktionsgruppen von fortgeschrittenen Rechnern als System und in Rechnersystemen. Sie erkennen den Zusammenhang zwischen Architektur, Leistung und Anwendung anhand von Übungsbesipielen.

Sozialkompetenz:

Die Studierenden sind in der Lage, Problemstellungen der Rechnerarchitektur in der Gruppe zu lösen.

Vorkenntnisse

Vorlesung und Übung "Rechnerarchitekturen 1" oder vergleichbare Veranstaltung

Inhalt

- Entwicklung der Prozessorarchitektur: Complex-Instruction-Set-Computing (CISC), Reduced-Instruction-Set-Computing (RISC); #
 - · Befehls-Pipelining;
 - Skalare Prozessorarchitektur, Very-Long-Instruction-Word-Architektur, Out of Order-Execution;

Simultaneous Multithreading.

- Entwicklung der Speicherarchitektur: Adresspipelining, Burst Mode und Speicher-Banking;
- · Speicherhierarchie,
- · Cache-Prinzip, Cache-Varianten;
- · Beispielarchitekturen;
- · Spezialrechner:
- Aufbau eines Einchip-Controllers; Einchipmikrorechner des mittleren Leistungssegments, Erweiterungen im E/A-Bereich;
 - Prinzip der digitalen Signalverarbeitung, Digitale Signalprozessoren (DSP), Spezielles Programmiermodell;
- Leistungsbewertung: MIPS, MFLOPS; Speicherbandbreite; Programmabhängiges Leistungsmodell (Benchmarkprogramme);
- Parallele Rechnerarchitekturen: Single Instruction Multiple Data, Multiple Instruction Single Data, Multiple Instruction Multiple Data; Enge und Lose Kopplung, Verbindungstopologien
 - Entwicklung von Anwendungsbeispielen, Architekturvarianten und Berechnung von Leistungskennwerten

Medienformen

Vorlesung: Folien, Arbeitsblätter (Online und Copyshop)

Übung: Arbeitsblätter und Aufgabensammlung (Online und Copyshop)

Allgemein: Webauftritt (Materialsammlung, Literaturhinweise, Links und weiterführende Infos)

Literatur

Primär: Eigenes Material (Online und Copyshop)

Sekundär:

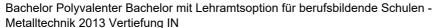
- C. Märtin: Einführung in die Rechnerarchitektur Prozessoren und Systeme. ISBN 3-446-22242-1, Hanser 2003.
 - J. L. Hennessy, D. A. Patterson: Rechnerorganisation und -entwurf. ISBN 3-8274-1595-0, Elsevier 2005.
 - W. Stallings: Computer Organization & Architecture. ISBN 0-13-035119-9, Prentice Hall 2003.
 - A. S. Tanenbaum, J. Goodman: Computerarchitektur. ISBN 3-8273-7016-7, Pearson Studium 2003.

Allgemein: Webauftritt: http://tu-ilmenau.de/?r-ra2

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Informatik 2010


Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Modul: Rechnerarchitekturen für IN

Praktikum Rechnerarchitekturen 1 und 2

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte

Sprache:deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100561 Prüfungsnummer:2200374

Fachverantwortlich: Dr. Bernd Däne

Leistungspu	Leistungspunkte: 1 Workload (h):30										Anteil Selbststudium (h):19										SWS:1.0								
Fakultät für I	Fakultät für Informatik und Automatisierung																			F	acł	nge	biet:2231						
SWS nach	1.FS 2.FS 3.FS 4.FS										5.FS 6.FS 7.FS									8	.FS	3	9.FS			10.FS			
Fach-	v s	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V 5	S P				
semester														0	0	1													

Lernergebnisse / Kompetenzen

Fachkompetenz:

Die Studierenden verfügen über Kenntnisse und Überblickswissen zur Funktionsweise von Prozessoren und Rechnerstrukturen. Sie beherrschen den Umgang mit Beschreibungsmitteln und Modellen und erkennen das Zusammenwirken von Hardware und Software auf hardwarenahen Architekturebenen.

Methodenkompetenz:

Die Studierenden sind in der Lage, maschinennahe Programme zu verstehen, zu erstellen und in Betrieb zu nehmen. Sie sind in der Lage zur werkzeuggestützten Modellierung und zur Simulation und Analyse von Modellen.

