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Zusammenfassung

In dieser Arbeit betrachten wir Stochastische Evolutionsgleichungen getrieben durch raue Pfade.
Das erste Ziel ist die Existenz und Eindeutigkeit von milden Lösungen zu zeigen. Dazu werden
wichtige Grundlagen zur Halbgruppentheorie sowie zur Theorie der rauen Pfade präsentiert. An-
schließend entwickeln wir, basierend auf heuristischen Betrachtungen, eine Lösungstheorie und
zeigen die Existenz einer eindeutigen globalen Lösung.
Als Anwendung für das treibende stochastische Rauschen betrachten wir eine fraktale Brownsche
Bewegung, welche zu einem rauen Pfad geliftet wird und analysieren daran einfache dynamische
Eigenschaften der milden Lösung. Wir zeigen, dass diese Lösung ein zufälliges dynamisches System
generiert und untersuchen ihr Langzeitverhalten unter zusätzlichen Voraussetzungen an die nichtli-
nearen Koeffizienten, d.h. wir zeigen sowohl lokale als auch globale Stabilität der trivialen Lösung.



Abstract

In this thesis we consider Stochastic Evolution Equations driven by rough paths. The first aim
is to show existence and uniqueness of mild solutions. Therefore, important basics on semigroup
theory and on the theory of rough paths are introduced. Afterwards, we develop a solution theory
based on heuristic considerations and use this to prove the existence of a global-in-time solution.
Then, as leading example for the driving noise we consider a fractional Brownian motion which,
can be lifted to a rough path, and analyze simple dynamic properties of the mild solution. We
show that the solution generates a random dynamical system and investigate its long-time behavior
under additional assumptions on the coefficients, i.e. we show local as well as global stability of
the trivial solution.
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1. Introduction

Starting with Lyons, [48] in the 1990’s the rough path theory has become a widely used
mathematical theory for the analysis of stochastic differential equations. Gubinelli extended
Lyons first approach and introduced the concept of a controlled rough paths in [35]. Further,
Gubinelli and Tindel expanded the rough path theory in order to analyze stochastic partial
differential equations in [37]. Later on Hairer adopted the ideas of the rough paths theory and
developed the theory of regularity structures in [38] for solving singular partial differential equations.

In this thesis we analyze existence and dynamics of solutions for rough stochastic partial differential
equations (SPDEs) {

dyt = (Ayt + F (yt))dt+G(yt)dωt, t ∈ [0, T ]

y0 = ξ.
(1.1)

Here T > 0 is a fixed time-horizon, the linear part A is the generator of an analytic C0-semigroup
(S(t))t∈[0,T ] on a separable Banach space W and ξ ∈W denotes the initial condition. Furthermore,
F and G are the nonlinear coefficients. The precise assumptions on the coefficients will be stated
in Section 2.1. Finally, ω denotes a rough random input which can be lifted to a geometric rough
path, for instance a fractional Brownian motion with Hurst parameter H ∈ (1/3, 1/2] introduced
in Section 4.1. In order to solve (1.1) we rely on the pathwise construction of the rough integral

t∫
0

S(t− r)G(yr)dωr. (1.2)

Results in this context are available in [51] and [27] via fractional calculus and in Gubinelli et al in
[35], [10], [36], [37], [32] using rough paths techniques.
In this work, we combine Gubinelli’s approach with the arguments employed by [27] to solve (1.1).
The eventual aim of this thesis is to investigate the long-time behavior of solutions of (1.1). Thus
for, we first establish the existence of a pathwise global solution. Consequently, we can show
that the solution operator of (1.1) generates an infinite-dimensional random dynamical system,
see [2]. The analysis of many dynamical aspects for (1.1) such as asymptotic stability, Lyapunov
exponents, multiplicative ergodic theorems, random attractors, random invariant manifolds etc.
relies on the random dynamical system approach, see e.g. [25], [3], [26], [41], [14] or [5].
The generation of a random dynamical system from an Itô-type SPDE is in general still an open
question for multiplicative noise. Here, we benefit strongly from the pathwise construction of the
solution since no exceptional sets occur. Recently, there has been a growing interest to give a
pathwise meaning to the solutions of SPDEs by various techniques, see e.g. [37], [10], [27] or [38].
However, there are only few works that explore the pathwise character of the solutions to analyze
random dynamical systems and their long-time behavior. Progress in this direction was made
for instance in [30] and [27] where the authors use fractional calculus for dealing with random
dynamical systems for SPDEs driven by a fractional Brownian motion with Hurst parameter
H ∈ (1/2, 1) and H ∈ (1/3, 1/2]. Furthermore, in [16], [17] the random input is given by rough
Gaussian noise and is handled by rough path techniques.
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1 Introduction

To the best of our knowledge there are only few works that connect the rough paths and random
dynamical systems perspectives such as [19], [3], [34], [16] or [17]. Here we contribute to this aspect
and provide a general framework of random dynamical systems for rough evolution equations
under natural assumptions on the coefficients. The crucial result that opens the door for the
random dynamical systems theory is the existence of a global pathwise solution for (1.1). It
is known that global-in-time existence of solutions is a challenging question in the context of
rough paths techniques, compare [27], [37], [32]. This is due to the fact that one obtains certain
quadratic estimates on the norms of the solution of (1.1). Hence, it is not straightforward to
extend the local solution to an arbitrary time horizon. Using additional restrictions on the
coefficients or on the noisy input, see [27] shows global-in-time existence for (1.1) driven by
a fractional Brownian motion with Hurst index H ∈ (1/3, 1/2]. However, in this thesis using
regularizing properties of analytic C0-semigroups, a-priori estimates on certain remainder terms
and a standard concatenation procedure enables us to prove the global-in-time existence of solutions.

There are several techniques for analyzing the long-time behavior of a global-in-time solution
of 1.1, see for instance [12], [23], [14] or [23]. In this work we use a truncation technique as
used in [30] and a stopping time approach, compare [18], [16], [17], in order to show stability in zero.

This work is structured as follows. In Section 2.1 we collect well-known properties and estimates of
analytic semigroups and introduce important notation, which are necessary in this framework.
Further in Section 2.2 we give a short introduction into the rough path theory
In Chapter 3 we develop a solution theory in order to solve (1.1) in the rough case. For introducing
the general ideas we first analyze a more regular case (Young case) in Section 3.1. Section 3.2
provides the general intuition of the required techniques in the rough case. It describes the story in
a nutshell and provides an insight into the rough path theory pointing out the main obstacles which
occur in the infinite-dimensional setting. We state basic concepts and indicate how an appropriate
pathwise integral should be constructed and how a solution of a rough evolution equation should
look like. The next sections rigorously justify the steps presented in Section 3.2. Section 3.3 is
the core of Chapter 3. Here we introduce a modified version of the Sewing Lemma, compare [37],
[36]. This is a very general fundamental result which entails the existence of a rough integral in a
suitable analytic and algebraic framework. This is, of course, the first main ingredient for solving
(1.1). In contrast to [37], we work with modified Hölder spaces and so the version of the Sewing
Lemma precisely fits in this setting. Section 3.4 is devoted to the construction of supporting
processes which are necessary to give an appropriate meaning of the rough integral. Inspired by
[27], in order to define the supporting processes we first consider smooth approximations of the
noise and thereafter pass to the limit. The existence of the corresponding processes is derived via
classical tools, such as an integration by parts formula or using the Sewing Lemma introduced in
Section 3.3. For a better comprehension, we point out an example in which one can construct a
pathwise integral using the integration by parts formula as well as the Sewing Lemma. Section 3.5
shows the existence of a unique local solution of (1.1) by using a fixed point argument. Since
certain a-priori estimates presented in Section 3.5 contain quadratic terms one cannot immediately
conclude the existence of a global solution. Thus, in Section 3.6 we introduce a specific functional
in order to derive a linear a-priori estimate for the solution of (1.1). Eventually, we show the
existence of a global solution by concatenation techniques. We present an application of our theory
in Section 3.7. Chapter 3 concludes with some remarks on the nonlinear coefficients F and G in
Section 3.8.
In Chapter 4 we analyze the dynamics of solutions of (1.1) we derived in Chapter 3. We introduce
the concept of a random dynamical system in Section 4.1. As leading example we present a Hilbert
space valued fractional Brownian motion, lift it to a rough path and prove finally, that a solution
of (1.1) driven by a fractional Brownian motion generates a random dynamical system.
Sections 4.2 and 4.3 deal with the long-time behavior of this solution, compare for instance [30],
[16] or [12]. By assuming F (0) = 0 and G(0) = 0 we guarantee the existence of the trivial solution
of (1.1). In Section 4.2 we use a truncation technique to show local exponential stability of the
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1 Introduction

trivial solution, compare [30]. In Section 4.3 we restrict ourselves to the simpler Young case and
show global exponential stability by exploiting a stopping time argument, as introduced in [18].
In Chapter 5 we summarize the main results of this thesis and discuss possible extensions to our
work. Finally, we collect some important results and computations in the Appendix A.

This work is based on the two papers [40] and [39]. More precisely, Sections 3.2–3.5 and 3.7 arise
from [40]. Section 3.6 and 4.1 are a revised version of [39].

3



2. Preliminaries

Let T > 0. V stands for a separable Hilbert space and W denotes a separable Banach space.
Furthermore, for any compact interval J ⊂ R we set ∆J :=

{
(t, s) ∈ J2 : t ≥ s

}
and ∆T :=

∆[0,T ]. For notational simplicity, if not further stated, we write |·| for the norm of an arbitrary
Banach space. Furthermore, C denotes a universal constant which may vary from line to line. The
explicit dependence of C on certain parameters will be precisely stated, whenever required. Finally,
we fix α ∈ (1

3 ,
1
2). This parameter indicates the Hölder-regularity of the random input.

2.1 Notation and Deterministic Background

We start by introducing the assumptions on the linear part of (1.1) and on the coefficients F and
G.

Since we are in the parabolic setting, i.e. A is a sectorial operator, we can introduce its fractional
powers (−A)γ for γ ≥ 0, see [55, Section 2.6] or [47]. We denote the domains of the fractional
powers of (−A) with Dγ , i.e. Dγ := D((−A)γ), and recall the following estimates.
For η, κ ∈ R we have

‖S(t)‖L(Dκ,Dη) = ‖(−A)ηS(t)‖L(Dκ,W ) ≤ Ct
k−η, for η ≥ κ (2.1)

‖S(t)− Id‖L(Dκ,Dη) ≤ Ct
κ−η, for κ− η ∈ [0, 1]. (2.2)

Furthermore, one can show that the following assertions hold true, consult [55, Chapter 3].

Lemma 2.1. For any ν, η, µ ∈ [0, 1], κ, γ, % ≥ 0 such that κ ≤ γ+µ, there exists a constant C > 0
such that for 0 < q < r < s < t we have that

‖S(t− r)− S(t− q)‖L(Dκ,Dγ) ≤ C(r − q)µ(t− r)−µ−γ+κ,

‖S(t− r)− S(s− r)− S(t− q) + S(s− q)‖L(D%,D%) ≤ C(t− s)η(r − q)ν(s− r)−(ν+η).

On the coefficients we impose the following conditions:

(F) F : W →W is Lipschitz continuous.

(G) G : W → L(V ;Dβ) is bounded and three times Frechét differentiable with bounded derivatives
for some β ∈ (0, α) satisfying α+ 2β > 1.

Remark 2.2.

(i) For most parts of Chapter 3 we set F ≡ 0 for simplicity, since this term does not cause
additional technical difficulties. However, we will discuss the differences in Section 3.8.

(ii) The boundedness of G is only necessary for deriving a global solution. Clearly, in the case of
linear noise (G) is not fulfilled. However, in Section 3.8 we will show that in this special
case we will obtain a global solution, too.

(iii) The assumptions (F) and (G) are more general than the assumptions made on the coefficients
of the SPDE (1.1) in many works, compare [27] and [37] and the references specified therein.
Recently, in [32] the authors consider slightly more general assumptions but for the case of a
finite-dimensional noisy input.
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2.1 Notation and Deterministic Background

For our aims we introduce the following function spaces. Let β ∈ (0, 1) be fixed and let W stand for
a further separable Banach space. We recall that Cβ([0, T ],W ) represents the space of W -valued
β-Hölder continuous functions on [0, T ] and denote by Cα(∆T ,W ) the space of W -valued functions
on ∆T with zt,t = 0 for all t ∈ [0, T ] and

‖z‖α := sup
0≤t≤T

|zt0|+ sup
0≤s<t≤T

|zts|
(t− s)α

<∞.

Furthermore, we define Cβ,β([0, T ],W ) as the space of W -valued continuous functions on [0, T ]
endowed with the norm

‖y‖β,β := ‖y‖∞ + |||y|||β,β := sup
0≤t≤T

|yt|+ sup
0<s<t≤T

sβ
|yt − ys|
(t− s)β

<∞.

Similarly we introduce Cα+β,β(∆T ,W ) with the norm

‖z‖α+β,β := sup
0≤t≤T

|zt0|+ sup
0<s<t≤T

sβ
|zts|

(t− s)α+β
<∞.

Again zt,t = 0 for all t ∈ [0, T ].

These modified Hölder spaces are well-known in the theory of maximal regularity for parabolic
evolution equations, see [47]. These were also used in [27].

Note that for notational simplicity we do not state the dependence of the (modified) Hölder spaces
on the underlying time interval/area.
In case we want to point out this dependence, see Section 3.6 and Section 4.3 eventually, we denote
‖·‖α,T respectively ‖·‖β,β,T . In case we consider a restriction on a certain time interval [Ť , T̂ ] and
we set ‖·‖α,[Ť ,T̂ ] respectively ‖·‖β,β,[Ť ,T̂ ].

It is well-known that analytic C0-semigroups are not Hölder continuous in 0. However, the following
lemma holds true.

Lemma 2.3. Let (S(t))t≥0 be an analytic C0-semigroup on W . Then we have for all x ∈W and
all β ∈ [0, 1] that

‖S(·)x‖β,β ≤ C |x| ,

where C depends only on the semigroup and on β.

Proof. The definition of ‖·‖β,β and tjhe estimates recall (2.1) and (2.2) entail

‖S(·)x‖β,β = sup
0≤t≤T

|S(t)x|+ sup
0<s<t≤T

sβ
|(S(t)− S(s))x|

(t− s)β

≤ sup
0≤t≤T

|S(t)x|+ sup
0<s<t≤T

sβ
|(S(t− s)− Id)S(s)x|

(t− s)β

≤ C|x|,

This justifies our choice of working with the function space Cβ,β. Note that if one lets x ∈ Dβ

it suffices to consider only Cβ. However, since we want to analyze random dynamical systems
generated by (1.1) in W (compare Section 4.1), we need to take the initial condition ξ ∈W instead
of Dβ .

Furthermore, we fix some important notations. These are also used in [37] and [10].
Notations: For y ∈ C([0, T ],W ) and z ∈ C(∆T ,W ) we set for 0 ≤ s ≤ τ ≤ t

(δy)ts := yt − ys, (2.3)

(δ̂y)ts := yt − S(t− s)ys, (2.4)
(δ2z)tτs := zts − ztτ − zτs, (2.5)

(δ̂2z)tτs := zts − ztτ − S(t− τ)zτs. (2.6)

5



2 Preliminaries

At this moment these notations probably appear unreasonable. In Section 3.2 and 3.3 we will show
the connection to the solution theory.

Let us state some important algebraic properties. For more details and a more general framework
see [37].

Lemma 2.4. The following statements hold true:

(i) δ̂2 ◦ δ̂ ≡ 0.

(ii) Let N ∈ C (∆T ,W ) with δ̂2N ≡ 0. Then there exists y ∈ C ([0, T ],W ) with (δ̂y)ts = Nts.

(iii) Consider y1, y2 ∈ C ([0, T ],W ) with y1
0 = y2

0 and (δ̂y1)ts = (δ̂y2)ts. Then y1 ≡ y2.

Proof.

(i) Take an arbitrary y ∈ C ([0, T ],W ).

(δ̂2δ̂y)tτs = (δ̂y)ts − (δ̂y)tτ − S(t− τ)(δ̂y)τs

= yt − S(t− s)ys − yt + S(t− τ)yτ − S(t− τ)yτ + S(t− s)ys = 0.

(ii) Let δ̂2N ≡ 0. Set yt := Nt0. Then, we have

(δ̂y)ts = Nt0 − S(t− s)Ns0 = Nts.

(iii) Consider

y1
t = (δ̂y1)t0 + S(t)y1

0 = (δ̂y2)t0 + S(t)y2
0 = y2

t .

The second assertion of the previous Lemma is extremely important for the deliberations made in
Section 3.3, especially for Theorem 3.6, which ensures the existence of rough integrals.

Concluding this section we denote by V ⊗ V the usual tensor product of Hilbert spaces. In case
of Banach spaces W ⊗W stands for the projective tensor product for given Banach spaces W,W
which is an extension of the tensor product for Hilbert space. Then the property

L(W ;L(W ;W )) ↪→ L(W ⊗W ;W ) (2.7)

holds true, consult [56, Theorem 2.9].

2.2 Basics of Rough Paths Theory

Although the techniques provided by the rough paths theory are fundamental for the whole thesis,
in this section we only state the very basics. We will focus on further results of the general theory
in Sections 3.2, 3.3 and 4.1. For a broad overview of the rough paths theory we recommend [20].

Definition 2.5. (α-Hölder rough path) Let J ⊂ R be a compact interval. The pair ω := (ω, ω(2))
is called V -valued α-Hölder rough path if ω ∈ Cα(J, V ) and ω(2) ∈ C2α(∆J , V ⊗ V ). Furthermore,
ω and ω(2) are connected via Chen’s relation, meaning that

ω
(2)
ts − ω(2)

us − ω
(2)
tu = (ωu − ωs)⊗ (ωt − ωu), for s, u, t ∈ J, s ≤ u ≤ t. (2.8)

Using the notation introduced in (2.3) and (2.5) we can shorten this and obtain

(δ2 ω
(2))tus = (δω)us ⊗ (δω)tu.

In the literature ω(2) is referred to as Lévy-area or second order process. We denote C α = C α(J, V )
as the set of all V -valued α-Hölder rough path on J .
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2.2 Basics of Rough Paths Theory

We further describe an appropriate distance between two α-Hölder rough paths.

Definition 2.6. Let ω and ω̃ be two α-Hölder rough paths. We introduce the α-Hölder rough
path (inhomogeneous) metric

dα,J(ω, ω̃) := sup
(t,s)∈∆J

|ωt − ωs − ω̃t + ω̃s|
|t− s|α

+ sup
(t,s)∈∆J

|ω(2)
ts − ω̃

(2)
ts |

|t− s|2α
. (2.9)

We set dα,T := dα,[0,T ].

For more details on this topic consult [20, Chapter 2]. We stress that in our situation we always
have that ω(0) = 0 and therefore, (2.9) is a metric.

Remark 2.7. In general, the main issue is to find an adequate second order process ω(2) for a
given path ω. We call this to lift ω to a rough path ω = (ω, ω(2)).
Note that ω(2) is uniquely determined up to an increment of some path ψ ∈ C2α(V ⊗ V ), see
[20, Section 2.1], i.e. if (ω, ω(2)) is an α-Hölder rough path then (ω, ω(2) + δϕ) ∈ C α for all
ϕ ∈ C2α(V ⊗ V ). Moreover, every lifted rough path has this form.
However, under the assumption that ω is a smooth path, e.g. continuously differentiable, we can
define ω(2) by

ω
(2)
ts =

t∫
s

(δω)rs ⊗ dωr. (2.10)

We call this the canonical lift.

Furthermore, θ denotes the Wiener shift (this represents an appropriate shift with respect to the
noise), more precisely θ = (θτ )τ∈R with

θτωt := ωt+τ − ωτ . (2.11)

The Wiener shift is explained in detail in Section 4.1 and is mainly required in the theory of random
dynamical systems.

Moreover, we use the notation θ̃ in order to indicate the usual shift, namely θ̃ = (θ̃τ )τ∈R with

θ̃τyt := yt+τ , (2.12)

θ̃τzts := zt+τ,s+τ . (2.13)

Note that, at this moment y and z are meant to be arbitrary first order respectively second order
processes. In particular, the definition of θ̃ is also applicable to the noise, e.g. θ̃τ ω

(2)
ts := ω

(2)
t+τ,s+τ .

We indicate the following result regarding the shift-property of an α-Hölder rough path. Eventually,
it will be crucial in Section 3.6 as well as in Section (4.1).

Lemma 2.8. For an α-Hölder rough path (ω, ω(2)) on the time interval J and for τ ∈ R, the
time-shift (θτω, θ̃τ ω

(2)) is an α-Hölder rough path on the time interval J − τ .

Proof. The time-regularity is straightforward and one can easily verify Chen’s relation (2.8).

θ̃τ ω
(2)
ts − θ̃τ ω(2)

us − θ̃τ ω
(2)
tu = ω

(2)
t+τ,s+τ − ω

(2)
u+τ,s+τ − ω

(2)
t+τ,u+τ

= ωu+τ,s+τ ⊗ ωt+τ,u+τ , (2.14)
= (ωu+τ − ωτ − ωs+τ + ωτ )⊗ (ωt+τ − ωτ − ωu+τ + ωτ )

= (δθτω)us ⊗ (δθτω)tu.

where in (2.14) we use Chen’s relation (2.8).
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2 Preliminaries

To close this chapter let us introduce the concept of a geometric rough path, see [20, Section 2.2].

Definition 2.9. Let ω be a V -valued α-Hölder rough path and (ei)i∈N be an orthonormal basis
of V . For i, j ∈ N define ωi = (ω, ei)V and ω(2),ij = (ω(2), ei ⊗ ej)V⊗V . We call ω a geometric
V -valued α-Hölder rough path if

ω
(2),ij
ts + ω

(2),ji
ts = (δωi)ts(δω

j)ts.

We denote C α
g as the set of all geometric α-Hölder rough paths.

Note that we do not need this property for deriving a solution of (1.1) in Chapter 3. However,
in many applications, e.g. [20, Chapter 10], [11] or [25], the rough noise ω is approximated by a
sequence of (piecewise) smooth paths ωn. These are lifted to rough paths ωn according to (2.10)
and one proves the convergence of these sequence in dα,J . We will present this procedure for our
example of a fractional Brownian motion in Section 4.1. The next lemma shows that in this case
we always end up with a geometric rough path, see [20, Section 2.2].

Lemma 2.10. Let C 0,α
g be the closure of canonical lifts of piecewise smooth paths w.r.t. dα,J . Then

C 0,α
g ⊆ C α

g .

In particular, every canonical lift of a piecewise smooth path is a geometric rough path.

8



3. Solution Theory for Rough
Evolution Equations

In this chapter we rigorously define (1.2) in the rough case and eventually show the existence of a
global-in-time solution of (1.1). Recall from Chapter 2 that C denotes a generic constant which
may vary from line to line. This constant can depend on the semigroup S, the nonlinear coefficients
F and G, the parameter α ∈ (1

3 ,
1
2), the rough path ω and the eventual solution space.

For notational simplicity we omit these dependencies. Furthermore, in the following we drop the
tensor symbol for the same reason. Finally, for simplicity we set F ≡ 0.
In Section 3.8 we will have a closer look on the case where the drift term does not vanish and
further give a comment about the generic constant C.

3.1 The Young Case

Before considering the rough case we want to give a concise motivational overview of a more regular
case. In this section we assume α > 1

2 .
In 1936 Young proved the existence of a deterministic integral as limit of Riemann-Stieltjes sums,
see [61]. In [62] the Young integral was first applied for defining a pathwise stochastic integral with
respect to a fractional Brownian motion with Hurst parameter H > 1

2 .
For defining the Young integral one exploits the regularity of the integrand and the integrator,
more precisely for an integrand with finite p-variation and an integrator with finite q-variation one
demands 1

p + 1
q > 1. Clearly every α-Hölder function has finite p-variation for all p < 1

α . Hence,
for simplicity we state Young’s result for Hölder continuous functions.

Theorem 3.1. Let α, β > 0 with α+ β > 1 and ω ∈ Cα([0, T ], V ) y ∈ Cβ([0, T ],L(V ;W )). Then,
for all 0 ≤ s ≤ t ≤ T there exists

t∫
s

yr dωr := lim
|P|→0

∑
[u,v]∈P

yu(δω)vu, (3.1)

where P = P(s, t) is an arbitrary partition of [s, t] and |P| indicates the mesh of this partition.

