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Zusammenfassung

In dieser Arbeit betrachten wir Stochastische Evolutionsgleichungen getrieben durch raue Pfade.
Das erste Ziel ist die Existenz und Eindeutigkeit von milden Lésungen zu zeigen. Dazu werden
wichtige Grundlagen zur Halbgruppentheorie sowie zur Theorie der rauen Pfade présentiert. An-
schlieflend entwickeln wir, basierend auf heuristischen Betrachtungen, eine Lésungstheorie und
zeigen die Existenz einer eindeutigen globalen Losung.

Als Anwendung fiir das treibende stochastische Rauschen betrachten wir eine fraktale Brownsche
Bewegung, welche zu einem rauen Pfad geliftet wird und analysieren daran einfache dynamische
Eigenschaften der milden Losung. Wir zeigen, dass diese Losung ein zufilliges dynamisches System
generiert und untersuchen ihr Langzeitverhalten unter zuséatzlichen Voraussetzungen an die nichtli-
nearen Koeffizienten, d.h. wir zeigen sowohl lokale als auch globale Stabilitdt der trivialen Losung.



Abstract

In this thesis we consider Stochastic Evolution Equations driven by rough paths. The first aim
is to show existence and uniqueness of mild solutions. Therefore, important basics on semigroup
theory and on the theory of rough paths are introduced. Afterwards, we develop a solution theory
based on heuristic considerations and use this to prove the existence of a global-in-time solution.
Then, as leading example for the driving noise we consider a fractional Brownian motion which,
can be lifted to a rough path, and analyze simple dynamic properties of the mild solution. We
show that the solution generates a random dynamical system and investigate its long-time behavior
under additional assumptions on the coefficients, i.e. we show local as well as global stability of
the trivial solution.
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1. Introduction

Starting with Lyons, [48] in the 1990’s the rough path theory has become a widely used
mathematical theory for the analysis of stochastic differential equations. Gubinelli extended
Lyons first approach and introduced the concept of a controlled rough paths in [35|. Further,
Gubinelli and Tindel expanded the rough path theory in order to analyze stochastic partial
differential equations in [37]. Later on Hairer adopted the ideas of the rough paths theory and
developed the theory of regularity structures in [38] for solving singular partial differential equations.

In this thesis we analyze existence and dynamics of solutions for rough stochastic partial differential
equations (SPDEs)

{dyt = (Ays + F(y))dt + G(ye)dwe, t € [0,7] @)

Yo =§&.

Here T > 0 is a fixed time-horizon, the linear part A is the generator of an analytic Cy-semigroup
(S(t))iepo, 7] on a separable Banach space W and £ € W denotes the initial condition. Furthermore,
F and G are the nonlinear coefficients. The precise assumptions on the coefficients will be stated
in Section 2.1. Finally, w denotes a rough random input which can be lifted to a geometric rough
path, for instance a fractional Brownian motion with Hurst parameter H € (1/3,1/2] introduced
in Section 4.1. In order to solve (1.1) we rely on the pathwise construction of the rough integral

/ St — )Gy ) deor. (12)
0

Results in this context are available in [51] and [27] via fractional calculus and in Gubinelli et al in
[35], [10], [36], [37], [32] using rough paths techniques.

In this work, we combine Gubinelli’s approach with the arguments employed by [27] to solve (1.1).
The eventual aim of this thesis is to investigate the long-time behavior of solutions of (1.1). Thus
for, we first establish the existence of a pathwise global solution. Consequently, we can show
that the solution operator of (1.1) generates an infinite-dimensional random dynamical system,
see [2|. The analysis of many dynamical aspects for (1.1) such as asymptotic stability, Lyapunov
exponents, multiplicative ergodic theorems, random attractors, random invariant manifolds etc.
relies on the random dynamical system approach, see e.g. [25], 3], [26], [41], [14] or [5].

The generation of a random dynamical system from an [t6-type SPDE is in general still an open
question for multiplicative noise. Here, we benefit strongly from the pathwise construction of the
solution since no exceptional sets occur. Recently, there has been a growing interest to give a
pathwise meaning to the solutions of SPDEs by various techniques, see e.g. [37], [10], [27] or [38].
However, there are only few works that explore the pathwise character of the solutions to analyze
random dynamical systems and their long-time behavior. Progress in this direction was made
for instance in [30] and [27] where the authors use fractional calculus for dealing with random
dynamical systems for SPDEs driven by a fractional Brownian motion with Hurst parameter
H e (1/2,1) and H € (1/3,1/2]. Furthermore, in [16], [17] the random input is given by rough
Gaussian noise and is handled by rough path techniques.
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To the best of our knowledge there are only few works that connect the rough paths and random
dynamical systems perspectives such as [19], [3], [34], [16] or [17]. Here we contribute to this aspect
and provide a general framework of random dynamical systems for rough evolution equations
under natural assumptions on the coefficients. The crucial result that opens the door for the
random dynamical systems theory is the existence of a global pathwise solution for (1.1). It
is known that global-in-time existence of solutions is a challenging question in the context of
rough paths techniques, compare |27], [37], [32]. This is due to the fact that one obtains certain
quadratic estimates on the norms of the solution of (1.1). Hence, it is not straightforward to
extend the local solution to an arbitrary time horizon. Using additional restrictions on the
coefficients or on the noisy input, see [27] shows global-in-time existence for (1.1) driven by
a fractional Brownian motion with Hurst index H € (1/3,1/2]. However, in this thesis using
regularizing properties of analytic Cy-semigroups, a-priori estimates on certain remainder terms
and a standard concatenation procedure enables us to prove the global-in-time existence of solutions.

There are several techniques for analyzing the long-time behavior of a global-in-time solution
of 1.1, see for instance [12], [23], [14] or [23]. In this work we use a truncation technique as
used in [30] and a stopping time approach, compare [18], [16], [17], in order to show stability in zero.

This work is structured as follows. In Section 2.1 we collect well-known properties and estimates of
analytic semigroups and introduce important notation, which are necessary in this framework.
Further in Section 2.2 we give a short introduction into the rough path theory

In Chapter 3 we develop a solution theory in order to solve (1.1) in the rough case. For introducing
the general ideas we first analyze a more regular case (Young case) in Section 3.1. Section 3.2
provides the general intuition of the required techniques in the rough case. It describes the story in
a nutshell and provides an insight into the rough path theory pointing out the main obstacles which
occur in the infinite-dimensional setting. We state basic concepts and indicate how an appropriate
pathwise integral should be constructed and how a solution of a rough evolution equation should
look like. The next sections rigorously justify the steps presented in Section 3.2. Section 3.3 is
the core of Chapter 3. Here we introduce a modified version of the Sewing Lemma, compare [37],
[36]. This is a very general fundamental result which entails the existence of a rough integral in a
suitable analytic and algebraic framework. This is, of course, the first main ingredient for solving
(1.1). In contrast to [37], we work with modified Holder spaces and so the version of the Sewing
Lemma precisely fits in this setting. Section 3.4 is devoted to the construction of supporting
processes which are necessary to give an appropriate meaning of the rough integral. Inspired by
[27], in order to define the supporting processes we first consider smooth approximations of the
noise and thereafter pass to the limit. The existence of the corresponding processes is derived via
classical tools, such as an integration by parts formula or using the Sewing Lemma introduced in
Section 3.3. For a better comprehension, we point out an example in which one can construct a
pathwise integral using the integration by parts formula as well as the Sewing Lemma. Section 3.5
shows the existence of a unique local solution of (1.1) by using a fixed point argument. Since
certain a-priori estimates presented in Section 3.5 contain quadratic terms one cannot immediately
conclude the existence of a global solution. Thus, in Section 3.6 we introduce a specific functional
in order to derive a linear a-priori estimate for the solution of (1.1). Eventually, we show the
existence of a global solution by concatenation techniques. We present an application of our theory
in Section 3.7. Chapter 3 concludes with some remarks on the nonlinear coefficients F' and G in
Section 3.8.

In Chapter 4 we analyze the dynamics of solutions of (1.1) we derived in Chapter 3. We introduce
the concept of a random dynamical system in Section 4.1. As leading example we present a Hilbert
space valued fractional Brownian motion, lift it to a rough path and prove finally, that a solution
of (1.1) driven by a fractional Brownian motion generates a random dynamical system.

Sections 4.2 and 4.3 deal with the long-time behavior of this solution, compare for instance [30],
[16] or [12]|. By assuming F(0) = 0 and G(0) = 0 we guarantee the existence of the trivial solution
of (1.1). In Section 4.2 we use a truncation technique to show local exponential stability of the



1 Introduction

trivial solution, compare [30]. In Section 4.3 we restrict ourselves to the simpler Young case and
show global exponential stability by exploiting a stopping time argument, as introduced in [18].
In Chapter 5 we summarize the main results of this thesis and discuss possible extensions to our
work. Finally, we collect some important results and computations in the Appendix A.

This work is based on the two papers [40] and [39]. More precisely, Sections 3.2-3.5 and 3.7 arise
from [40]. Section 3.6 and 4.1 are a revised version of [39].



2. Preliminaries

Let T > 0. V stands for a separable Hilbert space and W denotes a separable Banach space.
Furthermore, for any compact interval J C R we set Ay := {(t, s)eJ?:t> s} and Ap =
Afo,r)- For notational simplicity, if not further stated, we write |-| for the norm of an arbitrary
Banach space. Furthermore, C' denotes a universal constant which may vary from line to line. The
explicit dependence of C' on certain parameters will be precisely stated, whenever required. Finally,
we fix a € (%, %) This parameter indicates the Holder-regularity of the random input.

2.1 Notation and Deterministic Background
We start by introducing the assumptions on the linear part of (1.1) and on the coefficients F' and
G.

Since we are in the parabolic setting, i.e. A is a sectorial operator, we can introduce its fractional
powers (—A)7Y for v > 0, see [55, Section 2.6] or [47]. We denote the domains of the fractional
powers of (—A) with D.,, i.e. Dy := D((—A)"), and recall the following estimates.

For n,k € R we have

1SN 2p,,p,) = I(=A)"'SO 2D,y < Ct*, forn >k (2.1)
I|S(t) — IdHE(DmDn) < Ctt) for k —n €0, 1]. (2.2)
Furthermore, one can show that the following assertions hold true, consult |55, Chapter 3|.

Lemma 2.1. For any v,n,u € [0,1], k,7v,0 > 0 such that kK < v+ u, there exists a constant C > 0
such that for 0 < g < r < s <t we have that

ISt —7) = St =)l g(p,.p,) < Clr— @)t —r) "7,
1S(t —=r) = S(s =) = S(t — @) + S(s = @)ll o(p,.p,) < Ct = )" (r — )" (s —r)~ O+,
On the coefficients we impose the following conditions:

(F) F: W — W is Lipschitz continuous.

(G) G: W — L(V; Dg) is bounded and three times Frechét differentiable with bounded derivatives
for some (8 € (0, ) satisfying o + 23 > 1.

Remark 2.2.

(i) For most parts of Chapter 38 we set F' = 0 for simplicity, since this term does not cause
additional technical difficulties. However, we will discuss the differences in Section 3.8.

(i) The boundedness of G is only necessary for deriving a global solution. Clearly, in the case of
linear noise (G) is not fulfilled. However, in Section 3.8 we will show that in this special
case we will obtain a global solution, too.

(11i) The assumptions (F) and (G) are more general than the assumptions made on the coefficients
of the SPDE (1.1) in many works, compare [27] and [37] and the references specified therein.
Recently, in [32] the authors consider slightly more general assumptions but for the case of a
finite-dimensional noisy input.



2.1 Notation and Deterministic Background

For our aims we introduce the following function spaces. Let 8 € (0,1) be fixed and let W stand for
a further separable Banach space. We recall that C?([0, T7, W) represents the space of W-valued

B-Holder continuous functions on [0, 7] and denote by C%(Ar, W) the space of W-valued functions
on Ap with z;¢ =0 for all ¢t € [0,7] and

el = sup |zl + sup !
0<t<T o<s<t<T (t —8)*

Furthermore, we define C##([0,T], W) as the space of W-valued continuous functions on [0, T’]
endowed with the norm

B|yt — ys|

Y = |y + ||y = sup |y¢| + sup S ——-77 < O00.
lllg 5 = 1Ylloo + N¥ll 5, Ogth‘ | N Sy e
Similarly we introduce C**5#(Az, W) with the norm

g8 l7sl < oo

z = sup |zw|+ sup S —— .
1#lacss 0 0§t§T|t‘ 0<s<t<T (t—s8)>TF

Again z; = 0 for all t € [0, 7.

These modified Holder spaces are well-known in the theory of maximal regularity for parabolic
evolution equations, see [47|. These were also used in [27].

Note that for notational simplicity we do not state the dependence of the (modified) Holder spaces
on the underlying time interval/area.

In case we want to point out this dependence, see Section 3.6 and Section 4.3 eventually, we denote
||l respectively ||-[|5 5 7. In case we consider a restriction on a certain time interval [T, 7] and

we set HHa[TT] respectively H‘”ﬁ,ﬁ,[iﬁ'
It is well-known that analytic Cy-semigroups are not Holder continuous in 0. However, the following
lemma holds true.

Lemma 2.3. Let (S(t));>q be an analytic Co-semigroup on W. Then we have for all x € W and
all B € 10,1] that

1SC)zllgp < Clzl,
where C depends only on the semigroup and on (3.

Proof. The definition of [|-||; 5 and tjhe estimates recall (2.1) and (2.2) entail

S(t) — S(s))z]
S()x = sup |S(t)x|+ su sﬁy(
15C)2lls,s ogth’ (t)el 0<s<£)§T (t—s)8
< sup |SBz]+ sup 5P |(S(t —s) —1d)S(s)x]
0<t<T 0<s<t<T (t—s)8
< Cla|, .

This justifies our choice of working with the function space C?#. Note that if one lets = € Dg
it suffices to consider only C#. However, since we want to analyze random dynamical systems
generated by (1.1) in W (compare Section 4.1), we need to take the initial condition £ € W instead
of Dg.

Furthermore, we fix some important notations. These are also used in [37] and [10].
Notations: For y € C([0,7],W) and z € C(Ap, W) we set for 0 < s <7 <t

(0Y)ts == Yt — Vs, (2.3)
(6y)es =1 — S(t — 5)s, (2.4)
(022)trs 1= 2ts — 2tr — Zrs; (2.5)
(32,2)th = 2ts — 2tr — S(t— T)2rs. (2.6)
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At this moment these notations probably appear unreasonable. In Section 3.2 and 3.3 we will show
the connection to the solution theory.

Let us state some important algebraic properties. For more details and a more general framework
see [37].

Lemma 2.4. The following statements hold true:

(i) by 06 =0.

(ii) Let N € C (Ap, W) with 6N = 0. Then there exists y € C ([0,T], W) with (6y)ss = Nys.
(#ii) Consider y',y? € C ([0,T),W) with y§ = y2 and (5y1)t5 = (3y2)ts. Then y* = y2.
Proof.

(i) Take an arbitrary y € C ([0, T], W).

(020y)trs = (0Y)ts — (OY)er — S(t — 7)(0Y)rs
=y — St —98)ys —yt + St — 7)yr — St —7)yr + S(t — s)ys = 0.

(ii) Let 59N = 0. Set Yy := Nyg. Then, we have

(6y)ts = Ny — S(t - S)NSO = Nis.

(iii) Consider

yi = 0y o + S(t)yg = (0y*)ew0 + S(t)ya = v}
0

The second assertion of the previous Lemma is extremely important for the deliberations made in
Section 3.3, especially for Theorem 3.6, which ensures the existence of rough integrals.

Concluding this section we denote by V' & V the usual tensor product of Hilbert spaces. In case
of Banach spaces W ® W stands for the projective tensor product for given Banach spaces W, W
which is an extension of the tensor product for Hilbert space. Then the property

LW LOW; W) — LW @W; W) (2.7)

holds true, consult |56, Theorem 2.9].

2.2 Basics of Rough Paths Theory

Although the techniques provided by the rough paths theory are fundamental for the whole thesis,
in this section we only state the very basics. We will focus on further results of the general theory
in Sections 3.2, 3.3 and 4.1. For a broad overview of the rough paths theory we recommend [20].

Definition 2.5. (a-Hélder rough path) Let J C R be a compact interval. The pair w := (w, w®))
is called V-valued a-Holder rough path if w € C%(J, V) and w® € C?**(A;,V ® V). Furthermore,
w and w® are connected via Chen’s relation, meaning that

wg) — W wg) = (wy —ws) ® (W —wy), forsuted s<u<t. (2.8)
Using the notation introduced in (2.3) and (2.5) we can shorten this and obtain

(52 w(2))tus = (5W)us & ((Sw)tu-

In the literature w(® is referred to as Lévy-area or second order process. We denote € = €*(.J,V)
as the set of all V-valued a-Hélder rough path on J.
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We further describe an appropriate distance between two a-Holder rough paths.

Definition 2.6. Let w and w be two a-Holder rough paths. We introduce the a-Holder rough
path (inhomogeneous) metric

o~ o~ (2 ~(2
da,](w, &3) = sup ’wt Ws wot; + WS‘ 1+ sup |wts ("2]2[3 |
(t,5)eA, It — s ts)ea, [t—s

(2.9)

We set do, 1 := do 0,1

For more details on this topic consult [20, Chapter 2]. We stress that in our situation we always
have that w(0) = 0 and therefore, (2.9) is a metric.

Remark 2.7. In general, the main issue is to find an adequate second order process w® for a
given path w. We call this to lift w to a rough path w = (w, w®).

Note that w® is uniquely determined up to an increment of some path 1 € C?*Y(V ®V), see
[20, Section 2.1/, i.e. if (w, w®) is an a-Hélder rough path then (w, w® + dp) € € for all
0 € C**(V ®@V). Moreover, every lifted rough path has this form.

Howewver, under the assumption that w is a smooth path, e.qg. continuously differentiable, we can
define w® by

t
w? = / (0w)rs ® dewy. (2.10)
S

We call this the canonical lift.

Furthermore, 6 denotes the Wiener shift (this represents an appropriate shift with respect to the
noise), more precisely 6 = (0;),cr with

97(4.),5 = Wi — Wr (211)

The Wiener shift is explained in detail in Section 4.1 and is mainly required in the theory of random
dynamical systems.

07yt := Yttrs (2.12)

g.rzts = Zitr,str (2.13)

Note that, at this moment y and z are meant to be arbitrary first order respectively second order
g ., (2)

processes. In particular, the definition of 6 is also applicable to the noise, e.g. 6, Ws' = Wiy sqre

We indicate the following result regarding the shift-property of an a-Hoélder rough path. Eventually,
it will be crucial in Section 3.6 as well as in Section (4.1).

Lemma 2.8. For an a-Holder rough path (w, w(Q)) on the time interval J and for 7 € R, the
time-shift (6+w, 0, w?) is an a-Hélder rough path on the time interval J — 7.

Proof. The time-regularity is straightforward and one can easily verify Chen’s relation (2.8).

a2 g @ _7 @2 2 2 2
0- wt(s) —0- wf(is) — 07 wzgu) = wt(-i‘)775+T - Wq(jlnsw - wt('f‘)‘ﬁquT
= Wudtr,s+7 @ Widrutr) (2.14)

= (Wu+7' — Wy — Wsyr + wT) & (wt+T — Wr — Wytr + UJT)
(50, 0)us ® (56,01

where in (2.14) we use Chen’s relation (2.8). O
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To close this chapter let us introduce the concept of a geometric rough path, see |20, Section 2.2|.

Definition 2.9. Let w be a V-valued a-Hélder rough path and (e;);en be an orthonormal basis
of V. For i,j € N define w’ = (w,e;)y and W@ = (w@),ei ® ej)veyv. We call w a geometric
V-valued a-Hélder rough path if

w7 w7 = (80t (00 .
We denote 6;* as the set of all geometric a-Holder rough paths.

Note that we do not need this property for deriving a solution of (1.1) in Chapter 3. However,
in many applications, e.g. [20, Chapter 10], [11]| or [25], the rough noise w is approximated by a
sequence of (piecewise) smooth paths w™. These are lifted to rough paths w™ according to (2.10)
and one proves the convergence of these sequence in d, ;. We will present this procedure for our
example of a fractional Brownian motion in Section 4.1. The next lemma shows that in this case
we always end up with a geometric rough path, see [20, Section 2.2|.

Lemma 2.10. Let ngo,a be the closure of canonical lifts of piecewise smooth paths w.r.t. do j. Then
0, «
€, C by

In particular, every canonical lift of a piecewise smooth path is a geometric rough path.



3. Solution Theory for Rough
Evolution Equations

In this chapter we rigorously define (1.2) in the rough case and eventually show the existence of a
global-in-time solution of (1.1). Recall from Chapter 2 that C' denotes a generic constant which
may vary from line to line. This constant can depend on the semigroup .S, the nonlinear coefficients
F and G, the parameter o € (%, %), the rough path w and the eventual solution space.

For notational simplicity we omit these dependencies. Furthermore, in the following we drop the
tensor symbol for the same reason. Finally, for simplicity we set F' = 0.

In Section 3.8 we will have a closer look on the case where the drift term does not vanish and

further give a comment about the generic constant C.

3.1 The Young Case

Before considering the rough case we want to give a concise motivational overview of a more regular
case. In this section we assume o > %

In 1936 Young proved the existence of a deterministic integral as limit of Riemann-Stieltjes sums,
see [61]. In [62] the Young integral was first applied for defining a pathwise stochastic integral with
respect to a fractional Brownian motion with Hurst parameter H > %

For defining the Young integral one exploits the regularity of the integrand and the integrator,
more precisely for an integrand with finite p-variation and an integrator with finite g-variation one
demands % + % > 1. Clearly every a-Holder function has finite p-variation for all p < é Hence,
for simplicity we state Young’s result for Hélder continuous functions.

Theorem 3.1. Let o, 3 > 0 with a+ 3 > 1 and w € C*([0,T],V) y € C5([0,T],L(V;W)). Then,
for all 0 < s <t <T there exists

t

/dewr = lim Z Yu (0W) s, (3.1)

|P|—0
s [u,v]eP
where P = P(s,t) is an arbitrary partition of [s,t] and |P| indicates the mesh of this partition.