Systemkompetenz:

Sie beherrschen den Umgang mit Werkzeugen zu Programmerstellung, Programmtest, Modellerstellung und Modellanalyse.

Sozialkompetenz:

Die Studierenden erarbeiten Problemlösungen gemeinsam in kleinen Gruppen.

Vorkenntnisse

Vorlesung und Übung Rechnerarchitekturen 1 (oder vergleichbare Veranstaltung) Vorlesung und Übung Rechnerarchitekturen 2 (oder vergleichbare Veranstaltung)

Inhalt

Einfache Assemblerprogramme

Ein- und Ausgabebaugruppen

Microcontroller

Fortgeschrittene Pipeline-Architekturen

Medienformen

Laborpraktikum. Gedruckte Anleitungen, Ergänzende Onlinequellen, Hilfefunktionen der benutzten Software.

Literatur

Unterrichtsmaterialien und empfohlene Literatur der Fächer Rechnerarchitekturen 1 und Rechnerarchitekturen 2. Zusätzliche Literaturhinweise und weitere Quellen befinden sich stets auf den Internetseiten zur Lehrveranstaltung:

http://tu-ilmenau.de/?r-p-ra1

http://tu-ilmenau.de/?r-p-ra2

Detailangaben zum Abschluss

Es sind zwei Versuche zu RA 1 und zwei Versuche zu RA 2 durchzuführen und mittels Testat nachzuweisen.

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN

Modul: Neuroinformatik und Schaltsysteme

Modulnummer: 100332

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

<u>Fachkompetenz</u>: Die Studierenden lernen in diesem Modul die wesentlichen Grundlagen der sequentiellen und der parallelen (konnektionistischen) Informationsverarbeitung als die zwei wesentlichen Paradigmen der Informatik kennen.

Im Teil Neuroinformatik werden die Grundlagen der parallelen neurobiologischen Informationsverarbeitung und der darauf aufbauenden Neuroinformatik als wesentliche Säule der "Computational Intelligence" vermittelt. Die Studierenden verstehen die grundsätzliche Herangehensweise des konnektionistischen Ansatzes und kennen die wesentlichen biologischen Grundlagen, mathematischen Modellierungs- und algorithmischen Implementierungstechniken beim Einsatz von neuronalen und probabilistischen Methoden im Unterschied zu klassischen Methoden der Informations- und Wissensverarbeitung.

Im Teil Schaltsysteme verfügen die Studierenden über Kenntnisse und vertieftes Wissen zu speziellen Strukturen und Funktionen von digitaler und programmierbarer Hardware und haben ein vertieftes Verständnis für die praktisch relevanten Problemstellungen und deren Komplexität.

Methodenkompetenz: Die Studierenden sind in der Lage, Fragestellungen aus den o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums neue Lösungskonzepte zu entwerfen und umzusetzen, sowie bestehende Lösungen zu bewerten. Die Studierenden können ausgehend von einer Problemanalyse eigene Lösungen mit neuronalen Techniken erstellen. Sie sind in der Lage, komplexe digitale Schaltungen zu analysieren und zu synthetisieren und können auch umfangreichere Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Sie können beim Entwurf systematisch vorgehen und ihre Entwürfe verifizieren.

<u>Systemkompetenz</u>: Auf Basis der vermittelten Methodik sind die Studierenden in der Lage, Methoden der Computational Intelligence auf neue Probleme anzuwenden und erfolgreich einzusetzen. Sie können dabei auf ein breites Methodenwissen aus den Bereichen der Neuroinformatik zurückgreifen.

Im Teil Schaltsysteme sind die Studierenden in der Lage, Programmsysteme zum Entwurf digitaler Steuerungen und Schaltungen anzuwenden.

<u>Sozialkompetenz</u>: Die Studierenden sind in der Lage, praktische Problemstellungen mit Methoden der parallelen und sequentiellen Informationsverarbeitung in der Gruppe zu analysieren, zu lösen und die Lösungen zu präsentieren.