Furthermore, we obtain
·∫

0

yr dωr ∈ Cα([0, T ],W ) and the Hölder norm can be estimated by∥∥∥∥∥∥
·∫

0

yr dωr

∥∥∥∥∥∥
α

≤ C ‖y‖β |||ω|||α . (3.2)

It is important to mention that the limit in (3.1) does not depend on the choice of the partition
neither the choice of the node.

Consider the simple Young equation of the form

yt = ξ +

t∫
0

G(yr) dωr, 0 ≤ t ≤ T

9



3 Solution Theory for Rough Evolution Equations

with ω ∈ Cα. Let Cβ be the space where we want to find the solution in, e.g. by a fixed point
argument. So, let y ∈ Cβ then, even for smooth G, Theorem 3.1 demands α+ β > 1 and grants
y ∈ Cα. Consequently, if we want to iterate the Young integral, we need α ≥ β. This makes clear
why we have to assume α > 1

2 .

Indeed, if α > 1
2 there are several possibilities for defining (1.2) as a Young integral, see [36] or

[50]. Note that we can not apply Theorem 3.1 for defining (1.2) since the semigroup S is not
Hölder continuous, see Section 2.1. However, Lemma 2.3 guarantees S(·)x ∈ Cβ,β for all x ∈W .
Consequently, we can not expect a solution y of (1.1) to be Hölder regular but to fulfill y ∈ Cβ,β .
The next Lemma follows by a more general abstract result we are going to prove in Section 3.3. In
order to motivate such a result, we first give a sketch for a more regular ω ∈ Cα, α > 1

2 here.

Lemma 3.2. Let α, β > 0 with α + β > 1 and ω ∈ Cα([0, T ], V ), y ∈ Cβ,β([0, T ],L(V ;W )).
Furthermore, let (St)t≥0 be an analytic semigroup on W and G : W → L(V ;W ) be Lipschitz
continuous. Then, for all 0 ≤ s ≤ t ≤ T there exists

t∫
s

S(t− r)G(yr) dωr := lim
|P|→0

∑
[u,v]∈P

S(t− v)ωSvu(G(yu)), (3.3)

where for a placeholder K ∈ L(V ;W ) and 0 ≤ s ≤ t ≤ T we define

ωSts(K) :=

t∫
s

S(t− r)K dωr. (3.4)

Furthermore, for all 0 < s ≤ t ≤ T we obtain∣∣∣∣∣∣
t∫
s

S(t− r)G(yr) dωr

∣∣∣∣∣∣ ≤ C ‖y‖β,β |||ω|||α s−β(t− s)α. (3.5)

Sketch of Proof. One can define (3.4) using integration by parts see (3.51) and derive the estimate∣∣ωSts(K)
∣∣ ≤ C |||ω|||α |K| (t− s)α, compare (3.47).

For simplicity let Pn = Pn(s, t) by the n-th dyadic partition of [s, t] with 0 < s ≤ t ≤ T and define

Nn
ts :=

∑
[u,v]∈Pn

S(t− v)ωSvu(G(yu)), for n ∈ N0. (3.6)

For a rigorous proof we had to consider an arbitrary sequence of partitions whose meshes converge
to zero and also handle the case s = 0.

We consider the difference of two adjacent partitions

Nn
ts −Nn+1

ts =
∑

[u,v]∈Pn

S(t− v)ωSvu(G(yu))−
∑

[u,v]∈Pn+1

S(t− v)ωSvu(G(yu))

=
∑

[u,v]∈Pn

[
S(t− v)ωSvu(G(yu))− S(t− v)ωSvm(G(ym))− S(t−m)ωSmu(G(yu))

]
where m = u+v

2 . Furthermore, we have

S(t− v)ωSvu(G(yu))− S(t− v)ωSvm(G(ym))− S(t−m)ωSmu(G(yu))

=S(t− v) (δ̂2ω
S)vmu(G(yu)) + S(t− v)ωSvm(G(yu)−G(ym)).

10



3.2 Heuristic Considerations

We will show in Lemma 3.17 that (δ̂2ω
S) ≡ 0. So, since for [u, v] ∈ Pn we have v − u = t−s

2n , we
obtain the estimate ∣∣Nn

t s−Nn+1
ts

∣∣ ≤C |||ω|||α ∑
[u,v]∈Pn

|G(yu)−G(ym)| (v −m)α

≤C |||ω|||α |||y|||β,β s
−β (t− s)α+β

2n(α+β−1)
,

since G is Lipschitz continuous and y ∈ Cβ,β. The sequence (Nn
ts − Nn+1

ts )n∈N0 is absolutely
summable As α+ β > 1. Thus, we can define the limit of Nn

ts by the limit of the telescopic sums
over the differences of two adjacent partitions. Hence, we derive the estimate∣∣∣ lim

n→∞

∑
[u,v]∈Pn

S(t− v)ωSvu(G(yu))− ωSts(G(ys))
∣∣∣ ≤ C |||ω|||α |||y|||β,β s−β(t− s)α+β .

In Section 3.3 we will give a rigorous proof in a more general setting and obtain further estimates
for the Young integral.

3.2 Heuristic Considerations

The goal is again to obtain a criterion that enables us to obtain the integral as a limit of Riemann-
Stieltjes sums as we did above in the Young case. This abstract result is called Sewing Lemma and
is stated in the following Section 3.3. To this aim we need certain algebraic and analytic conditions.

For a better comprehension and in order to point out the difficulties that arise in the infinite-
dimensional setting, we shortly sketch the well-known results in the finite dimensional case. In
finite dimensions, the solution theory for (1.1) is well-established and one needs very few ingredients
to define (1.2) by rough paths techniques. This immediately entails a suitable solution concept for
(1.1). Regard that we use the notation introduced in Chapter 2.

Since the trajectories of the noise are irregular, i.e. Hölder continuous with exponent α < 1/2, the
Young integral defined as (3.1) can no longer be used. Therefore, Gubinelli [35] introduced the
concept of a controlled rough integral, which extends the Young case. Regarding (3.3), it turns out
that we have to consider additional terms satisfying certain algebraic and analytic properties. This
reads as follows

t∫
s

yrdωr = lim
|P|→0

( ∑
[u,v]∈P

yu(δω)vu + y′u ω
(2)
vu

)
. (3.7)

Here the pair (y, y′) stands for a controlled rough path. This can be interpreted as an abstract
Taylor series, namely one assumes that there exists y′ ∈ Cα, which is called Gubinelli’s derivative,
such that for all 0 ≤ s ≤ t ≤ T we have

yt = ys + y′s(δω)ts +Ryts, (3.8)

where the remainder Ry is 2α-Hölder regular. Here ω ∈ Cα and ω(2) ∈ C2α are connected via
Chen’s relation (recall Definition 2.5), meaning that for 0 ≤ s ≤ u ≤ t

(δ2 ω
(2))tus = (δω)us ⊗ (δω)tu.

Consequently, ω(2) can be thought of as the iterated integral

ω
(2)
ts =

t∫
s

(δω)rs ⊗ dωr. (3.9)

11



3 Solution Theory for Rough Evolution Equations

We emphasize that in order to construct (3.7) and thereafter the solution of (1.1), one needs
an appropriate algebraic and analytic setting which will be in detail analyzed in this work for
stochastic evolution equation. The rigorous existence proof of (3.7) is based on a Sewing Lemma,
see Lemma 4.2 in [20]. For more details on this topic consult [35] and [20, Chapter 4].

This opens the door for the theory of rough SDEs using a completely pathwise approach. The only
part where stochastic analysis plays a role is hidden in (3.9). Keeping this in mind, one can solve
(1.1) by a fixed-point argument in the space of controlled rough paths. Regarding this, one can
easily show that the solution of (1.1) with F ≡ 0 is given by the pair

(y, y′) =
(
S(·)ξ +

·∫
0

S(· − r)G(yr)dωr, G(y·)
)
. (3.10)

The essential tool in defining (3.7) and proving that (3.10) is the right object to solve (1.1) in
the finite-dimensional case is the regularity of (S(t))t≥0. Note that a (semi)group generated
by a linear bounded operator is Lipschitz continuous therefore, the required Hölder regularity
of the terms appearing in (3.8) and (3.7) cannot be influenced. More precisely, one can easily
show that for a controlled rough path (y, y′) as specified in (3.8), the convolution with (S(t))t≥0,
i.e. (S(t − ·)y, S(t − ·)y′), is again a controlled rough path. Due to this fact one can define
t∫
s
S(t− r)yrdωr by (3.7) and show that the mapping

(y, y′) 7→
( ·∫

0

S(· − r)yrdωr, y·
)

is linear and continuous on the space of controlled rough paths. Moreover, the composition of a
controlled rough path with a regular function is a well-defined operation according to Lemma 7.3

in [20]. Consequently,
t∫
s
S(t− r)G(yr)dωr fits perfectly in the framework of (3.7). Regarding the

notation introduced above one observes that

t∫
s

S(t− r)G(yr)dωr

corresponds to

(δ̂y)ts = (δy)ts − (S(t− s)− Id)ys.

Finally, by an appropriate fixed-point argument one establishes that (3.10) solves (1.1). This would
be the story in a nutshell in the finite-dimensional setting. For further information and applications
see [35], [20], [22].

However, in the infinite-dimensional case, since the analytic C0-semigroup (S(t))t≥0 is not Lipschitz
continuous (not even Hölder continuous in 0, recall Lemma 2.3) it is no longer straightforward
what are the appropriate objects required in order to obtain something similar to (3.10). It turns
out that one has to construct additional supporting processes. Consult also [10] in order to find the
right way to define (1.2) together with the corresponding pair (y, y′) that solves (1.1). This is the
main topic of our work and for the beginning we illustrate heuristically the main ideas, which will
be justified by the computations in the next sections. Furthermore, we stress that the noisy input
ω is infinite-dimensional in contrast to [10]. Therefore, one needs to make sure that the Lévy-area
ω(2) exists in this case, see [24] and the references specified therein.

We make preliminary deliberations which will lead us to the right definition of (1.2).
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3.2 Heuristic Considerations

To this aim, similar to [27], we firstly assume that ω is smooth and consider the following
approximation of the integral:

t∫
s

S(t− r)G(yr)dωr =
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)G(yr)dωr

≈
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r) [G(yu) +DG(yu)(δy)ru] dωr

=:
∑

[u,v]∈P

S(t− v)
[
ωSvu(G(yu)) +

v∫
u

S(v − r)DG(yu)(δy)rudωr

]
.

In the first step we just plugged in the definition of the integral using Riemann-Stieltjes sums and
in the second step we employed a Taylor expansion for G. Furthermore, we introduced the notation

ωSvu(G(yu)) :=

v∫
u

S(v − r)G(yu)dωr, (3.11)

respectively

zvu(DG(yu)) :=

v∫
u

S(v − r)DG(yu)(δy)rudωr. (3.12)

Since ω is smooth, all the expressions above are well-defined. We argue in Section 3.4 how to
define the first integral (3.11) for a rough input ω and derive important properties of ωS , using an
integration by parts formula and regularizing properties of analytic semigroups. Unfortunately, it is
not at all clear how to define z if ω is not smooth. Therefore, we have to continue our considerations.

The strategy is to construct the integral using an appropriate Sewing Lemma as derived in Section
3.3. To this aim we need to introduce several processes satisfying appropriate analytic and algebraic
conditions. We describe the general intuition of this approach which will allow us to define the
integral I of

Ξ(y)
vu := Ξ(y)

vu (y, z) := ωSvu(G(yu)) + zvu(DG(yu)).

In order to employ the Sewing Lemma (Theorem 3.6) to obtain the existence together with suitable
estimates of IΞ(y) we firstly have to compute (as rigorously justified in Section 3.3)

(δ̂2Ξ(y))vmu = Ξ(y)
vu − Ξ(y)

vm − S(v −m)Ξ(y)
mu.

We can easily check

(δ̂2Ξ(y))vmu = (δ̂2ω
S)vmu(G(yu)) + ωSvm(G(yu)−G(ym))

+ (δ̂2z)vmu(DG(yu)) + zvm(DG(yu)−DG(ym)).

The first term obviously results in

(δ̂2ω
S)vmu(G(yu)) = ωSvu(G(yu))− ωSvm(G(yu))− S(v −m)ωSmu(G(yu))

=

v∫
u

S(v − r)G(yu)dωr −
v∫

m

S(v − r)G(yu)dωr − S(v −m)

m∫
u

S(m− r)G(yu)dωr

= 0.

13



3 Solution Theory for Rough Evolution Equations

Consequently,

(δ̂2Ξ(y))vmu = ωSvm(G(yu)−G(ym)) + (δ̂2z)vmu(DG(yu)) + zvm(DG(yu)−DG(ym)). (3.13)

Hence, it remains to investigate δ̂2z(E), where E ∈ L(W ⊗ V ;W ) denotes a placeholder. For
smooth paths ω we have z canonically given by (3.12) and compute

(δ̂2z)vmu(E) = zvu(E)− zvm(E)− S(v −m)zmu(E)

=

v∫
u

S(v − r)E(δy)rudωr −
v∫

m

S(v − r)E(δy)rmdωr −
m∫
u

S(v − r)E(δy)rudωr

=

v∫
m

S(v − r)E(δy)mudωr = ωSvm(E(δy)mu).

As already mentioned, this term indeed exists even for a rough trajectory ω ∈ Cα with α ∈ (1
3 ,

1
2 ].

If we assume that the algebraic relation

(δ̂2z)vmu(E) = ωSvm(E(δy)mu) (3.14)

holds true for any E ∈ L(W ⊗ V ;W ) we obtain

(δ̂2Ξ(y))vmu = ωSvm(G(yu)−G(ym) +DG(yu)(δy)mu) + zvm(DG(yu)−DG(ym)).

Having this structure for (δ̂2Ξ(y))vmu, under suitable regularity assumptions on y and z specified
in Section 3.3, we are able to define

yt := IΞ
(y)
t and ỹt := S(t)ξ + yt. (3.15)

Note that IΞ
(y)
t corresponds to (1.2) and

(δ̂IΞ(y))ts =

t∫
s

S(t− r)G(yr)dωr.

Remark 3.3.

1. Since we demand the existence of a suitable z in order to construct the rough integral, it is
necessary to define z̃ fulfilling (δ̂2z̃)vmu(E) = ωSvm(E(δỹ)mu). Only if this is valid we are able
to iterate the solution mapping.

2. Note that if S(·) = Id, then the algebraic relation (3.14) reduces to

(δ2z)vmu(E) = E(δy)mu ⊗ (δω)vm, compare (2.8).

Again, for smooth ω, z̃ is canonically given by

z̃ts(E) =

t∫
s

S(t− r)E(δỹ)rsdωr =
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E(δỹ)rsdωr

=
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E(δ̂ỹ)rudωr

+
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)ES(r − u)ỹudωr −
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)Eỹsdωr.
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3.2 Heuristic Considerations

Since (δ̂ỹ)ru =
r∫
u
S(r − q)G(yq)dωq we have

z̃ts(E) =
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E
r∫
u

S(r − q)G(yq)dωqdωr

+
∑

[u,v]∈P

S(t− v)avu(E, ỹu)− ωSts(Eỹs)

≈
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E
r∫
u

S(r − q)G(yu)dωqdωr

+
∑

[u,v]∈P

S(t− v)avu(E, ỹu)− ωSts(Eỹs)

=:
∑

[u,v]∈P

S(t− v) [bvu(E,G(yu)) + avu(E, ỹu)]− ωSts(Eỹs).

Here we introduced the notation

avu(E, ỹu) :=

v∫
u

S(v − r)ES(r − u)ỹudωr, and

bvu(E,G(yu)) :=

v∫
u

S(v − r)E
r∫
u

S(r − q)G(yu)dωqdωr.

Hence, we set

Ξ(z)(y, ỹ)vu(E) := bvu(E,G(yu)) + avu(E, ỹu),

z̃ts(E) := (δ̂IΞ(z)(y, ỹ))ts(E)− ωSts(Eỹs).

This means that we have to define a, b and ωS in order to describe z̃. At the very first sight, it is
not straightforward under which assumptions b is well-defined, compare Remark 4.3 in [10]. This
problem will be addressed in Section 3.4. For the sake of completeness we provide here a possible
heuristic definition of b which will be shown to be the right one in Section 3.4. For a smooth path
ω and a placeholder K which stands for G(y·) we have

t∫
s

S(t− r)E
r∫
s

S(r − q)Kdωqdωr =
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E
r∫
s

S(r − q)Kdωqdωr

=
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E
u∫
s

S(r − q)Kdωqdωr

+
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E
r∫
u

S(r − q)Kdωqdωr

≈
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E
u∫
s

S(u− q)Kdωqdωr

+
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)E
r∫
u

Kdωqdωr

=:
∑

[u,v]∈P

S(t− v)
[
ωSvu(EωSus(K)) + cvu(E,K)

]
, (3.16)
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3 Solution Theory for Rough Evolution Equations

where

cts(E,K) :=

t∫
s

S(t− r)EK(δω)rsdωr.

The existence of a, b, c and of all other auxiliary processes required to give meaning to (1.2) will
be justified in Section 3.4. Motivated by this heuristic computations we first define similar to [27]
these processes for smooth paths ωn approximating ω. Thereafter passing to the limit entails a
suitable construction/interpretation of all these expressions.

To conclude this heuristic computations, we introduce the following definition of a solution for (1.1)
(compare (3.10)). This is the counterpart of the solution concepts investigated in [42] and [25].
Recalling that ω is still assumed to be a smooth path we have.

Definition 3.4. We call a pair (y, z) a mild solution for (1.1) if

yt = S(t)ξ + IΞ(y)(y, z)t

= S(t)ξ + lim
|P(0,t)|→0

∑
[u,v]∈P(0,t)

S(t− v)[ωSvu(G(yu)) + zvu(DG(yu))] (3.17)

zts(E) = (δ̂IΞ(z)(y, y))ts(E)− ωSts(Eys)

= lim
|P(s,t)|→0

∑
[u,v]∈P(s,t)

S(t− v)[bvu(E,G(yu)) + avu(E, yu)]− ωSts(Eys). (3.18)

Our aim is to rigorously justify this solution theory for a rough path ω = (ω, ω(2)) with
1/3 < α ≤ 1/2. This will be carried out in Section 3.5 by means of a fixed-point argument in
a suitable function space which is specially designed to incorporate the analytic and algebraic
properties of the solution pair (y, z).

Finally, we introduce further notation which will turn out to be useful for the computations in
Section 3.5.

Remark 3.5. Going back to the definition of z̃, recalling (3.15), applying the bilinearity of a and
the linearity of ωS entails

z̃ts(E) ≈
∑

[u,v]∈P

S(t− v) [bvu(E,G(yu)) + avu(E, yu) + avu(E,S(u)ξ)]

− ωSts(Eys)− ωSts(ES(s)ξ).

As justified in Section 3.4 (Corollary 3.22) we get

z̃ts(E) ≈
∑

[u,v]∈P

S(t− v) [bvu(E,G(yu)) + avu(E, yu)]− ωSts(Eys)

+ ats(E,S(s)ξ)− ωSts(ES(s)ξ).

Therefore, we can define

Ξ(z)(y, y)vu(E) := bvu(E,G(yu)) + avu(E, yu),

zts(E) := (δ̂IΞ(z)(y, y))ts(E)− ωSts(Eys), which yields

z̃ts(E) = zts(E) + ats(E,S(s)ξ)− ωSts(ES(s)ξ).

In Section 3.5 we will see that it is more convenient to estimate z than z̃.
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3.3 The Sewing Lemma

3.3 The Sewing Lemma

The following result is crucial for our work, since it gives us the existence of the rough integral
together with all the necessary properties required to solve (1.1). Since we work with the weighted
Hölder spaces introduced in Section 2.1 we have to extend the results obtained in [37, Section
3] using similar techniques. The next statement is the analogue of Theorem 3.5 in [37] in our
framework.

Theorem 3.6 (Sewing Lemma). Let W be a separable Banach space and (S(t))t≥0 be an analytic
C0-semigroup on W with ‖S(t)‖L(W ) ≤ cS for all t ≤ T . Furthermore, let Ξ ∈ C(∆T ,W ) be an
approximation term satisfying the following properties for all 0 ≤ u ≤ m ≤ v ≤ T :

|Ξvu| ≤ c1 (v − u)α , (3.19)∣∣∣(δ̂2Ξ
)
vmu

∣∣∣ ≤ c2 u
−β (v − u)ν , for u 6= 0. (3.20)

Here we impose 0 < α, β ≤ 1, ν > 1 and α+ β ≤ ν.

Then there exists a unique IΞ ∈ C([0, T ] ,W ), such that

IΞ0 = 0, (3.21)∣∣∣(δ̂IΞ
)
ts

∣∣∣ ≤ C (c1 + c2) (t− s)α (3.22)∣∣∣(δ̂IΞ)ts − Ξts

∣∣∣ ≤ Cc2s
−β (t− s)ν , for s 6= 0. (3.23)

Proof. Firstly, note that the uniqueness of IΞ immediately follows from Lemma A.2. Assuming by
contradiction that there are two candidates I1 and I2 for a given Ξ, we have

I1
0 − I2

0 = 0,∣∣∣(δ̂(I1 − I2))ts

∣∣∣ ≤ C (c1 + c2) (t− s)α ,∣∣∣(δ̂(I1 − I2))ts

∣∣∣ ≤ Cc2s
−β (t− s)ν , for s 6= 0.

Hence, Lemma A.2 implies that I1 ≡ I2.

The following deliberations are conducted in order to prove the existence of IΞ. To this aim, given
0 ≤ s < t ≤ T , we let Pn = Pn(s, t) be the n-th dyadic partition of [s, t] for n ∈ N0 and define

Nn
ts :=

∑
[u,v]∈Pn

S(t− v)Ξvu,

Mn
ts := Ξts −Nn

ts.

Note that N0
ts = Ξts which implies that M0

ts = 0.

Furthermore, setting m := u+v
2 , we derive

Nn
ts −Nn+1

ts = Mn+1
ts −Mn

ts =
∑

[u,v]∈Pn

(S(t− v)Ξvu − S(t− v)Ξvm − S(t−m)Ξmu)

=
∑

[u,v]∈Pn

S(t− v)(δ̂2Ξ)vmu.

Hence, we obtain ∣∣Mn
ts −Mn+1

ts

∣∣ ≤C ∑
[u,v]∈Pn

∣∣∣(δ̂2Ξ)vmu

∣∣∣ . (3.24)

17



3 Solution Theory for Rough Evolution Equations

Since we also have to deal with the case s = 0, we apply (3.19) to the first term and use (3.20) to
estimate the other terms in (3.24). This further entails∣∣Mn

ts −Mn+1
ts

∣∣ ≤Cc1 (t− s)α 2−nα + C
∑

[u,v]∈Pn
u6=s

c2u
−β (t− s)ν 2−nν

≤Cc1 (t− s)α 2−nα + Cc2 (t− s)ν−1 2−n(ν−1)
∑

[u,v]∈Pn
u6=s

u−β(t− s)2−n

≤Cc1 (t− s)α 2−nα + Cc2 (t− s)ν−1 2−n(ν−1)

t∫
s

q−βdq

≤Cc1 (t− s)α 2−nα + Cc2 (t− s)ν−β 2−n(ν−1).

Since this expression is summable, we conclude that Mn
ts →Mts as n→∞ for all 0 ≤ s ≤ t ≤ T .

The previous computations give us the estimate

|Mts| ≤C (c1 + c2) (t− s)α . (3.25)

Note that this is valid due to the fact that α+ β ≤ ν.

Setting Nts := Ξts −Mts immediately entails Nn
ts → Nts as n→∞ for all 0 ≤ s ≤ t ≤ T and

|Nts| ≤C (c1 + c2) (t− s)α . (3.26)

Furthermore, this also yields that (δ̂2N) ≡ 0.

To prove this statement, note that it is equivalent to show that

(δ̂2N
n)tτs → 0, as n→ 0,

for all 0 ≤ s ≤ τ ≤ t ≤ T .