Furthermore, we obtain [y, dw, € C*([0,T], W) and the Hélder norm can be estimated by
0

/ o dwr|| < C lly Il (3.2)
0 Iy

It is important to mention that the limit in (3.1) does not depend on the choice of the partition
neither the choice of the node.

Consider the simple Young equation of the form

yt:€+/G(yr)dwr, 0<t<T
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with w € C. Let C? be the space where we want to find the solution in, e.g. by a fixed point
argument. So, let y € C? then, even for smooth G, Theorem 3.1 demands a + 3 > 1 and grants
y € C*. Consequently, if we want to iterate the Young integral, we need @ > 5. This makes clear
why we have to assume o > %

Indeed, if @ > 1 there are several possibilities for defining (1.2) as a Young integral, see [36] or
[50]. Note that we can not apply Theorem 3.1 for defining (1.2) since the semigroup S is not
Holder continuous, see Section 2.1. However, Lemma 2.3 guarantees S(-)z € C%P for all z € W.
Consequently, we can not expect a solution y of (1.1) to be Hélder regular but to fulfill y € C#5.
The next Lemma follows by a more general abstract result we are going to prove in Section 3.3. In
order to motivate such a result, we first give a sketch for a more regular w € C%, o > % here.

Lemma 3.2. Let a,3 > 0 with a + 3 > 1 and w € C*([0,T],V), y € C?P([0,T], L(V;W)).
Furthermore, let (St)t>0 be an analytic semigroup on W and G: W — L(V; W) be Lipschitz
continuous. Then, for all 0 < s <t < T there exists

where for a placeholder K € LIV ;W) and 0 < s <t < T we define

Wi (K) = /S(t —r) K dw,. (3.4)

s

Furthermore, for all 0 < s <t < T we obtain

/5 (t = )G (yr) dwr| < Cllyllg g lwlly 577t = 5)*. (3.5)

Sketch of Proof. One can define (3.4) using integration by parts see (3.51) and derive the estimate
}wf;(K)‘ < Clwll, IK]| (t =), compare (3.47).
For simplicity let P, = P, (s, t) by the n-th dyadic partition of [s,¢] with 0 < s < ¢ < T and define

N = Z St —v)w, (Glyw)), for n € Ny. (3.6)

For a rigorous proof we had to consider an arbitrary sequence of partitions whose meshes converge
to zero and also handle the case s = 0.

We consider the difference of two adjacent partitions

N =Nt = 3T St —v)wi, (G) = Y St —v)ws,(Gly))

[u,v]EPy [u,v]EPn+1
= Y [St=v)wp(Gyn) = St =) win(Glym)) = S(t = m) wh (G (ya))]
[u,v]€Pn

where m = “—‘2“’ Furthermore, we have

S(t =) wyu(Glya)) — St —v) wy, (G(ym)) = S(t = m) winu(Glya)
=5t = v) (520° )omu(G(yu)) + S(t = v) w5 (G(yu) = Glym)).

10



3.2 Heuristic Considerations

We will show in Lemma 3.17 that (§2w®) = 0. So, since for [u,v] € P, we have v — u = 52, we
obtain the estimate

Ni's = NI <Cllwlly Y 1G(ya) — Glym)| (v —m)”
[u,v]€Pr
(t _ S)a—i—ﬁ

<Clwll, ¥l 5 5 S_BW,

since G is Lipschitz continuous and y € C#P. The sequence (NJ% — N/“™1),cn, is absolutely
summable As a4+ 3 > 1. Thus, we can define the limit of N/} by the limit of the telescopic sums
over the differences of two adjacent partitions. Hence, we derive the estimate

T Y St 0) Wi (Cn) ~wi(Gw))| < Clelullvllyy st -9 O
[’U,,’U]E’Pn

In Section 3.3 we will give a rigorous proof in a more general setting and obtain further estimates
for the Young integral.

3.2 Heuristic Considerations

The goal is again to obtain a criterion that enables us to obtain the integral as a limit of Riemann-
Stieltjes sums as we did above in the Young case. This abstract result is called Sewing Lemma and
is stated in the following Section 3.3. To this aim we need certain algebraic and analytic conditions.

For a better comprehension and in order to point out the difficulties that arise in the infinite-
dimensional setting, we shortly sketch the well-known results in the finite dimensional case. In
finite dimensions, the solution theory for (1.1) is well-established and one needs very few ingredients
to define (1.2) by rough paths techniques. This immediately entails a suitable solution concept for
(1.1). Regard that we use the notation introduced in Chapter 2.

Since the trajectories of the noise are irregular, i.e. Holder continuous with exponent o < 1/2, the
Young integral defined as (3.1) can no longer be used. Therefore, Gubinelli [35] introduced the
concept of a controlled rough integral, which extends the Young case. Regarding (3.3), it turns out
that we have to consider additional terms satisfying certain algebraic and analytic properties. This
reads as follows

t

= i " w®
/yrdwr |71)1|r£0<[u%7)yu(5w)w+yuwv > (3.7)

Here the pair (y,y’) stands for a controlled rough path. This can be interpreted as an abstract
Taylor series, namely one assumes that there exists y' € C%, which is called Gubinelli’s derivative,
such that for all 0 < s <t < T we have

Yt = Ys + y{s(dw)ts + R%Js’ (3.8)

where the remainder RY is 2a-Hélder regular. Here w € C® and w® € C2@ are connected via
Chen’s relation (recall Definition 2.5), meaning that for 0 < s <wu <t

(52 W(2))tus = (5w)us & (6W)tu-

Consequently, w? can be thought of as the iterated integral

¢
wg) = /(5w)m ® dwy.. (3.9)

11



3 Solution Theory for Rough Evolution Equations

We emphasize that in order to construct (3.7) and thereafter the solution of (1.1), one needs
an appropriate algebraic and analytic setting which will be in detail analyzed in this work for
stochastic evolution equation. The rigorous existence proof of (3.7) is based on a Sewing Lemma,
see Lemma 4.2 in [20]. For more details on this topic consult [35] and |20, Chapter 4].

This opens the door for the theory of rough SDEs using a completely pathwise approach. The only
part where stochastic analysis plays a role is hidden in (3.9). Keeping this in mind, one can solve
(1.1) by a fixed-point argument in the space of controlled rough paths. Regarding this, one can
easily show that the solution of (1.1) with F' = 0 is given by the pair

(/) = (SO + [ S6 =G Ier Glw). (3.10)
0

The essential tool in defining (3.7) and proving that (3.10) is the right object to solve (1.1) in
the finite-dimensional case is the regularity of (S(¢)):>0. Note that a (semi)group generated
by a linear bounded operator is Lipschitz continuous therefore, the required Holder regularity
of the terms appearing in (3.8) and (3.7) cannot be influenced. More precisely, one can easily
show that for a controlled rough path (y,y’) as specified in (3.8), the convolution with (S(¢)):>0,
ie. (S(t—)y,S(t —-)y), is again a controlled rough path. Due to this fact one can define

S(t — r)yrdw, by (3.7) and show that the mapping

P

(y,9) = (/S(' —T)yrdwr,y)
0

is linear and continuous on the space of controlled rough paths. Moreover, the composition of a
controlled rough path with a regular function is a well-defined operation according to Lemma 7.3

¢
in [20]. Consequently, [ S(t — )G (y,)dw, fits perfectly in the framework of (3.7). Regarding the

S
notation introduced above one observes that

t

/su—mcwnm%

s

corresponds to

(0y)is = (0y)ts — (S(t — 5) — Id)ys.

Finally, by an appropriate fixed-point argument one establishes that (3.10) solves (1.1). This would
be the story in a nutshell in the finite-dimensional setting. For further information and applications
see [35], [20], [22].

However, in the infinite-dimensional case, since the analytic Cp-semigroup (S(t))s>0 is not Lipschitz
continuous (not even Hoélder continuous in 0, recall Lemma 2.3) it is no longer straightforward
what are the appropriate objects required in order to obtain something similar to (3.10). It turns
out that one has to construct additional supporting processes. Consult also [10] in order to find the
right way to define (1.2) together with the corresponding pair (y,y’) that solves (1.1). This is the
main topic of our work and for the beginning we illustrate heuristically the main ideas, which will
be justified by the computations in the next sections. Furthermore, we stress that the noisy input
w is infinite-dimensional in contrast to [10]. Therefore, one needs to make sure that the Lévy-area
w® exists in this case, see [24] and the references specified therein.

We make preliminary deliberations which will lead us to the right definition of (1.2).

12



3.2 Heuristic Considerations

To this aim, similar to 27|, we firstly assume that w is smooth and consider the following
approximation of the integral:

t

/S(t — )Gy )dw, = > S(t— v)/S(v — 1) G(yy)dw,

S [u,v]eP

~ 3 S(t-v) / S0 — 1) [Gy) + DG () (69)ru] diy

[u,v]eP
= 3 8- o) [5G + [ S DO @)rudr].

In the first step we just plugged in the definition of the integral using Riemann-Stieltjes sums and
in the second step we employed a Taylor expansion for G. Furthermore, we introduced the notation

SEG)) = [ S0 = 1G)der, (3.11)
respectively
z2ou(DG(yy)) == /S(v —1)DG(yy) (0Y)rudwy. (3.12)

Since w is smooth, all the expressions above are well-defined. We argue in Section 3.4 how to
define the first integral (3.11) for a rough input w and derive important properties of w¥, using an
integration by parts formula and regularizing properties of analytic semigroups. Unfortunately, it is
not at all clear how to define z if w is not smooth. Therefore, we have to continue our considerations.

The strategy is to construct the integral using an appropriate Sewing Lemma as derived in Section
3.3. To this aim we need to introduce several processes satisfying appropriate analytic and algebraic
conditions. We describe the general intuition of this approach which will allow us to define the
integral Z of

Ez(;%) = Eq%) (y,2) = wfu(G(yu)) + 20u(DG (Yu))-

In order to employ the Sewing Lemma (Theorem 3.6) to obtain the existence together with suitable
estimates of ZZ®) we firstly have to compute (as rigorously justified in Section 3.3)

(1]

D)o = ) — ) — S0 - m)=,

(J
We can easily check

(022w = (826 Yo (G(yu)) + @i (G () = G(ym))
+ (52z)vmu(DG(yu)) + va(DG(yu) - DG(ym))

The first term obviously results in

(020 )omu (G(yu)) = wi(Gyu)) = wim (G (ya)) — S(0 = m)wp (Glya))

= /S(v —1)G(yy)dw, — /S(v —1)G(yy)dw, — S(v —m) / S(m — r)G(yy)dw,

=0.

13



3 Solution Theory for Rough Evolution Equations

Consequently,

(825(y))vmu = me(G(?/u) — G(ym)) + (S2Z)va(DG(yU)) + 2uom (DG (yu) — DG(Yym)). (3.13)

Hence, it remains to investigate dpz(E), where E € L(W ® V; W) denotes a placeholder. For
smooth paths w we have z canonically given by (3.12) and compute

(022)omu(E) = zou(E) — zom(E) — S(v — m) zmu(E)

m

= /S(v — r)E(0y)rydw, — /S(v —r)E(0y)rmdw, — /S(v — r)E(0y)rudw,

u

/S v —1)E(0y)mudw, = w ' (E(6Y)mu)-

As already mentioned, this term indeed exists even for a rough trajectory w € C'* with o € (%, %]
If we assume that the algebraic relation

(52z)vmu(E) = W ( (5y)mu) (3.14)
holds true for any £ € L(W ® V; W) we obtain

(8 B ))vmu = wfm(G(yu) = G(ym) + DG (yu)(6Y)mu) + 2om (DG (Yu) — DG(Ym))-

Having this structure for (523(3’))“%, under suitable regularity assumptions on y and z specified
in Section 3.3, we are able to define

7, =I=% and 7 = S(t)¢ +7,. (3.15)

Note that IEEy) corresponds to (1.2) and

t

(6Z2W)),, = / St —r)G(yy)dw,.

S

Remark 3.3.

1. Since we demand the existence of a suitable z in order to construct the rough integral, it is
necessary to define Z fulfilling (022)vmu(E) = Wi (E(09)mu). Only if this is valid we are able
to iterate the solution mapping.

2. Note that if S(-) = Id, then the algebraic relation (3.14) reduces to
(022)vmu(E) = E(0Y)mu © (0w)ym, compare (2.8).

Again, for smooth w, Z is canonically given by

t

Zis(F) = /S(t—r) (OPrsdwy = Y S(t—v) /Sv—r E(67)rsdw,

s [u,v]eP

= Y S(t-v) / S(v — 1) E(5§)rudeor

[u,v]eP

+ Z St —wv) /Sv—r)ES(r—u)yudwr— Z S(t—v) /Sv—r)Eysdwr.

[u,v]€P [u,v]€P

14



3.2 Heuristic Considerations

Since (09)ru = [ S(r — q)G(yy)dw, we have

Zis(E Z S(t—wv) /Sv—rE/Sr—q (yq)dwqdw,

[u,v]eP
+ Z S t— 'U)avu(Ea yu) - wts(EyS)

[u,v]eP

Z S(t—w) /SU—TE/ST—Q (Yu) dewgdeoy

[uv]eP
+ Z S t— 'U)avu(Ea yu) - wts(EyS)

[u,v]eP

=: Z S(t - U) [bvu(Ev G(yu)) + avu(Eagu)] - th;(Egs)

[uv]eP

Here we introduced the notation

ap,(E, 7y) = /S(v —r)ES(r — u)yydwy, and

bou(E, G(yy)) = /S(v - r)E/S(r — q)G(yu)dwqdw,.

u u

Hence, we set

ED (y, D)ou(E) = bou( B, G(ya) + avu(E.Ju),

(E) i= (T2 (5, )ie(B) - w3 (B,
This means that we have to define a, b and w® in order to describe Z. At the very first sight, it is
not straightforward under which assumptions b is well-defined, compare Remark 4.3 in [10]. This
problem will be addressed in Section 3.4. For the sake of completeness we provide here a possible

heuristic definition of b which will be shown to be the right one in Section 3.4. For a smooth path
w and a placeholder K which stands for G(y.) we have

t
/St—rE/Sr—quwqdwr— Z S(t—v) /Sv—rE/Sr—quwqdwr
s [u,v]eP

= Z (t—v) /Sv—rE/Sr—quwqdwr

[u,v]eP
+ Z S(t —v) /Svr E/S r —q)Kdwgdw,
[uv]eP
Z S(t—wv) /Sv—r E/S u — q) K dwgdw,
[u,v]€P
+ Z (t—v) /SU—TE/deqdwr
[u,v]€P
D St =) [wh, (Bwh(K)) + cou( B, K)] (3.16)
[u,v]€P
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3 Solution Theory for Rough Evolution Equations

where
e (B, K) = / St — 1) EK (0w)rsdoy.

The existence of a, b, ¢ and of all other auxiliary processes required to give meaning to (1.2) will
be justified in Section 3.4. Motivated by this heuristic computations we first define similar to [27]
these processes for smooth paths w™ approximating w. Thereafter passing to the limit entails a
suitable construction/interpretation of all these expressions.

To conclude this heuristic computations, we introduce the following definition of a solution for (1.1)
(compare (3.10)). This is the counterpart of the solution concepts investigated in [42] and [25].
Recalling that w is still assumed to be a smooth path we have.

Definition 3.4. We call a pair (y, z) a mild solution for (1.1) if

g = S(t)E +IEW(y, 2),

= S()¢+ _lim Y St = 0)whi(Gy) + 2u(DG(ya))] (3.17)
[PODI= [u v]eP(0,t)
2s(B) = (0TEP (y,9))es (B) — wil(Bys)
= _lim Z S(t = 0)buu(B, G(y)) + auu(E, yu)] — wis(Eys). (3.18)
|P(s,t)|]—0
[u,v]€P(s,t)
Our aim is to rigorously justify this solution theory for a rough path w = (w, w(z)) with

1/3 < a < 1/2. This will be carried out in Section 3.5 by means of a fixed-point argument in
a suitable function space which is specially designed to incorporate the analytic and algebraic
properties of the solution pair (y, z).

Finally, we introduce further notation which will turn out to be useful for the computations in
Section 3.5.

Remark 3.5. Going back to the definition of Z, recalling (3.15), applying the bilinearity of a and
the linearity of w® entails

zis(B) = Z S(t =) [bou(E,G(yu)) + avu(E,Ty,) + avu(E, S(u)§)]
[u,v]eP

— Wiy (B7,) = win(BS(s)6).

As justified in Section 3.4 (Corollary 3.22) we get

zs(E) ~ Z S(t =) bou(E, G(yu)) + avu(E,7,,)] — Wti(Egs)
[u,v]eP

+ais(B, 5(5)€) — wii(BS(s)¢).
Therefore, we can define
(=) (Y, Pou(E) 1= bpu(E, G(yu)) + avu(E,7Yy),

Zis(E) := (0IEP) (y, 7))is(E) — wi(Ey,), which yields
Zs(B) = Z1a(B) + a1(E, S(5)8) — wiy (BS(5)€).

[1]

<

In Section 3.5 we will see that it is more convenient to estimate zZ than z.
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3.3 The Sewing Lemma

3.3 The Sewing Lemma

The following result is crucial for our work, since it gives us the existence of the rough integral
together with all the necessary properties required to solve (1.1). Since we work with the weighted
Holder spaces introduced in Section 2.1 we have to extend the results obtained in [37, Section
3| using similar techniques. The next statement is the analogue of Theorem 3.5 in [37] in our
framework.

Theorem 3.6 (Sewing Lemma). Let W be a separable Banach space and (S(t))i>0 be an analytic
Co-semigroup on W with ||S(t)|| gy < ¢s for all t <T'. Furthermore, let E € C(Ap, W) be an
approzimation term satisfying the following properties for all0 <u <m <v <T :

1] <1 (v—u)”, (3.19)
‘ (SQE)WW <cou P (w—u)Y, foru#0. (3.20)

Here we impose 0 < o, <1, v>1and a+ 8 < v.

Then there exists a unique Z= € C([0,T], W), such that

T= =0, (3.21)
’(AIE)t <C(c1+c)(t—s)” (3.22)
(0ZE)ys — Bys| < Ceas P (t— )", for s #0. (3.23)

Proof. Firstly, note that the uniqueness of Z= immediately follows from Lemma A.2. Assuming by
contradiction that there are two candidates Z' and Z? for a given =, we have

0 -T2 =0,

(0" = I))es| < C (1 +e2) (¢ —5)",

(6(T" — Ig))ts’ < Ceas™P(t—s)”, for s # 0.
Hence, Lemma A.2 implies that Z' = Z2.

The following deliberations are conducted in order to prove the existence of Z=. To this aim, given
0<s<t<T, welet P, =Pup(s,t) be the n-th dyadic partition of [s,t] for n € Ny and define

NEi= )" S(t—v)E,

[’U,,’U]Gpn
n._= _ NI
M :=E,, — N[

Note that Ny, = Z;s which implies that M, = 0.

Furthermore, setting m := “T'H’, we derive

Ni =N =MET =ML = ) (S(E—0)Eu — S(t— 0)Eum — S(t—m)Zmu)
[u,v]€Pr

= > St —v)(02Z)omu-

[u,v]€Pr
Hence, we obtain

M7 - Mt <o Y ‘(&E)Umu.
[u,v]€Pr

(3.24)
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3 Solution Theory for Rough Evolution Equations

Since we also have to deal with the case s = 0, we apply (3.19) to the first term and use (3.20) to
estimate the other terms in (3.24). This further entails

| M — M <Cey (t— )27+ C Y cou P (t—s)"27™

[u,v]€Pr
UF£S
<Cep (t—5)" 27"+ Cep (t— )" 277070 N 0t —5)27"
[’U‘,’U}G,Pn
uF#s

t
<Cey (t—8)* 27" 4+ Coey (t — s) L2771 /qﬁdq

<Cey (t—8)* 27" 4+ Cey (t — s)V P 271,

Since this expression is summable, we conclude that M. — M;; asn — oo forall 0 < s <t <T.
The previous computations give us the estimate

|Mys| <C (c1 +c2) (t—s)“. (3.25)
Note that this is valid due to the fact that a4+ 8 < v.
Setting Nyg := Eis — My immediately entails N;, — Nis asn — oo forall 0 < s <t <7T and
|Nis| <C'(c1 + e2) (t—5)*. (3.26)
Furthermore, this also yields that (5, N) = 0.

To prove this statement, note that it is equivalent to show that
(SQN”),:TS — 0, asn—0,

forall 0 <s<7<t<T.

To this aim we consider a fixed interval [u,v] € Py(s,t) and a finite number of nodes u = ry <
rp<re<...<rg<rgr1 =v, for k€ N. Then,

k k—1
S(t—v)=E ZSt—TJH Erjpar; = ZSt—v (02Z)vrjar;-
Jj= 7=0
Hence, we estimate
k
CeskuP (v —u)”, u>s
St —wv) S(t—r = < 3.27
; J+1 r]+1TJ = {C’clk(v . u)a7 U=s. ( )
For fixed 0 < s < 7 < t < T we define m,(s,t) = Pp(s,t) U Py(s,7) U Py(7,t) and
Wn(S,T) = Wn(S,t) m [877—]7 TI'n( t) - Wn(S,t) [Tv t]

We define N[J*, N and N7 analogously to N, i.e

Nire= > S(t—v)Z

[u,v]Emy (s,t)
Since mp(s,t) = Tn(s,7) U mn(T, t) one obtains that (6 N™ )., = 0. Consequently, we estimate

‘(&N")m <IN{s = Ny [ + [Nz = N+ 1S (= 7) (N7 = Nig |-
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3.3 The Sewing Lemma

Therefore, it is left to show that all three summands tend to zero as n — oo. To this aim consider
an arbitrary interval [u,v] € Py, (s,t) and let k := U:‘;J \Y U_;f_J Then there are at most k + 1

many nodes of m,, between u and v. Thus, by (3.27) we have

t—s\" t—s\"
n _ NTn -8
|Njs — Ni ’SC(k‘—I—l)(q—l-cz)(( on > + E u ( o > >—>O, as n — oo.

[u,v]EPn (s,t)
UF#S

The other summands tend to zero analogously.

Since (J2N) = 0 we can apply Lemma 2.4. This ensures the unique existence of ZZ € C([0,T], W)
such that

120 =0,
(0TE)1s = Nyg = Bps — My, forall 0 < s <t <T. (3.28)
Hence, (3.26) implies
‘(3za)ts < C(er+ ) (t— 8)~.

