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Abstract

The aim of auditory augmented reality is to create a highly immersive and plausible auditory illusion combining
virtual audio objects and scenarios with the real acoustic surrounding. For this use case it is necessary to estimate the
acoustics of the current room. A mismatch between real and simulated acoustics will easily be detected by the listener
and will probably lead to In-head localization or an unrealistic acoustic envelopment of the virtual sound sources. This
publication investigates State-of-the-Art algorithms for blind reverberation time estimation which are commonly used
for speech enhancement algorithms or speech dereverberation and applies them to binaural ear signals. The outcome of
these algorithms can be used to select the most appropriate room out of a room database for example. A room database
could include pre-measured or simulated binaural room impulse responses which could directly be used to realize a
binaural reproduction. First results show promising results combined with low computational effort. Further strategies
for enhancing the used method are proposed in order to create a more precise reverberation time estimation.

1. Introduction

The aim of Auditory Augmented Realities (AAR) is to enrich
the real acoustic environment of the listener with additional
sound objects. Thus, it is inevitable to match the acoustic of
the augmented sound objects with the acoustics of the real
room or acoustic surrounding. Previous research has shown
that a mismatch of the virtual and real acoustics can lead
to in-head localization which means, that the sound objects
are not located outside the head as usual for natural sound
sources [12]. This effect was named room-divergence effect
[9]. The current study focuses on the reverberation time as
room dependent value, but of course a room has much more
characteristics and properties which contribute to the “identity
of a room”. The pattern of the first reflections, timbre of the
reverb, room acoustical modes and others are maybe equally
important. Additionally, many of these parameters change
when the listener moves through the room which gives him
or her an impression how the room sounds.
In order to realize a listening room dependent acoustic simu-

lation, it is possible to create a 3D model of room and conduct
a simulation [11] or to select an appropriate set of binaural
room impulse responses (BRIRs) out of a database. On
the one hand, approaches which generate or measure BRIRs
beforehand require an extensive database but on the other
hand the computational load during the rendering of the ear
signals is low, because only the BRIR selection has to be done
in real time. In conjunction with methods for the interpolation
and extrapolation of BRIRs of a moving listener [10], the
required memory for a BRIR database can be reduced. This
approach is the motivation behind this publication.

2. State of the Art

Auditory Augmented Realities is a emergent research field
and there are no state of the art approaches to include the real
acoustics into the simulation. But of course there are several
ways to do so. A database of rooms and acoustic surroundings
can be used in conjunction with artificial neural networks for
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Lecture Room Meeting Room Office Room H2505
Size [m] 10.8 x 10.9 x 3.15 8 x 5 x 3.1 5 x 6.4 x 2.9 9.9 x 4.7 x 3.1

Meas. Dist. [m] 4, 5.56, 7.1, 8.68,
10.2

1.45, 1.7, 1.9, 2.25,
2.8

1, 2, 3 1, 2, 3, 4, 5, 6, 7, 8

Tab. 1: Dimensions of the rooms from which the BRIRs were used in this study. Lecture, meeting and the office rooms are located at the
RWTH Aachen and the H2505 room at the TU Ilmenau. The measurement positions indicate the different distances between sound source and
artificial head.

acoustic scene classification [14]. Those methods may also be
able to estimate room acoustic parameters or room geometries
in the future. By including optical information a room size or
reverberation estimation might be improved. When multiple
cameras or time of flight cameras are available, a 3D model of
a room can be created [15]. Based on this, an acoustic room
simulation can be realized which synthesizes new binaural
room impulse responses. This paper focuses on blind T60
estimation methods known from communication engineering.
Blind T60 estimations are utilized for dereverberation in order
to enhance speech perception, for automatic speech recogni-
tion or for acoustical scene analysis [4]. Because of these
popular applications several methods for blind reverberation
time estimation from speech exist [6]. In a comparative study
by Eaton [5] the algorithms by Prego [7] and Löllmann [8]
delivered the best results. Both algorithms use framewise
subband analysis of free decaying regions. Eaton states, that
algorithms which use features based on the decay rate are
most accurate.

3. Reference and test data

Two different datasets of binaural room impulse responses
(BRIRs) were used for this work. A freely available data
set from Jeub et al. [3] includes BRIR measurements of three
different rooms at the RWTH Aachen University. Another
data set was recorded at the TU Ilmenau in room H2505,
which is a seminar room. Thus, four different rooms with
different dimensions and acoustical properties were available
(see table 1 for details). In each room, measurements with
different distances to the sound source were conducted. For
the measurements in the lecture, meeting and office room
the artificial head HMS2 from HEAD Acoustics was used.
For BRIR measurements in Aachen, pseudo-random noise
was used to excite the space [3]. The measurements in
room H2505 were conducted with an artificial head type
KEMAR 45BA of the manufacturer G.R.A.S. The room
H2505 was excited with a sweep from 60Hz to 20kHz. For
all positions BRIRs with head direction of 0◦ azimuth were
used. The default orientation of the sound source is frontal
towards the dummy head. For room H2505 there was an
additional condition with the sound source turned to the
opposite direction.
A reference T60 dataset was derived from these measure-
ments. At first the T30 is calculated on basis of the energy
decay curve of the BRIRs and then the T60 value is calculated
from the T30 value. This calculation is done for left and right
BRIR and the T60 valued are averaged afterwards. This is
justifiable, because the head is oriented towards the source
and therefore left and right ear signals should be similar.