To this aim we consider a fixed interval [u, v] ∈ Pn(s, t) and a finite number of nodes u = r0 <
r1 < r2 < . . . < rk < rk+1 = v, for k ∈ N. Then,

S(t− v)Ξvu −
k∑
j=0

S(t− rj+1)Ξrj+1rj =
k−1∑
j=0

S(t− v)(δ̂2Ξ)vrj+1rj .

Hence, we estimate∣∣∣∣∣∣S(t− v)Ξvu −
k∑
j=0

S(t− rj+1)Ξrj+1rj

∣∣∣∣∣∣ ≤
{
Cc2ku

−β(v − u)ν , u > s

Cc1k(v − u)α, u = s.
(3.27)

For fixed 0 ≤ s ≤ τ ≤ t ≤ T we define πn(s, t) := Pn(s, t) ∪ Pn(s, τ) ∪ Pn(τ, t) and
πn(s, τ) := πn(s, t) ∩ [s, τ ], πn(τ, t) := πn(s, t) ∩ [τ, t].

We define Nπn
ts , Nπn

tτ and Nπn
τs analogously to Nn, i.e.

Nπn
ts :=

∑
[u,v]∈πn(s,t)

S(t− v)Ξvu.

Since πn(s, t) = πn(s, τ) ∪ πn(τ, t) one obtains that (δ̂2N
πn)tτs = 0. Consequently, we estimate∣∣∣(δ̂2N

n)tτs

∣∣∣ ≤ |Nn
ts −N

πn
ts |+ |Nn

tτ −N
πn
tτ |+ |S(t− τ) (Nn

τs −Nπn
τs )| .
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3.3 The Sewing Lemma

Therefore, it is left to show that all three summands tend to zero as n→∞. To this aim consider
an arbitrary interval [u, v] ∈ Pn(s, t) and let k :=

⌊
t−s
τ−s

⌋
∨
⌊
t−s
t−τ

⌋
. Then there are at most k + 1

many nodes of πn between u and v. Thus, by (3.27) we have

|Nn
ts −N

πn
ts | ≤ C(k + 1)(c1 + c2)

((
t− s
2n

)α
+

∑
[u,v]∈Pn(s,t)

u6=s

u−β
(
t− s
2n

)ν )
→ 0, as n→∞.

The other summands tend to zero analogously.

Since (δ̂2N) ≡ 0 we can apply Lemma 2.4. This ensures the unique existence of IΞ ∈ C([0, T ],W )
such that

IΞ0 = 0,

(δ̂IΞ)ts = Nts = Ξts −Mts, for all 0 ≤ s < t ≤ T. (3.28)

Hence, (3.26) implies ∣∣∣(δ̂IΞ)ts

∣∣∣ ≤ C (c1 + c2) (t− s)α .

We now show (3.23). To this aim, if s > 0 we apply (3.20) to all summands in (3.24) and obtain∣∣Mn
ts −Mn+1

ts

∣∣ ≤C ∑
[u,v]∈Pn

c2u
−β (t− s)ν 2−nν

≤Cc2s
−β (t− s)ν 2−n(ν−1).

Consequently,

|Mts| ≤Cc2s
−β (t− s)ν , (3.29)

which yields (3.23).

The following result gives us an additional estimate necessary for the fixed-point argument.

Corollary 3.7. Additionally to the assumptions of Theorem 3.6, we let∣∣∣(δ̂2Ξ
)
vmu

∣∣∣ ≤ c3u
−β′ (v − u)ν

′
, (3.30)

with 0 ≤ β, β′ ≤ 1 and ν ′ − β′ ≤ ν − β.
Then it holds ∣∣∣(δ̂IΞ)ts − Ξts

∣∣∣ ≤ C(c2 + c3)s−β
′
(t− s)ν

′
. (3.31)

Proof. The proof is analogous to the previous one. Recalling that∣∣Mn
ts −Mn+1

ts

∣∣ ≤C ∑
[u,v]∈Pn

∣∣∣(δ̂2Ξ)vmu

∣∣∣ ,
we apply (3.30) to the first summand and again (3.20) to the other terms. This leads to∣∣Mn

ts −Mn+1
ts

∣∣ ≤Cc3s
−β′ (t− s)ν

′
2−nν

′
+ C

∑
[u,v]∈Pn
u6=s

c2u
−β (t− s)ν 2−nν

≤Cc3s
−β′ (t− s)ν

′
2−nν

′
+ Cc2s

−β′ (t− s)ν−1 2−n(ν−1)
∑

[u,v]∈Pn
u6=s

u−(β−β′)(t− s)2−n

≤Cc3s
−β′ (t− s)ν

′
2−nν

′
+ Cc2s

−β′ (t− s)ν−1 2−n(ν−1)

t∫
s

q−(β−β′)dq

≤Cc3s
−β′ (t− s)ν

′
2−nν

′
+ Cc2s

−β′ (t− s)ν−β+β′ 2−n(ν−1).
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3 Solution Theory for Rough Evolution Equations

Since ν − β + β′ ≥ ν ′ we have

|Mts| ≤ C(c2 + c3)s−β
′
(t− s)ν

′
.

In order to give a meaning to IΞ as a rough integral we firstly describe it as a limit of finite sums,
compare Corollary 3.6 in [35]. Note that in our case technical difficulties occur in the proof due to
(3.29).

Corollary 3.8. Under the assumptions of Theorem 3.6 it holds that(
δ̂IΞ

)
ts

= lim
|P|→0

∑
[u,v]∈P

S(t− v)Ξvu, (3.32)

where |P| stands for the mesh of the given partition P = P(s, t).

Proof. Consider an arbitrary partition P of [s, t]. Then we have by (3.28) that∑
[u,v]∈P

S(t− v)Ξvu =
∑

[u,v]∈P

S(t− v)
(

(δ̂IΞ)vu +Mvu

)
= (δ̂IΞ)ts +

∑
[u,v]∈P

S(t− v)Mvu.

Therefore, it is left to show that

lim
|P|→0

∑
[u,v]∈P

S(t− v)Mvu = 0.

To this aim, we prove the sufficient statement

lim
|P|→0

∑
[u,v]∈P

|Mvu| = 0.

As concluded within the proof of Theorem 3.6 we have two estimates for M , recall (3.25) and
(3.29). Namely we obtained that

|Mvu| ≤ C(c1 + c2)(v − u)α,

|Mvu| ≤ Cc2u
−β (v − u)ν , for u 6= 0.

Clearly, which one of them is more restrictive depends on the relation between u and v − u.

Hence, we introduce P̃ := {[u, v] ∈ P : u < v − u}. We order the intervals of P̃ by their starting
point and write P̃ = {[ũk, ṽk] : k = 1, . . . ,m}, where s ≤ ũ1 < ṽ1 ≤ ũ2 < ṽ2 ≤ . . . ≤ ũm < ṽm ≤ t.

For k = 1, . . .m− 1 we get

ũk <
ṽk
2
≤ ũk+1

2
,

which yields

ũk < ũm 2−(m−l) < (ṽm − ũm) 2−(m−l) ≤ |P| 2−(m−l).

All in all this means that

ṽk − ũk ≤ ṽk ≤ ũk+1 ≤ |P| 2−(m−l−1).
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3.3 The Sewing Lemma

For k = m we trivially have ṽm − ũm ≤ |P| ≤ 2 |P|. Hence, by using (3.25) we derive

∑
[u,v]∈P̃

|Mvu| ≤ C(c1 + c2)

m∑
k=1

(ṽk − ũk)α ≤ C(c1 + c2) |P|α
m∑
k=1

2−(m−l−1)α ≤ C(c1 + c2) |P|α .

If [u, v] ∈ P\P̃ we have

v − u ≤ u, so v ≤ 2u, therefore, u−β ≤ 2βv−β .

So, by applying (3.29) we infer∑
[u,v]∈P\P̃

|Mvu| ≤ Cc2

∑
[u,v]∈P\P̃

u−β (v − u)ν

≤ Cc2 |P|ν−1
∑

[u,v]∈P\P̃

v−β (v − u)

≤ Cc2 |P|ν−1

t∫
s

q−βdq

≤ Cc2 (t− s)1−β |P|ν−1 .

Consequently, putting both estimates together we have∑
[u,v]∈P

|Mvu| ≤
∑

[u,v]∈P̃

|Mvu|+
∑

[u,v]∈P\P̃

|Mvu|

≤ C(c1 + c2) |P|α + Cc2 (t− s)1−β |P|ν−1 ,

which tends to 0 as |P| → 0. This proves the statement.

Remark 3.9. Note that the above limit is independent of the approximating sequence of partitions.
Hence, Corollary 3.8 implies the additivity of the rough integral.

In order to introduce the shift property of the rough integral IΞ we recall that for τ > 0

θ̃τΞvu = Ξv+τ,u+τ ,

see Section 2.2. Considering this, one can easily verify the shift property of IΞ.

Lemma 3.10. Under the assumptions of Theorem 3.6 we have

(δ̂IΞ)ts = (δ̂I θ̃τΞ)t−τ,s−τ , for τ ≤ s ≤ t.

Proof. The proof is a direct consequence of Corollary 3.8.

(δ̂IΞ)ts = lim
|P|→0

∑
[u,v]∈P(s,t)

S(t− v)Ξvu

= lim
|P|→0

∑
[u,v]∈P(s−τ,t−τ)

S(t− τ − v)Ξv+τ,u+τ

= lim
|P|→0

∑
[u,v]∈P(s−τ,t−τ)

S(t− τ − v)θ̃τΞvu

= (δ̂I θ̃τΞ)t−τ,s−τ .
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3 Solution Theory for Rough Evolution Equations

The next result contains necessary estimates for δ̂IΞ in a suitable fractional domain. These will be
required later on in Corollary 3.12 to estimate δIΞ and eventually in Section 3.6 for deriving a
global solution.

Corollary 3.11. Let the assumptions of Theorem 3.6 hold true and further assume that

|S(v − u)Ξvu|Dε ≤ c
′
1 (v − u)α

′
, (3.33)

where 0 < α′ ≤ 1 and 0 ≤ ε < (ν − β) ∧ 1. Then we have∣∣∣(δ̂IΞ)ts

∣∣∣
Dε
≤ C

(
c′1(t− s)α′ + c2(t− s)ν−β−ε

)
. (3.34)

In particular, under the assumptions of Theorem 3.6 we have∣∣∣(δ̂IΞ
)
ts

∣∣∣
Dε
≤ C (c1 + c2) (t− s)α−ε , for all 0 ≤ ε < α. (3.35)

Proof. Analogously to the proof of Theorem 3.6 we introduce

Ñn
ts :=

∑
[u,v]∈Pn
v 6=t,u 6=s

S(t− v)Ξvu,

M̃n
ts := Ξts − Ñn

ts,

where Pn is the n-th dyadic partition of [s, t]. Similarly to the proof of Theorem 3.6 we have
Ñ0
ts = Ñ1

ts = 0 which means that M̃0
ts = M̃1

ts = Ξts.

We further set vn := max {v < t : [u, v] ∈ Pn} and un := min {u > s : [u, v] ∈ Pn}. Then we derive
for n ≥ 1

Ñn
ts − Ñn+1

ts = M̃n
ts − M̃n+1

ts

=Nn
ts −Nn+1

ts − Ξtvn − S(t− un)Ξuns + Ξtvn+1 + S(t− unn+ 1)Ξunn+1s

=
∑

[u,v]∈Pn
v 6=t,u 6=s

S(t− v)(δ̂2Ξ)vmu + (δ̂Ξ)tvn+1vn + S(t− un)(δ̂Ξ)unun+1s

− Ξtvn + Ξtvn+1 − S(t− un)Ξuns + S(t− un+1)Ξun+1s

=
∑

[u,v]∈Pn
v 6=t,u 6=s

S(t− v)(δ̂2Ξ)vmu − S(t− vn+1)Ξvn+1vn − S(t− un)Ξunun+1 .

This yields∣∣∣Ñn
ts − Ñn+1

ts

∣∣∣
Dε
≤
∣∣S(t− un)Ξunun+1

∣∣
Dε

+
∣∣S(t− vn+1)Ξvn+1vn

∣∣
Dε

+ C
∑

[u,v]∈Pn
v 6=t,u 6=s

(t− v)−ε
∣∣∣(δ̂2Ξ)vmu

∣∣∣.
Note that t− un ≥ t− vn+1 = vn+1 − vn = un − un+1 and apply (3.33) to the first two summands
to obtain. ∣∣S(t− un)Ξunun+1

∣∣
Dε

+
∣∣S(t− vn+1)Ξvn+1vn

∣∣
Dε
≤ 2 c′1(t− s)α′2−nα′ .

For last summand we apply (3.20) which entails∑
[u,v]∈Pn
v 6=t,u 6=s

(t− v)−ε
∣∣∣(δ̂2Ξ)vmu

∣∣∣ ≤ c2

∑
[u,v]∈Pn
u6=s,v 6=t

(t− v)−ε u−β(t− s)ν2−nν

= c2(t− s)ν2−nν
∑

[u,v]∈Pn
u6=s,v 6=t

(t− v)−ε u−β .
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We now have to estimate the term

Jts :=
∑

[u,v]∈Pn
u6=s,v 6=t

(t− v)−ε u−β

=
2n−2∑
k=1

(
s+

k(t− s)
2n

)−β (
t− s− (k + 1)(t− s)

2n

)−ε

≤ (t− s)−β−ε 2n(β+ε)
2n−2∑
k=1

k−β (2n − 1− k)−ε.

By Lemma A.3 we obtain

Jts ≤ (t− s)−β−ε 2n(β+ε)
2n−2∑
k=1

k−β (2n − 1− k)−ε

≤ C (t− s)−β−ε 2n(β+ε)
2n−2∑
k=0

(k + 1)−β (2n − 1− k)−ε

= C (t− s)−β−ε 2n(β+ε)
2n−1∑
j=1

j−ε (2n − j)−β .

Using again Lemma A.3 entails

Jts ≤ C (t− s)−β−ε 2n(β+ε)
2n−1∑
j=1

j−ε (2n − j)−β

≤ C (t− s)−β−ε 2n(β+ε)
2n−1∑
j=0

(j + 1)−ε (2n − j)−β

≤ C (t− s)−β−ε 2n(β+ε)

2n∫
0

q−ε(2n − q)−βdq

= C (t− s)−β−ε 2nB(1− ε, 1− β).

Here, B(·, ·) stands for the Euler Beta function.

Consequently, this results in∣∣∣Ñn
ts − Ñn+1

ts

∣∣∣
Dε
≤ Cc1(t− s)α′2−nα′ + Cc2 (t− s)ν−ε−β 2−n(ν−1). (3.36)

Since the right hand side is again summable, we obtain that Ñn
ts → Ñts in Dε as n→∞.

In order to obtain (3.34) we only have to show that Ñ ≡ N . We have∣∣∣Nts − Ñts

∣∣∣ = lim
n→∞

∣∣∣Nn
ts − Ñn

ts

∣∣∣ = lim
n→∞

|Ξtvn + S(t− un)Ξuns|
(3.19)
≤ Cc1 lim

n→∞

(t− s)α

2nα
= 0.

Therefore, we conclude that N ≡ N , which proves (3.34).
Now by (2.1) and (3.19) we see that for ε < α

|S(v − u)Ξvu|Dε ≤ Cc1(v − u)α−ε.

Regarding that α ≤ ν − β, (3.34) leads to (3.35).
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Now we can apply these results to estimate δIΞ.

Corollary 3.12. Given the assumptions of Theorem 3.6. Then for all γ < α it holds

|(δIΞ)ts| ≤ C(c1 + c2) (t− s)γ Tα−γ . (3.37)

Proof. By applying (3.22) and (3.35) with ε = γ we get

|(δIΞ)ts| ≤
∣∣∣(δ̂IΞ

)
ts

∣∣∣+
∣∣∣(S(t− s)− Id) (δ̂IΞ)s0

∣∣∣
≤C(c1 + c2) (t− s)α + C (t− s)γ

∣∣∣(δ̂IΞ)s0

∣∣∣
Dγ

≤C(c1 + c2) (t− s)α + C(c1 + c2) (t− s)γ sα−γ

≤C(c1 + c2) (t− s)γ Tα−γ .

This immediately implies the next result.

Corollary 3.13. Given the assumptions of Theorem 3.6. Then for all γ < α it holds

‖IΞ‖γ ≤ C(c1 + c2)Tα−γ ,

‖IΞ‖γ,γ ≤ C(c1 + c2)Tα.

Remark 3.14. Note that by construction I is a linear mapping. More precisely, according to
[20, Section 4] or [36, Section 3.3] one can introduce the space Ĉα,ν,β(∆T ,W ) of all elements Ξ
satisfying assumptions (3.19) and (3.20).
Then one can show that the mapping I : Ĉα,ν,β(∆T ,W )→ Cγ,γ([0, T ],W ), for γ < α, is linear.

In particular, considering Ξ1, Ξ2 with∣∣Ξ1
vu − Ξ2

vu

∣∣ ≤ c̃1 (v − u)α ,∣∣∣(δ̂2Ξ1
)
vmu
−
(
δ̂2Ξ2

)
vmu

∣∣∣ ≤ c̃2u
−β (v − u)ν , for all 0 < u ≤ m ≤ v ≤ T,

yields ∥∥IΞ1 − IΞ2
∥∥
γ,γ

=
∥∥I(Ξ1 − Ξ2)

∥∥
γ,γ
≤ C(c̃1 + c̃2)Tα.

Finally, as announced in Section 3.1 we are able now to state further estimates for (1.2) in the
Young integral case α > 1

2 . The calculations done in the proof of Lemma 3.2 directly imply by
Corollary 3.13

Corollary 3.15. Given the assumptions of Lemma 3.2 we have the estimates∥∥∥∥∫ ·
0
S(· − r)G(yr)dωr

∥∥∥∥
β

≤ C |||ω|||α (1 + ‖y‖β,β)Tα−β ,∥∥∥∥∫ ·
0
S(· − r)G(yr)dωr

∥∥∥∥
β,β

≤ C |||ω|||α (1 + ‖y‖β,β)Tα−β .

3.4 Construction of the Supporting Processes

We recall that ω = (ω, ω(2)) is an α-Hölder rough path with α ∈ (1
3 ,

1
2), see Section 2.2.

Let 0 ≤ s ≤ τ ≤ t ≤ T be fixed. As argued in Section 3.2, in order to introduce an infinite-
dimensional rough integral we first need to define the following processes and investigate their
algebraic and analytic properties. Recall that throughout this section K and E should be interpreted
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as placeholder which stand for G, respectively DG. Keeping Section 3.2 in mind, we begin analyzing
a, c and ωS . More precisely,

ωSts : L(V ;W )→W, ωSts(K) :=

t∫
s

S(t− r)Kdωr. (3.38)

ats : L(W ⊗ V ;W )×W →W, ats(E, x) :=

t∫
s

S(t− r)ES(r − s)xdωr. (3.39)

cts : L(W ⊗ V ;W )× L(V ;W )→W, cts(E,K) :=

t∫
s

S(t− r)EK(δω)rsdωr. (3.40)

Remark 3.16. Note that some of the processes above exist even if ω is not smooth, as shown in
the following deliberations. However, at the very first sight, it is not at all clear why for instance
(3.40) is well-defined.

Similar to [27] we consider a smooth approximating sequence
(
ωn, ω(2),n

)
→

(
ω, ω(2)

)
in

Cα ([0, T ] , V ) × C2α (∆T , V ⊗ V ), prove that the previous processes exist for this approxima-
tion terms and finally pass to the limit. Therefore, we analyze

ωS,nts (K) :=

t∫
s

S(t− r)Kdωnr (3.41)

ants(E, x) :=

t∫
s

S(t− r)ES(r − s)xdωnr (3.42)

cnts(E,K) :=

t∫
s

S(t− r)EK (δωn)rsdω
n
r . (3.43)

In the following we establish algebraic and analytic properties which will be employed further on.
We begin with the algebraic structure.

Lemma 3.17. The properties

(δ̂2ω
S,n)tτs(K) = 0 (3.44)

(δ̂2a
n)tτs(E, x) = antτ (E, (S(τ − s)− Id)x) (3.45)

(δ̂2c
n)tτs(E,K) = ωS,ntτ (EK(δω)τs) (3.46)

are satisfied.

Proof. One can easily verify that

(δ̂2ω
S,n)tτs(K) =

t∫
s

S(t− r)Kdωnr −
t∫

τ

S(t− r)Kdωnr −
τ∫
s

S(t− r)Kdωnr = 0.
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Furthermore,

(δ̂2a
n)tτs(E, x) =

t∫
s

S(t− r)ES(r − s)xdωnr −
t∫

τ

S(t− r)ES(r − τ)xdωnr

−
τ∫
s

S(t− r)ES(r − s)xdωnr

=

t∫
τ

S(t− r)E (S(r − s)− S(r − τ))xdωnr

=

t∫
τ

S(t− r)ES(r − τ) (S(τ − s)− id)xdωnr

= antτ (E, (S(τ − s)− Id)x).

Finally,

(δ̂2c
n)tτs(E,K) =

t∫
s

S(t− r)EK(δωn)rsdω
n
r −

t∫
τ

S(t− r)EK(δωn)rτdω
n
r

−
τ∫
s

S(t− r)EK(δωn)rsdω
n
r

=

t∫
τ

S(t− r)EK(δωn)τsdω
n
r

= ωS,ntτ (EK(δωn)τs).

The analytic estimates are contained in the next result. Throughout this section cS stands for a
constant which exclusively depends on the semigroup.

Lemma 3.18. For the processes ωS,nts , ants and cnts the following estimates hold true:∣∣∣ωS,nts (K)
∣∣∣ ≤ C |||ωn|||α |K| (t− s)α (3.47)

|ants(E, x)| ≤ C |||ωn|||α |E| |x|W (t− s)α , for x ∈W (3.48)∣∣∣ants(E, x)− ωS,nts (Ex)
∣∣∣ ≤ C |||ωn|||α |E| |x|Dβ (t− s)α+β , for x ∈ Dβ (3.49)

|cnts(E,K)| ≤ C
(
|||ωn|||α +

∥∥∥ω(2),n
∥∥∥

2α

)
|E| |K| (t− s)2α . (3.50)

Proof. Using the integration by parts formula, see Theorem 3.5 in [55], leads to

ωS,nts (K) =

t∫
s

S(t− r)Kdωnr = S(t− s)K(δωn)ts −A
t∫
s

S(t− r)K(δωn)trdr,

ants(E, x) =

t∫
s

S(t− r)ES(r − s)xdωnr = −
t∫
s

∂rω
S,n
tr (ES(r − s)x)dr

= ωS,nts (Ex) +

t∫
s

ωS,ntr (EAS(r − s)x)dr,
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and

cnts(E,K) =

t∫
s

S(t− r)EK (δωn)rsdω
n
r =

t∫
s

S(t− r)EK(δωn)tsdω
n
r −

t∫
s

S(t− r)EK(δωn)trdω
n
r

= ωS,nts (EK(δωn)ts)−
t∫
s

S(t− r)EK dω
(2),n
tr

= ωS,nts (EK (δωn)ts)− S(t− s)EK ω
(2),n
ts −

t∫
s

AS(t− r)EK ω
(2),n
tr dr.

For a similar construction, see [10, Section 6.1]. Based on these identities we easily derive the
analytic estimates as follows.

A standard computation immediately entails

∣∣∣ωS,nts (K)
∣∣∣ ≤ |S(t− s)K(δωn)ts|+

∣∣∣∣∣∣
t∫
s

AS(t− r)K(δωn)trdr

∣∣∣∣∣∣
≤ cS |K| |||ωn|||α (t− s)α .

Recalling (3.44) we infer that

|ants(E, x)| =

∣∣∣∣∣∣ωS,nts (Ex) +

t∫
s

ωS,ntr (EAS(r − s)x)dr

∣∣∣∣∣∣
=

∣∣∣∣∣∣ωS,nts (Ex) +

t∫
s

ωS,nts (EAS(r − s)x)dr −
t∫
s

S(t− r)ωS,nrs (EAS(r − s)x)dr

∣∣∣∣∣∣
≤
∣∣∣ωS,nts (ES(t− s)x)

∣∣∣+

∣∣∣∣∣∣
t∫
s

S(t− r)ωS,nrs (EAS(r − s)x)dr

∣∣∣∣∣∣
≤cS |E| |x|W |||ω

n|||α (t− s)α + cS |E| |x|W |||ω
n|||α

t∫
s

(r − s)α−1dr

≤cS |E| |x|W |||ω
n|||α (t− s)α .