We now show (3.23). To this aim, if s > 0 we apply (3.20) to all summands in (3.24) and obtain
’Mg - MZ;H} <C Z cou P (t—s)V 27
[u,v]€Pr
<Ccys P (t—s)” g—n(r=1)

Consequently,

| Mys| <Ces™ (t —s)”, (3.29)
which yields (3.23). O
The following result gives us an additional estimate necessary for the fixed-point argument.

Corollary 3.7. Additionally to the assumptions of Theorem 3.6, we let

’ (SQE) <esu ™ (v —w)”, (3.30)
vmu
with0< 38, B/ <landv — 3 <v-—p.
Then it holds
‘(st)ts —E| < Cler +e3)57F (1 —5)” . (3.31)

Proof. The proof is analogous to the previous one. Recalling that

‘MZ}S — Mtrf:rl’ SC Z ‘(52E)vmu
[u,v]€Pr

)

we apply (3.30) to the first summand and again (3.20) to the other terms. This leads to
ML~ MY <Cess™ (t—5)" 27" +C Y cu P (t—s) 2™

[u,v]€Pn
u#s
<Cess ™ (t—s)" 27 4 Ceps ™ (t — s)V L2 D) Z u BB — )27
[u,v]€Pr
u#£s

t
<Cezs™” (t — s)”/ 27" 4 Cegs ™ (t — s)”_1 2~ nv=1) /q_(ﬁ_mdq

SCCgS_/B/ (t - S)V/ 2—7“/ + 0028_6/ (t . S)V_ﬁ'i'ﬁ/ 2—n(V—1).
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3 Solution Theory for Rough Evolution Equations

Since v — 3+ 8/ > 1V we have
|Mys| < Clea +es)s™ (£ — )" .
]

In order to give a meaning to Z= as a rough integral we firstly describe it as a limit of finite sums,
compare Corollary 3.6 in [35]. Note that in our case technical difficulties occur in the proof due to
(3.29).

Corollary 3.8. Under the assumptions of Theorem 3.6 it holds that

(SIE)tSZ lim Y S(t—v)Ep, (3.32)

where |P| stands for the mesh of the given partition P = P(s,t).

Proof. Consider an arbitrary partition P of [s,¢]. Then we have by (3.28) that

S St-0)En= Y St—v(aza)w+MW)

[u,v]eP [u,v]eP
(6IZ)s+ Y S(t—v)
[u,v]€P
Therefore, it is left to show that
lim St —v)My, = 0.
|P|—0
[u,v]eP
To this aim, we prove the sufficient statement
lim | M| = 0.
P10 [u,w]eP

As concluded within the proof of Theorem 3.6 we have two estimates for M, recall (3.25) and
(3.29). Namely we obtained that

| Myu| < C(er + c2)(v —u)?,
| M| < Cequ™ (v — )", for u # 0.

Clearly, which one of them is more restrictive depends on the relation between u and v — u.

Hence, we introduce P :={[u,v] € P: u < v — u}. We order the intervals of P by their starting
point and write P = {[ug,vx] : k=1,...,m}, where s <uy <01 <% < V2 < ... < Uy < Uy < 1.

For k=1,...m — 1 we get

which yields
U < i 270D < (T — Tign) 2707 < [P 270D,
All in all this means that

T — g < T < g < [P 277170,
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3.3 The Sewing Lemma

For k = m we trivially have v, — u,, < |P| < 2|P|. Hence, by using (3.25) we derive

Z |Myu| < Cler + ¢2) Z U —ug)* < Cley + e2) |PI” 22 m—l-1)a < C(e1 4 o) [P|*.
[’LL,’U]GP k=1 k=1

If [u, v] € P\P we have
v—u <u,sov < 2u, therefore, uw < 28y78.

So, by applying (3.29) we infer

Z |Myu| < Cey Z u P (v—u)”

[u,v]€P\P [uv]€P\P

< Cey [PI"H Z v (v —u)
[u,v]€P\P
t

< Cecy |73]”_1 /q_ﬁdq

S

< Cey(t— )PPt

Consequently, putting both estimates together we have

ST IMul < D M+ D [ M

[u,v]€P [uv]€P [u,v]€P\P
< Cler+ ) [P+ Cey (= )" P[P,

which tends to 0 as |P| — 0. This proves the statement. O

Remark 3.9. Note that the above limit is independent of the approximating sequence of partitions.
Hence, Corollary 3.8 implies the additivity of the rough integral.

In order to introduce the shift property of the rough integral Z= we recall that for 7 > 0

—

[I]

0rEp = v+Tu+T

see Section 2.2. Considering this, one can easily verify the shift property of Z=.

Lemma 3.10. Under the assumptions of Theorem 3.6 we have
(3IE)tS = (31575)7&—7,5—7-, form <s<t.

Proof. The proof is a direct consequence of Corollary 3.8.

(0IZ) = lim > S(t—0v)Z.,

T ualeP(s)

— i 7 —v)E
IIEO Z S(t T U) V4T u+T
[u,v]€P(s—T,t—7)

=1l Sit—T1— QTHW
g, X stre

[u,v]EP(s—T,t—T)
= (SngE)t—T,S—T'
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3 Solution Theory for Rough Evolution Equations

The next result contains necessary estimates for 6ZZ in a suitable fractional domain. These will be
required later on in Corollary 3.12 to estimate dZ= and eventually in Section 3.6 for deriving a
global solution.

Corollary 3.11. Let the assumptions of Theorem 3.6 hold true and further assume that

!

S0~ w)Z0lp, < & (w—w), (3.33)

where 0 < o/ <1 and 0 <e < (v —B) A1l. Then we have

(072).s

<C (c’l(t — )Y et — s)"*ﬁfs) . (3.34)

€

In particular, under the assumptions of Theorem 3.6 we have

072).,,

Proof. Analogously to the proof of Theorem 3.6 we introduce

Ni= > S(t—v)Euw,
[u,v]€Prn
vFELUFES

mn .= N
Mt — —its T Nts7

s

<Clep+co)(t—s8) 7, forall0 <e < a. (3.35)

where P, is the n-th dyadic partition of [s t]. Similarly to the proof of Theorem 3.6 we have
N,% Ntls = 0 which means that MPS Mtls = His.

We further set v, := max{v < t: [u,v] € P,} and @, := min {u > s: [u,v] € P,}. Then we derive
forn>1

NPt — N =Mp - M
=N — N — Ep5, = S(t — 1) Za,s + Etwnyy + S(E—Upn + 1)Eq,nt1s
Z S(t - U)(82E)ymu + (SE)tUnJrl@n + S(t - Hn)(SE)ﬂnﬂrrkls

[u,v]€Pr
vFEt UFES

— Ew, + Bty — St —Un)Za,s + St — Unt1)Za,, s
Z St —v)(622) ymu — S(t — Unt1)E, 4170 — St — Un) Za, 7,41 -

[u,v]€Pr,
vELuFES

This yields

AT Arn+1
’Nts - Nts

825)1}777/& .

< |S(t =) Bt | p, + |9t =Tni1)Brpawn|p, +C D (t—0)7°
[’U,’U]E’Pn
vEt uFES

D,
Note that t — 4y, >t — Upy1 = Upy1 — Up = Uy, — Up+1 and apply (3.33) to the first two summands
to obtain.

‘S(t — Un)Za, 7,11 ‘De + |S(t — Un+1)E5 Un+1Un ‘Ds <2 Cll (t—s)* 27",

For last summand we apply (3.20) which entails

S t—v) (02 emu| S Y (E—v) Tu Pt — 527
[U,U]Epn [u,v]EPn
vEL UFES uF#S,v#£t
=cot — s)"27™ Z (t—v)u P,
[u,v]EP,
u#£Ss,vF#L
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3.3 The Sewing Lemma

We now have to estimate the term

Jis = Z (t—v) u"

[u,v]EPr
uF#s,v#t
2”‘2< k(t—s>)—5< (k—i—l)(t—s))_g
= Z s+ t—8— ——-7———
on on
k=1
2" —2
<(t—s) 2O N (2 — 1 — k)
k=1
By Lemma A.3 we obtain
2" —2
Jis < (t—s) P2 N Ao — 1 — k)
k=1
2" —2
<C(t—s) P2 N (k1) (2" -1 k)
k=0
2n—1
=C(t—s) P72 N e (on — )P
7j=1
Using again Lemma A.3 entails
2" —1
Jis S C(t—s)P22nPH) N7 e (on — )P
j=1
2" —1
<C(t—s) P2 N G4 1) (20 =)
=0

2n
< C(t—s) e 2nro /q‘5(2" —q)"%dg
0
=C(t—s) P 2"B(1—¢,1- ).
Here, B(-,-) stands for the Euler Beta function.
Consequently, this results in

< Ceyt —8)¥ 27 4 Cey (t — s)V =P nlv=1), (3.36)

£

T Arn4-1
’Nts - Nts

Since the right hand side is again summable, we obtain that ﬁﬂs — Ny in Dy as n — oo.

In order to obtain (3.34) we only have to show that N = N. We have

‘Nts — Ny| = nh_{{)lo ‘th - ]\thg = nh_{go 12z, + St — Un)=aq,s| (3%9) Cer nll_{go t;nj)a =0.
Therefore, we conclude that N = N, which proves (3.34).
Now by (2.1) and (3.19) we see that for ¢ < «
1S(v —u)Euulp, < Cer(v—u)* "
Regarding that o < v — 3, (3.34) leads to (3.35). O
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3 Solution Theory for Rough Evolution Equations

Now we can apply these results to estimate §Z=.
Corollary 3.12. Given the assumptions of Theorem 3.6. Then for all v < « it holds
|(0Z2),,| < Clc1+c2) (t— )7 T, (3.37)

Proof. By applying (3.22) and (3.35) with e = v we get

2l <[(072),

(S(t — s) — Id) (6T%) 0
<Cler+e2) (t=9)" +C (t =) | (072)u0
)
)

( b,
<C(er+c)(t—8)"4+Clcr+c2)(t—s8)T s
<C(ey+co) (t—8)TT* Y

This immediately implies the next result.

Corollary 3.13. Given the assumptions of Theorem 3.6. Then for all v < « it holds

IZE[l,, < C(e1 + )T,
||IE||W < C(eg + )T
Remark 3.14. Note that by construction T is a linear mapping. More precisely, according to
/20, Section 4] or [36, Section 3.3] one can introduce the space C*VP(Ap, W) of all elements =

satisfying assumptions (3.19) and (3.20).
Then one can show that the mapping T: CVP(Ap, W) — CY([0,T], W), for v < a, is linear.

In particular, considering =, 22 with
= =2 ~ a
“‘vu_‘—'vu‘ <c (U_u) )

S'cvgu*’g(v—u)”, forall0<u<m<uv<T,

yields
|Z=' - 72| = ||Z(E' - 2%, < C(@ + &)1

Finally, as announced in Section 3.1 we are able now to state further estimates for (1.2) in the
Young integral case o > % The calculations done in the proof of Lemma 3.2 directly imply by
Corollary 3.13

Corollary 3.15. Given the assumptions of Lemma 3.2 we have the estimates

(' - T)G(yr)dwr

< Clwll, (1 + llyllg6) T,
8

(= r)Gyr)dwr|| < Cllwlly (1+ Iyl T
8,8

3.4 Construction of the Supporting Processes

We recall that w = (w, w®) is an a-Holder rough path with o € (3,4), see Section 2.2.

Let 0 < s <7 <t <T be fixed. As argued in Section 3.2, in order to introduce an infinite-
dimensional rough integral we first need to define the following processes and investigate their
algebraic and analytic properties. Recall that throughout this section K and E should be interpreted
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3.4 Construction of the Supporting Processes

as placeholder which stand for G, respectively DG. Keeping Section 3.2 in mind, we begin analyzing
a, ¢ and w®. More precisely,

WS LOVIW) > W, WS (K = / S(t — 1)K duw,. (3.38)

ats: LW QV, W) x W = W, ais(E, ) = /S(t —r)ES(r — s)zdw,. (3.39)

S

t
cs: LW @V, W) x L(V; W) = W, as(BE,K) = /S(t —r)EK (dw),sdwy. (3.40)

Remark 3.16. Note that some of the processes above exist even if w is not smooth, as shown in
the following deliberations. However, at the very first sight, it is not at all clear why for instance
(3.40) is well-defined.

Similar to [27] we consider a smooth approximating sequence (w”, w(Q)’”) — (w, w(2)) in
C([0,T],V) x C?*(Ar,V ®V), prove that the previous processes exist for this approxima-
tion terms and finally pass to the limit. Therefore, we analyze

WK = / S(t— ) Kdu? (3.41)

ap,(E, ) = /S(t —r)ES(r — s)xdw, (3.42)
’ t

(B K) = / S(t — r)BK (3u"), dul. (3.43)

In the following we establish algebraic and analytic properties which will be employed further on.
We begin with the algebraic structure.

Lemma 3.17. The properties

(02w5™)irs (K) = 0 (3.44)
(02a™)i7s(E, ) = . (E, (S(T — s) — Id)x) (3.45)
(02175 (B, K) = W™ (BEK (0w)ys) (3.46)

are satisfied.

Proof. One can easily verify that

t

t T
(52w™)irs (K ) = /S(t —r)Kdw, — /S(t —r)Kdw, — /S(t —r)Kdw, = 0.

s
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3 Solution Theory for Rough Evolution Equations

Furthermore,

(020™) 175 (E, x) = /S(t —r)ES(r — s)xdw, — /S(t —r)ES(r — 7)zdw,

- /S(t —r)ES(r — s)xzdw,

_ /S(t —PE(S(r— 8) — S(r — 7)) xdw"

T
t

St —r)ES(r—71)(S(1t —s) —id) xdw,"
=ap (E,(S(t—s) —1d) x).

Finally,

(02¢")irs (B, K) = /S(t —r)EK(6w")psdw, — /S(t —r)EK(dw")prdw)

T

_ / St — 1) EK (5w )pda”

_ / S(t — r)EK (66 rodu?

— WS (BK(50")rs).

O]

The analytic estimates are contained in the next result. Throughout this section cg stands for a

constant which exclusively depends on the semigroup.

Lemma 3.18. For the processes wf;’n, ay

', and ci; the following estimates hold true:

Sn n (0%
Wi (K)| < Cllll, K1 (t = 5)
(B, 2)| < C |, |[Ellalw (t - 5)*, forzeW
G (B, ) — wi(Ba)| < C "l Bl [2]p, (t = )P, forz e Dy

(B, K)| < C (Il + |0

BIEILIEDES

Proof. Using the integration by parts formula, see Theorem 3.5 in [55], leads to

WK = / S(t— 1) Kdw? = S(t — 5)K (5w™)ss — A / S(t — 1)K (0w )ndr,

ay,(E, x) /S t—r)ES(r — s)rdw, / thr (ES(r — s)x)dr
t
—wts "(Ex) + /wtr (EAS(r — s)x)dr,
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3.4 Construction of the Supporting Processes

and
t t t
(B, K) = / S(t — 1) EK (5u™), dul — / S(t — 1) EK (0™ )ysde? — / St — 1) EK (56" des”

s
t

= Wl (EK (6w™)ss) — / S(t—r)EK dw®"

s
t

= Wi (BK (7)) = S(t = $) FK wi?" / AS(t - 1)EK w®"dr.

For a similar construction, see [10, Section 6.1]. Based on these identities we easily derive the
analytic estimates as follows.

A standard computation immediately entails

Wi ()| < 10— ) K (™)l + / AS(t = 1)K (8™ dr

S

< cg [K[Jw"ll, (8= )"
Recalling (3.44) we infer that

t
(B, 2)| = w5 (Ex) + / WS (BAS(r — 8)z)dr

s
t

¢
= wfs’n(Eﬂs) + /w}i’n (EAS(r — s)z)dr — /S(t — r)w;gs’" (EAS(r — s)z)dr

s
t

WS (ES(t - o) + / S(t — St (BAS(r — s)a)dr

S

IN

t
<cs | Bzl lw"llo (8 = 5)" + s [E] |2l [w" o / (r—s)*"dr

S

<cs |El |y w"llq (¢ =)

For our aims it is also necessary to derive estimates for x € Dg with 0 < 8 < 1. In this situation
we have

¢
ay,(E,z) — wtssn(Ex)‘ = /wfr’n (EAS(r — s)x)dr

s
t

s |E| 2], ", / (t =) (r — ) dr

s

IN

= cs Bl el p, ol (t = )77
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3 Solution Theory for Rough Evolution Equations

Furthermore, we obtain

t
(8 KO < [ (07),)| +[ S0 = ) PR w2 / AS(t =) EK w2 dr
S@ummwwwia—@M+«wEquw@ﬂ2aa—$w
t
ves B i w®n)| [ (e =ryetar
20
<es B K| ("l + || 7], ) (¢ =9 .

Consequently, keeping Lemma 3.18 in mind we are justified to define the supporting processes via

Wi (K) := S(t — 8) K (6w)s A/S (t — ) K (6w)srdr (3.51)

t
as(E,z) = wi (Ex) + /wf;, (EAS(r — s)z)dr (3.52)
c1s(E, K) = wl(EK (8w),,) — S(t — s) EK w?) — / AS(t = r)EK w®dr. (3.53)

S

Lemma 3.19. We have that
Wi = WS in C([0,T], L(L(V; W), W))
a" —ain C*(0,T],L(LW@V; W) x W,IW))
" — cin C**([0,T],L(L(W @ V; W) x LV; W), W)).
Proof. Similarly to the proof of Lemma 3.18 we obtain
t
}(ws — ws’”)ts (K)| =|S(t—8)K(d(w—w"))ts — A/S(t — 1)K (0(w—w"))dr

s

< csllw ="y K] (= )",
which shows that w™ — w® in C ([0, T],L(L(V; W), W)).
The same deliberations as in the proof of (3.49) lead to

laws(E, x) — aiy (B, z)| < !(ws - ws’")ts (S(t — s)Ex)|

+ /S(t —r) (wS - ws’”)rs (EAS(r — s)z)dr

< es Bl flo — ", (= 5)"
The last term yields
ets(B, K) = (B, K)| < |wil(BK (0w),,) - wii (BK (0w™),,)

‘S (v— u)EKwts - S(v u)EKwt

t
/ASt—rEKwtr dr—/ASt—rEK @ gy

S%(W%JW—wWQ+Hw — wOn

)2«
)IBNEI =, O
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3.4 Construction of the Supporting Processes

Remark 3.20. Note that the algebraic and analytic properties proved in Lemmas 3.17 and 3.18
remain valid.

The next statement gives an extension of (3.47) if one considers a regularizing placeholder K. The
proof follows the same lines as the proof of Lemma 3.18.

Lemma 3.21. Let K € L(V;D,) for 0 <~ < 1. Then
jwis ()]

p, < Cllwlly Kl zv.p, (E—5)"

Proof. The proof can immediately be derived using (3.51). O]
Furthermore, we observe.

Corollary 3.22. For an arbitrary partition P = P(s,t) the following identity holds true

as(F, x) Z St —v)ay(E,S(u— s)x).
[u,v]eP
Proof. Using (3.45) and the bilinearity of a we notice that

ais(E,z) = atr (B, x) + S(t — T)ars(E, z) + atr (B, (S(7 — s) — Id)z)
=a;r(E,S(t —s)z)+ S(t — 7)ars(E, x).

Iterating this identity for any given partition P(s,t) proves the claim. O

Remark 3.23. Alternatively, these processes can also be defined using Theorem 3.6. For a better
comprehension we illustrate this technique for a and emphasize the fact that both approaches are
equivalent.

Heuristically, similar to Section 3.2, we notice that for a smooth function w we can approximate
ass as follows:

t

as(E, ) = /S(t —r)ES(r — s)zdw, = Z S(t— v)/S(v —r)ES(r — s)zdw,

s [u,v]eP

Z S(t—w) /Sv—r)ES(u—s)azdwr

[uv]eP

Z S(t —v)ws,(ES(u— s)z).

[u,v]eP
Keeping this in mind, the deliberations made in Section 3.3 lead to the following result.

Lemma 3.24. Let 0 < s <T. Forall s <7 <t <T we define
=B, z) = wd (ES(T — 8)3). (3.54)
Then we have
ags = (515<a>’5)t8. (3.55)

Proof. In order to apply Theorem 3.6 we have to analyze the term EQ(,Z)’S. Therefore, we estimate

ESZ)’S(EJ)‘ = [wiu (S (u — 8)2)| < cs |B| o] wll, (v —u)®
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3 Solution Theory for Rough Evolution Equations

and
(02E D) | = |3, (ES(u — s)x) — wi, (ES(m — 8)x) — S(v — m)wi, (ES(u— s)z)|
= Wi (E (S(u—s) = S(m —s)) )|
<cs | Bl [2]p, wll, (u = )7 (v = w)**7.

Hence, Theorem 3.6 yields the existence of Z=(®)$ and by Corollary 3.8

(6Z=@W®)r = lim > S(t—0)EY)",
[u,v]€P(T,t)

(62 (E,z) = lim Z S(t —v)ws, (ES(u — s)x).
[u,v]€P(s,t)

We define
Zits = ((SIE((Z)’S)tS

and show that a = a.
By Corollary 3.22 we know that

as(B,x) = Y S(t—v)aw(E,S(u— s)z).
[u,v]€P(s,t)

Particularly, this also holds for the limit |P| — 0.

Regarding this, in order to prove the statement, i.e. that a = @, we have to estimate the difference
between a,, and w3, . To this aim, we consider now a dyadic partition 7, and have that

Z (aw(E, S(u— s)x) — wfu(ES(u — s)$))

[u,v]€Pr

< Z }aw(E,S(u—s):c)—wfu(ES(u—s)x)‘.

[u,v]€Py

We apply (3.49) for the first term with § = 0 and for the other terms with 1 —a < f < 1, and
obtain

Z |lawu(E, S(u — s)z) — w? (ES(u— s)z)|

[u,v]€Pr
<ol ol S S Bl b w9
i
+8-1
<er Bl ol il [ U5 T sy
s
<cs [B Jwl, la] (¢ = 5)* (277 4 27neA=0) "2,
This proves the statement. O
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3.4 Construction of the Supporting Processes

In order to complete the construction of the supporting processes, recall Section 3.2 we focus now
on

bis: LW @V W) x L(V; W) — W,
bes (B, K) == /S(t—r)E/S(r—q)deqdwr_ (3.56)

Remark 3.25. To our best knowledge it is not possible to define this process via integration by
parts, see Remark 4.3 in [10]. We use Theorem 3.6 to show that at least under some additional
reqularity assumption on K (specified in Lemma 3.26) it is possible to define b(E, K).