However, there were small differences because the room
acoustics were not symmetric or the measurement positions
were not centered in the rooms.
For the preparation of the test data, the BRIRs are convolved
with a 30s speech signal. Three additional variants were cre-
ated by adding white noise to create a signal with 30dB, 20dB
and 10dB SNR next to the basic version without artificially
added noise. This was done to simulate more realistic and less
sophisticated recording equipment like microphones typically
used in consumer electronics.

4. T60 estimation algorithm

An algorithm proposed by Löllman et al. [2] was used to esti-
mate the reverberation time. In contrast to the aforementioned
algorithm Löllman (see section 2) this algorithms makes no
use of a subband decomposition. The advantages are a low
computational complexity and robustness against background
noise [5]. The algorithm uses a statistical decay model of the
transient signal components from a mono speech signal and
their selection for a blockwise T60 calculation. The selection
of interesting frames is done via a maximum value, minimum
value, and energy comparison of successive subframes within
every frame. The calculated values are compared with those
of the previous subframe and it is determined whether the
entire frame has a descending structure. If this is the case,
the frame is considered in the T60 calculations. If this is
not the case, the current frame is discarded and the next
frame is analyzed. For each subframe a decay parameter is
determined which can be used for T60 calculation. With the
help of a maximum-likelihood estimation, the most probable
reverberation time is determined by the probability density of
the decay parameter of the selected frame, thereby calculating
the T60 for each frame. The calculated values are stored
in a T60 histogram. The variance of the stored T60 data is
last reduced by a recursive smoothing to get a more reliable
final estimation. The binsize of the histogram describes the
quantization step in which the T60 values are calculated.
For the calculations, the smoothing factor α and the binsize
were adapted to achieve the best possible results for the T60
values in this case. The settings of the smoothing factor and
binsize have an effect on the accuracy of the estimation for
different reverberation times. A smaller binsize and a smaller
smoothing factor is beneficial for shorter reverberation times
and respectively, the algorithm archives better results for
longer reverberation times with a larger binsize and a higher
smoothing factor. A higher downsampling factor speeds up
the process. The settings for this study were determined
empirically. Table 2 shows the selected values.
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Fig. 1: Example of the frame wise processing of the input signal. Figure shows the waveform of a speech signal in room H2505, the percentage
of each frame which was used for calculation as well as the progression of the T60 estimation.

frame size [n] 5740
subframe size [n] 820

binsize 0.15
smoothing factor α 0.996

downsampling factor D 2
input size [s] 30

Tab. 2: Empirically selected parameters for the T60 estimation
algorithm by Löllman.

The algorithm works in an interval of the reverberation time
from 0.2s to 1.2s and with a recommended minimum input
signal duration of 10s. The quality of the estimate changes
with the SNR of the input signal. The decaying structure
of the transients is distorted by the noise components and
fewer frames are considered during the preselection of frames,
which leads to an inaccurate T60 estimate. Therefore, input
signals with a low SNR need to be preprocessed with an
noise reduction algorithm to ensure a good estimate. Noise
reduction was performed using a wavelet denoising process.
The denoising was designed adaptively for various SNR. For
a SNR > 20dB no noise reduction is carried out, for 20dB ≤
SNR > 10dB a moderate denoising and for SNR ≤ 10dB a
strong denoising. Since white noise is assumed, an orthogonal
wavelet (Daubechies10-Wavelet) was used.
Figure 1 shows the progression of the T60 estimation. The
figure shows the input signal (speech signal in room H2505
with frontal condition) as absolute amplitude in the upper half
of the plot. The lower half of the plot shows how many of
the subframes of a frame were selected for the T60 estimation
of the corresponding frame or if the frame was used at all
(corresponds to 0%). A minimum of three out of seven
subframes have to be selected in order to assume a sound
decay structure in a frame - this corresponds to 43% of the

length of a frame. The red line shows the estimated T60
over time. The start value for the T60 value defaults to 0.5s.
While the algorithm is real-time capable it takes some time to
approach the final T60 estimation.