For our aims it is also necessary to derive estimates for x ∈ Dβ with 0 < β ≤ 1. In this situation
we have

∣∣∣ants(E, x)− ωS,nts (Ex)
∣∣∣ =

∣∣∣∣∣∣
t∫
s

ωS,ntr (EAS(r − s)x)dr

∣∣∣∣∣∣
≤ cS |E| |x|Dβ |||ω

n|||α

t∫
s

(t− r)α (r − s)β−1dr

= cS |E| |x|Dβ |||ω
n|||α (t− s)α+β .
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Furthermore, we obtain

|cnts(E,K)| ≤
∣∣∣ωS,nts (EK (δωn)ts)

∣∣∣+
∣∣∣S(t− s)EK ω

(2),n
ts

∣∣∣+

∣∣∣∣∣∣
t∫
s

AS(t− r)EK ω
(2),n
tr dr

∣∣∣∣∣∣
≤cS |E| |K| |||ωn|||2α (t− s)2α + cS |E| |K|

∥∥∥ω(2),n
∥∥∥

2α
(t− s)2α

+cS |E| |K|
∥∥∥ω(2),n

∥∥∥
2α

t∫
s

(t− r)2α−1dr

≤cS |E| |K|
(
|||ωn|||2α +

∥∥∥ω(2),n
∥∥∥

2α

)
(t− s)2α .

Consequently, keeping Lemma 3.18 in mind we are justified to define the supporting processes via

ωSts(K) := S(t− s)K(δω)ts −A
t∫
s

S(t− r)K(δω)trdr (3.51)

ats(E, x) := ωSts(Ex) +

t∫
s

ωStr (EAS(r − s)x)dr (3.52)

cts(E,K) := ωSts(EK (δω)ts)− S(t− s)EK ω
(2)
ts −

t∫
s

AS(t− r)EK ω
(2)
tr dr. (3.53)

Lemma 3.19. We have that

ωS,n → ωS in Cα ([0, T ] ,L(L(V ;W ),W ))

an → a in Cα ([0, T ] ,L(L(W ⊗ V ;W )×W,W ))

cn → c in C2α ([0, T ] ,L(L(W ⊗ V ;W )× L(V ;W ),W )) .

Proof. Similarly to the proof of Lemma 3.18 we obtain

∣∣(ωS − ωS,n)
ts

(K)
∣∣ =

∣∣∣∣∣∣S(t− s)K(δ(ω − ωn))ts −A
t∫
s

S(t− r)K(δ(ω − ωn))trdr

∣∣∣∣∣∣
≤ cS |||ω − ωn|||α |K| (t− s)

α ,

which shows that ωS,n → ωS in Cα ([0, T ] ,L(L(V ;W ),W )).

The same deliberations as in the proof of (3.49) lead to

|ats(E, x)− ants(E, x)| ≤
∣∣(ωS − ωS,n)

ts
(S(t− s)Ex)

∣∣
+

∣∣∣∣∣∣
t∫
s

S(t− r)
(
ωS − ωS,n

)
rs

(EAS(r − s)x)dr

∣∣∣∣∣∣
≤ cS |E| |x| |||ω − ωn|||α (t− s)α .

The last term yields

|cts(E,K)− cnts(E,K)| ≤
∣∣∣ωSts(EK (δω)ts)− ω

S,n
ts (EK (δωn)ts)

∣∣∣
+
∣∣∣S(v − u)EK ω

(2)
ts − S(v − u)EK ω

(2),n
ts

∣∣∣
+

∣∣∣∣∣∣
t∫
s

AS(t− r)EK ω
(2)
tr dr −

t∫
s

AS(t− r)EK ω
(2),n
tr dr

∣∣∣∣∣∣
≤cS

(
|||ω|||α |||ω − ω

n|||α +
∥∥∥ω(2) − ω(2),n

∥∥∥
2α

)
|E| |K| (t− s)2α .
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Remark 3.20. Note that the algebraic and analytic properties proved in Lemmas 3.17 and 3.18
remain valid.

The next statement gives an extension of (3.47) if one considers a regularizing placeholder K. The
proof follows the same lines as the proof of Lemma 3.18.

Lemma 3.21. Let K ∈ L(V ;Dγ) for 0 ≤ γ ≤ 1. Then∣∣ωSts(K)
∣∣
Dγ
≤ C |||ω|||α |K|L(V ;Dγ) (t− s)α

Proof. The proof can immediately be derived using (3.51).

Furthermore, we observe.

Corollary 3.22. For an arbitrary partition P = P(s, t) the following identity holds true

ats(E, x) =
∑

[u,v]∈P

S(t− v)avu(E,S(u− s)x).

Proof. Using (3.45) and the bilinearity of a we notice that

ats(E, x) = atτ (E, x) + S(t− τ)aτs(E, x) + atτ (E, (S(τ − s)− Id)x)

= atτ (E,S(τ − s)x) + S(t− τ)aτs(E, x).

Iterating this identity for any given partition P(s, t) proves the claim.

Remark 3.23. Alternatively, these processes can also be defined using Theorem 3.6. For a better
comprehension we illustrate this technique for a and emphasize the fact that both approaches are
equivalent.

Heuristically, similar to Section 3.2, we notice that for a smooth function ω we can approximate
ats as follows:

ats(E, x) :=

t∫
s

S(t− r)ES(r − s)xdωr =
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)ES(r − s)xdωr

≈
∑

[u,v]∈P

S(t− v)

v∫
u

S(v − r)ES(u− s)xdωr

=
∑

[u,v]∈P

S(t− v)ωSvu(ES(u− s)x).

Keeping this in mind, the deliberations made in Section 3.3 lead to the following result.

Lemma 3.24. Let 0 ≤ s ≤ T . For all s ≤ τ ≤ t ≤ T we define

Ξ
(a),s
tτ (E, x) := ωStτ (ES(τ − s)x). (3.54)

Then we have

ats =
(
δ̂IΞ(a),s

)
ts
. (3.55)

Proof. In order to apply Theorem 3.6 we have to analyze the term Ξ
(a),s
vu . Therefore, we estimate∣∣∣Ξ(a),s

vu (E, x)
∣∣∣ =

∣∣ωSvu(ES(u− s)x)
∣∣ ≤ cS |E| |x| |||ω|||α (v − u)α
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and ∣∣∣(δ̂2Ξ(a),s)vmu

∣∣∣ =
∣∣ωSvu(ES(u− s)x)− ωSvm(ES(m− s)x)− S(v −m)ωSmu(ES(u− s)x)

∣∣
=
∣∣ωSvm(E (S(u− s)− S(m− s))x)

∣∣
≤cS |E| |x|Dβ |||ω|||α (u− s)−β (v − u)α+β .

Hence, Theorem 3.6 yields the existence of IΞ(a),s and by Corollary 3.8

(δ̂IΞ(a),s)tτ = lim
|P|→0

∑
[u,v]∈P(τ,t)

S(t− v)Ξ(a),s
vu ,

which further implies

(δ̂IΞ(a),s)ts(E, x) = lim
|P|→0

∑
[u,v]∈P(s,t)

S(t− v)ωSvu(ES(u− s)x).

We define

ãts := (δ̂IΞ(a),s)ts

and show that a = ã.
By Corollary 3.22 we know that

ats(E, x) =
∑

[u,v]∈P(s,t)

S(t− v)avu(E,S(u− s)x).

Particularly, this also holds for the limit |P| → 0.

Regarding this, in order to prove the statement, i.e. that a = ã, we have to estimate the difference
between avu and ωSvu. To this aim, we consider now a dyadic partition Pn and have that∣∣∣∣∣∣

∑
[u,v]∈Pn

(
avu(E,S(u− s)x)− ωSvu(ES(u− s)x)

)∣∣∣∣∣∣
≤

∑
[u,v]∈Pn

∣∣avu(E,S(u− s)x)− ωSvu(ES(u− s)x)
∣∣ .

We apply (3.49) for the first term with β = 0 and for the other terms with 1 − α < β < 1, and
obtain ∑

[u,v]∈Pn

∣∣avu(E,S(u− s)x)− ωSvu(ES(u− s)x)
∣∣

≤cs |E| |||ω|||α |x|
(t− s)α

2nα
+

∑
[u,v]∈Pn
u6=s

cs |E| |||ω|||α |x| (u− s)
−β (t− s)α+β

2n(α+β)

≤cs |E| |||ω|||α |x|

(t− s)α

2nα
+

(t− s)α+β−1

2n(α+β−1)

t∫
s

(q − s)−β dq


≤cs |E| |||ω|||α |x| (t− s)

α
(

2−nα + 2−n(α+β−1)
)
n→∞−→ 0.

This proves the statement.
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In order to complete the construction of the supporting processes, recall Section 3.2 we focus now
on

bts : L(W ⊗ V ;W )× L(V ;W )→W,

bts(E,K) :=

t∫
s

S(t− r)E
r∫
s

S(r − q)Kdωqdωr.
(3.56)

Remark 3.25. To our best knowledge it is not possible to define this process via integration by
parts, see Remark 4.3 in [10]. We use Theorem 3.6 to show that at least under some additional
regularity assumption on K (specified in Lemma 3.26) it is possible to define b(E,K).

Inspired by the definition of a we follow the heuristic intuition given in Section 3.2. We saw
in (3.16), that for a smooth ω we have

bts(E,K) ≈
∑

[u,v]∈P

S(t− v)
[
ωSvu(EωSus(K)) + cvu(E,K)

]
.

At the first sight the approximation above appears quite arbitrarily but we will rigorously show
that this gives us the right approach to define b.

As previously argued, we consider again a smooth approximating sequence
(
ωn, ω(2),n

)
of
(
ω, ω(2)

)
and define

bnts(E,K) :=

t∫
s

S(t− r)E
r∫
s

S(r − q)Kdωnq dωnr . (3.57)

Furthermore, for all 0 ≤ s ≤ τ ≤ t ≤ T we introduce

Ξ
(b),s
tτ (E,K) := ωStτ (EωSτs(K)) + ctτ (E,K).

Here the additional regularity assumption on K plays a crucial role. This translates into the
restriction on the diffusion coefficient G, recall assumption (G) in Section 2.1.

Lemma 3.26. Let K ∈ L(V ;Dβ) with α+ 2β > 1 and α > β. Then there exists

bts :=
(
δ̂IΞ(b),s

)
ts
.

Moreover, the following statements are valid

(i) analytic property:

|bts(E,K)| ≤ cS |E| |K|Dβ
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
(t− s)2α . (3.58)

(ii) continuous dependence on the paths of the noise:

bn → b in C2α ([0, T ] ,L(L(W ⊗ V ;W )× L(V ;Dβ),W )) . (3.59)

(iii) algebraic property:

(δ̂2b)tτs(E,K) = atτ (E,ωSτs(K)). (3.60)

Proof. As seen before, in order to apply Theorem 3.6, we have to analyze Ξ
(b),s
tτ . Obviously,∣∣∣Ξ(b),s

tτ (E,K)
∣∣∣ ≤ ∣∣ωStτ (EωSτs(K))

∣∣+ |ctτ (E,K)| .
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Applying (3.47) and (3.50) we have∣∣ωStτ (EωSτs(K))
∣∣+ |ctτ (E,K)|

≤ cS |||ω|||α
∣∣EωSτs(K)

∣∣ (t− τ)α + cS

(
|||ω|||α +

∥∥∥ω(2)
∥∥∥

2α

)
|E| |K| (t− τ)2α

≤ cS |||ω|||2α |E| |K| (τ − s)
α (t− τ)α + cS

(
|||ω|||α +

∥∥∥ω(2)
∥∥∥

2α

)
|E| |K| (t− τ)2α .

Furthermore, we compute

δ̂2Ξ(b),s
vmu(E,K) =(δ̂2ω

S)vmu(EωSus(K)) + ωSvm(E
(
ωSus(K)− ωSms(K)

)
) + (δ̂2c)vmu(E,K).

By applying (3.44), (3.46) and (3.47) we obtain

δ̂2Ξ(b),s
vmu(E,K) =ωSvm(E

(
ωSus(K)− ωSms(K)

)
) + ωSvm(EK(δω)mu)

=ωSvm(E
(
K(δω)mu − ωSms(K) + ωSus(K)

)
).

This further entails∣∣∣δ̂2Ξ(b),s
vmu(E,K)

∣∣∣ ≤ |E| |||ω|||α (v −m)α
∣∣K(δω)mu − ωSms(K) + ωSus(K)

∣∣ . (3.61)

Consequently, we need appropriate estimates for the last term. We apply (3.44) and infer that∣∣K(δω)mu − ωSms(K) + ωSus(K)
∣∣ =

∣∣K(δω)mu − ωSmu(K)− (S(m− u)− Id)ωSus(K)
∣∣

≤
∣∣K(δω)mu − ωSmu(K)

∣∣+
∣∣(S(m− u)− Id)ωSus(K)

∣∣ .
For the next steps the additional assumption K : V → Dβ is required. Keeping this in mind and
using (3.51) we estimate the first term of the previous inequality as follows:

∣∣K(δω)mu − ωSmu(K)
∣∣ ≤ |(S(m− u)− Id)K(δω)mu|+

∣∣∣∣∣∣
m∫
u

AS(m− r)K(δω)mrdr

∣∣∣∣∣∣
≤ cS |K|Dβ |||ω|||α (m− u)α+β .

On the other hand, we have∣∣(S(m− u)− Id)ωSus(K)
∣∣ ≤ cS ∣∣ωSus(K)

∣∣
D2β

(m− u)2β .

Applying again (3.51) we derive

∣∣ωSus(K)
∣∣
D2β
≤ |S(u− s)K(δω)us|D2β

+

∣∣∣∣∣∣A
u∫
s

S(u− r)K(δω)urdr

∣∣∣∣∣∣
D2β

≤cS |K|Dβ |||ω|||α (u− s)α−β + cS |K|Dβ |||ω|||α

u∫
s

(u− r)α−β−1 dr

≤cS |K|Dβ |||ω|||α (u− s)α−β .

This finally leads to∣∣(S(m− u)− Id)ωSus(K)
∣∣ ≤ cS |K|Dβ |||ω|||α (u− s)α−β (m− u)2β .

Putting all these together we get∣∣K(δω)mu − ωSms(K) + ωSus(K)
∣∣ ≤ cSTα−β |K|Dβ |||ω|||α (m− u)2β .
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Consequently, regarding (5.26), we obtain∣∣∣δ̂2Ξ(b),s
vmu(E,K)

∣∣∣ ≤ cSTα−β |E| |K|Dβ |||ω|||2α (v − u)α+2β .

Theorem 3.6 ensures the existence of IΞ(b),s such that for all s ≤ τ ≤ t ≤ T we have

(δ̂IΞ(b),s)tτ (E,K) = lim
|P|→0

∑
[u,v]∈P(τ,t)

S(t− v)
[
ωSvu(EωSus(K)) + cvu(E,K)

]
and ∣∣∣(δ̂IΞ(b),s)tτ (E,K)

∣∣∣ ≤ cS |E| |K|Dβ (|||ω|||2α +
∥∥∥ω(2)

∥∥∥
2α

)
(t− τ)α ((τ − s)α + (t− τ)α) .

In particular setting τ = s we can define bts := (δ̂IΞ(b),s)ts and infer from the previous estimate
that

|bts(E,K)| ≤ cS |E| |K|Dβ
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
(t− s)2α , (3.62)

which precisely gives us (i).

In order to prove (iii) we compute as before

(δ̂2b)tτs(E,K) = lim
|P|→0

∑
[u,v]∈P(s,t)

S(t− v)
[
ωSvu(EωSus(K)) + cvu(E,K)

]
− lim
|P|→0

∑
[u,v]∈P(τ,t)

S(t− v)
[
ωSvu(EωSuτ (K)) + cvu(E,K)

]
− lim
|P|→0

∑
[u,v]∈P(s,τ)

S(t− v)
[
ωSvu(EωSus(K)) + cvu(E,K)

]
= lim
|P|→0

∑
[u,v]∈P(τ,t)

S(t− v)ωSvu(E
(
ωSus − ωSuτ

)
(K))

= lim
|P|→0

∑
[u,v]∈P(τ,t)

S(t− v)ωSvu(EωSτs(K))

= atτ (E,ωSτs(K)).

It only remains to show that assertion (ii) holds true. Regarding that ωn and ω(2),n are smooth
approximation terms, we are allowed to choose α > 1/2.

We define
Ξ

(b),n,s
tτ (E,K) := ωS,ntτ (EωS,nτs (K)) + cntτ (E,K).

Similar computations entail the existence of

b̃nts(E,K) := (δ̂IΞ(b),n,s)ts(E,K).

Moreover, using the same deliberations as above we obtain the analytic estimate∣∣∣̃bnts(E,K)
∣∣∣ ≤ cS |E| |K|Dβ (|||ωn|||2α +

∥∥∥ω(2),n
∥∥∥

2α

)
(t− s)2α

together with the algebraic structure

(δ̂2b̃
n)tτs(E,K) = antτ (E,ωS,nτs (K)).
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A straightforward computation for bn gives us

(δ̂2b
n)tτs(E,K) =

t∫
s

S(t− r)E
r∫
s

S(r − q)Kdωnq dωnr

−
t∫

τ

S(t− r)E
r∫
τ

S(r − q)Kdωnq dωnr

−
τ∫
s

S(t− r)E
r∫
s

S(r − q)Kdωnq dωnr

=

t∫
τ

S(t− r)E

 r∫
s

S(r − q)Kdωnq −
r∫
τ

S(r − q)Kdωnq

 dωnr

=

t∫
τ

S(t− r)ES(r − τ)

τ∫
s

S(τ − q)Kdωnq dωnr

=antτ (E,ωS,nτs (K)).

Consequently, we obtain that δ̂2(bn − b̃n) ≡ 0. Hence, for all E,K by Lemma 2.4 there exists
κ ∈ C([0, T ] ,W ) such that

κ0 = 0 and (δ̂κ)ts = (bn − b̃n)ts(E,K).

We have ∣∣∣(δ̂κ)ts

∣∣∣ ≤ |bnts(E,K)|+
∣∣∣̃bnts(E,K)

∣∣∣ ≤ C(S, ωn, ω(2),n, E,K) (t− s)2α .

Since we assumed α > 1
2 Lemma A.1 yields κ ≡ 0 which implies bn = b̃n. We know by Remark 3.14

that b̃n converges to b which proves the assertion.

Remark 3.27. All supporting processes defined in this section depend on the underlying rough
path ω = (ω, ω(2)). More precisely, ωS and the process a are independent of ω(2), so only are
induced by the path component ω.

Recall (2.11) and (2.13) and Lemma 2.8. For our latter purpose it is important to consider
integrals with respect to an appropriate time-shifted rough path (θτω, θτ ω

(2)) for τ ∈ R.

Note that the supporting terms θτωS and θτa are induced by the shifted path component θτω.
Moreover, θτ b and θτ c are induced by the shifted rough path (θτω, θτ ω

(2)).

3.5 Local Solutions for Rough Evolution Equations

Throughout this section we impose 1
3 < β < α ≤ 1

2 such that α+ 2β > 1. Recall that all necessary
assumptions on the coefficients and on the noise were stated in Chapter 2.

We now derive the existence of a solution for (1.1) which is given by a pair (y, z), as argued in
Section 3.2. Here (yt)t∈[0,T ] stands for aW -valued path and (zts)(t,s)∈∆T

, zts ∈ L(L(W ⊗V ;W );W )
denotes the area term.
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Therefore, we are justified to introduce the Banach space

Xω,T :=
{

(y, z) : y ∈ Cβ,β ([0, T ],W ) ,

z ∈ Cα (∆T ,L(L(W ⊗ V ;W );W )) ∩ Cα+β,β (∆T ,L(L(W ⊗ V ;W );W )) ,

(δ̂2z)tτs = ωStτ (·(δy)τs)
}
,

endowed with norm

‖(y, z)‖X := ‖y‖∞ + |||y|||β,β + ‖z‖α + ‖z‖α+β,β . (3.63)

Remark 3.28. Note that the norm given above is equivalent to

‖y‖∞ + |||y|||β,β + sup
0≤s<t≤T

|zts|
(t− s)α

+ sup
0<s<t≤T

sβ
|zts|

(t− s)α+β
,

which essentially simplifies the computation. By a slight abuse of notation we use the same symbols.

Using the same notations as in Section 3.2, we consider the map

MT : Xω,T → Xω,T MT (y, z) = (ỹ, z̃),

where

ỹt = S(t)ξ + IΞ(y)(y, z)t

yt = ỹt − S(t)ξ = IΞ(y)(y, z)t.

Furthermore, for E ∈ L(W ⊗ V ;W ) the second component of the solution is constituted by

z̃ts(E) =
(
δ̂IΞ(z)(y, ỹ)

)
ts

(E)− ωSts(Eỹs),

=
(
δ̂IΞ(z)(y, y)

)
ts

(E)− ωSts(Eys) + ats(E,S(s)ξ)− ωSts(ES(s)ξ),

zts(E) =
(
δ̂IΞ(z)(y, y)

)
ts

(E)− ωSts(Eys).

Regarding this we define for (u, v) ∈ ∆T

Ξ(y)
vu = Ξ(y)(y, z)vu = ωSvu(G(yu)) + zvu(DG(yu)),

Ξ(z)
vu (E) = Ξ(z)(y, y)vu(E) = bvu(E,G(yu)) + avu(E, yu).

In order to show thatMT maps Xω,T into itself and is a contraction we have to derive suitable
a-priori estimates. We proceed step by step and split these results into several Lemmas.

Remark 3.29. Note that the universal constant C occurring in the estimates below depends on
|||ω|||α,

∥∥ω(2)
∥∥

2α
, α, β, S(·), G uniformly with respect to T . We stress that this is independent of ξ.

Lemma 3.30 (Estimates of the y-integral). For a pair (y, z) ∈ Xω,T the following estimates are
valid: ∣∣∣(δ̂y)ts

∣∣∣ ≤ C (1 + ‖(y, z)‖2X
)

(t− s)α , (3.64)

|ys|Dβ ≤ C
(

1 + ‖(y, z)‖2X
)
sα−β , (3.65)

‖y‖β,β ≤ C
(

1 + ‖(y, z)‖2X
)
Tα, (3.66)∣∣∣(δ̂y)ts − ωSts(G(ys))

∣∣∣ ≤ C (1 + ‖(y, z)‖2X
)
s−β (t− s)α+β . (3.67)
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3 Solution Theory for Rough Evolution Equations

Proof. Regarding the definition of Ξ
(y)
vu , the α-Hölder continuity of ω, the regularity of G and the

definition of the norm in Xω,T we infer∣∣∣Ξ(y)
vu

∣∣∣ ≤ ∣∣ωSvu(G(yu))
∣∣+ |zvu(DG(yu))|

≤ C |||ω|||α |G(yu)| (v − u)α + C ‖z‖α |DG(yu)| (v − u)α

≤ C (|||ω|||α (1 + ‖y‖∞) + ‖z‖α) (v − u)α

≤ C(1 + ‖(y, z)‖X) (v − u)α .

Recalling (3.13)

(δ̂2Ξ(y))vmu = ωSvm(G(yu)−G(ym) +DG(yu)(δy)mu) + zvm(DG(yu)−DG(ym)),

together with the regularity assumptions on y and z, further results in∣∣∣(δ̂2Ξ(y))vmu

∣∣∣ ≤ ∣∣ωSvm(G(yu)−G(ym) +DG(yu)(δy)mu)
∣∣+ |zvm(DG(yu)−DG(ym))|

≤ C |||ω|||α |G(yu)−G(ym) +DG(yu)(δy)mu| (v −m)α

+ C ‖z‖α+β,β |DG(yu)−DG(ym)|m−β (v −m)α+β

≤ C |||ω|||α |yu − ym|
2 (v −m)α + C ‖z‖α+β,β |yu − ym|m

−β (v −m)α+β .

We observe that we have two different possibilities to estimate |yu − ym|. Obviously,

|yu − ym| ≤ 2 ‖y‖∞ and |yu − ym| ≤ |||y|||β,β u
−β (m− u)β .