Inspired by the definition of a we follow the heuristic intuition given in Section 3.2. We saw
n (3.16), that for a smooth w we have

bs(B,K)~ Y St —v) [wh,(Bwi(K)) + cou(E, K)] .
[u,v]€eP

At the first sight the approximation above appears quite arbitrarily but we will rigorously show
that this gives us the right approach to define b.

As previously argued, we consider again a smooth approximating sequence (w”, w(2)’") of (w, w(Q))
and define

b (E,K) = /S(t - r)E/S(r — q)Kdwydw,'. (3.57)

Furthermore, for all 0 < s <7 <t < 7T we introduce
=(b),s s S
=0 (B, K) = wi (Bl (K) + oo (B, K).

Here the additional regularity assumption on K plays a crucial role. This translates into the
restriction on the diffusion coefficient G, recall assumption (G) in Section 2.1.

Lemma 3.26. Let K € L(V;Dg) with o+ 28 > 1 and o > 3. Then there exists

b = (6720%)
ts
Moreover, the following statements are valid

(i) analytic property:

b (B, F)| < es B K p, (Il + @] ) (¢ =9 (3.58)

(ii) continuous dependence on the paths of the noise:

b — b in C** ([0, T], LL(W @ V; W) x L(V; Dg), W)). (3.59)

(iii) algebraic property:

(02D)1rs(E, K) = asr (B, w3, (K)). (3.60)

=(b),s

tT

Proof. As seen before, in order to apply Theorem 3.6, we have to analyze =, . Obviously,

—(b),s
=0 (B, K)| < |l (Bl (K))| + leir (B, K))
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3 Solution Theory for Rough Evolution Equations

Applying (3.47) and (3.50) we have
[l (B (K)| + leer (B, K)
< es lwlly | Bwl ()| (=) + es (Il + ||« ®]|, ) IBIK] (¢ =)
< el |BVK] (7= 5)* (0= 7)° + s (ol + || ) 1BVE] (6= 7).
Furthermore, we compute
B2 (B, K) =(000 Y (B (K)) w5 (B (w5 (K) = wihe (K))) + (826)omu(B, K).
By applying (3.44), (3.46) and (3.47) we obtain

5o= D

Umu(E7 K) :wfm(E (WES(K) - Wgw K))) + w;?m(EK((sw)mu)

(
=Wy (B (K (60)mu — wiyo(K) + wing(K))).

This further entails

ms

5,205, K| < 1Bl ol (0 = m)? [ K (G) — () + S (K)| . (361)
Consequently, we need appropriate estimates for the last term. We apply (3.44) and infer that

|K(5w)mu - wS (K) + wus ‘

ms

(1) = (S(m — ) — 1d) wyi (K)

’ S
| K ( S S (K| 4 |(S(m — w) — 1d) wi, (K)| .

IN

For the next steps the additional assumption K : V — Dg is required. Keeping this in mind and
using (3.51) we estimate the first term of the previous inequality as follows:

m

| K (8w)mu — w;jm(K)‘ < |(S(m —u) — 1d) K(6w)mu| + /AS(m — 1)K (6w)mrdr

u

< cs|Klp, wly (m —u)**7.
On the other hand, we have
‘(S(m - u) - Id) wES(K)‘ <cg ‘W’ES(K

Applying again (3.51) we derive

}wfs(K)‘Dw <[S(u — 8)K(0w)us|p, s T /S u— 1)K (0w)y,dr

Dag
- —B-1
<es K| p, lolla (u— 9)* % + es K| p, Il / (w—r)2 "V dr

<cs |K|p, ol (u—s)""".
This finally leads to
|(S(m — u) = 1d)wi, ()| < es K] p, [lwll, (w = )77 (m —u)*.
Putting all these together we get

| K (5} = wins(K) + wigg (K)| < esT* P K|, wll (m —u)*.

ms
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3.4 Construction of the Supporting Processes

Consequently, regarding (5.26), we obtain

B2 (B, K)| < esT P B| K| p, Il (v — 0+

—vmu
Theorem 3.6 ensures the existence of Z=(1)5 such that for all s <7 <t<T we have

(6Z=0)*),(E, ) = Jim D St =) [wi(Bwgy(K)) + cou(E, K)]
[u,v]€P(T,t)

and
(720 (B, K)| < eV K, (Joll + ]| )], ) 0= 70" (6 =)+ (= 7)").

In particular setting 7 = s we can define b;; := (315(1;),3 )ts and infer from the previous estimate
that

bes(B, )| < es BV K] p, (Il + @], ) (¢ =9, (3.6
which precisely gives us (7).
In order to prove (iii) we compute as before
(Bob)ers(B.K) = lin 3 St ) [ (B (K)) + conl B, K)

Pl [u,v]€P(s,t)

—lim > St —v) [wh,(Bw (K)) + cou(E, K))
[Pl=0 [uw]eP(T,t)

— 1 S(t— E K wu(E, K
|7’1|Ii>10[uv]ez?;(s7’) ( U) [wvu( WUS( ))+c ( )]

:”1)1'130 > St —v)wh, (B (why - wi) (K))
[u,v]€P(T,t)

= lim Y S(t—v)w, (Bwi(K))

|IP|_>O [u,v]€P(T,t)
- atT(E7 wTS(K))'

It only remains to show that assertion (ii) holds true. Regarding that w” and w®" are smooth
approximation terms, we are allowed to choose av > 1/2.

We define
ED(B, K) = wp (BwS (K)) + o (B, K).

Similar computations entail the existence of
LB, K) = (6720 (B, K).

Moreover, using the same deliberations as above we obtain the analytic estimate

b (B, K)| < es |BJK]p, ("l + | @] ) =9
together with the algebraic structure

(58" irs (B, K) = (B, wS(K).
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3 Solution Theory for Rough Evolution Equations

A straightforward computation for b" gives us

t T
(Bob™)ma(B, K) = / S(t—1)E / S(r — q) Kduldu]?
t T
- /S(t - r)E/S(r — q)Kdwy dw,'
- /S(t - ’I“)E/S(T‘ — q)Kdwg dw;’
t T T
:/S(t—r)E /S(r—q)deg—/S(r—q)deg dw)'

t T
:/S(t—’I“)ES(’I“—T)/S(T—q)degdw:L
_.n Sn
_atT(E?wTs (K))

Consequently, we obtain that 32(()” — E") = 0. Hence, for all E, K by Lemma 2.4 there exists
k€ C([0,T],W) such that

ko=0 and (0K)s = (" — b")is(E, K).
We have

](Sﬁ)ts

< [bis (B, K)| +

VB, K)| < C(8,0", 0@, B K) (8= )
Since we assumed « > % Lemma A.1 yields kK = 0 which implies b" = b". We know by Remark 3.14
that 0™ converges to b which proves the assertion. O

Remark 3.27. All supporting processes defined in this section depend on the underlying rough
path w = (w, w(2)). More precisely, w® and the process a are independent of w® so only are
induced by the path component w.

Recall (2.11) and (2.13) and Lemma 2.8. For our latter purpose it is important to consider
integrals with respect to an appropriate time-shifted rough path (0;w, HTw(z)) for T € R.

Note that the supporting terms 0,w° and 0,a are induced by the sfiz‘fted path component 0 w.
Moreover, 6,:b and 0,c are induced by the shifted rough path (0rw, 0, w(2)).

3.5 Local Solutions for Rough Evolution Equations

Throughout this section we impose % <f<a< % such that o + 23 > 1. Recall that all necessary
assumptions on the coefficients and on the noise were stated in Chapter 2.

We now derive the existence of a solution for (1.1) which is given by a pair (y, z), as argued in

Section 3.2. Here (y¢)sc(o,7] stands for a W-valued path and (z¢s) (1, s)ear, 2ts € LIL(W RV W); W)

denotes the area term.
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3.5 Local Solutions for Rough Evolution Equations

Therefore, we are justified to introduce the Banach space
Xog ={.2): yec™ (0,1,W),
z€ C (A, LIL(W @ V;W); W) N CHPB (Ap, LIL(W @ V; W) W),
(B22)ers = i ((89)rs) }-

endowed with norm

1 2)lix = Ylloe + 19ll5,5 + 12lle + 12l 046, (3.63)

Remark 3.28. Note that the norm given above is equivalent to

|Zts| Ié; ’Zts‘
Ylloo + lly + sup + sup s —— 7,
” Hoo ’” |”6,5 0<s<t<T (t _ 8)(1 0<s<t<T (t _ S)aJrﬁ

which essentially simplifies the computation. By a slight abuse of notation we use the same symbols.

Using the same notations as in Section 3.2, we consider the map

Mr: Xor = Xor  Mr(y,2) = (¥, 2),

where

U = S(t)E+IEW (y, 2),
Uy =T — S()E =T=W(y, 2).

Furthermore, for E € L(W ® V; W) the second component of the solution is constituted by

2a(B) = ((729(.9)),_(B) - wil(EG),
= (120.9),, (B) ~ (BT, + an(E. S(3)6) ~ wil(BS()6),
)t

ts
zs(B) = (729)(y,9)) (B) - wii(E7,).

Regarding this we define for (u,v) € Ap
Eq(}q/) = )(y, 2)ou = Wuu(G(yU)) + 20u(DG(yu)),
ngu) (E) =6 (y,?)vu( ) = bvu(Ea G(yu)) + avu(E7?u)~

In order to show that M7 maps X, 7 into itself and is a contraction we have to derive suitable
a-priori estimates. We proceed step by step and split these results into several Lemmas.

Remark 3.29. Note that the universal constant C occurring in the estimates below depends on
Il [|w® H2a7 a, B, S(+), G uniformly with respect to T'. We stress that this is independent of &.

Lemma 3.30 (Estimates of the y-integral). For a pair (y,z) € X, 1 the following estimates are
valid:

(6| < € (14w 2) %) (2= )7, (3.64)
Bulp, < C (14w 2)%) 527, (3.65)
91155 < C (14 I )% ) T° (3.66)
(50)es — (G| < € (1411w 2% ) 57 (¢ = )7 (3.67)
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3 Solution Theory for Rough Evolution Equations

Proof. Regarding the definition of ES,%), the a-Holder continuity of w, the regularity of G and the

definition of the norm in X, r we infer

=)
VU

< [wiu (Gy)| + |20u(DG (ya))]

< Cllwlly |Gyl (v = uw)® + Cllz]l, [DG(yu)] (v —u)®
< C(Iwlla O+ l1Ylloe) + 12ll0) (0 = w)®

<O+ Iy 2)lx) (v —w)®.

Recalling (3.13)
(525(y))vmu = wfm(G(yu) = G(ym) + DG (yu)(6Y)mu) + 2om (DG (Yu) — DG(Ym)),

together with the regularity assumptions on y and z, further results in

(52E(y))vmu

< Cllwllo 1G(yu) = Gym) + DG(Yu) (6y)mul (v —m)*
+C |2l g 5,5 1DG () = DG ym) | m™F (v = m)*+?
< Cllwlly lya = yml® (0 = m)® + C N2l g g [y = Yyl m ™ (0 = m)*+7.

We observe that we have two different possibilities to estimate |y, — ym|. Obviously,

Yo — Uml <200lloe and g — gl < Nyllg g (m—u)”.
Therefore, on the one hand we get
(052 umu| < Cllwll Nl 5 w2 (m = w)* (0 — m)®
+Czllarpplyllssu® (m—uw)m™ (v —m)**?
< O (Iella I3+ Nollay .5 Bl ) w2 (0 = )22

< C (141l 2) % ) u (0 — ).

By applying Theorem 3.6 we can show the existence of ZE¥) = 72¥) (y,z) and obtain the estimate

(59):s <c (141 2)%) ¢ —s)°.

= ’(515(9))t5

Corollary 3.11 entails

A~

(6ZZW),,

Ds <C (1 + H(y,z)Hg() (t _ S)oz—ﬁ7

which implies that

Bulp, < C (14w 2% ) 5.
Furthermore, by Corollary 3.13 we obtain

915 < € (1+ . 2)I% ) T° (3.68)
On the other hand we also have

‘ (SQE(y) )vmu

< Cllwlle ylloe Byl 5,5w (m = ) (v — m)°
+ Cll2llagp,5 9l m ™ (0 — m)**?
<C (\waa 1Ylloo l9ll5 6 + 1210y 5.6 HyHoo) u ™ (v —u)**’

<O (1425 ) u™? 0=,
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3.5 Local Solutions for Rough Evolution Equations

Hence, we can apply Corollary 3.7 and obtain

(720, — 20| <0 (1411 2% ) 577 (t = 5)°*7

which leads to
(59)es = wil(G(0))| < |GTED)es = 2| + |21 (DG ()]
<C (141w 2%) st - 5. m

We now focus in deriving suitable estimates for Z.

Lemma 3.31 (Estimates of the z-integral). Let (y,z) € X, 7. The following estimates are valid:
2 ()] < CIBI (14 1w 2% ) [ = 9> + 5272 (£ = 9™ (3.69)

Zlars < C (1+ M, 2) %) T, (3.70)

Proof. Applying Theorem 3.6 we get

=G (E)| < [boulB, G| + lava(E. 7))

Furthermore, due to (3.48) and (3.58) together with the Lipschitz continuity of the mapping
G : W — L(V, Dg), we infer that

=)(8)

<C 1B (1 + lylloo) (12 + |||, ) 0= +C 1Bl 7l Il (0 = w)°

<C1B| [+ Iylo) (Il + || 0|, ) + Fllo ol | (0 = )"

Using (3.66) we obtain

=8)| <C 1Bl (1+10.2)I) (v = )"
Furthermore, we have by (3.45) and (3.60) that

(052 )ymu (B) = (02D)omu(Es G(Yu)) + bom (B, G(yu) — G(ym))
( a)va(E Yu) + @om(E, Yy — Up)+
(B, wi o (G(1))) + bum (B, G(yu) — G(ym))
+ avm(E, (S ( —u) —1d)7,) + avm(E, Yy — Uim)
(B, Wi (G(W)) = (07)mu) + bum (E, G(yu) — Glym))-

= Qym\ L,

= Qym\ L,

This leads to
(32E D)y (B)| <

< Clwl, Bl

aﬂm(vamu(G(yU)) - (8§)mu) + bum (E, G(yu) — G(ym))]
( (Yu)) — (Sy)mu
+C (Il + @] ) 1ENG W) — Glym)l (0 = m)™.

(67

(v —m)

Applying (3.67) entails
(3229 o (B)| < C1B] (14 15, 2)1% ) w™? (m = )+ (0 = m)°
FCIB sy (m — ) (v — m)?
< CIE| (14 1. )% ) w™ (0 = )™+
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3 Solution Theory for Rough Evolution Equations

Hence, we can apply again Theorem 3.6 however, this does not give us the appropriate estimates.
By a slightly different computation we obtain

(322D o (B)| < C Nl 1B | (@i (Glw))| +

() ) (0 =m)°

+C (Il + @] ) 1ENG W) = Glym)l (0 = m)™.

Now (3.64) entails

(3= (B)| < C1E] (14 I 2) %) (0 = w)**
Hence, by Corollary 3.7 we derive

GT=E)(B) -2 (B)| < C 1Bl (1+ . 2)I% ) (¢ — )
Furthermore, let us consider

=2(E) — wi(E7,)| < |bis(B, G(ys))| + |ars(E,7,) — wi(E7,)| -

Applying (3.49) and (3.58) entails

=2 (8) - wi(Ep)

< CIB (1 +llyl) (ol + [, ) = 5

+C B |l 7l p, (t = )+
By using (3.65) we obtain

= (B) - wi(Pp,)

< CIE| (1411w, 2)I% ) [s°77 (6 = )7 + (£ = 9] -
Summarizing, we conclude

20s(E)| = |(6729))1(B) - wi(E7,)

< |6229)(B) - 22 (E) | + |22 (B) - wil(E7.)

< CIE| (1+ Iy, 2) % ) |t = ) + 5277 (£ = 5)*77] .

Consequently, we get

_ 2 _
1Zlars < € (14 1w 2)I% ) T, =
After establishing suitable analytic properties we focus now on the algebraic setting.

Lemma 3.32. The following algebraic property

A~

(622)vmu(E) = Wy (B(57)ma)
holds true.
Proof. By (3.44) and Lemma 2.4 ((i)) we have
(622) vmu(E) = (020ZE®)) ypnu(E) = (620 )omu(ET,,) + iy (E(57)mu)
= Wy (E(69)mu)- O

We now have all the necessary ingredients to analyze the mapping M7 and proceed towards our
fixed-point argument.
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3.5 Local Solutions for Rough Evolution Equations

Theorem 3.33. The mapping Mt maps X, 1 into itself. Moreover, the estimate

IMr(y, 2y < € (el + (1+ . 2)1%) ) (3.71)
holds true.
Proof. Recall
yr =S+,

Hence, applying (3.66) we derive

17 < € (€] + 7))
<c(lgl+ (1+ 1w 2)I1%) )

and

19ll55 < 1SC)ENs + 17,6
<o I+ (1+ 1w 2)%) 7).
Moreover, we have
Zs(B) = Z1a(B) + ass(E, S(5)€) — wil(BS(s)¢).
On the one hand by (3.70), (3.48) and (3.47) we get
2o < WZlays T2+ C IS ()l
<0 (lel+ (14w 2)1%) ).
On the other hand we apply (3.70) and (3.49) and infer that
Zlass,s < IZlars TP+ C sup s7S(s)élp,
0<s<T

<o (kgl+ (1+1w20%) ) -

Summarizing we obtain the required estimate

M. 2l < € (el + (14 1w 2)IE) 7).

The last step is to prove the corresponding algebraic relation. Due to Lemma 3.32 and of the
algebraic relations (3.44) and (3.45) we compute

(522 trs(E) :(525)2578(E) + (82a)tTS(E, S(s)€) + arr(E,5(s)€ — S(1)§)
(Szws)m(ES( )6) + wir (E(S(s)€ — S(1)€))

=wir (B(F> = s)) + air (B, (7)€ — S(s)€) + air (B, S(s)€ — S()€)

+wi (B(S(s)6 — S()€))

=wi (B(Jr —Us)). N
In order to show the existence of a unique local mild solution for (1.1) by means of Banach’s

Fixed-Point Theorem we verify that M is a contraction. To this aim, analogously to Lemmas 3.30
and 3.31 we derive the necessary estimates.
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3 Solution Theory for Rough Evolution Equations

Lemma 3.34 (estimate for dy-integral). Let (y',z1), and (v*,2?) € X, 1. Then we have

6@ -7

<O (146" D%+ 162 205) 16! -2 =Dl -9 372)

7 —yﬁ]Dﬁ <C (1 + H(ZJI,ZI)H?X + H(yQ,z2)H§() (' =%, 2" — 22)HX s9h (3.73)
17" = 7ll55 < € (14 65D + 162 A05) 6! =022t = 22| T (3.74)
as well as

(3" = 72)is — wE (G - Gu2))|
<O (14w D5+ 1622 5) [0 =22t = )]s~ (= 9"

Proof. We have

(3.75)

7 - B = TEW 2 - TEW (R, %), = T (W, 2) - S0, )
We make the same deliberations as in Lemma 3.30 and use the assumptions on G.
EW (ylv Zl)vu — =W (y2> Zz)vu
< wpu(Glys) = Glya))| + |20u(DG(y2) — 272 (DG ()]
< wn(Glys) = Glya))| + 200 (DG (ys) — DG(y) | + | (2" = 2%),,, (DG ()]
< Cllwla ly" =9l (0 =) + O, " = 9*[l (0 = )" + O 2" = 2|, (0 = 0)®
<C+|6h D) e =y 2 =22k

Furthermore,

’(325(3/) (yl, zl))vmu - (525@) (92, ZQ))vmu
< |wi, (G(yd) — Gyh) + DG (L) (6y" ) mu — G(y2) + G(y2,) — DG(¥2)(6y*)mu) |

+ |20 (DG(yy) — DG(yy,)) — 20 (DG (ys) — DG (y1))|

< Clwl, |GyL) — Glyh) + DG YY) 6y )mu — G(y2) + G(y2) — DGY2)(6y ) mu| (v — u)®
+ |20m(DG(ys) — DG(y,,,) — DG(yz) + DG(y)| + | (2" = 2%),, (DG(yz) — DG(y2,))] -

As in Lemma 3.30 we have two possibilities to estimate these terms.

By (A.3) and (A.4) we infer
)(525@) (917 Zl))vmu - (325(31)(3/27 Z2))vmu
2 — e
< Cllolly [ (0 s+ 152 M50) M = 975+ Mol 5 1" = 920} 07 0 = )2

O s 19" =0 Npp + 15705 197 = 97l 0 (0 = )2
+C ! = 2o 5 197,507 (0 = )™

< (1l ANy + 165 M) 16 =922 = ) w0 — w2,

Again, applying Theorem 3.6 entails
66" =7us| < € (14 G5+ 162 A5) 6 =922t =22 =)™
By Corollary 3.11 we obtain

3=, < (1 I+ N ) Nt =2t = )
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3.5 Local Solutions for Rough Evolution Equations

and with Corollary 3.13 we have
17 =7l < € (1+ N5+ 16 5) ! =972t = 2], 72
On the other hand using (A.4) and (A.7) we get
|22 =) m = (322D (4, 22) o
< Cllla (Il s + N5 ll5 + N2l 5 19711 ) 8" = 92w (0 =)+

+ C M g (" = 9%l + 197l 18" = 9l ) w7 (0 =)™
+0| =2 )+

a+3,8 HyQHOO u g (’U —u
<O (1+ WD+ e I) 16 =22 = 2|

Hence, we can apply Corollary 3.7 and obtain

(0" = 7%)ns — wi(GWh) - G|

<O (146NN E+ 16 A5) [0 =972t =257 = 9™

P (v — )P

X

O

Lemma 3.35 (estimate for dz-integral). Let (y!,z1), and (v?,22) € X,1. Then the following
estimates are valid

| = 22)B)] < CIBL (1+ [ D% + 1623 A1) 6! =22 = 2l
[(t e (e s)‘”ﬂ ,

12 =2y < € 1+ 1GL DI+ 102 E) N0 =972 =) T2 377)
Proof. Recall that

(2h = Z)(E) = GTED (", 5")io(B) — wil(BTL) — (BT2O (2, 7)is (B) + wis (BF?)