5. Experimental Results

Figures 2, 3 and 4 show the estimation results for the speech
signals with different amounts of noise added. In each of the
figures estimation results are separated by the rooms. Each
marker corresponds to a estimation using one position in the
respective room. The amount of available positions is noted
in brackets and varies with rooms. The colored areas indicate
the range of the T60 values derived from the BRIRs directly,
thus indicating the reference range of the reverberation time.
Figure 2 shows the condition without additional noise.
For the meeting room and both conditions of the H2505
room, all estimations are inside or close to the reference
range. For the other two rooms we see several outliers.
However, in a classification task those rooms would be easily
distinguishable.
However with raising noise levels the estimation gets worse.
Figure 3 shows the condition with 30dB SNR and without
denoising applied. The estimations for the H2505 room are
still within the reference range. For the other rooms the
estimations become more scattered.
Figure 4 shows the condition with 20dB SNR and with
denoising applied. There is a strong tendency towards longer
reverberation times for the lecture, office and meeting room.
Surprisingly, the results for the H2505 are still very good. The
results for the condition with 10dB SNR and with denoising
are not shown here, because they are very similar to the 20dB
SNR condition and shows the same tendencies. The spread of
the estimations is increased again, especially for the smaller
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Fig. 2: T60 Estimation performance without additional noise. Markers show estimation results for each position in the corresponding rooms.
The colored areas indicate maximum and minimum reverberation times in each room derived directly from the BRIRs.
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Fig. 3: T60 Estimation performance with 30dB SNR. Markers show estimation results for each position in the corresponding rooms. The
colored areas indicate maximum and minimum reverberation times in each room derived directly from the BRIRs.
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Fig. 4: T60 Estimation performance with 20dB SNR and denoising. Markers show estimation results for each position in the corresponding
rooms. The colored areas indicate maximum and minimum reverberation times in each room derived directly from the BRIRs.

meeting and office room. Raising noise levels modify the
energy decay curve and thus lead to an overestimation of the
reverberation time.

5.1. Analysis of the DRR

The direct to reverberant ratio is a position and room depended
value and therefore a correlation with the T60 estimation
was suspected. The DRR is calculated on the basis of the
BRIRs and corresponds to the average from left an right. The
DRR values in the meeting room range between 8.3dB and
6.8dB, which means a high proportion of direct sound at all
positions. In the office room the position depended variation is
significant higher. The DRR decreases rapidly with increasing
distance from 8.2dB to −1dB. This is due to the many
differently reflective surfaces of the room furnishing. This
results in a sharp increase in diffuse sound, even with small
changes in distance of one meter each. As the diffuse sound
component increases, the results of the estimation improves.
However, this is only the case for test sounds without addi-
tional noise and it must be considered that there were only
three measurement positions in this room. In the lecture
room the DRR drops sharply from 7.2dB to −5.7dB as the
distance from speaker to microphone increases. Accordingly,
the direct sound component at the outermost position is
considerably lower than at closest position. However, no
dependency between DRR and T60 estimation performance
can be observed. The T60 estimations in room H2505 were
the best among the rooms in this study and it is also the
room with lowest DRR values. The DRR in the H2505 room
front condition changes from 6dB to −8.5dB with increasing
distance. Not surprisingly, the DRR values for the H2505
opposite direction range between −0.5dB and −5.4dB.
The DRR analysis could not show a clear dependency be-
tween DRR and T60 estimation performance. In some rooms

and noise conditions such a tendency could be observed but
other measurements disprove this hypothesis. The estimation
performance in room H2505 in connection with the low DRR
values leaves room for speculations whether or not there may
be an interconnection. A study with more rooms would have
to prove this.

6. Discussion and Conclusion

In this paper a state of the art approach for blind reverberation
time estimation was evaluated for binaural test signals. The
estimation for the selected rooms is good to distinguish the
rooms. However, this task is not particular difficult given the
fairly large differences between the rooms. For test signals
without artificial noise the results are close or within the
T60 values obtained from the BRIRs directly. With more
noise the estimation gets worse, even when denoising is
applied. It remains unclear why the estimation performance
in room H2505 was the best and the most robust. The DRR
could be an explanation, but this could not be confirmed
with certainty. The recording equipment and procedure was
different between room H2505 and the others, but the authors
are in doubt whether this is a decisive factor.
The tuning of the parameters of the algorithm require some
a priori knowledge about the rooms in order to perform
best. Here parameters were chosen which should result in
better estimations for rooms with a reverberation time over
0.5s. Another restriction of the algorithm is the delay of
the estimations, because the algorithm needs several seconds
to approach a stable T60 estimation. It will depend on the
application if that is an issue. The algorithm is tuned to
speech, because a speech based decay model is used. By
combining sound recognition with this approach, different
decay models might be applied based on the type of the
sound source. Furthermore in future researches additional
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acoustical parameters can be used for a better selection of
suitable BRIRs. The current state of research can not explain
which acoustical parameter is most important with respect to
the room divergence effect. A study by Werner [13] found no
significant effect of DRR manipulation on externalization in
situations of room divergence. This finding draws attention
to other features like the temporal structure of BRIRs. If
temporal structures are indeed relevant, a possible solution
would be to combine an BRIR selection based on T60 with an
optical or acoustical geometry estimation. This way BRIRs
would be selected from a room which is similar to the actual
listening room in terms of T60 and geometry.
Overall, the performance in light of the low computational
complexity make this, and other similar algorithms, attractive
for further investigations in the scope of augmented auditory
realities.
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