Therefore, on the one hand we get∣∣∣(δ̂2Ξ(y))vmu

∣∣∣ ≤ C |||ω|||α |||y|||2β,β u−2β (m− u)2β (v −m)α

+ C ‖z‖α+β,β |||y|||β,β u
−β (m− u)βm−β (v −m)α+β

≤ C
(
|||ω|||α |||y|||

2
β,β + ‖z‖α+β,β |||y|||β,β

)
u−2β (v − u)α+2β

≤ C
(

1 + ‖(y, z)‖2X
)
u−2β (v − u)α+2β .

By applying Theorem 3.6 we can show the existence of IΞ(y) = IΞ(y)(y, z) and obtain the estimate∣∣∣(δ̂y)ts

∣∣∣ =
∣∣∣(δ̂IΞ(y))ts

∣∣∣ ≤ C (1 + ‖(y, z)‖2X
)

(t− s)α .

Corollary 3.11 entails ∣∣∣(δ̂IΞ(y))ts

∣∣∣
Dβ
≤ C

(
1 + ‖(y, z)‖2X

)
(t− s)α−β ,

which implies that

|ys|Dβ ≤ C
(

1 + ‖(y, z)‖2X
)
sα−β .

Furthermore, by Corollary 3.13 we obtain

‖y‖β,β ≤ C
(

1 + ‖(y, z)‖2X
)
Tα. (3.68)

On the other hand we also have∣∣∣(δ̂2Ξ(y))vmu

∣∣∣ ≤ C |||ω|||α ‖y‖∞ |||y|||β,β u−β (m− u)β (v −m)α

+ C ‖z‖α+β,β ‖y‖∞m
−β (v −m)α+β

≤ C
(
|||ω|||α ‖y‖∞ |||y|||β,β + ‖z‖α+β,β ‖y‖∞

)
u−β (v − u)α+β

≤ C
(

1 + ‖(y, z)‖2X
)
u−β (v − u)α+β .
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Hence, we can apply Corollary 3.7 and obtain∣∣∣(δ̂IΞ(y))ts − Ξ
(y)
ts

∣∣∣ ≤ C (1 + ‖(y, z)‖2X
)
s−β (t− s)α+β ,

which leads to ∣∣∣(δ̂y)ts − ωSts(G(ys))
∣∣∣ ≤ ∣∣∣(δ̂IΞ(y))ts − Ξ

(y)
ts

∣∣∣+ |zts(DG(ys))|

≤ C
(

1 + ‖(y, z)‖2X
)
s−β (t− s)α+β .

We now focus in deriving suitable estimates for z.

Lemma 3.31 (Estimates of the z-integral). Let (y, z) ∈ Xω,T . The following estimates are valid:

|zts(E)| ≤ C|E|
(

1 + ‖(y, z)‖2X
) [

(t− s)2α + sα−β (t− s)α+β
]
, (3.69)

‖z‖α+β ≤ C
(

1 + ‖(y, z)‖2X
)
Tα−β . (3.70)

Proof. Applying Theorem 3.6 we get∣∣∣Ξ(z)
vu (E)

∣∣∣ ≤ |bvu(E,G(yu))|+ |avu(E, yu)| .

Furthermore, due to (3.48) and (3.58) together with the Lipschitz continuity of the mapping
G : W → L(V,Dβ), we infer that∣∣∣Ξ(z)

vu (E)
∣∣∣ ≤C |E| (1 + ‖y‖∞)

(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
(v − u)2α + C |E| ‖y‖∞ |||ω|||α (v − u)α

≤C |E|
[
(1 + ‖y‖∞)

(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
+ ‖y‖∞ |||ω|||α

]
(v − u)α .

Using (3.66) we obtain ∣∣∣Ξ(z)
vu (E)

∣∣∣ ≤C |E|(1 + ‖(y, z)‖2X
)

(v − u)α .

Furthermore, we have by (3.45) and (3.60) that

(δ̂2Ξ(z),s)vmu(E) = (δ̂2b)vmu(E,G(yu)) + bvm(E,G(yu)−G(ym))

+ (δ̂2a)vmu(E, yu) + avm(E, yu − ym)+

= avm(E,ωSmu(G(yu))) + bvm(E,G(yu)−G(ym))

+ avm(E, (S(m− u)− Id)yu) + avm(E, yu − ym)

= avm(E,ωSmu(G(yu))− (δ̂y)mu) + bvm(E,G(yu)−G(ym)).

This leads to∣∣∣(δ̂2Ξ(z),s)vmu(E)
∣∣∣ ≤ ∣∣∣avm(E,ωSmu(G(yu))− (δ̂y)mu)

∣∣∣+ |bvm(E,G(yu)−G(ym))|

≤ C |||ω|||α |E|
∣∣∣ωSmu(G(yu))− (δ̂y)mu

∣∣∣ (v −m)α

+ C
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
|E| |G(yu)−G(ym)| (v −m)2α .

Applying (3.67) entails∣∣∣(δ̂2Ξ(z),s)vmu(E)
∣∣∣ ≤ C |E|(1 + ‖(y, z)‖2X

)
u−β (m− u)α+β (v −m)α

+ C |E| |||y|||β,β u
−β (m− u)β (v −m)2α

≤ C |E|
(

1 + ‖(y, z)‖2X
)
u−β (v − u)2α+β .
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Hence, we can apply again Theorem 3.6 however, this does not give us the appropriate estimates.
By a slightly different computation we obtain∣∣∣(δ̂2Ξ(z),s)vmu(E)

∣∣∣ ≤ C |||ω|||α |E| ∣∣∣(ωSmu(G(yu))
∣∣+
∣∣∣(δ̂y)mu

∣∣∣) (v −m)α

+ C
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
|E| |G(yu)−G(ym)| (v −m)2α .

Now (3.64) entails ∣∣∣(δ̂2Ξ(z),s)vmu(E)
∣∣∣ ≤ C |E|(1 + ‖(y, z)‖2X

)
(v − u)2α .

Hence, by Corollary 3.7 we derive∣∣∣(δ̂IΞ(z))ts(E)− Ξ
(z)
ts (E)

∣∣∣ ≤ C |E|(1 + ‖(y, z)‖2X
)

(t− s)2α .

Furthermore, let us consider∣∣∣Ξ(z)
ts (E)− ωSts(Eys)

∣∣∣ ≤ |bts(E,G(ys))|+
∣∣ats(E, ys)− ωSts(Eys)∣∣ .

Applying (3.49) and (3.58) entails∣∣∣Ξ(z)
ts (E)− ωSts(Eys)

∣∣∣ ≤ C |E| (1 + ‖y‖∞)
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
(t− s)2α

+ C |E| |||ω|||α |ys|Dβ (t− s)α+β .

By using (3.65) we obtain∣∣∣Ξ(z)
ts (E)− ωSts(Eys)

∣∣∣ ≤ C |E|(1 + ‖(y, z)‖2X
) [
sα−β (t− s)α+β + (t− s)2α

]
.

Summarizing, we conclude

|zts(E)| =
∣∣∣(δ̂IΞ(z))ts(E)− ωSts(Eys)

∣∣∣
≤
∣∣∣(δ̂IΞ(z))ts(E)− Ξ

(z)
ts (E)

∣∣∣+
∣∣∣Ξ(z)
ts (E)− ωSts(Eys)

∣∣∣
≤ C|E|

(
1 + ‖(y, z)‖2X

) [
(t− s)2α + sα−β (t− s)α+β

]
.

Consequently, we get

‖z‖α+β ≤ C
(

1 + ‖(y, z)‖2X
)
Tα−β .

After establishing suitable analytic properties we focus now on the algebraic setting.

Lemma 3.32. The following algebraic property

(δ̂2z)vmu(E) = ωSvm(E(δy)mu)

holds true.

Proof. By (3.44) and Lemma 2.4 ((i)) we have

(δ̂2z)vmu(E) = (δ̂2δ̂IΞ(z))vmu(E)− (δ̂2ω
S)vmu(Eyu) + ωSvm(E(δy)mu)

= ωSvm(E(δy)mu).

We now have all the necessary ingredients to analyze the mappingMT and proceed towards our
fixed-point argument.
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Theorem 3.33. The mappingMT maps Xω,T into itself. Moreover, the estimate

‖MT (y, z)‖X ≤ C
(
|ξ|+

(
1 + ‖(y, z)‖2X

)
Tα
)

(3.71)

holds true.

Proof. Recall

ỹt = S(t)ξ + yt.

Hence, applying (3.66) we derive

‖ỹ‖∞ ≤ C (|ξ|+ ‖y‖∞)

≤ C
(
|ξ|+

(
1 + ‖(y, z)‖2X

)
Tα
)

and

|||ỹ|||β,β ≤ |||S(·)ξ|||β,β + |||y|||β,β
≤ C

(
|ξ|+

(
1 + ‖(y, z)‖2X

)
Tα
)
.

Moreover, we have

z̃ts(E) = zts(E) + ats(E,S(s)ξ)− ωSts(ES(s)ξ).

On the one hand by (3.70), (3.48) and (3.47) we get

‖z̃‖α ≤ ‖z‖α+β T
β + C ‖S(·)ξ‖∞

≤ C
(
|ξ|+

(
1 + ‖(y, z)‖2X

)
Tα
)
.

On the other hand we apply (3.70) and (3.49) and infer that

‖z̃‖α+β,β ≤ ‖z‖α+β T
β + C sup

0<s<T
sβ |S(s)ξ|Dβ

≤ C
(
|ξ|+

(
1 + ‖(y, z)‖2X

)
Tα
)
.

Summarizing we obtain the required estimate

‖M(y, z)‖X ≤ C
(
|ξ|+

(
1 + ‖(y, z)‖2X

)
Tα
)
.

The last step is to prove the corresponding algebraic relation. Due to Lemma 3.32 and of the
algebraic relations (3.44) and (3.45) we compute

(δ̂2z̃)tτs(E) =(δ̂2z)tτs(E) + (δ̂2a)tτs(E,S(s)ξ) + atτ (E,S(s)ξ − S(τ)ξ)

+(δ̂2ω
S)tτs(ES(s)ξ) + ωStτ (E(S(s)ξ − S(τ)ξ))

=ωStτ (E(yτ − ys)) + atτ (E,S(τ)ξ − S(s)ξ) + atτ (E,S(s)ξ − S(τ)ξ)

+ωStτ (E(S(s)ξ − S(τ)ξ))

=ωStτ (E(ỹτ − ỹs)).

In order to show the existence of a unique local mild solution for (1.1) by means of Banach’s
Fixed-Point Theorem we verify thatM is a contraction. To this aim, analogously to Lemmas 3.30
and 3.31 we derive the necessary estimates.
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Lemma 3.34 (estimate for δy-integral). Let (y1, z1), and (y2, z2) ∈ Xω,T . Then we have∣∣∣(δ̂(y1 − y2))ts

∣∣∣ ≤ C (1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X

(t− s)α , (3.72)∣∣y1
s − y2

s

∣∣
Dβ
≤ C

(
1 +

∥∥(y1, z1)
∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
sα−β (3.73)∥∥y1 − y2

∥∥
β,β
≤ C

(
1 +

∥∥(y1, z1)
∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
Tα (3.74)

as well as∣∣∣(δ̂(y1 − y2))ts − ωSts(G(y1
s)−G(y2

s))
∣∣∣

≤ C
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
s−β (t− s)α+β .

(3.75)

Proof. We have

y1
t − y2

t = IΞ(y)(y1, z1)t − IΞ(y)(y2, z2)t = I
(

Ξ(y)(y1, z1)− Ξ(y)(y2, z2)
)
t
.

We make the same deliberations as in Lemma 3.30 and use the assumptions on G.∣∣∣Ξ(y)(y1, z1)vu − Ξ(y)(y2, z2)vu

∣∣∣
≤
∣∣ωSvu(G(y1

u)−G(y2
u))
∣∣+
∣∣z1
vu(DG(y1

u))− z2
vu(DG(y2

u))
∣∣

≤
∣∣ωSvu(G(y1

u)−G(y2
u))
∣∣+
∣∣z1
vu

(
DG(y1

u)−DG(y2
u)
)∣∣+

∣∣(z1 − z2
)
vu

(DG(y2
u))
∣∣

≤ C |||ω|||α
∥∥y1 − y2

∥∥
∞ (v − u)α + C

∥∥z1
∥∥
α

∥∥y1 − y2
∥∥
∞ (v − u)α + C

∥∥z1 − z2
∥∥
α

(v − u)α

≤ C
(
1 +

∥∥(y1, z1)
∥∥
X

) ∥∥(y1 − y2, z1 − z2)
∥∥
X
.

Furthermore,∣∣∣(δ̂2Ξ(y)(y1, z1))vmu − (δ̂2Ξ(y)(y2, z2))vmu

∣∣∣
≤
∣∣ωSvm (G(y1

u)−G(y1
m) +DG(y1

u)(δy1)mu −G(y2
u) +G(y2

m)−DG(y2
u)(δy2)mu

)∣∣
+
∣∣z1
vm(DG(y1

u)−DG(y1
m))− z2

vm(DG(y2
u)−DG(y2

m))
∣∣

≤ C |||ω|||α
∣∣G(y1

u)−G(y1
m) +DG(y1

u)(δy1)mu −G(y2
u) +G(y2

m)−DG(y2
u)(δy2)mu

∣∣ (v − u)α

+
∣∣z1
vm(DG(y1

u)−DG(y1
m)−DG(y2

u) +DG(y2
m))
∣∣+
∣∣(z1 − z2

)
vm

(DG(y2
u)−DG(y2

m))
∣∣ .

As in Lemma 3.30 we have two possibilities to estimate these terms.

By (A.3) and (A.4) we infer∣∣∣(δ̂2Ξ(y)(y1, z1))vmu − (δ̂2Ξ(y)(y2, z2))vmu

∣∣∣
≤ C |||ω|||α

[(∣∣∣∣∣∣y1
∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

) ∣∣∣∣∣∣y1 − y2
∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣2
β,β

∥∥y1 − y2
∥∥
∞

]
u−2β (v − u)α+2β

+ C
∥∥z1
∥∥
α+β,β

[∣∣∣∣∣∣y1 − y2
∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

∥∥y1 − y2
∥∥
∞

]
u−2β (v − u)α+2β

+ C
∥∥z1 − z2

∥∥
α+β,β

∣∣∣∣∣∣y2
∣∣∣∣∣∣
β,β

u−2β (v − u)α+2β

≤ C
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
u−2β (v − u)α+2β .

Again, applying Theorem 3.6 entails∣∣∣(δ̂(y1 − y2))ts

∣∣∣ ≤ C (1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X

(t− s)α .

By Corollary 3.11 we obtain∣∣y1
s − y2

s

∣∣
Dβ
≤ C

(
1 +

∥∥(y1, z1)
∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
sα−β ,
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and with Corollary 3.13 we have∥∥y1 − y2
∥∥
β,β
≤ C

(
1 +

∥∥(y1, z1)
∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
Tα.

On the other hand using (A.4) and (A.7) we get∣∣∣(δ̂2Ξ(y)(y1, z1))vmu − (δ̂2Ξ(y)(y2, z2))vmu

∣∣∣
≤ C |||ω|||α

(∣∣∣∣∣∣y1
∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

∥∥y2
∥∥
∞

)∥∥y1 − y2
∥∥
∞ u

−β (v − u)α+β

+ C
∥∥z1
∥∥
α+β,β

(∥∥y1 − y2
∥∥
∞ +

∥∥y2
∥∥
∞
∥∥y1 − y2

∥∥
∞
)
u−β (v − u)α+β

+ C
∥∥z1 − z2

∥∥
α+β,β

∥∥y2
∥∥
∞ u

−β (v − u)α+β

≤ C
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
u−β (v − u)α+β .

Hence, we can apply Corollary 3.7 and obtain∣∣∣(δ̂(y1 − y2))ts − ωSts(G(y1
s)−G(y2

s))
∣∣∣

≤ C
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
s−β (t− s)α+β .

Lemma 3.35 (estimate for δz-integral). Let (y1, z1), and (y2, z2) ∈ Xω,T . Then the following
estimates are valid∣∣(z1

ts − z2
ts)(E)

∣∣ ≤ C|E|(1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X[

(t− s)2α + sα−β (t− s)α+β
]
,

(3.76)

∥∥z1 − z2
∥∥
α+β
≤ C

(
1 +

∥∥(y1, z1)
∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
Tα−β . (3.77)

Proof. Recall that

(z1
ts − z2

ts)(E) = (δ̂IΞ(y)(y1, y1))ts(E)− ωSts(Ey1
s)− (δ̂IΞ(z)(y2, y2))ts(E) + ωSts(Ey

2
s)

= (δ̂I[Ξ(z)(y1, y1)− Ξ(z)(y2, y2)])ts(E)−
(
ωSts(Ey

1
s)− ωSts(Ey2

s)
)
.

Building the difference of Ξ(z) for (y1, y1) and (y2, y2) entails∣∣∣Ξ(z)(y1, y1)vu(E)− Ξ(z)(y2, y2)vu(E)
∣∣∣

≤
∣∣bvu(E,G(y1

u)−G(y2
u))
∣∣+
∣∣avu(E, y1

u − y2
u)
∣∣

≤ C |E|
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)∥∥y1 − y2
∥∥
∞ (v − u)2α + C |E| |||ω|||α

∥∥y1 − y2
∥∥
∞ (v − u)α .

By (3.74) we get∣∣∣Ξ(z)(y1, y1)vu(E)− Ξ(z)(y2, y2)vu(E)
∣∣∣

≤ C |E|
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X

(v − u)α .

Furthermore,∣∣∣(δ̂2Ξ(z)(y1, y1))vmu(E)− (δ̂2Ξ(z)(y2, y2))vmu(E)
∣∣∣

≤
∣∣∣avm(E,ωSmu(G(y1

u)−G(y2
u))− (δ̂y1)mu + (δ̂y2)mu)

∣∣∣
+
∣∣bvm(E,G(y1

u)−G(y1
m)−G(y2

u) +G(y2
m))
∣∣

≤ C |||ω|||α |E|
∣∣∣ωSmu(G(y1

u)−G(y2
u))− (δ̂(y1 − y2))mu

∣∣∣ (v − u)α

+ C
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
|E|
∣∣G(y1

u)−G(y1
m)−G(y2

u) +G(y2
m)
∣∣ (v − u)2α .
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By applying (3.75) and Lemma A.3 we derive∣∣∣(δ̂2Ξ(z)(y1, y1))vmu(E)− (δ̂2Ξ(z)(y2, y2))vmu(E)
∣∣∣

≤ C |E|
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
u−β (v − u)2α+β .

On the other hand we can estimate∣∣∣(δ̂2Ξ(z)(y1, y1))vmu(E)− (δ̂2Ξ(z)(y2, y2))vmu(E)
∣∣∣

≤ C |E|
(∣∣ωSmu(G(y1

u)−G(y2
u))
∣∣+
∣∣∣(δ̂(y1 − y2))mu

∣∣∣) (v − u)α

+ C |E|
(∣∣G(y1

u)−G(y2
u)
∣∣+
∣∣G(y1

m)−G(y2
m)
∣∣) (v − u)2α .

By applying (3.72) we obtain∣∣∣(δ̂2Ξ(z)(y1, y1))vmu(E)− (δ̂2Ξ(z)(y2, y2))vmu(E)
∣∣∣

≤C |E|
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X

(v − u)2α .

Again with Corollary 3.7 we conclude∣∣∣(δ̂I[Ξ(z)(y1, y1)− Ξ(z)(y2, y2)])ts(E)− (Ξ(z)(y1, y1)− Ξ(z)(y2, y2))ts(E)
∣∣∣

≤ C |E|
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X

(t− s)2α .

Furthermore, we have∣∣∣(Ξ(z)(y1, y1)− Ξ(z)(y2, y2))ts(E)− ωSts(E(y1
s − y2

s))
∣∣∣

≤
∣∣bts(E,G(y1

s)−G(y2
s))
∣∣+
∣∣ats(E, y1

s − y2
s)− ωSts(E(y1

s − y2
s))
∣∣ .

Then (3.49) yields ∣∣∣(Ξ(z)(y1, y1)− Ξ(z)(y2, y2))ts(E)− ωSts(E(y1
s − y2

s))
∣∣∣

≤ C |E|
∥∥y1 − y2

∥∥
∞

(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
(t− s)2α

+ C |E| |||ω|||α
∣∣y1
s − y2

s

∣∣
Dβ

(t− s)α+β .

By applying (3.73) we see∣∣∣(Ξ(z)(y1, y1)− Ξ(z)(y2, y2))ts(E)− ωSts(E(y1
s − y2

s))
∣∣∣

≤ C |E|
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X

[
sα−β (t− s)α+β + (t− s)2α

]
.

Finally, we derive∣∣(z1
ts − z2

ts)(E)
∣∣ ≤ ∣∣∣(δ̂I[Ξ(z)(y1, y1)− Ξ(z)(y2, y2)])ts(E)− (Ξ(z)(y1, y1)− Ξ(z)(y2, y2))ts(E)

∣∣∣
+
∣∣∣(Ξ(z)(y1, y1)− Ξ(z)(y2, y2))ts(E)− ωSts(E(y1

s − y2
s))
∣∣∣

≤ C|E|
(

1 +
∥∥(y1, z1)

∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X[

(t− s)2α + sα−β (t− s)α+β
]
.

Consequently, we get∥∥z1 − z2
∥∥
α+β
≤ C

(
1 +

∥∥(y1, z1)
∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
Tα−β .
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Now, putting all these results together, we can state the main theorem of this section.

Theorem 3.36. Let r > 0 with |ξ| ≤ r. Then there exist % = %(r, ω) and T = T (ω, %) > 0 such
that the mapping MT,% := MT |BX(0,%) : BX(0, %) → BX(0, %) is a contraction and possesses a
unique fixed point.

Proof. By Theorem 3.33 we know thatMT maps Xω,T into itself and

‖MT (y, z)‖X ≤ C
(
|ξ|+

(
1 + ‖(y, z)‖2X

)
Tα
)
.

Setting % := 2Cr, we have

‖MT,%(y, z)‖X ≤
%

2
+ C

(
1 + %2

)
Tα.

Hence, we can choose T small enough and obtain

‖MT,%(y, z)‖X ≤ %,

which means thatMT,% maps BX(0, %) into itself.

Since ỹ1 − ỹ2 = y1 − y2 and z̃1 − z̃2 = z1 − z2, applying Lemmas 3.34 and 3.35 we derive∥∥MT (y1, z1)−MT (y2, z2)
∥∥
X
≤ C

(
1 +

∥∥(y1, z1)
∥∥2

X
+
∥∥(y2, z2)

∥∥2

X

)∥∥(y1 − y2, z1 − z2)
∥∥
X
Tα.

Hence, ∥∥MT,%(y
1, z1)−MT,%(y

2, z2)
∥∥
X
≤ C

(
1 + 2%2

) ∥∥(y1 − y2, z1 − z2)
∥∥
X
Tα.

Again, we can choose T small enough such that∥∥MT,%(y
1, z1)−MT,%(y

2, z2)
∥∥
X
≤ 1

2

∥∥(y1 − y2, z1 − z2)
∥∥
X
,

which proves the contraction property of MT,%. Consequently, Banach’s fixed-point Theorem
entails thatMT,% has a unique fixed point in BX(0, %).

We showed the existence of a unique local solution in an appropriate ball. This means that another
local mild solution for (1.1) could exist outside this ball. The following theorem excludes this case.
In order to prove this statement we need some additional results.

For the existence proof we considered a fixed ω ∈ C α and a fixed initial condition ξ ∈W . From
now on we want to investigate the dependence of the solution on these parameters. Therefore, we
emphasize the ω-dependence in the approximating terms Ξ

(y)
ω and Ξ

(z)
ω and introduce the following

notation

MT,ω,ξ : Xω,T → Xω,T

MT,ω,ξ(y, z)
(1)
t = S(t)ξ + IΞ(y)

ω (y, z)t

MT,ω,ξ(y, z)
(2)
ts (E) =

(
δ̂1IΞ(z)

ω (y, y)
)
ts

(E)− ωSts(Eys).