Sie erarbeiten Problemlösungen komplexer digitaler Schaltungen in der Gruppe, wobei einzelne Teilfunktionen von unterschiedlichen Personen entworfen werden. Sie können die von ihnen synthetisierten Schaltungen und Modellsteuerungen gemeinsam in einem Praktikum erproben, auf Fehler analysieren und korrigieren

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN

Modul: Neuroinformatik und Schaltsysteme

Neuroinformatik

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1389 Prüfungsnummer:2200343

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspu	Leistungspunkte: 3 Workload (h):90												Anteil Selbststudium (h):68																	
Fakultät für I	akultät für Informatik und Automatisierung																					F	acl	hge	biet	:22	33			
SWS nach	1	.F	S	2	2.FS 3.F					S 4.FS			5	5.FS			6.FS			7.FS			8.FS			9.FS			10.FS	
Fach-	V S P V S P V S P V S P											Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester																														

Lernergebnisse / Kompetenzen

In der Vorlesung "Neuroinformatik und Maschinelles Lernen" lernen die Studierenden die konzeptionellen, methodischen und algorithmischen Grundlagen der Neuroinformatik und des Maschinellen Lernens kennen. Ein Sie verstehen die grundsätzliche Herangehensweise dieser Form des Wissenserwerbs, der Generierung von Wissen aus Beobachtungen und Erfahrungen. Sie verstehen, wie ein künstliches System aus Trainingsbeispielen lernt und diese nach Beendigung der Lernphase verallgemeinern kann. Dabei werden die Beispiele nicht einfach auswendig gelernt, sondern das System "erkennt" Muster und Gesetzmäßigkeiten in den Lerndaten. Die Studierenden lernen die wesentlichen Konzepte, Lösungsansätze sowie Modellierungs- und Implementierungstechniken beim Einsatz von neuronalen und probabilistischen Methoden der Informations- und Wissensverarbeitung kennen. Die Studierenden sind in der Lage, praxisorientierte Fragestellungen aus dem o. g. Problemkreis zu analysieren, durch Anwendung des behandelten Methodenspektrums auf Fragestellungen aus den behandelten Bereichen (Signal-, Sprach- und Bildverarbeitung, Robotik und autonome Systeme, Assistenzsysteme, Mensch-Maschine Interaktion) neue Lösungskonzepte zu entwerfen und algorithmisch (Fokus auf Python) umzusetzen sowie bestehende Lösungen zu bewerten.

Vorkenntnisse

Keine

Inhalt

Die Lehrveranstaltung vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung neuronaler und probabilistischer Techniken des Wissenserwerbs durch Lernen aus Erfahrungsbeispielen sowie zur Informationsund Wissensverarbeitung in massiv parallelen Systemen. Sie vermittelt sowohl Faktenwissen, begriffliches und algorithmisches Wissen aus folgenden Themenkomplexen:

Intro: Begriffsbestimmung, Literatur, Lernparadigmen (Unsupervised / Reinforcement / Supervised Learning), Haupteinsatzgebiete (Klassifikation, Clusterung, Regression, Ranking), Historie Neuronale Basisoperationen und Grundstrukturen:

- Neuronenmodelle: Biologisches Neuron, I&F Neuron, Formale Neuronen
- Netzwerkmodelle: Grundlegende Verschaltungsprinzipien & Architekturen

Lernparadigmen und deren klassische Vertreter:

- Unsupervised Learning: Vektorquantisierung, Self-Organizing Feature Maps , Neural Gas, k-Means Clustering
 - · Reinforcement Learning: Grundbegriffe, Q-Learning
- Supervised Learning: Perzeptron, Multi-Layer-Perzeptron & Error-Backpropagation-Lernregel, RBF-Netze, Expectation-Maximization Algorithmus, Support Vector Machines (SVM) Moderne Verfahren für große Datensets
 - Deep Neural Networks: Grundidee, Arten, Convolutional Neural Nets (CNN)

Anwendungsbeispiele: Signal-, Sprach- und Bildverarbeitung, Robotik und autonome Systeme, Assistenzsysteme, Mensch-Maschine Interaktion

Exemplarische Software-Implementationen neuronaler Netze für unüberwachte und überwachte Lern- und Klassifikationsprobleme (Fokus auf Python)

Die Studierenden erwerben somit auch verfahrensorientiertes Wissen, indem für reale Klassifikations- und

Lernprobleme verschiedene neuronale Lösungsansätze theoretisch behandelt und praktisch umgesetzt werden. Im Rahmen des Pflichtpraktikums werden die behandelten methodischen und algorithmischen Grundlagen der neuronalen und probabilistischen Informationsverarbeitungs- und Lernprozesse durch die Studierenden mittels interaktiver Demo-Applets vertieft und in Gesprächsgruppen aufgearbeitet.