= (TED (Y, 7") - ZO W2 PN (B) — (Wi (Brh) — wii(B7?))

Building the difference of 2() for (y',7") and (y2,7?) entails
=0 7 wl(B) - EO WA 7l B)|
< |buu(B, G(ya) — G(y2))| + |awu( B, 7 — 72))|
< C1BI (Il + || w®]|, Y ll* =120 0 =0 + C 1Bl |7 =7 (0 =)

(3.76)

By (3.74) we get
=W 7o B) = Z9 (2 72 uu(B)|

< 1B (1+ [l DI + 6 20%) 16 = 922" = 2| (0 =0

Furthermore,

(322D W 7)) omu (B) = (22 (5, 52) Jomu(B)|
Gum(B, w3 (Gyh) = G52)) = (67 ) + (57%)m)
+ oo (B, G(ya) — Glym) — Glyz) + Glym))]
< Cllwl, 1Bl |05 (Guh) = G2) — (6@ = 72)mu
+C (Il2 + ||« ]|, )IEIGW) - Glh) - Gu2) + Gk

<

(v —u)®

)204 '

(v—u
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3 Solution Theory for Rough Evolution Equations

By applying (3.75) and Lemma A.3 we derive

(=7 emalE) — EO (W, 7)o ()|

<C1B (14" N + 16222 ]5) 1w =522t = 22w (0 = w7

On the other hand we can estimate

\(5 =G)(y

L7 emu(B) = (3:EF) (4%, 7)oma ()|
<C|E( fnu G(yu) — G(yz) \+‘ @' —7)mu )(U—U)“
+CE|(|Gy) = Glya)] +[Glym) = Glum)|) (v —u)™.

By applying (3.72) we obtain

(8229 (41,7 uma(B) = (5:ZD (2 7))o (B)|
<CIB| (1+ [ N5 + 162 A05) I =22 = 2] 0= ™.
Again with Corollary 3.7 we conclude
BZEY (45" - E9(2 (B ~ ED 7Y — 29 (0%, 7)) (B)|
< OB (14 [l 2D + 167 2%) 6! =922 = 2 = 9%

Furthermore, we have

ED LT - ZD WA T)i(E) - Wi (B - 7))
< [brs (B, G(ys) — G(2))| + Jaws(E. 75 — 92) — wil(E@s — 72)]

Then (3.49) yields

ED 7 - EOW T)u(B) - (@ - 7))
<CIBl|ly" = |l (Iollz + | @], ) ¢ =)
+ C 1Bl |72 = B2, 6= )47

By applying (3.73) we see

EDW7") — E9 02 7)) (E) - v (@ - 7))
< CIE| (1+ [ 5 + 162 2A0%) 16 = 21 = 2l [s°77 (6= )7 + (- 5)] -

Finally, we derive

(2~ 2)(B)] < |GTED W7 - ED 02 PDie(B) - ED" 7Y - E9 (2 72)is(B)]
ED 7" - ED W 7)is(B) — vl (E@: — 72))
< CLE| (14168 A5 + 16725 et =222 = 2]

[(t —8)% 4 0B (4 — s)aﬂ .

_l’_

Consequently, we get
2 =2l < € (L4 165+ 162 25) 6! =972 =2 777
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3.5 Local Solutions for Rough Evolution Equations

Now, putting all these results together, we can state the main theorem of this section.

Theorem 3.36. Let r > 0 with || < r. Then there exist p = o(r,w) and T = T'(w, 0) > 0 such
that the mapping Mr, = Mr|p(0,0): Bx(0,0) = Bx(0,0) is a contraction and possesses a
unique fized point.

Proof. By Theorem 3.33 we know that M7 maps X,, 7 into itself and

IMr(w.2)lx < 161+ (141205 ) 7).
Setting ¢ := 2C'r, we have
Moy, 2)llx < g +CO (142 T
Hence, we can choose T small enough and obtain

Moy, 2)l x < o,
which means that My, maps Bx (0, ¢) into itself.

Since §* — 7?2 =" — 7% and Z' — 22 = 2! — 72, applying Lemmas 3.34 and 3.35 we derive

Moy, 2") = Mr(y?, 22)||, < C (1 + @25+ Il z2)H§<) [yt =y, 2" = 22| T°.
Hence,
[Mro(y's 2') = Mro(y*, 2%)|[ < C(1+20%) (" —v*, 2" = 2%)[| T

Again, we can choose T small enough such that

1
HMT»Q(Z/1721) - MT,Q(y27z2)HX < 5 H(yl - y27zl - ZZ)HX )

which proves the contraction property of Mz ,. Consequently, Banach’s fixed-point Theorem
entails that Mr , has a unique fixed point in Bx (0, o). O

We showed the existence of a unique local solution in an appropriate ball. This means that another
local mild solution for (1.1) could exist outside this ball. The following theorem excludes this case.
In order to prove this statement we need some additional results.

For the existence proof we considered a fixed w € ¥“ and a fixed initial condition £ € W. From
now on we want to investigate the dependence of the solution on these parameters. Therefore, we
emphasize the w-dependence in the approximating terms E‘(uy) and ESJZ) and introduce the following

notation

MT,w,E: Xw,T — Xw,T
Mrwe(y, 2}t = S()E +T=W (y, 2)¢
Mrawe(y, )2 (B) = (W20 (,)) () —wii(By,).

ts

Remark 3.37. We are aware that the given notations are a little bit sloppy. In fact an accurate

()

notation which, for instance emphasizes the w-dependence of E((Uy) could have the form Z° or
':(y)

T (w,w®@)
notation. Hence, for notational simplicity we chose the notations given above.

Furthermore, we are especially interested in considering time shifted noise, see (2.11). Hence,

thanks to Lemma 2.8 the second order process will be clear from the context.

However, the first expression is hard to spot while the second one is a too extensive

43



3 Solution Theory for Rough Evolution Equations

The next Lemma is a direct consequence of Remark 3.27

Lemma 3.38. Let 7 > 0. Then the following identities hold true

L(@yﬁﬂ),
) (,y,0.y).

[1]

0.20(y,2) ==
8 3

[1]

TEwZ) (3/7 y) =
Proof. We directly have that

gTE(E)y) (Y 2)ou = Ec(uy) (Ys 2)vtrutr = wf—i—r,u-}-—r(G(yu—i-T)) + 2ot rutr (DG (Yu+r))
= gwau(G@Tyu)) + 07 20u (DG (07yu)) = Eéz?u (0-y,072) v,

as well as

QTEEJZ)(y, y)vu(E) = ESJZ)(% y)v+7,u+T(E) = bv-‘rT,u-‘rT (E7 G(yu—I—T)) + av+7’,u+7'(E7 yu+7')
= éTb’U’u,(E) G(éfyu)) + gravu(Ea éfyu) = Eé}i)w(gTyag‘ry)vu(E) O

The first step in establishing the uniqueness of the local solution is contained in the next result.
Note that this is referred to as the cocycle property in the theory of random dynamical systems,
see [2]. This will be dealt in Section 4.1.

Lemma 3.39. Let T' > 0 and (y,2) € Xy be a fized-point of Mt ¢. Then for any T € [0,T)
there exists a fized-point of Mp_1.6. 4.y, given by (0+y,0,2).

Proof. This is a direct consequence of Corollary 3.10 and Lemma 3.38. By standard computations
we get

Oryt = Yoir = St + 7)€+ IED (y, 2)14
= S(t)yr + BTZD (4, 2))snr
= S(t)yr + IEY) (0:y.0,2):.
Furthermore,
0r205(E) = ziprsir(B) = OTEE (Y, y))tristr (B) — Wiy orr (Eysir)
= (072§, (0r.0:9))es (E) = Ol (EOys),

where we used Remark 3.27 in the last step. O

Remark 3.40. If (y,2) is a fized point of Mr ¢ than for any T < T the restriction of (y,z) on
[0,T] x Aj is a fized point of M e

Now we can state the uniqueness result of the local solution.

Theorem 3.41. Let (y',2%), i = 1,2 be two fized-points of Mr¢. Then it must hold that

(y' ') = (4, 2%).

Proof. We set T := sup {T >0: (yh,2h) o, 71= (y?, 2?) o T]} and assume that (y',z') # (2, 2%).

Then T < T. Using the continuity of the solution we have that yIT = y% By Lemma 3.39 we know

that (0zy!, 052') and (67y?, 0522) are fixed points of M, 5 6oyl According to Remark 3.40 we
VT Y

can choose a small T* € [0,T — T, apply (3.74) and (3.77). This leads to
107y, 072") — (0797, 072%) || .
= [ M 70 (O B72) = My (O B2
N LR B N AN 5 9 2 “a
< C (1+ @' 02| + Oy, 00221 ) Oy = 079, 072" — 0702 | (1)

If T is sufficiently small we see that (O7yt, 052) = (6792, 072%) on [0, T*] which yields (y* fl) =
(y%, 2%) on [0, T +T*]. Therefore, we obviously reached a contradiction with the definition of T. [
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3.6 Global Solutions for Rough Evolution Equations

We conclude this section collecting three important results which immediately follow from the
previous deliberations. We first indicate why taking more regular initial data leads to simpler
arguments.

Corollary 3.42. If £ € Dg and (y, z) is the unique fixed-point of Mr, ¢ we have that y € C? and
z € Coth,

Proof. Since
(00)1s = (09)es = (09)1s + (S(t — 5) = I)g, + (S(t) — S(5))¢.
Using (3.64) and (3.65) we conclude that
lylls < Clélp, + C(L+](y. 2)|Z) T
Recall that
Zs(E) = Z1s(E) + a1a( B, S(5)€) — wii(ES(5))-
Therefore, applying (3.70) and (3.49) proves the statement. O]

Furthermore, similar to deterministic Evolution Equation we see a smoothing effect for the path
component of the solution.

Corollary 3.43. Let (y, z) be the unique fized-point of Mr, ¢ then we have for all 0 <t <T.

lwelp, < € (161477 + (1 + (. 2) %) 7). (3.78)
Proof. The proof is a direct consequence of (2.1) and (3.65) since
wilp, = 1S E+Tilp, < [SH)Elp, + Wilp, m

Remark 3.44. Keeping Lemma 3.19 and (3.59) in mind one can easily show that the solution
continuously depends on the noisy input.

3.6 Global Solutions for Rough Evolution Equations

As recalled in the previous section, working with (3.63) leads to quadratic estimates for the norm of
(y,2) in X, 7. From this approach it is not clear how /if one can extend the unique local solution on
an arbitrary time horizon. Therefore, we need different arguments for the global-in-time existence.
To this aim, similar to the finite-dimensional case, see |20, Section 8.5], it is convenient to work
with the norm of certain remainder terms, which is common in the rough paths theory.

Definition 3.45. Let (y,2) € X, 7. Then we define the remainders

RY, = (0)1s — wis(G(us)),
R (E) = z5(E) — bes (£, G(ys))-

Remark 3.46. If S = Id and (y, z) is a fixed-point of M, then the previous terms read as
R = (0y)is — G(ys) (0w)ts,

respectively
t
RiL(E)=E / RY_do,.
S

The expression for the remainder RY is the same as the one in the finite-dimensional case, com-
pare [20, Section 8.5]. In contrast to the finite-dimensional setting, R* is required here to estimate
the quadratic terms appearing in (3.71).
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3 Solution Theory for Rough Evolution Equations

Definition 3.47. Let (y, z) € X, 7 such that

Qr(y, 2) = H?JHOO,D%T + | RY[op 7 + 1R || 0yopr < 00,

where
| Ry |
RY = sup =,
17257 o<s<t<r (t —5)%°
| Ris (B
R ‘= sup Sup ———————==.
e 0<s<i<T|E|<1 (t — 8)*T2F

The space of all pairs (y, z) satisfying (3.79) is denoted by )Zw,T.
This leads to the next result.

Lemma 3.48. Let (y,z) € )Z'%T. Then we obtain the following estimates
Iyl < C (T + TP01(y, 2) )
Jellaspr < C (1977 + TP0r(y, 2)) .

Proof. Regarding the definition of RY, and applying (3.47) yields

bollyr= sup OVl
BT ocactzr (t—8)P
Y o . S G
< sw !Rt5|ﬁ v sup [(S(t — ) ﬁld)ys\ v osup |wik( (ysﬁ)ﬂ
o<s<t<T (t = 8)7  o<s<i<T (t—s) o<s<t<T (t—5)

<R llag 7 T7 + ClYlloo,pyy e T7 + C lwlla T

<C (TP + T0y(y, 7)),
which proves the first statement.

Furthermore, due to (3.58), the estimates for z result in

||Z||(X+BT: Sup Sup %
" o<s<t<r B (E—8)°
R, (E bis(E, G
< sup sup M + sup sup M

o<s<i<T |E|<1 (t = 8)TF  ocscicr g1 (t—s5)2tF

1R larasr 77+ C (Il + || ]|, ) 7277

IN

<0 (17 + T90r(y,2)).

The next result indicates the connection between the space-regularity of y and of the initial

data €.

(3.79)

(3.80)

(3.81)

Lemma 3.49. Let £ € Dg and (y, z) be a fized-point of Mg, ¢. Then fort € (0,T] we have that

Yt € Dgg.

Proof. By Corollary 3.42 we know that y € C# and z € C**8. In order to apply Corollary 3.11 we

have to estimate

~

(SQE(y))vmu = me(G(yU) — G(Ym)) + (022)vmu(DG(Yu)) + 2om (DG (yu) — DG(Ym)),
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3.6 Global Solutions for Rough Evolution Equations

see (3.13). Therefore, we have

(SZE(y))vmu

< |win (G(yu) = G(ym) + DG(Yu) (09)mu)| + |20m(DG(yu) — DGym))| . (3.82)
For the first term we have applying (3.47) that

‘wfm(G(yu) - G(ym) + DG(yu)((sy)mu)‘ < C H’wma (1) - m)a |G(yu) - G(ym) + DG(yu)((Sy)mu| :

Furthermore,

‘G(yu) - G(ym) + DG(yu)(éy)mu‘ < C |||y”’§,T (m - u)ZB ’

and

|2om (DG (yu) = DG (ym))| < C |12l g Iyl (0 — u)* 7.

Summarizing, we obtain

(BsZD)ama| < € (1+ Wl 2+ 121250 (0 = w)* 7. (3.83)
On the other hand
S=—wzl)|  <[S0 - wS (Gl p,, + 5@ = w2 (DG p,,
D2B 26

< Cw—u) | (G| p, +C )2 |z (DC ()
Using Lemma 3.21 we get

’S(v —WEW

o SO ellaypr) (0= w7
28
Hence, Corollary 3.11 entails

(6ZE2W)),,

2 2 -
o <O (14 Il + I2lsr) (=97,
2

which simply yields

9lbys < 1SOElp, + |Gl

_ 2 2 _
<Ot lelp, +C (14 ol p + 20200 1277 (3.84)
This proves the statement. O
Lemma 3.50. If { € Dog and (y, 2) is a fixed-point of M, ¢ then @ (y,z) < co.

Proof. First of all, note that if £ € Dag, (3.84) immediately entails that ||y| 287 < 00.
We now investigate RY. To this aim, we verify (3.19) using (3.47). This obviously results in

=)
U

< ‘qu(G(yu))‘ + 20w (DG (Yu)) |
< Cllwlla(v — u)* + Cllz([a(v — w)*.

Now (3.20) is verified by (3.83). Therefore, we obtain (3.23), namely

GT2W)s — 0| < C (14 Iz + 1212157 (= ).
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3 Solution Theory for Rough Evolution Equations

This yields
IR | = |(8y)es — wi (G(ys)] < |(GTED)s — EY| + |205(DG(ys)))|
<O (1+ Il e + 1212 + Nellagsir) (6= 9.

We infer from the previous computation that ||RY||257 < occ.

We now prove that |[|[R*||o428 7 < 00. We make the same deliberations as for RY.
Estimates (3.48) and (3.58) entail

E(B)] < boul B, Cly))] + lava(E,y)| < CIEIL+ [yl o) (0 — 0)°
and
(8 2 ))vmu(E)‘ = ‘avm(E7wmu(G(yu)) - (&/)mU) + bum (E, G(yu) — G(ym))]
< Clwl, (v - m)*|E] HRyllm( — u)?
+C (Il + |||, ) 0= m)* Byl p (m—w)?
< CLEI(1R g+ ol g.0) (v - u)a“ﬂ.
Thus, (3.23) implies
|GT=)is(B) ~ Z2(B)| < CIEINR g0 + Iylla )t — ). (3.85)
Consequently
RE(E)| = |20s(E) — bis (B, G ()]
< |GZE)ia(B) = Z(B)| + lass (B, y) = (Ey).
Applying (3.49) yields
R(E)| < CIEI(IB |17 + Wylls ) (t = )2 + C|E[ys| by (t — 5)*+%.
This proves that ||R*||a428,1 < 0. O

We now derive the following a-priori estimate of the solution mapping of (1.1). The computations
rely on similar arguments as in the previous Lemma.

Lemma 3.51. Let £ € Dog and let (y, z) be a fized-point of My, ¢ with 0 <T < 1. Then it holds
7(y,2) < C (Elp,, +T°77 + T0r(y, 2)) (3.86)

Proof. Recall that ®7(y,2) = [yl p, .10 + 1R [l25.0 + 1 BZ|lat2s,r- We begin with [[RY[|y5 . and
further use that

1
0

| DG (yu + q(6Y)mu) — DG(yu)| dg

O\H

<C [I!Rszﬁ,T (m = + [yl py, 1 (0 — w)?

iyl z lwll (m = U)aﬂ :
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3.6 Global Solutions for Rough Evolution Equations

Applying (3.80) results in
G(W) ~ Clum) + DOl < C [r(y,2)(m — ) + (19 + T (y,2))(m — )]
All in all we obtain for the first term in (3.82)
|wim (G(yu) = G(ym) + DG(yu) (0y)mu)| < C(L+ @1(y, 2)) (v —u)*+?.
For the second term in (3.82) we have

|zvm(DG(yu) - DG(ym))|
< R} (DG(yu) = DG (ym))| + [bom (DG (yu) — DG (ym), G(ym))]

< IR gy (0 = m)™ 2 4 C (ol + || ]|, ) (0 =m)* lyllz (m = w)”.

Again, we apply (3.80) and derive
|2om(DG(yu) = DG(ym))| < C(1+ r(y, 2)) (v — u)* 2.

Summarizing, we obtain

(0229 ) ymu| < C(1+ Dp(y, 2)) (v —u)* 27

Then (3.23) yields

Consequently,

RY| = |(By)es — w0 (Gls))]

< |6z=) - =

(DG(ys))l
< O(L+P7(y.2)) (¢ = ) + [[2] gugr (8 — )7

Now (3.81) entails the first important estimate on the 28-norm of RY, namely
IRV l5.0 < C (1277 + T*®r(y, 2)) (3.87)
We now continue investigating [|y||., Dy,r- I order to apply Corollary 3.11 we firstly consider

S(v—u)E2W)

‘S’U—U) S( yu ‘D +‘S(U_U)ZUU(DG(:UU))‘D23

<C =) WGl p, + Cv = w) ™ 2u(DG ()] -

Dog

Using Lemma 3.21 and (3.81) we get

SO0 ellaspr) (0=

<C(1+ T’8<I>T(y, 2)) (v — u)a_/B.

Sw-wzy)|

Hence, by Corollary 3.11 we obtain

‘(SIE(y))ts . < CA+TPOp(y,2))(t — 5)* P + C(1 + Op(y, 2))(t — 5)°

< C(T* P+ T®r(y, 2)).

(6y)ts

Dog
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3 Solution Theory for Rough Evolution Equations

Regarding this we immediately obtain

S7=(v)
el p,, < }(CHH )0 Do + [S(t)El p,,
< C(€lp,, + T +T®r(y, 2)).
This obviously implies the second important estimate, namely
19llog, Dy < CUElp,, + T + T@7(y, 2)). (3.88)

Finally, we only have to compute [|R*|, 55 7 analogously to the proof of Lemma 3.50.

Applying (3.87) and (3.80) to (3.85) entails

(BT2)1s(B) — Z2(B)| < C(T°77 4 T®r(y, 2)) | B (t - 5)**.
Consequently, (3.49) further leads to

[Ris(E)| <

(BTZO)1(B) — 2 ()| + |ass (B, ) — wi (Bys)|

< (TP + T (y, 2)) |E| (t = )" + O Jlwll, Iyl Bl (t - s)" 7.

00,Dap T

Regarding this and plugging in (3.88), we derive the third and final important estimate for the
terms defining @7, namely

IR asopr < C (IElp,, + T2 + T0r(y, 2)) (3.89)

This proves the statement, i.e.

7(y,2) < C (Ielp,, + T°77 + T*0r(y, 2))

We now derive a crucial estimate which will be required for the concatenation procedure.

Lemma 3.52. LetT >0, r > 1V ]§|D2ﬁ and let (y,z) be a fixed-point of My, ¢. Then there
exists a constant M > 0 independent of r, such that

||y||oo,D2/3,T < TMeMT'

Proof. By Remark 3.40 we know that by restricting the solution on a smaller time interval LO T]
with T" < T, we obtain a fixed-point of M | ¢ According to Lemma 3.51 we have for all 0 < T' < 1
that

@5(y,2) < C ([€lp,, + T + T4(y,2))

We now choose 0 < T¢ < T sufficiently small such that C(T)® <
that

%. This yields for all Ty < Ty

@7, (y,2) < 2C ([€|p,, +1) < 4Cr.
Consequently, this means that

||?JHOO,D2[3,TO <4CTr.