Remark 3.37. We are aware that the given notations are a little bit sloppy. In fact an accurate
notation which, for instance emphasizes the ω-dependence of Ξ

(y)
ω could have the form Ξ

(y)
ω or

Ξ
(y)

(ω, ω(2))
. However, the first expression is hard to spot while the second one is a too extensive

notation. Hence, for notational simplicity we chose the notations given above.
Furthermore, we are especially interested in considering time shifted noise, see (2.11). Hence,
thanks to Lemma 2.8 the second order process will be clear from the context.
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The next Lemma is a direct consequence of Remark 3.27

Lemma 3.38. Let τ > 0. Then the following identities hold true

θτΞ(y)
ω (y, z) = Ξ

(y)
θτω

(θτy, θτz),

θτΞ(z)
ω (y, y) = Ξ

(z)
θτω

(θτy, θτy).

Proof. We directly have that

θτΞ(y)
ω (y, z)vu = Ξ(y)

ω (y, z)v+τ,u+τ = ωSv+τ,u+τ (G(yu+τ )) + zv+τ,u+τ (DG(yu+τ ))

= θτω
S
vu(G(θτyu)) + θτzvu(DG(θτyu)) = Ξ

(y)
θτω

(θτy, θτz)vu,

as well as

θτΞ(z)
ω (y, y)vu(E) = Ξ(z)

ω (y, y)v+τ,u+τ (E) = bv+τ,u+τ (E,G(yu+τ )) + av+τ,u+τ (E, yu+τ )

= θτ bvu(E,G(θτyu)) + θτavu(E, θτyu) = Ξ
(z)
θτω

(θτy, θτy)vu(E).

The first step in establishing the uniqueness of the local solution is contained in the next result.
Note that this is referred to as the cocycle property in the theory of random dynamical systems,
see [2]. This will be dealt in Section 4.1.

Lemma 3.39. Let T > 0 and (y, z) ∈ Xω,T be a fixed-point of MT,ω,ξ. Then for any τ ∈ [0, T )
there exists a fixed-point of MT−τ,θτω,yτ given by (θτy, θτz).

Proof. This is a direct consequence of Corollary 3.10 and Lemma 3.38. By standard computations
we get

θτyt = yt+τ = S(t+ τ)ξ + IΞ(y)
ω (y, z)t+τ

= S(t)yτ + (δ̂IΞ(y)
ω (y, z))t+τ,τ

= S(t)yτ + IΞ
(y)
θτω

(θτy, θτz)t.

Furthermore,

θτzts(E) = zt+τ,s+τ (E) = (δ̂IΞ(z)
ω (y, y))t+τ,s+τ (E)− ωSt+τ,s+τ (Eys+τ )

= (δ̂IΞ
(z)
θτω

(θτy, θτy))ts(E)− θτωSts(Eθτys),

where we used Remark 3.27 in the last step.

Remark 3.40. If (y, z) is a fixed point ofMT,ω,ξ than for any T̃ < T the restriction of (y, z) on
[0, T̃ ]×∆T̃ is a fixed point ofMT̃ ,ω,ξ.

Now we can state the uniqueness result of the local solution.

Theorem 3.41. Let (yi, zi), i = 1, 2 be two fixed-points of MT,ω,ξ. Then it must hold that
(y1, z1) = (y2, z2).

Proof. We set T := sup
{
T̃ > 0: (y1, z1) |[0,T̃ ]= (y2, z2) |[0,T̃ ]

}
and assume that (y1, z1) 6= (y2, z2).

Then T < T . Using the continuity of the solution we have that y1
T

= y2
T
. By Lemma 3.39 we know

that (θT y
1, θT z

1) and (θT y
2, θT z

2) are fixed points ofMT−T ,θTω,y
1
T

. According to Remark 3.40 we

can choose a small T ∗ ∈ [0, T − T ], apply (3.74) and (3.77). This leads to∥∥(θT y
1, θT z

1)− (θT y
2, θT z

2)
∥∥
X,T ∗

=
∥∥∥MT−T ,θTω,y

1
T

((θT y
1, θT z

1))−MT−T ,θTω,y
1
T

((θT y
2, θT z

2))
∥∥∥
X,T ∗

≤ C
(

1 +
∥∥(θT y

1, θT z
1)
∥∥2

X
+
∥∥(θT y

2, θT z
2)
∥∥2

X

)∥∥(θT y
1 − θT y

2, θT z
1 − θT z

2)
∥∥
X

(T ∗)α.

If T ∗ is sufficiently small we see that (θT y
1, θT z

1) = (θT y
2, θT z

2) on [0, T ∗] which yields (y1, z1) =
(y2, z2) on [0, T +T ∗]. Therefore, we obviously reached a contradiction with the definition of T .
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We conclude this section collecting three important results which immediately follow from the
previous deliberations. We first indicate why taking more regular initial data leads to simpler
arguments.

Corollary 3.42. If ξ ∈ Dβ and (y, z) is the unique fixed-point ofMT,ω,ξ we have that y ∈ Cβ and
z ∈ Cα+β.

Proof. Since

(δy)ts = (δỹ)ts = (δ̂y)ts + (S(t− s)− Id)ys + (S(t)− S(s))ξ.

Using (3.64) and (3.65) we conclude that

|||y|||β ≤ C|ξ|Dβ + C(1 + ||(y, z)||2X)Tα−β .

Recall that

z̃ts(E) = zts(E) + ats(E,S(s)ξ)− ωSts(ES(s)ξ).

Therefore, applying (3.70) and (3.49) proves the statement.

Furthermore, similar to deterministic Evolution Equation we see a smoothing effect for the path
component of the solution.

Corollary 3.43. Let (y, z) be the unique fixed-point of MT,ω,ξ then we have for all 0 < t ≤ T .

|yt|Dβ ≤ C
(
|ξ| t−β + (1 + ‖(y, z)‖2X) tα−β

)
. (3.78)

Proof. The proof ís a direct consequence of (2.1) and (3.65) since

|yt|Dβ = |S(t) ξ + yt|Dβ ≤ |S(t)ξ|Dβ + |yt|Dβ
Remark 3.44. Keeping Lemma 3.19 and (3.59) in mind one can easily show that the solution
continuously depends on the noisy input.

3.6 Global Solutions for Rough Evolution Equations

As recalled in the previous section, working with (3.63) leads to quadratic estimates for the norm of
(y, z) in Xω,T . From this approach it is not clear how/if one can extend the unique local solution on
an arbitrary time horizon. Therefore, we need different arguments for the global-in-time existence.
To this aim, similar to the finite-dimensional case, see [20, Section 8.5], it is convenient to work
with the norm of certain remainder terms, which is common in the rough paths theory.

Definition 3.45. Let (y, z) ∈ Xω,T . Then we define the remainders

Ryts := (δ̂y)ts − ωSts(G(ys)),

Rzts(E) := zts(E)− bts(E,G(ys)).

Remark 3.46. If S = Id and (y, z) is a fixed-point ofM, then the previous terms read as

Ryts = (δy)ts −G(ys)(δω)ts,

respectively

Rzts(E) = E

t∫
s

Ryrsdωr.

The expression for the remainder Ry is the same as the one in the finite-dimensional case, com-
pare [20, Section 8.5]. In contrast to the finite-dimensional setting, Rz is required here to estimate
the quadratic terms appearing in (3.71).

45



3 Solution Theory for Rough Evolution Equations

Definition 3.47. Let (y, z) ∈ Xω,T such that

ΦT (y, z) := ‖y‖∞,D2β ,T
+ ‖Ry‖2β,T + ‖Rz‖α+2β,T <∞, (3.79)

where

‖Ry‖2β,T := sup
0≤s<t≤T

|Ryts|
(t− s)2β

,

‖Rz‖α+2β,T := sup
0≤s<t≤T

sup
|E|≤1

|Rzts(E)|
(t− s)α+2β

.

The space of all pairs (y, z) satisfying (3.79) is denoted by X̃ω,T .

This leads to the next result.

Lemma 3.48. Let (y, z) ∈ X̃ω,T . Then we obtain the following estimates

|||y|||β,T ≤ C
(
Tα−β + T βΦT (y, z)

)
, (3.80)

‖z‖α+β,T ≤ C
(
Tα−β + T βΦT (y, z)

)
. (3.81)

Proof. Regarding the definition of Ry, and applying (3.47) yields

|||y|||β,T = sup
0≤s<t≤T

|(δy)ts|
(t− s)β

≤ sup
0≤s<t≤T

|Ryts|
(t− s)β

+ sup
0≤s<t≤T

|(S(t− s)− Id)ys|
(t− s)β

+ sup
0≤s<t≤T

∣∣ωSts(G(ys))
∣∣

(t− s)β

≤ ‖Ry‖2β,T T
β + C ‖y‖∞,D2β ,T

T β + C |||ω|||α,T T
α−β

≤ C
(
Tα−β + T βΦT (y, z)

)
,

which proves the first statement.

Furthermore, due to (3.58), the estimates for z result in

‖z‖α+β,T = sup
0≤s<t≤T

sup
|E|≤1

|zts(E)|
(t− s)α+β

≤ sup
0≤s<t≤T

sup
|E|≤1

|Rzts(E)|
(t− s)α+β

+ sup
0≤s<t≤T

sup
|E|≤1

|bts(E,G(ys))|
(t− s)α+β

≤ ‖Rz‖α+2β,T T
β + C

(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
Tα−β

≤ C
(
Tα−β + T βΦT (y, z)

)
.

The next result indicates the connection between the space-regularity of y and of the initial
data ξ.

Lemma 3.49. Let ξ ∈ Dβ and (y, z) be a fixed-point ofMT,ω,ξ. Then for t ∈ (0, T ] we have that
yt ∈ D2β.

Proof. By Corollary 3.42 we know that y ∈ Cβ and z ∈ Cα+β . In order to apply Corollary 3.11 we
have to estimate

(δ̂2Ξ(y))vmu = ωSvm(G(yu)−G(ym)) + (δ̂2z)vmu(DG(yu)) + zvm(DG(yu)−DG(ym)),
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see (3.13). Therefore, we have∣∣∣(δ̂2Ξ(y))vmu

∣∣∣ ≤ ∣∣ωSvm(G(yu)−G(ym) +DG(yu)(δy)mu)
∣∣+ |zvm(DG(yu)−DG(ym))| . (3.82)

For the first term we have applying (3.47) that∣∣ωSvm(G(yu)−G(ym) +DG(yu)(δy)mu)
∣∣ ≤ C |||ω|||α (v −m)α |G(yu)−G(ym) +DG(yu)(δy)mu| .

Furthermore,

|G(yu)−G(ym) +DG(yu)(δy)mu| ≤ C |||y|||2β,T (m− u)2β ,

and

|zvm(DG(yu)−DG(ym))| ≤ C ‖z‖α+β |||y|||β,T (v − u)α+2β .

Summarizing, we obtain∣∣∣(δ̂2Ξ(y))vmu

∣∣∣ ≤ C (1 + |||y|||2β,T + ‖z‖2α+β,T

)
(v − u)α+2β . (3.83)

On the other hand∣∣∣S(v − u)Ξ(y)
vu

∣∣∣
D2β

≤
∣∣S(v − u)ωSvu(G(yu))

∣∣
D2β

+ |S(v − u)zvu(DG(yu))|D2β

≤ C (v − u)−β
∣∣ωSvu(G(yu))

∣∣
Dβ

+ C(v − u)−2β |zvu(DG(yu))| .

Using Lemma 3.21 we get∣∣∣S(v − u)Ξ(y)
vu

∣∣∣
D2β

≤ C(1 + ‖z‖α+β,T ) (v − u)α−β .

Hence, Corollary 3.11 entails∣∣∣(δ̂IΞ(y))ts

∣∣∣
D2β

=
∣∣∣(δ̂y)ts

∣∣∣
D2β

≤ C
(

1 + |||y|||2β,T + ‖z‖2α+β,T

)
(t− s)α−β ,

which simply yields

|yt|D2β
≤ |S(t)ξ|D2β

+
∣∣∣(δ̂y)t0

∣∣∣
D2β

≤ Ct−β |ξ|Dβ + C
(

1 + |||y|||2β,T + ‖z‖2α+β,T

)
tα−β . (3.84)

This proves the statement.

Lemma 3.50. If ξ ∈ D2β and (y, z) is a fixed-point ofMT,ω,ξ then ΦT (y, z) <∞.

Proof. First of all, note that if ξ ∈ D2β , (3.84) immediately entails that ‖y‖∞,2β,T <∞.
We now investigate Ry. To this aim, we verify (3.19) using (3.47). This obviously results in∣∣∣Ξ(y)

vu

∣∣∣ ≤ ∣∣ωSvu(G(yu))
∣∣+ |zvu(DG(yu))|

≤ C‖ω‖α(v − u)α + C‖z‖α(v − u)α.

Now (3.20) is verified by (3.83). Therefore, we obtain (3.23), namely

|(δ̂IΞ(y))ts − Ξ
(y)
ts | ≤ C

(
1 + |||y|||2β,T + ‖z‖2α+β,T

)
(t− s)α+β .
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This yields

|Ryts| = |(δ̂y)ts − ωSts(G(ys))| ≤ |(δ̂IΞ(y))ts − Ξ
(y)
ts |+ |zts(DG(ys))|

≤ C
(

1 + |||y|||2β,T + ‖z‖2α+β,T + ‖z‖α+β,T

)
(t− s)α+β .

We infer from the previous computation that ‖Ry‖2β,T <∞.

We now prove that ‖Rz‖α+2β,T <∞. We make the same deliberations as for Ry.
Estimates (3.48) and (3.58) entail

|Ξ(z)
vu (E)| ≤ |bvu(E,G(yu))|+ |avu(E, yu)| ≤ C|E|(1 + ‖y‖∞,T )(v − u)α

and ∣∣∣(δ̂2Ξ(z))vmu(E)
∣∣∣ = |avm(E,ωSmu(G(yu))− (δ̂y)mu) + bvm(E,G(yu)−G(ym))|

≤ C |||ω|||α (v −m)α |E| ‖Ry‖2β,T (m− u)2β

+ C
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
(v −m)2α |E| |||y|||β,T (m− u)β

≤ C|E|(‖Ry‖2β,T + |||y|||β,T )(v − u)α+2β .

Thus, (3.23) implies∣∣∣(δ̂IΞ(z))ts(E)− Ξ
(z)
ts (E)

∣∣∣ ≤ C|E|(‖Ry‖2β,T + |||y|||β,T )(t− s)α+2β . (3.85)

Consequently

|Rzts(E)| = |zts(E)− bts(E,G(ys))|

≤
∣∣∣(δ̂IΞ(z))ts(E)− Ξ

(z)
ts (E)

∣∣∣+ |ats(E, ys)− ωS(Eys)|.

Applying (3.49) yields

|Rzts(E)| ≤ C|E|(‖Ry‖2β,T + |||y|||β,T )(t− s)α+2β + C|E||ys|D2β
(t− s)α+2β .

This proves that ‖Rz‖α+2β,T <∞.

We now derive the following a-priori estimate of the solution mapping of (1.1). The computations
rely on similar arguments as in the previous Lemma.

Lemma 3.51. Let ξ ∈ D2β and let (y, z) be a fixed-point ofMT,ω,ξ with 0 < T ≤ 1. Then it holds

ΦT (y, z) ≤ C
(
|ξ|D2β

+ Tα−β + TαΦT (y, z)
)
. (3.86)

Proof. Recall that ΦT (y, z) = ‖y‖∞,D2β ,T
+ ‖Ry‖2β,T + ‖Rz‖α+2β,T . We begin with ‖Ry‖2β,T . and

further use that

|G(yu)−G(ym) +DG(yu)(δy)mu| =

∣∣∣∣∣
1∫

0

[DG(yu + q(δy)mu)−DG(yu)] dq (δy)mu

∣∣∣∣∣
≤

1∫
0

|DG(yu + q(δy)mu)−DG(yu)| dq

·
[
|Rymu|+ |(S(m− u)− Id)yu|+

∣∣ωSmu(G(yu))
∣∣]

≤ C
[
‖Ry‖2β,T (m− u)2β + ‖y‖∞,D2β ,T

(m− u)2β

+ |||y|||β,T |||ω|||α (m− u)α+β
]
.
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Applying (3.80) results in

|G(yu)−G(ym) +DG(yu)(δy)mu| ≤ C
[
ΦT (y, z)(m− u)2β + (Tα−β + T βΦT (y, z))(m− u)α+β

]
.

All in all we obtain for the first term in (3.82)∣∣ωSvm(G(yu)−G(ym) +DG(yu)(δy)mu)
∣∣ ≤ C(1 + ΦT (y, z))(v − u)α+2β .

For the second term in (3.82) we have

|zvm(DG(yu)−DG(ym))|
≤ |Rzvm(DG(yu)−DG(ym))|+ |bvm(DG(yu)−DG(ym), G(ym))|

≤ C ‖Rz‖α+2β,T (v −m)α+2β + C
(
|||ω|||2α +

∥∥∥ω(2)
∥∥∥

2α

)
(v −m)2α |||y|||β,T (m− u)β .

Again, we apply (3.80) and derive

|zvm(DG(yu)−DG(ym))| ≤ C(1 + ΦT (y, z))(v − u)α+2β .

Summarizing, we obtain ∣∣∣(δ̂2Ξ(y))vmu

∣∣∣ ≤ C(1 + ΦT (y, z)) (v − u)α+2β .

Then (3.23) yields ∣∣∣(δ̂IΞ(y))ts − Ξ
(y)
ts

∣∣∣ ≤ C(1 + ΦT (y, z)) (t− s)α+2β .

Consequently,

|Ryts| =
∣∣∣(δ̂y)ts − ωSts(G(ys))

∣∣∣
≤
∣∣∣(δ̂IΞ

(y)
ts − Ξ

(y)
ts

∣∣∣+ |zts(DG(ys))|

≤ C(1 + ΦT (y, z)) (t− s)α+2β + ‖z‖α+β,T (t− s)α+β .

Now (3.81) entails the first important estimate on the 2β-norm of Ry, namely

‖Ry‖2β,T ≤ C
(
Tα−β + TαΦT (y, z)

)
. (3.87)

We now continue investigating ‖y‖∞,D2β ,T
. In order to apply Corollary 3.11 we firstly consider∣∣∣S(v − u)Ξ(y)

vu

∣∣∣
D2β

≤
∣∣S(v − u)ωSvu(G(yu))

∣∣
D2β

+ |S(v − u)zvu(DG(yu))|D2β

≤ C (v − u)−β
∣∣ωSvu(G(yu))

∣∣
Dβ

+ C(v − u)−2β |zvu(DG(yu))| .

Using Lemma 3.21 and (3.81) we get∣∣∣S(v − u)Ξ(y)
vu

∣∣∣
D2β

≤ C(1 + ‖z‖α+β,T ) (v − u)α−β

≤ C(1 + T βΦT (y, z))(v − u)α−β .

Hence, by Corollary 3.11 we obtain∣∣∣(δ̂IΞ(y))ts

∣∣∣
D2β

=
∣∣∣(δ̂y)ts

∣∣∣
D2β

≤ C(1 + T βΦT (y, z))(t− s)α−β + C(1 + ΦT (y, z))(t− s)α

≤ C(Tα−β + TαΦT (y, z)).
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Regarding this we immediately obtain

|yt|D2β
≤
∣∣∣(δ̂IΞ(y))t0

∣∣∣
D2β

+ |S(t)ξ|D2β

≤ C(|ξ|D2β
+ Tα−β + TαΦT (y, z)).

This obviously implies the second important estimate, namely

‖y‖∞,D2β ,T
≤ C(|ξ|D2β

+ Tα−β + TαΦT (y, z)). (3.88)

Finally, we only have to compute ‖Rz‖α+2β,T analogously to the proof of Lemma 3.50.

Applying (3.87) and (3.80) to (3.85) entails∣∣∣(δ̂IΞ(z))ts(E)− Ξ
(z)
ts (E)

∣∣∣ ≤ C(Tα−β + TαΦT (y, z)) |E| (t− s)α+2β .

Consequently, (3.49) further leads to

|Rzts(E)| ≤
∣∣∣(δ̂IΞ(z))ts(E)− Ξ

(z)
ts (E)

∣∣∣+
∣∣ats(E, ys)− ωSts(Eys)∣∣

≤ C(Tα−β + TαΦT (y, z)) |E| (t− s)α+2β + C |||ω|||α ‖y‖∞,D2β,T
|E| (t− s)α+2β .

Regarding this and plugging in (3.88), we derive the third and final important estimate for the
terms defining ΦT , namely

‖Rz‖α+2β,T ≤ C
(
|ξ|D2β

+ Tα−β + TαΦT (y, z)
)
. (3.89)

This proves the statement, i.e.

ΦT (y, z) ≤ C
(
|ξ|D2β

+ Tα−β + TαΦT (y, z)
)
.

We now derive a crucial estimate which will be required for the concatenation procedure.

Lemma 3.52. Let T > 0, r ≥ 1 ∨ |ξ|D2β
and let (y, z) be a fixed-point of MT,ω,ξ. Then there

exists a constant M > 0 independent of r, such that

‖y‖∞,D2β,T
≤ rMeMT .

Proof. By Remark 3.40 we know that by restricting the solution on a smaller time interval [0, T̃ ],
with T̃ < T , we obtain a fixed-point ofMT̃ ,ω,ξ. According to Lemma 3.51 we have for all 0 < T̃ ≤ 1
that

ΦT̃ (y, z) ≤ C
(
|ξ|D2β

+ T̃α−β + T̃αΦT̃ (y, z)
)
.

We now choose 0 < T ∗0 ≤ T̃ sufficiently small such that C(T ∗0 )α ≤ 1
2 . This yields for all T0 < T ∗0

that

ΦT0(y, z) ≤ 2C
(
|ξ|D2β

+ 1
)
≤ 4Cr.

Consequently, this means that

‖y‖∞,D2β ,T0
≤ 4Cr.

At this point it is important to note that the choice of T ∗0 is independent of r and T .
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If T ≤ T ∗0 the statement follows choosing M ≥ 4C. Otherwise we can find an N ∈ N (not
necessarily unique), such that T ∗0

2 < T
N ≤ T

∗
0 . In this case we set T0 := T

N .

Now, combining Lemma 3.51 and Lemma 3.39 we obtain for 1 ≤ n ≤ N − 1 that

ΦT0(θ̃nT0y, θ̃nT0z) ≤ C
(
|ynT0 |D2β

+ Tα−β0 + Tα0 ΦT0(θ̃nT0y, θ̃nT0z)
)
,

Since CTα0 ≤ 1
2 and ynT0 = (θ̃(n−1)T0y)T0 , the previous estimate results in

ΦT0(θ̃nT0y, θ̃nT0z) ≤ 2C
(∥∥∥θ̃(n−1)T0y

∥∥∥
∞,D2β ,T0

+ 1
)
,

which yields ∥∥∥θ̃nT0y∥∥∥∞,D2β ,T0
≤ ΦT0(θ̃nT0y, θ̃nT0z) ≤ 2C

(∥∥∥θ̃(n−1)T0y
∥∥∥
∞,D2β ,T0

+ 1
)
.

By induction we infer that∥∥∥θ̃nT0y∥∥∥∞,D2β ,T0
≤ (4C)n+1 r, for all n = 0, . . . , N − 1.

From this we finally conclude

‖y‖∞,D2β ,T
= max

n=0,...,N−1

∥∥∥θ̃nT0y∥∥∥∞,D2β ,T0
≤ (4C)N r = (4C)

T
T0 r ≤

(
(4C)

2
T∗0

)T
r ≤MeMT r.

for a sufficiently large M .

Now we state the main step required in order to obtain a global solution. We show that by the
concatenation of two local solutions we obtain a solution on a larger time interval. For similar
arguments and techniques, see [27].

Lemma 3.53. Let (y1, z1) be a fixed-point ofMT1,ω,ξ and (y2, z2) be a fixed-point ofMT2,θT1ω,y
1
T1
.

Then we obtain a fixed-point (y, z) ofMT1+T2,ω,ξ via

yt :=

{
y1
t , 0 ≤ t ≤ T1

y2
t−T1 , T1 ≤ t ≤ T1 + T2,

and

zts(E) =


z1
ts(E), 0 ≤ s ≤ t ≤ T1

ωStT1(E(δy1)T1s) + z2
t−T1,0(E) + S(t− T1)z1

T1s
(E), 0 ≤ s ≤ T1 ≤ t ≤ T1 + T2

z2
t−T1,s−T1(E), T1 ≤ s ≤ t ≤ T1 + T2.