Medienformen

Powerpoint-Folien (als Papierkopie oder PDF), Demo-Apps, Videos, Python Demo Code

Literatur

- Zell, A.: Simulation Neuronaler Netzwerke, Addison-Wesley 1997
- Bishop, Ch.: Pattern Recognition and Machine Learning, Springer 2006
- Alpaydin, Ethem: Maschinelles Lernen, Oldenbourg Verlag 2008
- Murphy, K.: Machine Learning A Probabilistic Perspective, MIT Press 2012
- Goodfellow, I. et al.: Deep Learning, MIT Press 2016

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Biomedizinische Technik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

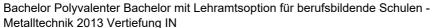
Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2009


Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Master Mathematik und Wirtschaftsmathematik 2008

Master Wirtschaftsinformatik 2013

Master Wirtschaftsinformatik 2014

Modul: Neuroinformatik und Schaltsysteme

Schaltsysteme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100457 Prüfungsnummer:2200344

Fachverantwortlich: Dr. Heinz-Dietrich Wuttke

Leistungspu	nkte: 3	W	orkload (h):90	Anteil Se	elbststudiu	ım (h):56	S		
Fakultät für I	nformatik	und Auton	natisierung	j				Fachge	biet:2235	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach- semester	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P

Lernergebnisse / Kompetenzen

Lernziele:

- · vertiefende Vermittlung von fundierten Kenntnissen und Fertigkeiten zum Entwurf digitaler Systeme,
- · Einbeziehung verallgemeinerter Wertverlaufsgleichheiten,
- Herausbildung von Fähigkeiten zur kritischen Beurteilung von entworfenen Schalsystemen bzgl. Aufwand und Korrektheit sowie zur praktischen Fehlersuche in Hard- und Softwarerealisierungen

Fachkompetenz:

Die Studierenden verfügen über Kenntnisse und vertieftes Wissen zu speziellen Strukturen und Funktionen von digitaler und programmierbarer Hardware und haben ein vertieftes Verständnis für die praktisch relevanten Problemstellungen und deren Komplexität.

Methodenkompetenz:

Die Studierenden sind in der Lage, komplexe digitale Schaltungen zu analysieren und zu synthetisieren. Sie können auch umfangreichere Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Sie können beim Entwurf systematisch vorgehen und ihre Entwürfe verifizieren.

Systemkompetenz:

Die Studierenden sind in der Lage, Programmsysteme zum Entwurf digitaler Steuerungen und Schaltungen anzuwenden.

Sozialkompetenz:

Die Studierenden erarbeiten Problemlösungen komplexer digitaler Schaltungen in der Gruppe, wobei einzelne Teilfunktionen von unterschiedlichen Personen entworfen werden. Sie können die von ihnen synthetisierten Schaltungen und Modellsteuerungen gemeinsam in einem Praktikum erproben, auf Fehler analysieren und korrigieren

Vorkenntnisse

- erfolgreicher Abschluß des Fachs "Rechnerorganisation"
- · Grundkenntnisse im Entwurf kombinatorischer und sequentieller Schaltungen

Inhalt

Einführung

Entwurf kombinatorischer Schaltungen

- · Verallgemeinerte Wertverlaufsgleichheit
- Implizite Gleichungssysteme
- · Struktursynthese, Minimierung
- · Dynamische Probleme

Entwurf sequentieller Automaten

- Partielle, nichtdeterminierte Automaten
- Struktursynthese mit unterschiedlichen Flip-Flop-Typen
- · Operations- und Steuerwerke

Entwurf paralleler Automaten

- · Komposition/ Dekomposition
- Automatennetze

Entwurfswerkzeuge

Medienformen

Vorlesung mit Tafel und PowerPoint, Video zur Vorlesung, Applets und PowerPoint-Präsentationen im Internet, Arbeitsblätter, Lehrbuch

Literatur

- Wuttke, Henke: Schaltsysteme, Pearson-Verlag, München 2003
- -Informatik-Duden: Duden-Verlag 1988/89Schiffmann,
- S. Hentschke: Grundzüge der Digitaltechnik, Teubner-Verlag, Stuttgart 1988
- T. Flick, H. Liebig: Mikroprozessortechnik, 4. Auflage, Springer- Verlag, Berlin 1994
- · Literaturempfehlungen zu den Vorlesungen

Detailangaben zum Abschluss

Die 20-minütige mündliche Prüfung geht zu 50% in die Modulprüfung Neuroinformatik/Schaltsysteme ein.