At this point it is important to note that the choice of T} is independent of r and 7.
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3.6 Global Solutions for Rough Evolution Equations

If T < Tj the statement follows choosing M > 4C. Otherwise we can find an N € N (not
necessarily unique), such that TTO < % < T§. In this case we set Tj := %

Now, combining Lemma 3.51 and Lemma 3.39 we obtain for 1 <n < N — 1 that
O1, (O, Oty 2) < C <|ynTo|D2B + T3 + T8y (O, gnToz)) ;

Since CT§ < % and y,1, = (g(n,l)Toy)To, the previous estimate results in

®To (gnTOy7§nToz) < 2C<H5(n—l)T0y

| +1),
00,D23,To

which yields

enTo Y

By induction we infer that

From this we finally conclude

< O (Onry ¥, Oy 2) < 20("5(7171)%9

‘ ‘ + 1).
00,D25,T0 00,D25,To

9nT0 Yy

‘ < (4C)"r forallm=0,...,N —1.
00,D25,To

il N z 2\" MT
T Z
Wloespssir = oo By, < @0)r= oyt < (<4c> ; ) r < MeMTy.
for a sufficiently large M. O

Now we state the main step required in order to obtain a global solution. We show that by the
concatenation of two local solutions we obtain a solution on a larger time interval. For similar
arguments and techniques, see [27].

Lemma 3.53. Let (y',z') be a fiwzed-point of Mr, o ¢ and (y*,2?) be a fized-point of Mo, o7, k. -
K K 1
Then we obtain a fived-point (y,z) of M 11, ¢ via
v, 0<t<T
Ye =
tr, Ti<t<Ti+T,

and

#5(E), 0<s<t<T)

2s(E) = Qwin (B(Oy ) 1) + 20 o(B) + S(t = T1)2p, (E), 0<s<T1 <t<T1+Tp
ZthTl,szl(E)’ Th<s<t<Ty+Ts.

Proof. The statement follows by a standard computation. We only focus on certain cases, since

the rest are straightforward. For the beginning we consider 71 <t < 17 4+ T>. We recall that we

use the notation E&y/ %) and Eé%z) in order to indicate the appropriate shifts with respect to w.

S(t —T)S(T)E + S(t — TIEY (y, 2) 1y + OIEY (y, 2))emy
(t = T1) (S(T)E+ TEP (', 2N, ) + GTEY (v2ry 21y o) e,

(t - Tl)y%—'l + (8IE(EIy) (y?—Tl? Z?—Tl,-—Tl ))tTl ‘

St +IEW (y, 2),

Recall that

w (y-Qle I 2-27T1,-7T1 )'UU = w’;?u(G(y’?Lle )) + Z’?}*T1,U,*T1 (DG(ygf’Iﬁ ))7
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3 Solution Theory for Rough Evolution Equations

which further leads to

‘9T1 =) (y° T 22 Ty Ty ) VU = w§+T1 u+T1(G(yZ)) + 22, (DG(y2))

Now, Lemma 3.10 and Lemma 3.38 entail

BTED (v21,, 220y om))emy = BTEY) (% 220

Consequently,

S(E+TEY (v, 2)e = St = Tyh, +T=4) (07 22e-ny = vin, = v
Now, let 0 < s < Ty <t <T)+T5. Then we have
OZZE) (4, 9))es (E) — wis (Eys)
== (y,9))er, (B) + S(t — T1) (OIS (4, ) 115 (E) — wip, (Bys) — S(t — T1)w?, (Eys)
=(0Z={) (i, v2r))er (B) + S(t — 1) OZED (y* y')) 1y (E) — wing(EZ/;) - S(t— T1>W%S(Ey§)
=S(t — T) 21,5 (E) + wir, (B(6y")1ys) + OTEG (v2 1y, v2my))em (B) — wir, (Byd),

where we use in the last step that y3 = yTl.

Hence, we infer using Lemma 3.10 and 3.38 that
(6ZZS) (4, y))is (B) — wi(Eys)
—S(t — T1) 2, o (E) + wip, (E(6y" STEY (12 E) — wi, (B}
(t = Th)2g, s (B) + wiry (B(0y ) mis) + (0I5 (47 47))e-11,0(E) — wiry (Eyg)
=S(t — T1) 21,5 (B) + wir, (B(0y")11s) + 2113 0(E) = 215(E).- O
Regarding all the previous deliberations we can now state the main results of this section.

Theorem 3.54. Let § in Dag. Then for any T > 0 there exists a unique global solution, i.e. there
exists a unique fized-point of M, ¢.

Proof. Let r =1V |£|D26' By Lemma 3.52 we know that every fixed-point of Mt ¢ must satisfy
the estimate

HyHOO’DQﬂ’T <rMeMT =. 7.

Particularly, this means that |y;| Das <7, forall t <T. Applying Theorem 3.36

with [£] < [¢] D, < T entails the existence of a local solution on a time interval [0, T%], where
T* = T*(7), i.e. there is a fixed-point (y,z) of Mr=,¢. For simplicity, since we can choose T*
arbitrary small, we set N := % € Nfor N > 2.

Note that |yp«| < |yp+| Dag < 7. Hence, we can derive by using again Theorem 3.36 the existence
of a unique fixed-point of Mr=g, ., y,.. Furthermore, Lemma 3.53 shows that we can concatenate
them and obtain a fixed-point (y, z) of Marp=,, ¢. Again we have |yap«| <7

Iterating this argument entails the existence of a unique fixed-point (y, z) of Mz, ¢ for any 7> 0
which is unique by Theorem 3.41. O

Corollary 3.55. Let £ in W. Then for any T' > 0 there exists a unique fized-point of M, ¢.

Proof. Theorem 3.36 guarantees the existence of a unique fixed-point (y,z) of Mr, ¢, where
Ty = Ti(w,§). Furthermore, due to (3.78) we obtain y7, € Dg. Then, by Theorem 3.36 we know
that there exists a unique-fixed point of ./\/lT%ngw,yTl, which according to Lemma 3.53 can be
concatenated with the previous one to a fixed-point (y,2) of M7 47, 0 ¢. Lemma 3.49 entails
Y1 +7, € Dog. Hence, we are in the setting of Theorem 3.54 and obtain the existence of a global
fixed-point of MT_TI_TQ’ng T WYTy 4Ty Again, this can be concatenated to a fixed-point of M, ¢
due to Lemma 3.53. This procedure gives us the global-in-time solution. O
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3.7 An Application

3.7 An Application

We indicate an example for the abstract theory proven above. For further applications consult [25,
Section 5] and [27, Section 7].

Example 3.56. We consider an open bounded C?-domain O € R%, for d > 1. Furthermore, let
A stand for the Laplace operator or for a second order uniformly elliptic operator augmented
by Dirichlet boundary conditions. Then we know that A generates an analytic Cp-semigroup
on W := L%*(O). Moreover, we can identify the domains of the fractional powers of A with
Sobolev-Slobodetski spaces depending on the range of . We have according to Theorem 16.12 in
[60] that

H¥(0), 0<6<1/4

0y —
D((-A)") = {H]%"(O), 1/4<0<1.

Here Hp stands for the Sobolev space that incorporates the boundary conditions, in particular

D(—A) = H*(O) N H(0).

Having stated the assumptions on the linear part we now focus on G. Therefore, we firstly set for
simplicity V := L?(0). Let g: O x R — R be a three times continuously differentiable function
with bounded derivatives which is zero on {0,1} x R. We interpret g as the kernel of the following
integral operator

o) ()] == / 92, 0(®)$(F) dF. (3.90)

(@]

As in [43, Section XVIL.3] one can show that G is three times continuously Fréchet-differentiable
and compute the derivatives as follows

DG() (4, )] = / Dag(z, o(E))p(F)ha (7) dF,
D2G() (4, . ho)[e] = / D2g(z, (@) (@) hy (@)ha(F) dF,
D3G() (6, o, by, hy)[ae] = / D3g(a, (@) (@) @) ha(@)hs(F) 03,

for hy, hs and hs belonging to W. Due to the assumptions on g, these expressions are obviously
bounded.

It is left to show that G : W — L(W, Dg) is Lipschitz continuous. Here § > 1/3 as assumed in
(G). To this aim let ! and 12 € W and compute

G(¢") = G eew,py) = sup Gle") () = G(*)(¥)Ip,

[4]
<€ s [G(W) = G Wloi
— C sup / (900" (@)) — 90 P2(@)) &(F) dF
v D(-4)

93



3 Solution Theory for Rough Evolution Equations

Therefore, we estimate for k = 0,1, 2:

[ (Plat.#'@) - Dlgt.¢*@) (@) @z

o L*(0)
2
— [| ] (Dlote '@ - Do, o*(@)) w(z) di| da
o 'o
2
<c [| [1D:Dlglc 6@ - (@) @) da| do
@

o
< C|O| |DsDfgl%, |¢* — 902|%2(o) |¢|%2(O)'

We finally obtain that

1G(¢") — G(&®) cw,py) < Cle" — ©*l12(0)s
where the constant C' depends on |O| and g.

In conclusion our theory can be applied to parabolic SPDEs driven by multiplicative fractional
noise as described in (3.90).

Remark 3.57. Note that we do not make any additional assumptions on the eigenvalues of A.
This is natural in the context of rough path theory, compare [10]. However, working with different
techniques such as presenting the infinite-dimensional integral as a sum of one-dimensional integrals
[50], ([27]) may lead to further assumptions on the asymptotic of the eigenvalues and implicitly to
a restriction of the domains.

3.8 Concluding Remarks on the Coefficients

As announced in Remark 2.2 we now have a closer look at the coefficients.

At first let us how to deal with F' # 0. Assuming F' to be Lipschitz continuous, which is essential
even in the deterministic case, we obtain the existence of the Bochner integral, see [55, Section 4.3].

This fulfills
t
| /S(t —F()dr| <CU+yl )-8 fralo<y <1 (391)
Y

which yields its Lipschitz continuity. In fact, for all 0 < s <7 <t < T we have

| [st=nFw)ir- [ $t=nF@ir| < ca+ o). (3.92)

Following the theory developed in this chapter, we see that if F' # 0 a solution (y, z) of (1.1) fulfills

t

= S(E + / S(t — 1) F(y,)dr + =W (y, 2), (3.93)
0

and for a placeholder £ € L(W @ V; W) we have

t s

zs(E) = /S(t - T)E/S(?“ — q)F(yq) dg dw, + (6TE9) (y,9))es(E) — wis (Bys), (3.94)

S
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3.8 Concluding Remarks on the Coeflicients

By (3.91) and (3.92) we see that the additional term [, S(- —7)F(y,)dr is contained in the domain
of A and Lipschitz continuous. Hence, since 23 < 1 all deliberations done in Section 3.5 and 3.6
remain the same.

When considering (3.94) we have to give meaning to the additional term

/tS(t—r)E]S(r—q)F(yq) dq dwy.

Thanks to the Lipschitz continuity of the inner integral, see (3.92), we can define

/St—r E/Sr—q (yq) dqdwr— hm Z St —v)w /Su— yq)dq> (3.95)

u,v|EP

in the Young sense. For the sake of completeness let us give the proof using the Sewing Lemma.
Set

Eg)’s = w;gu (E / S(u — q)F(yq)dq).

(3.47) and (3.91) yield

=] < o[BI+ [[yll o) (u = 5)' (v — w). (3.96)
By (3.44) we obtain
BoZ ) = (B [ [ S(u= )P~ [ S~ )F ()]

By (3.47) and (3.92) we see

(822 omu| < Cllwlla 1B (1 + [lylloo) (v = u) .

Hence, the Sewing Lemma, more precisely Corollary 3.8, yields (3.95).

Furthermore, we can derive another estimate. (3.96) yields Eg)’s (3.23) we
conclude that
3 r
‘/S(t - T)E/S(T — q)F(yq) dq dw,| = ’(SIE(F)vS)tS
< ‘(3IE(F )Y — 2S5

< Cllwlla 1B+ llylloo) (t = 5)'F.

Since 1 + o > a + 2 the deliberations in Section 3.5 and 3.6 remain the same.

Moreover, we shortly want to consider the case of an affine linear diffusion term G(z) = G1x +
Go. In this case one can use a Doss-Sussmann type transformation in order to convert the
stochastic equation into a random equation which can be solved pathwise, see [13] and [59] for the
transformation and [58|, [9] and [14] for applications to stochastic equations.

While we can derive the existence of a local solution because Theorem 3.33 does not require
boundedness of G, Theorem 3.54 does not apply to affine linear G. To the best of our knowledge it
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3 Solution Theory for Rough Evolution Equations

is not clear if one can drop the boundedness condition on G.
However, if you follow the calculations in Section 3.6 you see that in the case of an affine linear GG
we still obtain a global solution.

In Section 3.6 we used the boundedness of G in order to avoid quadratic terms. Now, for affine
linear G we have that DG = G and D?G = 0 and thus

G(yu) - G(ym) + DG(yu)(éy)mu = Gyuy + G2 — G1ym — G2 + Gy (6y)mu =0,

compare the proof of Lemma 3.51.
Furthermore, we only have to consider zy,(DG(yy)) = 2vu(G1) which is independent of y.

So, one can prove Lemma 3.51 with the same calculations as given in Section 3.6 under the assump-
tion that G is affine linear. Since this is the crucial lemma of Section 3.6, all further results hold true.

We conclude this chapter with a final remark on the generic constant.

Remark 3.58. In Chapter 2 and this chapter we have worked with a generic constant C which
depends on the semigroup S the nonlinear coefficients F and G, the noisy input w and on further
parameters «, 8. For notational stmplicity we have omitted these dependencies. However, it is not
hard to see that C is of multiplicative structure in all computations done in this chapter, more
precisely C = CgCpCaC(w) where Cs = Cg a3 and C(w) is a polynomial in ||w|, and || w(2)H2a.
For analyzing the dynamics of solutions of (1.1) in the next chapter it will be necessary to state
these dependencies.
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4. Dynamics of Rough Evolution
Equations

Referring to the monograph of Arnold [2], it is well-known that an Ito-type stochastic differential
equation generates a random dynamical system under natural assumptions on the coefficients. This
fact is based on the flow property, see [46, 57|, which can be obtained by Kolmogorov’s theorem
about the existence of a (Holder)-continuous random field with finite-dimensional parameter range,
i.e. the parameters of this random field are the time and the non-random initial data.

The generation of a random dynamical system from an It6-type SPDE has been a long-standing
open problem, since Kolmogorov’s theorem breaks down for random fields parametrized by infinite-
dimensional Hilbert spaces, see [52|. As a consequence it is not trivial how to obtain a random
dynamical system from an SPDE, since its solution is defined almost surely, which contradicts
the cocycle property. Particularly, this means that there are exceptional sets which depend on
the initial condition and it is not clear how to define a random dynamical system if more than
countably many exceptional sets occur.

Thus, dynamical aspects for (1.1) such as asymptotic stability, Lyapunov exponents, multiplicative
ergodic theorems, random attractors, random invariant manifolds have not been investigated in
their full generality.

In this chapter we show that the solution of (1.1) generates a random dynamical system and in
the following prove asymptotic stability of the trivial solution.

4.1 Random Dynamical Systems

Based on the results derived in the previous chapter we investigate random dynamical systems
for (1.1). There are very few works that deal with random dynamical systems for SPDEs driven by
nonlinear multiplicative rough noise, see for instance [19]. In the finite-dimensional setting this
topic was considered in [3].

We start by introducing the next fundamental concept in the theory of random dynamical systems,
which describes a model of the driving noise, see [2].

Definition 4.1. Let (2, F,P) stand for a probability space and 6 : R x Q — Q be a family of
P-preserving transformations (i.e., 6P = P for ¢t € R) having the following properties:

(i) the mapping (t,w) — Oww is (B(R) ® F, F)-measurable;
(i) 6p = Idg;
(iii) 445 =0, 006;, for all ¢, s, € R.
Then the quadrupel (2, F,P, (6;)tcr) is called a metric dynamical system.

Motivated by this we precisely describe the random input driving (1.1). Therefore, our aim is
introduce the (canonical) probability space associated to a Hilbert space-valued a-Hélder rough
path. We recall that o € (%, %) was fixed at the beginning of this work. An example is constituted
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4 Dynamics of Rough Evolution Equations

by a trace-class V-valued fractional Brownian motion with Hurst index H € (1/3,1/2]. In order to
construct it, we recall that a two-sided real-valued fractional Brownian motion 5 (-) with a Hurst
index H € (0,1) is a centered Gaussian process with covariance function

B(5 ()3 (5)) = 5 (27 + |87 — [t = sPF), for 5.t € R

In order to introduce a V-valued process, we let @ stand for a positive symmetric operator of
trace-class on V, i.e. tryy@ < oo. This has a discrete spectrum which will be denoted by (Ag)neN.

It is well-known that the eigenvectors (e )nen build an orthonormal basis in V. Then a V-valued
two-sided Q-fractional Brownian motion w is represented by

wp = Z \/Eg;?(t)en, teR, (4.1)
n=1

where (BH(-))nen is a sequence of one-dimensional independent standard two-sided fractional
o0

Brownian motions with the same Hurst parameter H and tryQ = > )\%2 < 0. In the following
n=1

sequel we further fix H € (3, 3].

Keeping (4.1) in mind it is not hard to show that w is locally Holder continuous by using

Kolmogorov’s continuity criterion, see [46, Theorem 1.4.1].

Lemma 4.2. Let w be a fractional Brownian motion given by (4.1). Then, w is locally a-Hdélder
continuous for all o < H almost surely.
Furthermore, we obtain

EJwll, < Copr /i Q. (4.2)

Proof. Tt is well known that a one-dimensional fractional Brownian motion is locally a-Hélder
regular for all @ < H, see[53, Section 1.4]. Keeping this in mind we obtain

EfwlZ < SASE|BH|2 = (1852 trv Q.

n=1
Jensen’s inequality proves (4.2) which yields the rest of the statement. O

Keeping Lemma 4.2 in mind we are justified to introduce the canonical probability space
(Co(R, V), B(Co(R,V)),P,0). Here Cy(R,V) denotes the set of all V-valued continuous func-
tions which are zero in zero endowed with the compact open topology and P is the fractional
Gaufs-measure which is uniquely determined by @) and H.

As already introduced in Section 2.2, we take for # the usual Wiener-shift, namely

Orwr = wiyr —wy, for w e Co(R, V).

Further, for our aims we restrict it to the set Q := C§'(R,V) of all o/-Hélder-continuous
paths on any compact interval, where % <a<d < HL % We equip this set with
the trace o-algebra F := Q N B(Cp(R,V)) and take the restriction of P as well. Then
Q C Cy(R, V) has full measure and is #-invariant. Moreover, the new quadrupel (Q, F,P,0) as

introduced above forms again a metric dynamical system which we will further be restricted later on.

We point out the following result regarding the existence/construction of the Lévy-area w® for
an element w € . We stress the fact that it is necessary to let w be o/-Holder continuous for
% <a<d <HZXZ % This is required in order to lift w to an a-Holder rough path w = (w, w(Q)).
To this aim we furthermore have to consider the restriction of w on compact intervals. The precise
setting is stated below.
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4.1 Random Dynamical Systems

Lemma 4.3. Let % <a<d < HZL % and w € Q be a Q-fractional Brownian motion with

Hurst index H. Then there is a 0-invariant subset ' C Q of full measure such that for any w €
and for any compact interval J C R there exists a Lévy-area w® € C?**(A;,V®@V) such that
w = (w, w(2)) defines an a-Holder rough path. This can further be approzimated by a sequence
w" = ((w", w(z)’”))neN in the corresponding do, j-metric. Here (W™ )nen are piecewise dyadic linear
functions and

¢
wg)’n = /(&.u")m ® dwy.

S

Proof. Let j,k € Nand T € N be such that J C [-T,T]. We introduce

WP k) = / (B (r) — BH(s)) dBE(r), for —T<s<i<T. (4.3)

S

This process exists almost surely according to Theorem 2 in [8], see also |20, Corollary 10.10].

Regarding (4.1) we can represent the infinite-dimensional Lévy-area wtf) € V ® V component-wise
as

wt(?) = Z VAV Ak wg)(j, k) €; ® eg. (4.4)

jk=1

This is well-defined almost surely due to the fact that tryy(Q < oco. Moreover, one has that
w@n — @ in CQQ(A[,T’T},V ® V) almost surely. The proof of these assertions relies on a
standard Borel-Cantelli argument combined with the Garsia-Rodemich-Rumsey inequality and
follows the lines of Lemma 2 in [24]. Since J C [T, T}, one clearly concludes that w™ converges
to w with respect to the d, j-metric. This immediately yields that € has full measure and is
f-invariant. O

From now on we work with the metric dynamical system (£, F',P',0) corresponding to €
constructed in Lemma 4.3. As above we set F' := Q' N F and take P’ as the restriction of P.

Note that thanks to Lemma 4.3 there is a unique way to lift the path w of a fractional Brownian
motion to rough path w € C’g *“. Whenever this is possible in a more general setting the following
statements of this Section hold true.

For considering the dynamics of a given solution of (1.1) we are especially interested in the path
component of this solution while the area component is less important. Roughly speaking the path
component is the observed object while the area component has only supporting character. Hence,
we define

PRy XU xW =W,  o(t,w,&) =y,

where (y, z) is the unique fixed point of My, ¢. One can say ¢(-,w, §) gives the path component of
the solution of (1.1) on Ry for given noise w € £’ and initial condition £ € W.

In case we want to emphasize the dependence of the solution on the coefficients F' and G, we write
o(t,w, & F, Q).

The concept introduced next is the basis for the investigation of many dynamical aspects. For a
general overview see |2].
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4 Dynamics of Rough Evolution Equations

Definition 4.4. A random dynamical system on W over a metric dynamical system
(Q, F,P,(0;)ter) is a mapping

PRy xQxW =W, (t,w,x) — P(t,w, x),
which is (B(R4) x F x B(W), B(W))-measurable and satisfies:
(1) ®(0,w,-) =Idw for all w € Q;
(i) Pt + 1w, z) =B(t, 0w, p(T,w,x)), forallz e W, t,7 € Ry, w e Q.
If one additionally assumes that
(iii) @(t,w,-) : W — W is continuous for all ¢ € Ry and all w € €,
then © is called a continuous random dynamical system.

The second property in Definition 4.4 is referred to as the cocycle property. As already mentioned
in Section 3.5 the fact that ¢ fulfills the cocycle property is a direct consequence of Lemma 3.39.
However, since this property is fundamental, we provide all necessary deliberations in detail.