Proof. The statement follows by a standard computation. We only focus on certain cases, since
the rest are straightforward. For the beginning we consider T1 ≤ t ≤ T1 + T2. We recall that we
use the notation Ξ

(y/z)
ω and Ξ

(y/z)
θ·ω

in order to indicate the appropriate shifts with respect to ω.

S(t)ξ + IΞ(y)
ω (y, z)t = S(t− T1)S(T1)ξ + S(t− T1)IΞ(y)

ω (y, z)T1 + (δ̂IΞ(y)
ω (y, z))tT1

= S(t− T1)
(
S(T1)ξ + IΞ(y)

ω (y1, z1)T1

)
+ (δ̂IΞ(y)

ω (y2
·−T1 , z·−T1,·−T1))tT1

= S(t− T1)y1
T1 + (δ̂IΞ(y)

ω (y2
·−T1 , z

2
·−T1,·−T1))tT1 .

Recall that

Ξ(y)
ω (y2

·−T1 , z
2
·−T1,·−T1)vu = ωSvu(G(y2

u−T1)) + z2
v−T1,u−T1(DG(y2

u−T1)),
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which further leads to

θ̃T1Ξ(y)
ω (y2

·−T1 , z
2
·−T1,·−T1)vu = ωSv+T1,u+T1(G(y2

u)) + z2
vu(DG(y2

u))

= θ̃T1ω
S
vu(G(y2

u)) + z2
vu(DG(y2

u)).

Now, Lemma 3.10 and Lemma 3.38 entail

(δ̂IΞ(y)
ω (y2

·−T1 , z
2
·−T1,·−T1))tT1 = (δ̂IΞ

(y)
θT1ω

(y2, z2))t−T1,0.

Consequently,

S(t)ξ + IΞ(y)
ω (y, z)t = S(t− T1)y1

T1 + IΞ
(y)
θT1ω

(y2, z2)t−T1 = y2
t−T1 = yt.

Now, let 0 ≤ s ≤ T1 ≤ t ≤ T1 + T2. Then we have

(δ̂IΞ(z)
ω (y, y))ts(E)− ωSts(Eys)

=(δ̂IΞ(z)
ω (y, y))tT1(E) + S(t− T1)(δ̂IΞ(z)

ω (y, y))T1s(E)− ωStT1(Eys)− S(t− T1)ωST1s(Eys)

=(δ̂IΞ(z)
ω (y2

·−T1 , y
2
·−T1))tT1(E) + S(t− T1)(δ̂IΞ(z)

ω (y1, y1))T1s(E)− ωStT1(Ey1
s)− S(t− T1)ωST1s(Ey

1
s)

=S(t− T1)z1
T1s(E) + ωStT1(E(δy1)T1s) + (δ̂IΞ(z)

ω (y2
·−T1 , y

2
·−T1))tT1(E)− ωStT1(Ey2

0),

where we use in the last step that y2
0 = y1

T1
.

Hence, we infer using Lemma 3.10 and 3.38 that

(δ̂IΞ(z)
ω (y, y))ts(E)− ωSts(Eys)

=S(t− T1)z1
T1s(E) + ωStT1(E(δy1)T1s) + (δ̂IΞ

(z)
θT1ω

(y2, y2))t−T1,0(E)− ωStT1(Ey2
0)

=S(t− T1)z1
T1s(E) + ωStT1(E(δy1)T1s) + z2

t−T1,0(E) = zts(E).

Regarding all the previous deliberations we can now state the main results of this section.

Theorem 3.54. Let ξ in D2β. Then for any T > 0 there exists a unique global solution, i.e. there
exists a unique fixed-point of MT,ω,ξ.

Proof. Let r = 1 ∨ |ξ|D2β
. By Lemma 3.52 we know that every fixed-point ofMT,ω,ξ must satisfy

the estimate

‖y‖∞,D2β,T
≤ rMeMT =: r̃.

Particularly, this means that |yt|D2β
≤ r̃, for all t ≤ T . Applying Theorem 3.36

with |ξ| ≤ |ξ|D2β
≤ r̃ entails the existence of a local solution on a time interval [0, T ∗], where

T ∗ = T ∗(r̃), i.e. there is a fixed-point (y, z) of MT ∗,ω,ξ. For simplicity, since we can choose T ∗

arbitrary small, we set N := T
T ∗ ∈ N for N ≥ 2.

Note that |yT ∗ | ≤ |yT ∗ |D2β
≤ r̃. Hence, we can derive by using again Theorem 3.36 the existence

of a unique fixed-point ofMT ∗,θT∗ω,yT∗ . Furthermore, Lemma 3.53 shows that we can concatenate
them and obtain a fixed-point (y, z) ofM2T ∗,ω,ξ. Again we have |y2T ∗ | ≤ r̃.

Iterating this argument entails the existence of a unique fixed-point (y, z) ofMT,ω,ξ for any T > 0
which is unique by Theorem 3.41.

Corollary 3.55. Let ξ in W . Then for any T > 0 there exists a unique fixed-point of MT,ω,ξ.

Proof. Theorem 3.36 guarantees the existence of a unique fixed-point (y, z) of MT1,ω,ξ, where
T1 = T1(ω, ξ). Furthermore, due to (3.78) we obtain yT1 ∈ Dβ. Then, by Theorem 3.36 we know
that there exists a unique-fixed point of MT2,θT1ω,yT1

, which according to Lemma 3.53 can be
concatenated with the previous one to a fixed-point (y, z) of MT1+T2,ω,ξ. Lemma 3.49 entails
yT1+T2 ∈ D2β. Hence, we are in the setting of Theorem 3.54 and obtain the existence of a global
fixed-point ofMT−T1−T2,θT1+T2ω,yT1+T2 . Again, this can be concatenated to a fixed-point ofMT,ω,ξ

due to Lemma 3.53. This procedure gives us the global-in-time solution.
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3.7 An Application

We indicate an example for the abstract theory proven above. For further applications consult [25,
Section 5] and [27, Section 7].

Example 3.56. We consider an open bounded C2-domain O ∈ Rd, for d ≥ 1. Furthermore, let
A stand for the Laplace operator or for a second order uniformly elliptic operator augmented
by Dirichlet boundary conditions. Then we know that A generates an analytic C0-semigroup
on W := L2(O). Moreover, we can identify the domains of the fractional powers of A with
Sobolev-Slobodetski spaces depending on the range of θ. We have according to Theorem 16.12 in
[60] that

D((−A)θ) =

{
H2θ(O), 0 ≤ θ < 1/4

H2θ
D (O), 1/4 < θ ≤ 1.

Here HD stands for the Sobolev space that incorporates the boundary conditions, in particular
D(−A) = H2(O) ∩H1

0 (O).

Having stated the assumptions on the linear part we now focus on G. Therefore, we firstly set for
simplicity V := L2(O). Let g : O × R→ R be a three times continuously differentiable function
with bounded derivatives which is zero on {0, 1} × R. We interpret g as the kernel of the following
integral operator

G(ϕ)(ψ)[x] :=

∫
O

g(x, ϕ(x̃))ψ(x̃) dx̃. (3.90)

As in [43, Section XVII.3] one can show that G is three times continuously Frèchet-differentiable
and compute the derivatives as follows

DG(ϕ)(ψ, h1)[x] =

∫
O

D2g(x, ϕ(x̃))ψ(x̃)h1(x̃) dx̃,

D2G(ϕ)(ψ, h1, h2)[x] =

∫
O

D2
2g(x, ϕ(x̃))ψ(x̃)h1(x̃)h2(x̃) dx̃,

D3G(ϕ)(ψ, h1, h2, h3)[x] =

∫
O

D3
2g(x, ϕ(x̃))ψ(x̃)h1(x̃)h2(x̃)h3(x̃) dx̃,

for h1, h2 and h3 belonging to W . Due to the assumptions on g, these expressions are obviously
bounded.

It is left to show that G : W → L(W,Dβ) is Lipschitz continuous. Here β ≥ 1/3 as assumed in
(G). To this aim let ψ1 and ψ2 ∈W and compute

|G(ϕ1)−G(ϕ2)|L(W,Dβ) = sup
|ψ|=1

|G(ϕ1)(ψ)−G(ϕ2)(ψ)|Dβ

≤ C sup
|ψ|=1

|G(ϕ1)(ψ)−G(ϕ2)(ψ)|D(−A)

= C sup
|ψ|=1

∣∣∣∣∣
∫
O

(
g(·, ϕ1(x̃))− g(·, ϕ2(x̃)

)
ψ(x̃) dx̃

∣∣∣∣∣
D(−A)

.

53



3 Solution Theory for Rough Evolution Equations

Therefore, we estimate for k = 0, 1, 2:∣∣∣∣∣
∫
O

(
Dk

1g(·, ϕ1(x̃))−Dk
1g(·, ϕ2(x̃)

)
ψ(x̃) dx̃

∣∣∣∣∣
2

L2(O)

=

∫
O

∣∣∣∣∣
∫
O

(
Dk

1g(x, ϕ1(x̃))−Dk
1g(x, ϕ2(x̃)

)
ψ(x̃) dx̃

∣∣∣∣∣
2

dx

≤ C
∫
O

∣∣∣∣∣
∫
O

|D2D
k
1g|∞ |ϕ1(x̃)− ϕ2(x̃)| |ψ(x̃)| dx̃

∣∣∣∣∣
2

dx

≤ C|O| |D2D
k
1g|2∞ |ϕ1 − ϕ2|2L2(O) |ψ|

2
L2(O).

We finally obtain that

|G(ϕ1)−G(ϕ2)|L(W,Dβ) ≤ C|ϕ1 − ϕ2|L2(O),

where the constant C depends on |O| and g.

In conclusion our theory can be applied to parabolic SPDEs driven by multiplicative fractional
noise as described in (3.90).

Remark 3.57. Note that we do not make any additional assumptions on the eigenvalues of A.
This is natural in the context of rough path theory, compare [10]. However, working with different
techniques such as presenting the infinite-dimensional integral as a sum of one-dimensional integrals
[50], ([27]) may lead to further assumptions on the asymptotic of the eigenvalues and implicitly to
a restriction of the domains.

3.8 Concluding Remarks on the Coefficients

As announced in Remark 2.2 we now have a closer look at the coefficients.

At first let us how to deal with F 6≡ 0. Assuming F to be Lipschitz continuous, which is essential
even in the deterministic case, we obtain the existence of the Bochner integral, see [55, Section 4.3].
This fulfills

∣∣∣ t∫
s

S(t− r)F (yr)dr
∣∣∣
Dγ
≤ C(1 + ‖y‖∞)(t− s)1−γ , for all 0 ≤ γ ≤ 1, (3.91)

which yields its Lipschitz continuity. In fact, for all 0 ≤ s ≤ τ ≤ t ≤ T we have

∣∣∣ t∫
s

S(t− r)F (yr)dr −
τ∫
s

S(τ − r)F (yr)dr
∣∣∣ ≤ C(1 + ‖y‖∞)(t− τ). (3.92)

Following the theory developed in this chapter, we see that if F 6≡ 0 a solution (y, z) of (1.1) fulfills

yt = S(t)ξ +

t∫
0

S(t− r)F (yr)dr + IΞ(y)(y, z)t (3.93)

and for a placeholder E ∈ L(W ⊗ V ;W ) we have

zts(E) =

t∫
s

S(t− r)E
r∫
s

S(r − q)F (yq) dq dωr + (δ̂IΞ(z)(y, y))ts(E)− ωSts(Eys), (3.94)
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3.8 Concluding Remarks on the Coefficients

By (3.91) and (3.92) we see that the additional term
∫ ·

0 S(· − r)F (yr)dr is contained in the domain
of A and Lipschitz continuous. Hence, since 2β < 1 all deliberations done in Section 3.5 and 3.6
remain the same.

When considering (3.94) we have to give meaning to the additional term

t∫
s

S(t− r)E
r∫
s

S(r − q)F (yq) dq dωr.

Thanks to the Lipschitz continuity of the inner integral, see (3.92), we can define

t∫
s

S(t− r)E
r∫
s

S(r − q)F (yq) dq dωr = lim
|P|→0

∑
[u,v]∈P

S(t− v)ωSvu

(
E

u∫
s

S(u− q)F (yq)dq
)

(3.95)

in the Young sense. For the sake of completeness let us give the proof using the Sewing Lemma.
Set

Ξ(F ),s
vu = ωSvu

(
E

u∫
s

S(u− q)F (yq)dq
)
.

(3.47) and (3.91) yield ∣∣∣Ξ(F ),s
vu

∣∣∣ ≤ C |||ω|||α |E|(1 + ‖y‖∞)(u− s)1(v − u)α. (3.96)

By (3.44) we obtain

(δ̂2Ξ(F ),s)vmu = ωSvm

(
E
[ u∫
s

S(u− q)F (yq)dq −
m∫
s

S(m− q)F (yq)dq
])
.

By (3.47) and (3.92) we see∣∣∣(δ̂2Ξ(F ),s)vmu

∣∣∣ ≤ C |||ω|||α |E| (1 + ‖y‖∞)(v − u)1+α.

Hence, the Sewing Lemma, more precisely Corollary 3.8, yields (3.95).

Furthermore, we can derive another estimate. (3.96) yields
∣∣∣Ξ(F ),s
ts

∣∣∣ = 0. Hence, by (3.23) we
conclude that

∣∣∣ t∫
s

S(t− r)E
r∫
s

S(r − q)F (yq) dq dωr

∣∣∣ =
∣∣∣(δ̂IΞ(F ),s)ts

∣∣∣
≤
∣∣∣(δ̂IΞ(F ),s)ts − Ξ

(F ),s
ts

∣∣∣+
∣∣∣Ξ(F ),s
ts

∣∣∣
≤ C |||ω|||α |E|(1 + ‖y‖∞)(t− s)1+α.

Since 1 + α > α+ 2β the deliberations in Section 3.5 and 3.6 remain the same.

Moreover, we shortly want to consider the case of an affine linear diffusion term G(x) = G1x +
G2. In this case one can use a Doss-Sussmann type transformation in order to convert the
stochastic equation into a random equation which can be solved pathwise, see [13] and [59] for the
transformation and [58], [9] and [14] for applications to stochastic equations.

While we can derive the existence of a local solution because Theorem 3.33 does not require
boundedness of G, Theorem 3.54 does not apply to affine linear G. To the best of our knowledge it
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3 Solution Theory for Rough Evolution Equations

is not clear if one can drop the boundedness condition on G.
However, if you follow the calculations in Section 3.6 you see that in the case of an affine linear G
we still obtain a global solution.

In Section 3.6 we used the boundedness of G in order to avoid quadratic terms. Now, for affine
linear G we have that DG ≡ G1 and D2G ≡ 0 and thus

G(yu)−G(ym) +DG(yu)(δy)mu = G1yu +G2 −G1ym −G2 +G1(δy)mu = 0,

compare the proof of Lemma 3.51.
Furthermore, we only have to consider zvu(DG(yu)) = zvu(G1) which is independent of y.

So, one can prove Lemma 3.51 with the same calculations as given in Section 3.6 under the assump-
tion that G is affine linear. Since this is the crucial lemma of Section 3.6, all further results hold true.

We conclude this chapter with a final remark on the generic constant.

Remark 3.58. In Chapter 2 and this chapter we have worked with a generic constant C which
depends on the semigroup S the nonlinear coefficients F and G, the noisy input ω and on further
parameters α, β. For notational simplicity we have omitted these dependencies. However, it is not
hard to see that C is of multiplicative structure in all computations done in this chapter, more
precisely C = CSCFCGC(ω) where CS = CS,α,β and C(ω) is a polynomial in |||ω|||α and

∥∥ω(2)
∥∥

2α
.

For analyzing the dynamics of solutions of (1.1) in the next chapter it will be necessary to state
these dependencies.
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4. Dynamics of Rough Evolution
Equations

Referring to the monograph of Arnold [2], it is well-known that an Itô-type stochastic differential
equation generates a random dynamical system under natural assumptions on the coefficients. This
fact is based on the flow property, see [46, 57], which can be obtained by Kolmogorov’s theorem
about the existence of a (Hölder)-continuous random field with finite-dimensional parameter range,
i.e. the parameters of this random field are the time and the non-random initial data.

The generation of a random dynamical system from an Itô-type SPDE has been a long-standing
open problem, since Kolmogorov’s theorem breaks down for random fields parametrized by infinite-
dimensional Hilbert spaces, see [52]. As a consequence it is not trivial how to obtain a random
dynamical system from an SPDE, since its solution is defined almost surely, which contradicts
the cocycle property. Particularly, this means that there are exceptional sets which depend on
the initial condition and it is not clear how to define a random dynamical system if more than
countably many exceptional sets occur.
Thus, dynamical aspects for (1.1) such as asymptotic stability, Lyapunov exponents, multiplicative
ergodic theorems, random attractors, random invariant manifolds have not been investigated in
their full generality.

In this chapter we show that the solution of (1.1) generates a random dynamical system and in
the following prove asymptotic stability of the trivial solution.

4.1 Random Dynamical Systems

Based on the results derived in the previous chapter we investigate random dynamical systems
for (1.1). There are very few works that deal with random dynamical systems for SPDEs driven by
nonlinear multiplicative rough noise, see for instance [19]. In the finite-dimensional setting this
topic was considered in [3].

We start by introducing the next fundamental concept in the theory of random dynamical systems,
which describes a model of the driving noise, see [2].

Definition 4.1. Let (Ω,F ,P) stand for a probability space and θ : R × Ω → Ω be a family of
P-preserving transformations (i.e., θtP = P for t ∈ R) having the following properties:

(i) the mapping (t, ω) 7→ θtω is (B(R)⊗F ,F)-measurable;

(ii) θ0 = IdΩ;

(iii) θt+s = θt ◦ θs for all t, s,∈ R.

Then the quadrupel (Ω,F ,P, (θt)t∈R) is called a metric dynamical system.

Motivated by this we precisely describe the random input driving (1.1). Therefore, our aim is
introduce the (canonical) probability space associated to a Hilbert space-valued α-Hölder rough
path. We recall that α ∈ (1

3 ,
1
2) was fixed at the beginning of this work. An example is constituted

57



4 Dynamics of Rough Evolution Equations

by a trace-class V -valued fractional Brownian motion with Hurst index H ∈ (1/3, 1/2]. In order to
construct it, we recall that a two-sided real-valued fractional Brownian motion β̃H(·) with a Hurst
index H ∈ (0, 1) is a centered Gaussian process with covariance function

E(β̃H(t)β̃H(s)) =
1

2
(|t|2H + |s|2H − |t− s|2H), for s, t ∈ R.

In order to introduce a V -valued process, we let Q stand for a positive symmetric operator of
trace-class on V , i.e. trVQ <∞. This has a discrete spectrum which will be denoted by (λQn )n∈N.

It is well-known that the eigenvectors (en)n∈N build an orthonormal basis in V . Then a V -valued
two-sided Q-fractional Brownian motion ω is represented by

ωt =
∞∑
n=1

√
λQn β̃

H
n (t)en, t ∈ R, (4.1)

where (β̃Hn (·))n∈N is a sequence of one-dimensional independent standard two-sided fractional

Brownian motions with the same Hurst parameter H and trVQ =
∞∑
n=1

λQn <∞. In the following

sequel we further fix H ∈ (1
3 ,

1
2 ].

Keeping (4.1) in mind it is not hard to show that ω is locally Hölder continuous by using
Kolmogorov’s continuity criterion, see [46, Theorem 1.4.1].

Lemma 4.2. Let ω be a fractional Brownian motion given by (4.1). Then, ω is locally α-Hölder
continuous for all α < H almost surely.
Furthermore, we obtain

E |||ω|||α ≤ Cα,H
√
trVQ. (4.2)

Proof. It is well known that a one-dimensional fractional Brownian motion is locally α-Hölder
regular for all α < H , see[53, Section 1.4]. Keeping this in mind we obtain

E |||ω|||2α ≤
∞∑
n=1

λQnE
∣∣∣∣∣∣β̃Hn ∣∣∣∣∣∣2α =

∣∣∣∣∣∣β̃H1 ∣∣∣∣∣∣2αtrVQ.
Jensen’s inequality proves (4.2) which yields the rest of the statement.

Keeping Lemma 4.2 in mind we are justified to introduce the canonical probability space
(C0(R, V ),B(C0(R, V )),P, θ). Here C0(R, V ) denotes the set of all V -valued continuous func-
tions which are zero in zero endowed with the compact open topology and P is the fractional
Gauß-measure which is uniquely determined by Q and H.
As already introduced in Section 2.2, we take for θ the usual Wiener-shift, namely

θτωt = ωt+τ − ωτ , for ω ∈ C0(R, V ).

Further, for our aims we restrict it to the set Ω := Cα
′

0 (R, V ) of all α′-Hölder-continuous
paths on any compact interval, where 1

3 < α < α′ < H ≤ 1
2 . We equip this set with

the trace σ-algebra F := Ω ∩ B(C0(R, V )) and take the restriction of P as well. Then
Ω ⊂ C0(R, V ) has full measure and is θ-invariant. Moreover, the new quadrupel (Ω,F ,P, θ) as
introduced above forms again a metric dynamical system which we will further be restricted later on.

We point out the following result regarding the existence/construction of the Lévy-area ω(2) for
an element ω ∈ Ω. We stress the fact that it is necessary to let ω be α′-Hölder continuous for
1
3 < α < α′ < H ≤ 1

2 . This is required in order to lift ω to an α-Hölder rough path ω = (ω, ω(2)).
To this aim we furthermore have to consider the restriction of ω on compact intervals. The precise
setting is stated below.
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4.1 Random Dynamical Systems

Lemma 4.3. Let 1
3 < α < α′ < H ≤ 1

2 and ω ∈ Ω be a Q-fractional Brownian motion with
Hurst index H. Then there is a θ-invariant subset Ω′ ⊂ Ω of full measure such that for any ω ∈ Ω′

and for any compact interval J ⊂ R there exists a Lévy-area ω(2) ∈ C2α(∆J , V ⊗ V ) such that
ω = (ω, ω(2)) defines an α-Hölder rough path. This can further be approximated by a sequence
ωn := ((ωn, ω(2),n))n∈N in the corresponding dα,J -metric. Here (ωn)n∈N are piecewise dyadic linear
functions and

ω
(2),n
ts =

t∫
s

(δωn)rs ⊗ dωnr .

Proof. Let j, k ∈ N and T ∈ N be such that J ⊆ [−T, T ]. We introduce

ω
(2)
ts (j, k) :=

t∫
s

(β̃Hj (r)− β̃Hj (s)) dβ̃Hk (r), for − T ≤ s ≤ t ≤ T. (4.3)

This process exists almost surely according to Theorem 2 in [8], see also [20, Corollary 10.10].
Regarding (4.1) we can represent the infinite-dimensional Lévy-area ω

(2)
ts ∈ V ⊗ V component-wise

as

ω
(2)
ts =

∞∑
j,k=1

√
λj
√
λk ω

(2)
ts (j, k) ej ⊗ ek. (4.4)

This is well-defined almost surely due to the fact that trVQ < ∞. Moreover, one has that
ω(2),n → ω(2) in C2α(∆[−T,T ], V ⊗ V ) almost surely. The proof of these assertions relies on a
standard Borel-Cantelli argument combined with the Garsia-Rodemich-Rumsey inequality and
follows the lines of Lemma 2 in [24]. Since J ⊆ [−T, T ], one clearly concludes that ωn converges
to ω with respect to the dα,J -metric. This immediately yields that Ω′ has full measure and is
θ-invariant.

From now on we work with the metric dynamical system (Ω′,F ′,P′, θ) corresponding to Ω′

constructed in Lemma 4.3. As above we set F ′ := Ω′ ∩ F and take P′ as the restriction of P.

Note that thanks to Lemma 4.3 there is a unique way to lift the path ω of a fractional Brownian
motion to rough path ω ∈ C0,α

g . Whenever this is possible in a more general setting the following
statements of this Section hold true.