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung Master Wirtschaftsinformatik 2013

Master Wirtschaftsinformatik 2014

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN

Modul: Neuroinformatik und Schaltsysteme

Praktikum Neuroinformatik und Schaltsysteme

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Sprache:Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100536 Prüfungsnummer:2200372

Fachverantwortlich: Dr. Klaus Debes

Leistungspu	eistungspunkte: 2 Workload (h):60											Anteil Selbststudium (h):38																		
Fakultät für Informatik und Automatisierung																						F	acl	hge	biet	:22	33			
SWS nach	1	.FS	S	2	2.F	3	3.FS 4.FS					S	5.FS			6.FS			7.FS			8.FS			9.FS			10	3	
Fach-							٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	V	s	Р
semester											0	0	2																	

Lernergebnisse / Kompetenzen

Fachkompetenz:

SS: Durch die vertiefende Vermittlung von fundierten Kenntnissen und Fertigkeiten zum Entwurf digitaler, sequentieller Steuerungssysteme sowie Möglichkeiten zu deren formaler Beschreibung und Verifikation.
NI: Durch die Vermittlung von fundierten Grundlagen zur Funktionsweise von überwachten und unüberwachten neuronalen Lernverfahren.

Methodenkompetenz:

SS: Die Studierenden sind in der Lage, digitale Steuerungen zu analysieren, zu optimieren und zu synthetisieren. Sie können digitale Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Fähigkeiten zur kritischen Beurteilung von entworfenen Schalsystemen bzgl. Aufwand und Korrektheit befähigen zur praktischen Fehlersuche in Hard- und Softwarerealisierungen.

NI: Die Studierenden sind in der Lage, die Funktionsweise neuronalen Lernverfahren zu verstehen, zu analysieren und eigenständig für unterschiedliche Problemstellungen zu entwerfen.

Systemkompetenz:

SS: Mit Hilfe formaler Methoden können sie digitale Steuerungssysteme analysieren und validieren.

NI: Erlernen formaler Methoden zur Anwendung neuronaler überwachter und unüberwachter Lernverfahren;

Sozialkompetenz:

SS: Die Studierenden erarbeiten Problemlösungen einfacher digitaler Schaltungen in der Gruppe. Sie können die von ihnen synthetisierten Schaltungen gemeinsam in einem Praktikum auf Fehler analysieren und korrigieren.

NI: Die Studierenden analysieren auf der Basis vorgegebener Applets in kleinen Gruppen und stellen ihre Ergebnisse vor.

Vorkenntnisse

Vorlesung Neuroinformatik, Vorlesung Schaltsysteme

Inhalt

NI: Die behandelten methodischen und technischen Grundlagen der neuronalen und probabilistischen Informationsverarbeitungs- und Lernprozesse werden mittels interaktiver Demo-Applets vertieft und in Gesprächsgruppen aufgearbeitet; dazu Erarbeitung eines Protokolls im Selbststudium mit Überprüfung der Ergebnisse in einer Präsenzveranstaltung (Arbeitsaufwand 15 Zeitstunden)

SS: Durchführung von zwei Versuchen

- Hardware-Realisierung sequentieller Schaltungen
- PLD-Realisierung sequentieller Schaltungen

Medienformen

Literatur

NI: Praktikumsanleitung und Vorlesungsunterlagen

SS:

- H.D. Wuttke, K. Henke: Schaltsysteme Eine Automatenorientierte Einführung Pearson Education, 2006
- H.D. Wuttke, K. Henke: Schaltsysteme, Arbeitsblätter, Übungsaufgaben, Praktikumsanleitung, TU Ilmenau, www.tu-ilmenau.de/iks
- W. Schiffmann, H. Schmitz: Technische Informatik, Band I und II, Springer-Verlag, 2004
- V. Claus, A. Schwill: Informatik-Duden, Bibliographisches Institut, 2006
- Spezielle Literatur in den Versuchsanleitungen und unter www.tu-ilmenau.de/iks

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen:

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It. Inhaltsverzeichnis K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)