Lemma 4.5. ¢ fulfills the cocycle property.
Proof. By definition we have

p(t+7,w,8) = Yrr,
where (y, z) is the unique fixed point of My, ¢. Lemma 3.39 states that (6,y,0,2) is a fixed
point of My g ., 4, . This entails
Yir = Oy = @(t, 0w, yr).
By Remark 3.40 we know that y, = ¢(7w, ) which yields the statement. O
One can expect the solution operator of (1.1) to generate a random dynamical system. Indeed,

a big advantage in working with a pathwise interpretation of the stochastic integral, is that no
exceptional sets occur.

We can now state the main result of this section. Recall that Q' was constructed in Lemma 4.3.
Theorem 4.6. ¢ : Ry x Q' x W — W generates a random dynamical system.

Proof. Due to Theorem 3.54 we know that we can define the solution (y, z) of (1.1) on any time-
interval [0, T] for T' > 0. The cocycle property is given by Lemma 4.5. The continuity of ¢ with
respect to time and initial condition is clear, we only have to show the measurability. Therefore,
we consider a sequence of solutions ((y", 2"))nen corresponding to the smooth approximations
(W, ™)) en, recall Lemma 4.3. Note that the mapping w — (w", w(®") is measurable. Due
to the fact that w™ is smooth y™ is a classical solution of (1.1). Hence, the mapping

0, T] x Y x W3 (t,w,&) —»yp e W

is (B([0,T]) ® F' @ B(W), B(W))-measurable. Regarding Lemma 3.19 one can immediately infer
that the solution (y, z) continuously depends on (w", w(®™). This leads to

lim yi' =y, (4.5)

n—oo

which gives us the measurability of y; with respect to F' @ B(W). Since y is continuous with respect
to t, we obtain by Lemma 3 in [4] the jointly measurability, i.e. the (B([0,7]) @ F' @ B(W), B(W))
measurability of the mapping

[0, T] x U x W 3 (t,w,&) — yr € W. (4.6)
Since (4.6) holds true for any T' > 0, one obviously concludes that ¢ is (B(Ry) @ F'@ B(W), B(W))-

measurable. n
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4.2 Local Exponential Stability

4.2 Local Exponential Stability

In this section and also in the following one we want to analyze the asymptotic behavior of the
path component of the solution of (1.1). Now we are interested in establishing local exponential
stability of the trivial solution.

The most important drawback we have to face is that our driving noise is in general not Markovian.
Hence, we can not use techniques provided in [44|. However, new approaches have been developed
in order to show stability for pathwise solutions. In [29] and [30] the authors show local stability
in an ODE setting where the driving noise is given by a fractional Brownian motion with Hurst
parameter H > %, respectively H > % In [16] and [17] the authors consider driving Gaussian
noise in an ODE setting. The goal of this section is to prove local exponential stability in the
very general setting given in (1.1), with three additional assumptions. At first, we specify the
assumptions on the given linear operator

(SL1) For a A > 0 the operator A + AId is strictly negative. Thus, it generates an analytic
exponentially stable semigroup S meaning that for all £ > 0 we have

IS < e
Let us state one important estimate of the semigroup provided by assumption (SL1). For more
details see [55, Section 2.6].
Lemma 4.7. Given assumption (SL1) for n,x € R and t > 0 we have
15Ol g(pppyy < Cs ™ for k<. (4.7)
Furthermore, we impose some additional properties on the coefficients.
(SL2) F(0) =0, DF(0) =0,
(SL3) G(0) =0, DG(0) =

Clearly under the assumptions (SL2) and (SL3) the solution of (1.1) is trivial if £ = 0.

Let us give a formal definition for local exponential stability of this trivial solution, see [30,
Definition §].

Definition 4.8 (Local Exponential Stability). The trivial solution of (1.1) is called locally ex-
ponentially stable with a rate X > 0 if there exists a random neighborhood of zero Up(w) and a
random variable M (w) > 0 such that for almost all w € € the path component fulfills

sup |ye| < M(w)e ™ for all ¢ > 0. (4.8)
£elp(w)

In preparation of the following deliberations for notational simplicity we introduce for (y, z) € X
t

Liw(y,2z, F,G) = /St—r F(y,)dr +IEW (y,2);, 0<t<T. (4.9)
0

Moreover, we set 1,(y, z, F, G) := (Ityw(y, z, F, G))te[O,T]'

We emphasize the dependence of the coefficients F' and G because eventually it will be necessary
to consider different coefficients. However, if we only have to consider one pair of coefficients F’
and G we will suppress this dependence and only write I;,(y, z) and I, (y, 2).

The following lemma gives the basis for both of our long time behavior analysis (local and global,

see Section 4.3). We consider a solution of (1.1) on R4 and split it via the cocycle property into a
sequence of solutions on compact intervals which depend on the (shifted) noise.
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4 Dynamics of Rough Evolution Equations

Lemma 4.9. Let (y, z) be a solution of (1.1) on R. Furthermore, consider a sequence of increasing
random times (Tn)nen, = (Tn(w))nen, with Ty =0 For n € Ny define the function

Yt = YT, Jor 0 <t < Ty — Ty,
Zg; = 24 Th,54+ T for0<s<t<T,1 —T,.
Then, we have for allm € Ny and t € [T, Ty 41]

n—1

yF—Tn = S(t)g + Z S(t - TjJrl)ITjJA—Tjﬁjw(ij Zj) + It—Tnﬂnw(ynv Zn) (4'10)
=0

Proof. By definition we have 3° = ¢(-,w,€) on [0,71]. Furthermore, Lemma 4.5 implies that
y" = @(~,9an,y§i;_1Tn71) on [0,Ty4+1 — Tp,] for all n > 1.
Consequently we obtain for t € [T}, Ty, +1]

ye =y g, =St =Tyt tr |+ L, 050" 2").
Plugging in the same formula for y%;_lT%l yields

Yir, =St — Tn—l)y%l_ian,Q +S(t — Tn)ITn—an,@nqw(yni% 2"+ Li—7,.0,0Y", 2").
Iterating this calculation yields the proposed statement. O

For the sake of completeness we have proven Lemma 4.9 in a very general setting for arbitrary
random times (7}, )nen, -

For showing local exponential stability it is sufficient to set T,, = n for all n € Ny whereas in
Section 4.3 it will be necessary to consider a sequence of stopping times which will be specified
later on.

Now, consider a solution (y, z) of (1.1) on R;. For n € Ny define the functions

Ui = Yitn, for 0 <t <1.
2iy = Zt4n,s4n for0<s<t<l1.

Then, Lemma 4.9 shows for ¢ € [n,n + 1]

n—1

o, =SME+D S(t—j—Dlhigu(y’, 2, F,G) + Ling,uy" 2", F,G). (4.11)
=0

In order to prove local stability we will work with piecewise truncated functions. First let us
introduce the notion of such a cut-off function. Here, we use the same cut-off function as in |29,
Section 5].

For an arbitrary Banach space W consider the cut-off function

x: W — By (0,1), with

u if |ul <3,
u) =
x(w) {o it Jul > 1,

where x is bounded by 1 and twice continuously differentiable with bounded derivatives
IDXllo =t Lp, and |[D*x||,, =: Lp2.
For arbitrary o > 0 define



4.2 Local Exponential Stability

Let W’ be a further Banach space. For a function 7: W — W’ we set
To: W — W',
To(u) =T (xo(w)).

The next lemma gives a fundamental property of truncated functions. You can find a finite-
dimensional version in [29, Lemma 4|. In the infinite-dimensional case we have to additionally
assume boundedness of the first derivative which is automatically given in the finite-dimensional
case by the compactness of the unit ball.

Lemma 4.10. Let W, W' be Banach spaces and T : By (0,1) = W' a continuously differentiable
function with bounded first derivative and T (0) = 0. Then, there exists a measurable function
(0,1] 2 0 — o € (0,1] such that

|[T(z)| <o  forallx € By(0,0).
and there exists k > 0 such that for all p € (0,1] we have the estimate

0(0)

— 2k
0

Proof. We have
T(@)| < |DT o |-

entails

-
|T(z)] <o  forall x € By(0,0)

and

s
—~

0) 1
=7 = =: K. O
0 DTl o

Now, let us state important estimates for the truncated coefficients Fj, and G,. All follow directly
by Lemma 4.10 with standard computations. Detailed calculations can be found in [30, Appendix].

Lemma 4.11. Given assumption (SL2) and (SL3), then for any o > 0 there exists a positive
0 < 1 such that for all ', 2% € W we have

|Fp(z')| < Lp,o|a'|, 4.12
|Go(a")| < Lp,o|z'|, 4.13
<

gsl
N N N N N N
IS
—_
N
—_ e D D = =

Remark 4.12. Note that unlike in [30] we do not assume D*G(0) = 0. Hence, the estimate (4.17)
slightly differs. Furthermore, we work in an infinite-dimensional setting and we are considering
some estimate in the fractional domain Dg. However, the required calculations are still the same

as in [30].

For a given truncation constant ¢ > 0 we want to consider the truncated equation

{dyt = (Ays + Folye))dt + Golyr)dwr, t € [0,T] (4.18)

Yo =§&.
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4 Dynamics of Rough Evolution Equations

By the theory developed in Chapter 3, its solution is given by

t
= S()E + / S(t — 1) F,(y,)dr + TEW2(y, ), and (4.19)

0
t s

2a( ) = / S(t—r)E / S(r— q)Fy(yy) dq der + (BTEC(y,9))1a(E) — wf (Bys),  (4.20)

s

where

ES}{)’Q(% z) = wfu(GQ<yu)) + 2pu(DGo(yu)) and
51(;2)’@(% y)(E) = bvu(Ev G@(yu)) + avu(Ea Yu)-

The following lemma states some fundamental estimates for the solution of the truncated equation
(4.18). These are very similar to the estimates given in Section 3.6 but are specified because of the
additional assumptions (SL2) and (SL3) and the truncation of the coefficients. More precisely,

We have a term ® instead of (1 + ®) due to (SL2) and (SL3). (4.21)

We are not interested in the dependence on the time horizont T

Instead, we exploit the effect of the truncation, see Lemmas 4.10 and 4.13. (4.22)

Consequently, the proofs are also very similar, the only difference is the necessity of applying
Lemma 4.11. Hence, we will omit the proof.

Lemma 4.13. Given assumptions (SL2) and (SL3) and let 0 < T < 1. Then, for all g > 0 there
exists 0 < o < 1 such that the solution (y,z) = (y2, 29) of (4.18) on a time interval [0,T)], fulfills

lylls < Cs (1 +[wl, 0) @, (4.23)
I2llass < Cs (1 + (Il + [|0®]],,)2) @ (4.24)
t
‘ /S(t — 1) Ey(yy)dr 5 < Cs0||yll (t— 5)177, forall0 <~y <1, (4.25)
vy
IZ=%2(y, 2)ilp, < Cs @ D(t = )7, forall f <y <a+p, (4.26)
[RY|[55 < CsC(w)a @, (4.27)

1Rl qq2p < CsC(w)o @+ Cs [lwl, [yl (4.28)

OO,DQﬂ :
Here C(w) is polynomial containing ||lw||, and || w(2)H2a and the mapping o — o is measurable.

In order to proof local exponential stability we will consider a sequence of solutions of properly
truncated equations and show that their norms tend to zero, while under suitable assumptions on
the initial condition this sequence coincides with the original solution.

Therefore, let g: Q' — (0,1) be a random variable, which will be specified later on. We define a
sequence of local path components for the truncated equation (4.19), namely

Y = 0w, Fyw)s Gow),
Y = (O, 1 Fo(o,) Gt form =1,

and (2"9),en, is the sequence of corresponding area components.

Recall the functional ® as given in (3.79). Note that it depends on the path component, the area
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4.2 Local Exponential Stability

component and the driving noise w. Since we have to deal with a whole sequence of solutions and
consequently a sequence of functionals, we simplify the notation. For all n € N we introduce

"= ||yn’g||oo,[)2ﬁ,1 + HRy’nHQﬁJ + ||Rz’n”a+25,1 5
with

Rijs’n = (Syn,g)ts - enwg(GQ(an) (ynﬂg))’ and

th;n = Z:Ls’g - Hnbts('a Gg(an) (ymg))'

In order to estimate @™ we will use a discrete version of the Gronwall Lemma. The proof can be
found in [29, Lemma 7.

Lemma 4.14 (discrete Gronwall lemma). Let (ay),cy and (by),cn non negative sequences and
¢ > 0 such that

n—1
an Sc—i—ijaj, n=20,1,...
Jj=0

then
n—1
an<c[[(@+b)), n=0,1,...
=0
Indeed for a sequence of functionals ®” we can derive an estimate which allows us to apply the

discrete Gronwall Lemma.

Lemma 4.15. Let assumptions (SL1)-(SL3) be fulfilled and let g: Q' — (0,00) be measurable
function. Then, there exists a measurable function o: Q" — (0,00) such that for all n € Ny we have

n—1
" < CsC(Onw) e €] p,, + Y e M ITTNC(00) 0(0w) B + C(0nw) (0nw) |,
j=0

where C(w) is a polynomial containing ||lw|, and || w(2)}|2a.

Proof. For each g(w) on can choose p(w) according to Lemma 4.13.

In order to estimate ®" we have to check each summand. Let us start with ||y"|| By (4.11)

OO,DQg,l'
and (4.7) we see

n—1
N i o
15l oo, pyp1 < Cs€ " (€l p,, + > Cse 27971 Hlejw(zﬂ’g,zﬂv@,Fg(gjw),Gg(ajm)H
j=0

OO,DQL-},I
+ HIan(yn’Q, Zn,,g’ Fg(enw)v G,Q(an)) HOO,DzBJ .
Applying (4.25) and (4.26) yields
n—1 ' ]
572yt < Cse ™ lelp,, + 3 Cse Xm0 C(00)a(050)8
‘Das, = (4.29)
+ CsC(0pw)o(bpw)d".
Furthermore, considering RY"™ we know by (4.27)
[RY™ |55, < Cs C(Onw) 0(6nw) ™. (4.30)
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4 Dynamics of Rough Evolution Equations

Finally, we have to consider R*™. (4.28) states

[R5 | ar251 < Cs C(Onw) 0(0nw) @™ + Cs |0l [ly™ |l

00,Dap
Hence, (4.29) yields
n—1
IR |oy05 < CsC(Onw) [ 2" €], + D e M 7DC(0;0) a(6;w) B
=0 (4.31)
+ C(Opw) 0(Onw) @"} .
Combining (4.29), (4.30) and (4.31) we obtain the statement. O

Corollary 4.16. For any € > 0 there exists g = g-: ' — (0,1) such that for all n € Ny we have

" < CsC(0u) [€]p,, (e*A + 5) . (4.32)
Proof. Choose
_ L g
ow) = e C )

Lemma 4.15 guarantees the existence of p: ' — (0,1) such that

VGt e S P
B A = T ™)

So, applying Lemma 4.14 with a,, := ekn%, b, :=¢ee ™ and ¢ := Cg ‘§|D2g yields

<Cs ’§|D2ﬂ (1 + Ee”‘)
Finally, we conclude
" < C5C(0,) €]y, (¢ +2) O

We can choose € > 0 small enough such that we obtain an exponential decay with rate (e™* +¢)".
However, C(0,,w) depends on n as well. So we have to make sure that this is dominated by an
exponential term. This property for random variables is called temperedness.

Definition 4.17. A positive random variable X is called tempered from above, see 2] if

log™ X (6
lim sup log™ X (01w) =0 for almost all w € Q. (4.33)
t—o0 t
X is called tempered from bellow if % is tempered from above.

Remark 4.18. Ift — X (0w) is continuous, an equivalent formulation to (4.33) is:

For all § > 0 there exists a random constant Ms(w) such that
X (Ow) < Ms(w)e® for almost all w € Q and for all t > 0.

Lemma 4.19. The random variable C(w) is tempered from above and o(w) is tempered from below.

Proof. It is known that [Jw]|, and || w® HM are tempered from above, see [30, Lemma 20|. Clearly,
each polynomial of tempered random variables is tempered, too. Hence, C'(w) is tempered from a
above and consequently g is tempered from below. ]
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4.2 Local Exponential Stability

Theorem 4.20. Let w € ' fulfill (4.33) then for all 0 < N < X there exists By (w) > 0 such that,
if |§’D2ﬁ < By(w), then for all t > 0 the path component of (1.1) fulfills

N/
Wtlp,, <e A

Proof. Since C(w) is tempered from above there exists 0 < § < A — X, and Ms(w) > 0 such that
C(Oiw) < Ms(w)e.

Choose ¢ > 0 small enough such that § + log(e™ + &) < =\ then (4.32) yields for all n € N
15"l oo, pyy < B < CsMs(w) By (w)e ™. (4.34)

Furthermore, p(w) := W is tempered from below, i.e. together with Lemma 4.10 we have

0(Bw) > Ko(Biw) > My (w)e ™.

Hence, if
My (w)
By <
A (w) - QCsMg(w)
we see for alln € N
, 0(0nw)
9, < 2002

But on this domain the truncated functions and the original coefficients coincide.
So, the solutions coincide too, i.e. y™¢ = y™ for all n € Ng.

Finally, if furthermore By (w) < Cs%zl(w) we obtain for all n € Ng and ¢ € [n,n + 1]

n,g” < ef)\’(n+1) < ef)\’t. 0

19t Dy = [l b,y < 1™ loo,py < Y™ lloe s <

Remark 4.21. Following the lines of the proof of Theorem 4.20 one further sees that the mapping
t — By (6iw) is continuous for allw € Q' and 0 < N < \.

We conclude this section by showing the result of Theorem 4.20 for an arbitrary initial condition
¢ € W with sufficient small norm. The proof is very similar to the one of Corollary 3.55.

Corollary 4.22. Let w € ' fulfill (4.33). Then for all 0 < X' < X there exists By(w) > 0 and
My(w) > 0 such that, if || < By (w), then for all t > 0 the path component of (1.1) fulfills

lyi| < My (w)e ™

Proof. We split the proof into two steps. At first consider 5 € Dg. For all 0 < X < A Theorem 4.20
guarantees the existence of By/(w).

Let ¥ = (-, w, &) and z the corresponding area term. Considering (3.84) and keeping Remark 4.21
in mind we can choose 0 < T' = T'(w) < 1 such that

~ S e 1

971 p,, < CsC@)E|p, T+ 3By (w),
2

ng (w) < By (O7w).

We see that one can choose \E\ D, < By (w) such that

2
< §B)‘/(w) < B)\/(wa).
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4 Dynamics of Rough Evolution Equations

Thus, Lemma 4.5 and Theorem 4.20 show that for all ¢ > T

el p,, < e T = X TN (4:35)

holds true.

In the second step let & € W. The deliberations are very similar to the one of the first step. Let
y = (-, w,§) and z the corresponding area term. Now, consider (3.78) and note that analogously
to Remark 4.21 the mapping t g)\/ (Ayw) is continuous, too. So, consider 0 < T' = T'(w) < 1 such
that

71, < CsC@) €y T + 5Bx(w),
;EX (w) < By (f7w).
Hence, there is By (w) > 0 such that if |¢| < By (w) we have
yrlp, < 2 Br(w) < Bu(0rw).

Consequently, by Lemma 4.5 and (4.35) we see that for all t > T'(w) + f(@T(w)w) the estimate

! T . _ !
lye| < |yt\D2ﬁ < e (T+T(01°)) ,—\'t

holds true. Finally, for t < T + T(9T~) < 2 we know by Lemma 3.30 that y remains bounded which
concludes the proof. O

4.3 Global Exponential Stability

Unlike in the Section 4.2 now we are interested in proving global exponential stability of the trivial
solution. The drawback of an in general not Markovian random input is still present, compare
Section 4.2. In [18] and [17] the authors show global exponential stability for the trivial solution
in the Young respectively in the rough case but always for small noise, meaning that influence of
the random noise is chosen sufficiently small. Here, we want omit this restriction and analyze a
fractional Brownian motion with arbitrary but fixed trace class operator Q.

Definition 4.23 (Global Exponential Stability). The trivial solution of (1.1) is called globally
exponentially stable with a rate X > 0 if there exists a random variable M (w) > 0 such that for
almost all w € £ the path component fulfills

lye| < M(w)e ™™ for all £ > 0. (4.36)

Clearly, global exponential stability with rate A’ > 0 implies local exponential stability with rate
). Furthermore, we only assume

(SG1) For a A > 0 the operator A + AId is strictly negative. Thus, it generates an analytic
exponentially stable semigroup S.

(SG2) F(0) =0,
(SG3) G(0) =0.
Note that (SG1) coincides with (SL1) while (SG2)—(SG3) are less restrictive than (SL2)—(SL3).

Hence, we can in general not expect to get as good convergence rates as in Section 4.2.

Moreover, during this section we will focus on the case of a fractional Brownian motion with Hurst
parameter H > % Recall that the fractional Brownian motion is not Markovian for H # %, as
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4.3 Global Exponential Stability

mentioned in Section 4.2. However, it still has stationary increments which is equivalent to the
fact that for all £ € R the shift f,w is a fractional Brownian motion, too. Since in this section we
will work with a sequence of stopping times we want to show this property for a non-deterministic
time shift by a stopping time. For this purpose, we further use an integral representation w.r.t. to
a Brownian motion. Hence, we cannot consider {2 = Cg‘/ (R, V) with % < a<a < H as in Section
4.1 as the Brownian motion cannot be embedded into C§ (R, V).

We consider a two-sided Brownian motion B = (By)icr on a complete probability space (€2, F,P).
Then, by [53, Proposition 2.3] or [49] we have specific integral representation for a fractional
Brownian motion, namely for all H € (0, 3) U (1,1) there is a constant ¢y > 0 such that

)
0 t
BH = t—r)H2— (- z2|dB, + [(t—r)F2dB,), t>0, (4.37)
t H(i [ } 0/ >

is a one-sided fractional Brownian motion with Hurst parameter H.

With the help of this representation we can show the next lemma.

Lemma 4.24. Let H € (0,3)U(3,1) and T = T(w) > 0 be a stopping time w.r.t. to the augmented
Brownian filtration (FP)ier. Then, 7B is again a fractional Brownian motion with Hurst
parameter H.

Consequently, for each stopping time T = T(w) > 0 w.r.t the augmented fractional Brownian
filtration (]—"tBH)tZO the randomly shifted process 6B is again a fractional Brownian motion with
Hurst parameter H.

Proof. By (4.37) we have

(0r(w)B™M): = Bl 1) — Bilw

0 t+T(w)

—eu( [ [e+1@-n"t -t ias e [ 4T -0t las,)

T o
—cH(/ (T(w) = 1)=8 = (=r)"=% | dB, + /(T(w)—r)ﬂ—édBr)

% 0
t 0

= en( / (t — )13 by B, — / ()"~ bd0r) B, ).

By the strong Markov property we know that 67, B is a Brownian motion. Hence, by Representa-
tion (4.37) we know that HT(w)BH is a fractional Brownian motion with Hurst parameter H.

Furthermore, Representation (4.37) yields that for each ¢ > 0 we have ]-'tBH C FP. Thus, each
stopping time T' > 0 w.r.t (]:tBH)tZO is a stopping time w.r.t. (F);cr which finishes the proof. [

Note that for the rest of this section we will work with the one-sided fractional Brownian motion
given by Representation (4.37). For notational simplicity we set w = B However, in contrast to
all previous sections w is locally a-Holder continuous with o < H just almost surely.

Here it is important to mention that the set C§'(R4, V) is #-invariant. Hence, we can follow the
pathwise deliberations given in Chapter 3 and obtain the same results but just for those paths
with w € C§ (R4, V).
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4 Dynamics of Rough Evolution Equations

Let us recall important estimates given in Corollary 3.15 and (3.92). Keeping in mind Remark 3.58
and (4.21) for w € C% and y € C?P with a + 3 > 1 we have for 0 < s <t < T

t
/S(t—r)F(yr)dr < CsCrllyllypr(t—s)  and

t
[ (=G der| < CoCallwlp Il s (¢ = 5~
Hence, by combining these results we obtain
I, FG)llg g7 < (CsCrT + CsCaT* Wollar) Il 5.0 (4.39)

Consider a solution y of (1.1) on Ry for H > % In Section 4.2 we used a truncation technique in
order to prove local exponential stability. Now, we will exploit the possibility to choose the time
parameter in estimate (4.38) small.

Therefore, consider a fixed 0 < p < %, and similar to [29], define a sequence of increasing stopping
times (T7)nen, = (Tn(w, it))nen, with Tp = 0 and

Cs(Cr(Tht1 —Tn) + Co(Thny1 — 1) H\Qan|||a’TnH_Tn) = U for all n € Ny, (4.39)
if we C§(R4, V) and T, = 0 for all n € Ny else.
Let us summarize the important properties of this sequence of stopping times in the next lemma.
Lemma 4.25. For allw € Q and p € (0, %] it holds
(i) The sequence (Ty,),cy, is well defined.
(ii) We can iteratively calculate the stopping times meaning that

Toi1(w) = To(w) + T1(0r, (w)w)- (4.40)

(11i) For all 0 < s <t we have

s+ Ti(0sw) <t +T1(Ow). (4.41)

(iv) For all n € Ny we have the estimates

W

T, T, < ——
n+1 n_CSCF

(4.42)

and

1
/_1/04
-
(1=2CgCE + CsCa 0r,wl,) =

Tn+1 - Tn 2

(4.43)

(v) T, tends to infinity for n — oo and

T,
lim = =ET} almost surely.
n—oo 1,
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4.3 Global Exponential Stability

Proof. For defining the sequence according to (4.39) the first time T} is crucial. It is implicitly
given by

Cs(CrTy + CoTi wllo ) = b

Consider the function
To: Ry = Ry,
To(q) = Cs(Cr g+ Ca ¢ |wll,,,)-
This function is monotonically increasing and continuous and fulfills 7;,(0) = 0 and qlLrgo T.(q) = oo.
Hence, there exists T} such that 7,,(T1) = p.
The same deliberations yield (4.40) and so the existence of the whole sequence.

In order to prove (4.41) we assume the contrary. This yields

p = Cs(CrT1(0sw) + CaTi(0sw)* 05wl o 7, (0,))
= CS(CFTl (980‘)) + CGTl(QSw)a |||w|||a,s,s+T1 (GSw))

We have s < t <t + T1(0w) < s+ T1(0sw) which yields T} (fsw) > T1(6;w). Hence,

w= CS(CFTl (asw) + CGTl(HSw)a ’”wma,[s,erTl(Gsw)v
> Cs(CrTi(bw) + CaTi (0iw)” H\W|||a,[t,t+n (Htw)])
= Cs(CrTi(Ow) + CaTi (Brw)* [|6rwll o 77 (6,)) = 1

Clearly, this is not possible.
Estimate (4.42) follows directly by (4.39). By using this estimate we derive

-«
= CsCrTy + CsCaTy oll g, < (CSCFCJLCM +CsCq mmnam) Ty
S F

This yields

1

ME
(CaCut— + CsCollwlo, )

T >

So, (4.40) implies (4.43). Finally, (4.40) entails

T 1n—1 1n—1
n

Since (01, )nen, is measure preserving, see Lemma 4.24, Birkhoff’s Ergodic Theorem guarantees
the existence of the limit for all w on a (07, )nen,-invariant set with full measure. Define

n

lim o) , if the limit exists,
0, else.

Then, it holds ET™* = ETj.

However, to our best knowledge it is not clear if this shift (67, )nen, is ergodic. Hence, we have to
manually prove that the limit 7* is constant almost surely.

We will prove that for all ¢ > 0 and all n € Ny we have

Th(w) < t+ T, (6w). (4.44)
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4 Dynamics of Rough Evolution Equations

The case n = 0 is trivial and n =1 is given by (4.41). Furthermore, by (4.40) we have

Thy1(w) = Tn(w) + T1 (07, (w)  and
t+ Tpa (iw) = t + Tn(6w) + T1 (07, (0,0) e w)
t + Tn(O1w) + T1(07, (6,0)++w)-

By induction assumption we have T),(w) < t 4+ T},(6:w). So, (4.41) yields

Thi1(w) = Th(w) + T1(07,, ()W)
<t+Ty(Ow) + Tl(eTn(etw)—l-tw)

Consequently, for all ¢ > 0 there exists k = k(t,w) € Ny such that
Th(w) <t < Tga(w).
Then, (4.44) yields for all j € N.
Tioyj(w) <t 4 Tj(0w) < Thy145(w).
This implies

T*(w) = lim Tn(w) = lim Ln(0ww)

n—oco n n—00 n

=T*(Ow)

for all ¢ > 0. Since (6;)¢>0 is ergodic, see [31] it follows that the limit is constant almost surely. [

Now, we have all tools ready for proving global exponential stability.

Theorem 4.26. Given the coefficients F' and G fulfilling (SG2) and (SG3), a trace class fractional
Brownian motion with tryQ < oo and a linear operator A that generates an analytic semigroup
and satisfying (SG1) with a sufficiently large A > 0, i.e. A > A\o(Cs,Cp,Cq,a, tryQ), then the

trivial solution of (1.1) for H > % is globally exponentially stable.
Proof. For n € Ny define the function
Yy = YT, for 0 <t <Tphy1 — Ty

Lemma 4.9 yields that for t € [T),, Tp+1]

n—1
y?an = S(t)f + Z S(t - Tj-i-l)ITj+1—Tj,9jw(yj7 F, G) + It—Tnﬂnw(yn7 F, G)
=0

Hence, by (4.7) and (4.38) it follows

ly" HB,B,Tn+1—Tn
< Cge M ||

n—1
+ Cs Z e_A(Tn_THI)(CF(TjH ) + Ca(T, J+1 = j)a meTij|a,Tj+1—Tj) HyjHB,B,THI—T]-
j=0

+ CS(CF( n+l — ) + OG( n+l — n)a ”|9Tn

aTwi1=T) 19" 18,8701 -1, -
The definition of the stopping times yields

n—1

NNy 10011, S T I+ o, BT
]:O
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4.3 Global Exponential Stability

We apply the Gronwall Lemma (Lemma 4.14) with a,, = e*» 19" 15,6101 100 b = ﬁeA(T"“_T")

and ¢ = Cg|¢|. This leads to

Cs —\T, K \(Tj1—Ty)
< n 1 j+1—T}
1", 01— ~Tn S 7 Iu|f|6 ]11)( +1_Iu€ )
n—1
=205 [¢] H(G*A(TH—l*Tj) + %)
. —p
7=0
n—1
= 2Cg |€| exp (Z log(e M T+1=T5) 4 L))
=0 1=u
We know by (4.42) that
ANTpi1 — Tp) < CQZ‘F’ for all n € N.

If A > 2CsCp we can set y = % < % which yields \(T,41 — T},) < 1.

Since the function ¢ — log(e™9 4+ ﬁ) is convex, we have for all 0 < ¢ < 1 the estimate

e, p p L
1 4+ "~ Y<log(l+ ——)—(log(l+ —)—1 . 4.4
og(e +1_M)_og( +1—M) <og( +1—M) og(e” +1_#)>CI (4.45)

The coefficient of ¢ is monotonically decreasing in u, it attains it minimum for p = %, namely

log(2) —log(1 +e71) >e L.
Consequently, we obtain

A
Zlog AT T)—i-L)Snlog(l—i—L)——Tn.
1—p 1—un e

Hence, by dividing this inequality by (nu) and passing to the limit we see

n—1

1 A T,
hmsup— Zlog “MTi=Ty) 4 7) log(l + 7) — — limsup —.

We have by Lemma 4.25 (v) and (4.43)

1
T, o
lim " = ET} > E[ o :
nee (u'=2C§CE + CsCa |wllar, )=
Jensen’s inequality and Lemma 4.2 show
1 1
ETy > m T > e 1
(pt=aCgCeE + CsCGE ||wll,)>  (p72C3C% + CsCqeq) =~
where cg = co,m/try Q. So, finally we have
1 n—1
lim sup — Z log(e MTi+1=T5) 4 L)
n—oo MNU =0 1-— Hu
1
A o
gflogmL)f* L

L—p'  ep (y1-eCaC% + CsCacq)n
1 1 AYa(CsCp)a?
T lop e(ul-o0gce + CSCGcQ)é
1 A a(CsCp)a~
(0809 + CsCacg)

IN

_K()‘7 CS7 CF7 CGv a, tI'VQ).

Q=
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4 Dynamics of Rough Evolution Equations

Hence, we conclude that if A > 0 is large enough then K = K(\, Cg, Cr, Cq, a, tryQ) > 0 and
there exists a constant M = M (w) > 0 such that

1" .11 -1, < MCs €] e K for all n € Ny.

This entails for ¢ € [T}, Tj11]

‘yt| < ||yn| .. < MCy ’£|e—nuK < MCg |£|67HLHCSCFTH+1K < MCy |£|67"LHCSCFKI€,
5757Tn+1 Tn

which grants global exponential stability for all N < CsCrK. O
We point out a concluding remark.

Remark 4.27. During this section we assumed H > % in order to obtain o > % &2 — é > 0.
This guarantees K to be positive for sufficiently large \. However, the general approach does not
need this assumption. At the moment we are not able to show ergodicity of (01, )nen,- If this would
be true we could benefit from much better estimates than (4.45). Thus, we could derive a much
better stability rate and prove global exponential stability also for H € (%7 %)
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5. Conclusion and Outlook

We summarize the main results of this thesis and indicate possible extensions.

This work can be structured into two main parts. Firstly, we developed a solution theory for rough
evolution equations and afterwards we analyzed the dynamics of the corresponding solution.

One general drawback is given by Assumption (G) as we demand a smoothing property of G. This
assumption was necessary in order to rigorously define the supporting process b, see Lemma 3.26,
as well as for showing the necessary spatial regularity for the path component of the solution,
see (3.84). Combined with the assumption that the diffusion coefficient is three times Frechét
differentiable it is hard to think of more general examples than the one presented in Section 3.7.

A promising approach to relax (G) is to consider estimates in a negative fractional domain of the
linear operator, see [32]. We strongly believe that by similar deliberations as in Chapter 3 working
with negative fractional domains leads to the same results for diffusion coefficient satisfying

G)’ G: D_g — D_g is bounded and three times Frechét differentiable with bounded derivatives.
B B
Furthermore, the restriction G: W — W is Lipschitz continuous.

This assumption is quite similar to the ones stated in [32], which are the most general as far as we
know. However, the authors in [32] are working with finite-dimensional noise.

The algebraic framework developed in Chapter 3 is influenced by the rough paths theory for Evolu-
tion Equations, see [37], [10] or [32] but also uses ideas from fractional calculus, see [50], [25] or [27].
We are aware that the algebraic framework respectively the solution space, see (3.63), we are work-
ing with is more complicated than the Gubinelli space used in the rough paths theory. The setting
introduced in this thesis is somehow more natural due to the time-singularity of the semigroup in
zero and can be hopefully extended to discontinuous p-variation processes, as in the original works
of [61] and [48]. The Holder (semi)norms used in (3.63) can be transformed to variation (semi)norms.

We conjecture that the ideas of Section 3.3 can be adapted to the discontinuous p-variation case,
compare [61], [48], [21]. One of the main obstacles is then to give meaning to the supporting
processes, introduced in Section 3.4, in order to give meaning to the rough integral (1.2).

In Chapter 4 we considered a trace class fractional Brownian motion as noisy input and
analyzed the stability of the solution of (1.1). Clearly, one can consider more general classes of
stochastic processes, like e.g. Gaussian processes with stationary increments, see [20], [22] or
Volterra processes investigated in [6], [7] which are in general not Gaussian nor have stationary
increments and thus, do not define a metric dynamical system. In case we are able to estab-
lish the solution theory for discontinuous noise analyzing Lévy processes, see [1]|, would be of interest.

Furthermore, one natural extension is to generalize the results of Section 4.3 for rough noise, e.g. a
fractional Brownian motion with Hurst parameter H € (%, %) We believe that the techniques used
in the Sections 4.2 and 4.3 with slight modifications can lead to global stability results. In case one
can prove ergodicity of the random shift family, see Remark 4.27, one could even derive better

estimates in the Young case as well as in the rough case.
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5 Conclusion and Outlook

Moreover, one could analyze further dynamical aspects, for instance random fixed points, random
attractors or invariant manifolds, see [26], [23], [5], [41], [45], [15] or [34]. Finally, one could be
interested in generalizing the linear operator, e.g. to consider non-autonomous rough semilinear
SPDEs, as investigated in [33]. Since the estimates for the evolution family stated in [55, Chapter
5| are similar to the one for the semigroup, see Section 2.1, we believe that one can extend the
results to the non-autonomous case by similar deliberations.
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A. Appendix

A.1 Preliminary Results for the Sewing Lemma

The following facts will be employed in Section 3.3.
Lemma A.1. Let o > 1 and k € C([0,T],W) such that

ko =0 and ’(5H)ts <c(t—s)°.

Then k = 0.
Proof. For any partition P of [0,t] we have
ke=0Rw= Y St—0)0r)w
[u,v]eP
Hence, we derive
k| < CSC|73]Q_1 t, which tends to 0 as |P| — 0.
Consequently x = 0.

Lemma A.2. Let 0 < «, <1, 0>1 and k € C([0,T],W) such that

ko = 07
‘(Sn)ts <C(t—s)”
(0k)is| < Cs™P(t—5)2, fors#0.

Then k = 0.
Proof. Let t € [0,T] be arbitrary but fixed. Consider P,, a dyadic partition of [0, ¢]. We have
ko= 0k =Y S(t—0)(0K).
[u,v]€Pp
Consequently,
|ke| < C Z ’5#@%
[’U, ”U]E’Pn
e
<ct io > ouf—

ona
[u,v]€Pn
u#£0




A Appendix

Since, this statement has to be valid for all n € N we must have x = 0. O

Lemma A.3. Given 0 <7, € <1 then there is a constant C = C(~,€) such that for all n € N the
estimate

n—1 —
d kT (n— k)" Z k+1)"(n—k)=° (A1)
k=1 k=0

holds true.

Proof. For the right sum we see

n—1 n—1
E+1) -k =n"+> (k+1)(n—k)*
k=0 k=1

Hence, (A.1) is fulfilled if

i
L

(k7 = (k+1)7] (n— k)= < Cn*

B
Il
—

Furthermore, we estimate

1
(k77— (k+1)77] (n—k)° =

3
|

yr Y rda (n — k) ~F

3
|
A

£
Il
—
£
Il

1

1 n

vz 7N — 2) " dr = /733_7_1(71 —x) “dx.
1

i
L

IA
7

i
I

Therefore, it is sufficient to show that for all © > 1 it holds

u

g(u,v,€) = /'yx’“(u — ) Cdx < Cu™".
1

To prove this we define

h(u’775);:u7+6g(u77’5)
U

:u7+5/’ym_7_1(u —x) “dx

1
u

[ -2
SEONCEHXIC
1/ (i- >d

If v +e <1 consider

My 1=2) = [ 5@ =1 o= (-1 <u,
1
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A.2 Fundamental estimates for the fixed-point argument

Since 0 < 1 — % < 1 for all z > 1 we see that h is monotonously increasing in €. Hence, we obtain
for0<e<1—7

h(u,v,€) < h(u,7,1—7) <,
consequently
—&

g(u,v,e) <u

If v + ¢ > 1 we estimate

u 1 —e
h(u,vy,¢e) = /'ysﬂ_1 <1 - ) dx
x
1

u
= /’yxw's_l (z — 1) dx
1
u

< Ay tEd / (x —1)"°dx
1

— g u’y+571 (u_l)lfsg v u»y?
1—¢ 1—¢

which directly yields

A.2 Fundamental Estimates for the Fixed-Point Argument

In the next deliberations we illustrate a technique which is required in Section 3.5. This is based
on the division property for smooth functions, see p. 109 in [20]. This is also used for rough SDEs,
in order to estimate the difference of the norm of two controlled rough paths, consult [20, Chapter
8, especially the proof of Theorem 8.4 in [20].

In the following Cg stands for a universal constant which exclusively depends on G and its
derivatives. The next result can immediately be obtained applying the mean value theorem.

Lemma A.4. Let W be a separable Banach space, G € CZ(W, W) and x1,x9,x3,24 € W. The
following estimate

Gla2) — Gla1) = Glaa) + Glay) "
< Cglra — 21 — 24 + 23] + Cg |24 — 23 (|73 — 1| + |74 — T2])

holds true.

Keeping this in mind we derive the following result.

Corollary A.5. Let y' € CPP([0,T); W) fori = 1,2 and G € C}(W,W). Then, for all 0 < s <
t <T we have

Glyi) — Glys) — G(yi) + G(y?)|

- (A.3)
< o (I = s+ Nl It — 920.0) 572 - .

as well as
|G(y)) — Glys) — G(yi) + G(y?)]

< o (Il — Pl + 2l [l — o211 Ay
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Proof. Applying Lemma A.4, see also Lemma 7.1 in [54], with 21 = y!, 20 = 9/, 23 = y? and
x4 = y? we infer

|G(yi) = Glys) — Glyi) + G(y2)]
<Calyt —vi — v +v2| +Colud — 2| (Juh — 2| + v — v2))
We have two possibilities to estimate this expression. On the one hand we have
|G(yi) = Glys) — Glyi) + G(y2)]
< Calyt — v — v+ 2|+ Calv? — 2| (lv! — v2| + vt — v?])
< Ce ([l =25+ N9l 19" = 20l) 52 6= 5)°
On the other hand we obtain
|G(y) — Glys) — Gyi) + G(y3))|
<Calyt —vh =i+ vl + Colud —v2| (Jub — 2| + vl — vZ))
<Co (" ="l + 19l Iy = 7c) -
This proves the statement. O
Lemma A.6. Let G € C}(W, W) and x1,T9,23,24 € W. Then
|G(x2) — G(x1) — DG(x1) (22 — 1) — G(x4) + G(x3) + DG(x3) (14 — 23)]
< Cg (|lz2 — 21| + |24 — w3]) |22 — 21 — 24 + 23] (A.5)
+ Cg |zs — 23] (o3 — 21| + |24 — 22]) -
For a complete proof, see p. 2716 in [42].
This helps us further obtain an essential estimate for our fixed-point argument.

Corollary A.7. Given y* € CPP((0,T); W) for i =1,2 and G € C}(W,W). Then the following
estimates are valid for all 0 < s <t <T':

|G(y}) = Gyl) + DG(y}) (yi — i) — (G(y2) — G(yP) + DG(2)(y; — v2))|

) . (A.6)
< G |([l5 g5+ N7M5,5) Nl = 9l + MM sl = 9211 ) 572 2= ).

as well as
G(ys) — Gyp) + DG(ys)(yi —vs) — (G(y2) — GP) + DG () (yi —v3))| )
< Cq (\Hylmﬁ,g 52l 5.5+ 152155 Hy2Hoo> Iy =)l 577 (2 = 9)°. '

2

Proof. As previously argued, we apply Lemma A.6 with 21 =y}, 22 = yi, 23 = 32 and 24 = y?.

This results in
|G(y;) — Glyp) + DG(yy)(yy — ys) — (G(y3) — Gyi) + DGy (i — v3))|
< Co (|vt — vt + w7 — 2] |ot — vt — w2 + 2|+ Ca | — 21" (vt — 2| + vt — ¥2))-
Again, we use have two possibilities to obtain the following inequalities. First of all we infer that
|G(y;) — Glyp) + DGy;)(wp — vs) — (G(y3) — G() + DG () (i — v3))]
< Co |yt —vb| + w7 — o2 |od — vt — w2 + 92|+ Ca | — 217 (Jvt — 2| + vt — ¥2))
_ 2 _
< Ca (1" Mo + 120 55) o' = 9255572 ¢ = )7 + Car [l 15 5 ly" = 2]l 572 (2 = )

< Ca (8" l5,5 + N9 Mss) o = 97 M55 I = 9l 5722 (2 = )7
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A.2 Fundamental estimates for the fixed-point argument

On the other hand we finally get

|G(ys) = G(y) + DG(y;)(yi —vs) — (G(y3) = GW7) + DGy (i — v2))|

< Ca |yl —vt| + w2 — o2]) ot — vt — 02 + 02| + Ca |v? — 27 (Jul — 2] + vt — v?])

< Cq (\Hyl\\\g,g + H|y2H|5,5> " =l o577 (t = 9)" + Co [|v* ]| 5.5 17 ]| 0" = 9Pl 577 (2 = 5)°

< Ca (19 5+ 175 + Nl 02 lloc) D' = 2577 (2= )7 O
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