For considering the dynamics of a given solution of (1.1) we are especially interested in the path
component of this solution while the area component is less important. Roughly speaking the path
component is the observed object while the area component has only supporting character. Hence,
we define

ϕ : R+ × Ω′ ×W →W, ϕ(t, ω, ξ) := yt,

where (y, z) is the unique fixed point ofMt,ω,ξ. One can say ϕ(·, ω, ξ) gives the path component of
the solution of (1.1) on R+ for given noise ω ∈ Ω′ and initial condition ξ ∈W .

In case we want to emphasize the dependence of the solution on the coefficients F and G, we write
ϕ(t, ω, ξ, F,G).

The concept introduced next is the basis for the investigation of many dynamical aspects. For a
general overview see [2].
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4 Dynamics of Rough Evolution Equations

Definition 4.4. A random dynamical system on W over a metric dynamical system
(Ω,F ,P, (θt)t∈R) is a mapping

ϕ : R+ × Ω×W →W, (t, ω, x) 7→ ϕ(t, ω, x),

which is (B(R+)×F × B(W ),B(W ))-measurable and satisfies:

(i) ϕ(0, ω, ·) = IdW for all ω ∈ Ω;

(ii) ϕ(t+ τ, ω, x) = ϕ(t, θτω, ϕ(τ, ω, x)), for all x ∈W, t, τ ∈ R+, ω ∈ Ω.

If one additionally assumes that

(iii) ϕ(t, ω, ·) : W →W is continuous for all t ∈ R+ and all ω ∈ Ω,

then ϕ is called a continuous random dynamical system.

The second property in Definition 4.4 is referred to as the cocycle property. As already mentioned
in Section 3.5 the fact that ϕ fulfills the cocycle property is a direct consequence of Lemma 3.39.
However, since this property is fundamental, we provide all necessary deliberations in detail.

Lemma 4.5. ϕ fulfills the cocycle property.

Proof. By definition we have

ϕ(t+ τ, ω, ξ) = yt+τ ,

where (y, z) is the unique fixed point of Mt+τ,ω,ξ. Lemma 3.39 states that (θτy, θτz) is a fixed
point ofMt,θτω,yτ . This entails

ytτ = θτyt = ϕ(t, θτω, yτ ).

By Remark 3.40 we know that yτ = ϕ(τω, ξ) which yields the statement.

One can expect the solution operator of (1.1) to generate a random dynamical system. Indeed,
a big advantage in working with a pathwise interpretation of the stochastic integral, is that no
exceptional sets occur.

We can now state the main result of this section. Recall that Ω′ was constructed in Lemma 4.3.

Theorem 4.6. ϕ : R+ × Ω′ ×W →W generates a random dynamical system.

Proof. Due to Theorem 3.54 we know that we can define the solution (y, z) of (1.1) on any time-
interval [0, T ] for T > 0. The cocycle property is given by Lemma 4.5. The continuity of ϕ with
respect to time and initial condition is clear, we only have to show the measurability. Therefore,
we consider a sequence of solutions ((yn, zn))n∈N corresponding to the smooth approximations
((ωn, ω(2),n))n∈N, recall Lemma 4.3. Note that the mapping ω 7→ (ωn, ω(2),n) is measurable. Due
to the fact that ωn is smooth yn is a classical solution of (1.1). Hence, the mapping

[0, T ]× Ω′ ×W 3 (t, ω, ξ) 7→ ynt ∈W

is (B([0, T ])⊗F ′ ⊗ B(W ),B(W ))-measurable. Regarding Lemma 3.19 one can immediately infer
that the solution (y, z) continuously depends on (ωn, ω(2),n). This leads to

lim
n→∞

ynt = yt, (4.5)

which gives us the measurability of yt with respect to F ′⊗B(W ). Since y is continuous with respect
to t, we obtain by Lemma 3 in [4] the jointly measurability, i.e. the (B([0, T ])⊗F ′ ⊗B(W ),B(W ))
measurability of the mapping

[0, T ]× Ω′ ×W 3 (t, ω, ξ) 7→ yt ∈W. (4.6)

Since (4.6) holds true for any T > 0, one obviously concludes that ϕ is (B(R+)⊗F ′⊗B(W ),B(W ))-
measurable.
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4.2 Local Exponential Stability

4.2 Local Exponential Stability

In this section and also in the following one we want to analyze the asymptotic behavior of the
path component of the solution of (1.1). Now we are interested in establishing local exponential
stability of the trivial solution.

The most important drawback we have to face is that our driving noise is in general not Markovian.
Hence, we can not use techniques provided in [44]. However, new approaches have been developed
in order to show stability for pathwise solutions. In [29] and [30] the authors show local stability
in an ODE setting where the driving noise is given by a fractional Brownian motion with Hurst
parameter H > 1

2 , respectively H > 1
3 . In [16] and [17] the authors consider driving Gaussian

noise in an ODE setting. The goal of this section is to prove local exponential stability in the
very general setting given in (1.1), with three additional assumptions. At first, we specify the
assumptions on the given linear operator

(SL1) For a λ > 0 the operator A + λ Id is strictly negative. Thus, it generates an analytic
exponentially stable semigroup S meaning that for all t > 0 we have

‖S(t)‖ ≤ e−λt.

Let us state one important estimate of the semigroup provided by assumption (SL1). For more
details see [55, Section 2.6].

Lemma 4.7. Given assumption (SL1) for η, κ ∈ R and t ≥ 0 we have

‖S(t)‖L(Dκ,Dη) ≤ CS t
κ−ηe−λt for κ ≤ η. (4.7)

Furthermore, we impose some additional properties on the coefficients.

(SL2) F (0) = 0, DF (0) = 0,

(SL3) G(0) = 0, DG(0) = 0,

Clearly under the assumptions (SL2) and (SL3) the solution of (1.1) is trivial if ξ = 0.

Let us give a formal definition for local exponential stability of this trivial solution, see [30,
Definition 8].

Definition 4.8 (Local Exponential Stability). The trivial solution of (1.1) is called locally ex-
ponentially stable with a rate λ′ > 0 if there exists a random neighborhood of zero U0(ω) and a
random variable M(ω) > 0 such that for almost all ω ∈ Ω the path component fulfills

sup
ξ∈U0(ω)

|yt| ≤M(ω)e−λ
′t for all t ≥ 0. (4.8)

In preparation of the following deliberations for notational simplicity we introduce for (y, z) ∈ Xω,T

It,ω(y, z, F,G) =

t∫
0

S(t− r)F (yr)dr + IΞ(y)
ω (y, z)t, 0 ≤ t ≤ T. (4.9)

Moreover, we set Iω(y, z, F,G) :=
(
It,ω(y, z, F,G)

)
t∈[0,T ]

.
We emphasize the dependence of the coefficients F and G because eventually it will be necessary
to consider different coefficients. However, if we only have to consider one pair of coefficients F
and G we will suppress this dependence and only write It,ω(y, z) and Iω(y, z).

The following lemma gives the basis for both of our long time behavior analysis (local and global,
see Section 4.3). We consider a solution of (1.1) on R+ and split it via the cocycle property into a
sequence of solutions on compact intervals which depend on the (shifted) noise.
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4 Dynamics of Rough Evolution Equations

Lemma 4.9. Let (y, z) be a solution of (1.1) on R+. Furthermore, consider a sequence of increasing
random times (Tn)n∈N0 = (Tn(ω))n∈N0 with T0 ≡ 0 For n ∈ N0 define the function

ynt := yt+Tn , for 0 ≤ t ≤ Tn+1 − Tn.
znts := zt+Tn,s+Tn , for 0 ≤ s ≤ t ≤ Tn+1 − Tn.

Then, we have for all n ∈ N0 and t ∈ [Tn, Tn+1]

ynt−Tn = S(t)ξ +
n−1∑
j=0

S(t− Tj+1)ITj+1−Tj ,θjω(yj , zj) + It−Tn,θnω(yn, zn). (4.10)

Proof. By definition we have y0 = ϕ(·, ω, ξ) on [0, T1]. Furthermore, Lemma 4.5 implies that
yn = ϕ(·, θTnω, yn−1

Tn−Tn−1
) on [0, Tn+1 − Tn] for all n ≥ 1.

Consequently we obtain for t ∈ [Tn, Tn+1]

yt = ynt−Tn = S(t− Tn)yn−1
Tn−Tn−1

+ It−Tn,θTnω(yn, zn).

Plugging in the same formula for yn−1
Tn−Tn−1

yields

ynt−Tn = S(t− Tn−1)yn−2
Tn−1−Tn−2

+ S(t− Tn)ITn−Tn−1,θn−1ω(yn−1, zn−1) + It−Tn,θnω(yn, zn).

Iterating this calculation yields the proposed statement.

For the sake of completeness we have proven Lemma 4.9 in a very general setting for arbitrary
random times (Tn)n∈N0 .
For showing local exponential stability it is sufficient to set Tn = n for all n ∈ N0 whereas in
Section 4.3 it will be necessary to consider a sequence of stopping times which will be specified
later on.
Now, consider a solution (y, z) of (1.1) on R+. For n ∈ N0 define the functions

ynt := yt+n, for 0 ≤ t ≤ 1.

znts := zt+n,s+n, for 0 ≤ s ≤ t ≤ 1.

Then, Lemma 4.9 shows for t ∈ [n, n+ 1]

ynt−n = S(t)ξ +

n−1∑
j=0

S(t− j − 1)I1,θjω(yj , zj , F,G) + It−n,θnω(yn, zn, F,G). (4.11)

In order to prove local stability we will work with piecewise truncated functions. First let us
introduce the notion of such a cut-off function. Here, we use the same cut-off function as in [29,
Section 5].

For an arbitrary Banach space W consider the cut-off function

χ : W → B̄W (0, 1), with

χ(u) =

{
u if |u| ≤ 1

2 ,

0 if |u| ≥ 1,

where χ is bounded by 1 and twice continuously differentiable with bounded derivatives
‖Dχ‖∞ =: LDχ and

∥∥D2χ
∥∥
∞ =: LD2

χ
.

For arbitrary % > 0 define

χ% : W → B(0, %),

χ%(u) := %χ

(
u

%

)
.
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4.2 Local Exponential Stability

Let W ′ be a further Banach space. For a function T : W →W ′ we set

T% : W →W ′,

T%(u) := T (χ%(u)).

The next lemma gives a fundamental property of truncated functions. You can find a finite-
dimensional version in [29, Lemma 4]. In the infinite-dimensional case we have to additionally
assume boundedness of the first derivative which is automatically given in the finite-dimensional
case by the compactness of the unit ball.

Lemma 4.10. Let W,W ′ be Banach spaces and T : BW (0, 1)→W ′ a continuously differentiable
function with bounded first derivative and T (0) = 0. Then, there exists a measurable function
(0, 1] 3 %̄ 7→ % ∈ (0, 1] such that

|T (x)| ≤ %̄ for all x ∈ BW (0, %).

and there exists κ > 0 such that for all %̄ ∈ (0, 1] we have the estimate

%(%̄)

%̄
≥ κ.

Proof. We have

|T (x)| ≤ ‖DT ‖∞ |x| .

Consequently, choosing % = %(%̄) = %̄
‖DT ‖∞

entails

|T (x)| ≤ %̄ for all x ∈ BW (0, %)

and

%(%̄)

%̄
=

1

‖DT ‖∞
=: κ.

Now, let us state important estimates for the truncated coefficients F% and G%. All follow directly
by Lemma 4.10 with standard computations. Detailed calculations can be found in [30, Appendix].

Lemma 4.11. Given assumption (SL2) and (SL3), then for any %̄ > 0 there exists a positive
% ≤ 1 such that for all x1, x2 ∈W we have∣∣F%(x1)

∣∣ ≤ LDχ %̄ ∣∣x1
∣∣ , (4.12)∣∣G%(x1)

∣∣ ≤ LDχ %̄ ∣∣x1
∣∣ , (4.13)∣∣G%(x1)

∣∣
L(V ;Dβ)

≤ %̄, (4.14)∣∣G%(x1)−G%(x2)
∣∣
L(V ;Dβ)

≤ LDχ %̄
∣∣x1 − x2

∣∣ , (4.15)∣∣DG%(x1)
∣∣ ≤ LDχ %̄, (4.16)∣∣DG%(x1)−DG%(x2)
∣∣ ≤ (LD2

χ+L2
Dχ

)
∣∣x1 − x2

∣∣ . (4.17)

Remark 4.12. Note that unlike in [30] we do not assume D2G(0) = 0. Hence, the estimate (4.17)
slightly differs. Furthermore, we work in an infinite-dimensional setting and we are considering
some estimate in the fractional domain Dβ. However, the required calculations are still the same
as in [30].

For a given truncation constant % > 0 we want to consider the truncated equation{
dyt = (Ayt + F%(yt))dt+G%(yt)dωt, t ∈ [0, T ]

y0 = ξ.
(4.18)
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4 Dynamics of Rough Evolution Equations

By the theory developed in Chapter 3, its solution is given by

yt = S(t)ξ +

t∫
0

S(t− r)F%(yr)dr + IΞ(y),%(y, z)t, and (4.19)

zts(E) =

t∫
s

S(t− r)E
r∫
s

S(r − q)F%(yq) dq dωr + (δ̂IΞ(z),%(y, y))ts(E)− ωSts(Eys), (4.20)

where

Ξ(y),%
vu (y, z) := ωSvu(G%(yu)) + zvu(DG%(yu)) and

Ξ(z),%
vu (y, y)(E) := bvu(E,G%(yu)) + avu(E, yu).

The following lemma states some fundamental estimates for the solution of the truncated equation
(4.18). These are very similar to the estimates given in Section 3.6 but are specified because of the
additional assumptions (SL2) and (SL3) and the truncation of the coefficients. More precisely,

We have a term Φ instead of (1 + Φ) due to (SL2) and (SL3). (4.21)

We are not interested in the dependence on the time horizont T .
Instead, we exploit the effect of the truncation, see Lemmas 4.10 and 4.13. (4.22)

Consequently, the proofs are also very similar, the only difference is the necessity of applying
Lemma 4.11. Hence, we will omit the proof.

Lemma 4.13. Given assumptions (SL2) and (SL3) and let 0 < T ≤ 1. Then, for all %̄ > 0 there
exists 0 < % ≤ 1 such that the solution (y, z) = (y%, z%) of (4.18) on a time interval [0, T ], fulfills

‖y‖β ≤ CS (1 + |||ω|||α %̄) Φ, (4.23)

‖z‖α+β ≤ CS
(
1 +

(
|||ω|||2α +

∥∥ω(2)
∥∥

2α

)
%̄
)

Φ, (4.24)

∣∣∣ t∫
s

S(t− r)F%(yr)dr
∣∣∣
Dγ
≤ CS %̄ ‖y‖∞ (t− s)1−γ , for all 0 ≤ γ ≤ 1, (4.25)

|IΞy,%(y, z)t|Dγ ≤ CS %̄ Φ(t− s)α+β−γ , for all β ≤ γ < α+ β, (4.26)

‖Ry‖2β ≤ CSC(ω)%̄Φ, (4.27)

‖Rz‖α+2β ≤ CSC(ω)%̄Φ + CS |||ω|||α ‖y‖∞,D2β
. (4.28)

Here C(ω) is polynomial containing |||ω|||α and
∥∥ω(2)

∥∥
2α

and the mapping %̄ 7→ % is measurable.

In order to proof local exponential stability we will consider a sequence of solutions of properly
truncated equations and show that their norms tend to zero, while under suitable assumptions on
the initial condition this sequence coincides with the original solution.

Therefore, let % : Ω′ → (0, 1) be a random variable, which will be specified later on. We define a
sequence of local path components for the truncated equation (4.19), namely

y0,% = ϕ(ω, ξ, F%(ω), G%(ω)),

yn,% = ϕ(θnω, y
n−1,%
1 , F%(θnω), G%(θnω)), for n ≥ 1,

and (zn,%)n∈N0 is the sequence of corresponding area components.

Recall the functional Φ as given in (3.79). Note that it depends on the path component, the area
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4.2 Local Exponential Stability

component and the driving noise ω. Since we have to deal with a whole sequence of solutions and
consequently a sequence of functionals, we simplify the notation. For all n ∈ N we introduce

Φn := ‖yn,%‖∞,D2β ,1
+ ‖Ry,n‖2β,1 + ‖Rz,n‖α+2β,1 ,

with

Ry,nts := (δ̂yn,%)ts − θnωSts(G%(θnω)(y
n,%)), and

Rz,nts := zn,%ts − θnbts(·, G%(θnω)(y
n,%)).

In order to estimate Φn we will use a discrete version of the Gronwall Lemma. The proof can be
found in [29, Lemma 7].

Lemma 4.14 (discrete Gronwall lemma). Let (an)n∈N and (bn)n∈N non negative sequences and
c > 0 such that

an ≤ c +
n−1∑
j=0

bjaj , n = 0, 1, . . .

then

an ≤ c
n−1∏
j=0

(1 + bj), n = 0, 1, . . .

Indeed for a sequence of functionals Φn we can derive an estimate which allows us to apply the
discrete Gronwall Lemma.

Lemma 4.15. Let assumptions (SL1)–(SL3) be fulfilled and let %̄ : Ω′ → (0,∞) be measurable
function. Then, there exists a measurable function % : Ω′ → (0,∞) such that for all n ∈ N0 we have

Φn ≤ CSC(θnω)
[
e−λn |ξ|D2β

+

n−1∑
j=0

e−λ(n−j−1)C(θjω) %̄(θjω) Φj + C(θnω) %̄(θnω) Φn
]
,

where C(ω) is a polynomial containing |||ω|||α and
∥∥ω(2)

∥∥
2α
.

Proof. For each %̄(ω) on can choose %(ω) according to Lemma 4.13.

In order to estimate Φn we have to check each summand. Let us start with ‖yn‖∞,D2β ,1
. By (4.11)

and (4.7) we see

‖yn,%‖∞,D2β ,1
≤ CSe−λn |ξ|D2β

+

n−1∑
j=0

CSe
−λ(n−j−1)

∥∥∥Iθjω(yj,%, zj,%, F%(θjω), G%(θjω))
∥∥∥
∞,D2β ,1

+
∥∥Iθnω(yn,%, zn,%, F%(θnω), G%(θnω))

∥∥
∞,D2β ,1

.

Applying (4.25) and (4.26) yields

‖yn,%‖∞,D2β ,1
≤ CSe−λn |ξ|D2β

+

n−1∑
j=0

CSe
−λ(n−j−1)C(θjω)%̄(θjω)Φj

+ CSC(θnω)%̄(θnω)Φn.

(4.29)

Furthermore, considering Ry,n we know by (4.27)

‖Ry,n‖2β,1 ≤ CS C(θnω) %̄(θnω) Φn. (4.30)
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4 Dynamics of Rough Evolution Equations

Finally, we have to consider Rz,n. (4.28) states

‖Rz,n‖α+2β,1 ≤ CS C(θnω) %̄(θnω) Φn + CS |||θnω|||α ‖y
n,%‖∞,D2β

.

Hence, (4.29) yields

‖Rz,n‖α+2β ≤ CSC(θnω)
[
e−λn |ξ|D2β

+
n−1∑
j=0

e−λ(n−j−1)C(θjω) %̄(θjω) Φj

+ C(θnω) %̄(θnω) Φn
]
.

(4.31)

Combining (4.29), (4.30) and (4.31) we obtain the statement.

Corollary 4.16. For any ε > 0 there exists %̄ = %̄ε : Ω′ → (0, 1) such that for all n ∈ N0 we have

Φn ≤ CSC(θnω) |ξ|D2β

(
e−λ + ε

)n
. (4.32)

Proof. Choose

%̄(ω) :=
ε

2CSC(ω)2

Lemma 4.15 guarantees the existence of % : Ω′ → (0, 1) such that

eλn
Φn

C(θnω)
≤ CS |ξ|D2β

+ ε

n−1∑
j=0

e−λeλj
Φj

C(θjω)
.

So, applying Lemma 4.14 with an := eλn Φn

C(θnω) , bn := εe−λ and c := CS |ξ|D2β
yields

eλn
Φn

C(θnω)
≤ CS |ξ|D2β

(
1 + εe−λ

)n
.

Finally, we conclude

Φn ≤ CSC(θnω) |ξ|D2β

(
e−λ + ε

)n
.

We can choose ε > 0 small enough such that we obtain an exponential decay with rate (e−λ + ε)n.
However, C(θnω) depends on n as well. So we have to make sure that this is dominated by an
exponential term. This property for random variables is called temperedness.

Definition 4.17. A positive random variable X is called tempered from above, see [2] if

lim sup
t→∞

log+X(θtω)

t
= 0 for almost all ω ∈ Ω. (4.33)

X is called tempered from bellow if 1
X is tempered from above.

Remark 4.18. If t 7→ X(θtω) is continuous, an equivalent formulation to (4.33) is:

For all δ > 0 there exists a random constant Mδ(ω) such that

X(θtω) ≤Mδ(ω)eδt for almost all ω ∈ Ω and for all t ≥ 0.

Lemma 4.19. The random variable C(ω) is tempered from above and %̄(ω) is tempered from below.

Proof. It is known that |||ω|||α and
∥∥ω(2)

∥∥
2α

are tempered from above, see [30, Lemma 20]. Clearly,
each polynomial of tempered random variables is tempered, too. Hence, C(ω) is tempered from a
above and consequently %̄ is tempered from below.
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4.2 Local Exponential Stability

Theorem 4.20. Let ω ∈ Ω′ fulfill (4.33) then for all 0 < λ′ < λ there exists Bλ′(ω) > 0 such that,
if |ξ|D2β

≤ Bλ′(ω), then for all t ≥ 0 the path component of (1.1) fulfills

|yt|D2β
≤ e−λ′t.

Proof. Since C(ω) is tempered from above there exists 0 < δ < λ− λ′, and Mδ(ω) > 0 such that
C(θtω) < Mδ(ω)eδt.

Choose ε > 0 small enough such that δ + log(e−λ + ε) < −λ′ then (4.32) yields for all n ∈ N

‖yn,%‖∞,D2β
≤ Φn ≤ CSMδ(ω)Bλ′(ω)e−λ

′n. (4.34)

Furthermore, %̄(ω) := ε
2CSC(ω)2

is tempered from below, i.e. together with Lemma 4.10 we have

%(θtω) ≥ κ%̄(θtω) ≥Mλ′(ω)e−λ
′t.

Hence, if

Bλ′(ω) ≤ Mλ′(ω)

2CSMδ(ω)

we see for all n ∈ N

‖yn,%‖∞,D2β
≤ %(θnω)

2
.

But on this domain the truncated functions and the original coefficients coincide.
So, the solutions coincide too, i.e. yn,% = yn for all n ∈ N0.

Finally, if furthermore Bλ′(ω) ≤ e−λ
′

CSMδ(ω) we obtain for all n ∈ N0 and t ∈ [n, n+ 1]

|yt|D2β
=
∣∣ynt−n∣∣D2β

≤ ‖yn‖∞,D2β
≤ ‖yn,%‖∞,D2β

≤ e−λ′(n+1) ≤ e−λ′t.

Remark 4.21. Following the lines of the proof of Theorem 4.20 one further sees that the mapping
t 7→ Bλ′(θtω) is continuous for all ω ∈ Ω′ and 0 < λ′ < λ.

We conclude this section by showing the result of Theorem 4.20 for an arbitrary initial condition
ξ ∈W with sufficient small norm. The proof is very similar to the one of Corollary 3.55.

Corollary 4.22. Let ω ∈ Ω′ fulfill (4.33). Then for all 0 < λ′ < λ there exists B̂λ′(ω) > 0 and
Mλ′(ω) > 0 such that, if |ξ| ≤ B̂λ′(ω), then for all t ≥ 0 the path component of (1.1) fulfills

|yt| ≤Mλ′(ω)e−λ
′t.

Proof. We split the proof into two steps. At first consider ξ̃ ∈ Dβ . For all 0 < λ′ < λ Theorem 4.20
guarantees the existence of Bλ′(ω).
Let ỹ = ϕ(·, ω, ξ̃) and z̃ the corresponding area term. Considering (3.84) and keeping Remark 4.21
in mind we can choose 0 < T̃ = T̃ (ω) ≤ 1 such that∣∣ỹ

T̃

∣∣
D2β
≤ CSC(ω)

∣∣ξ̃∣∣
Dβ
T̃−β +

1

3
Bλ′(ω),

2

3
Bλ′(ω) ≤ Bλ′(θT̃ω).

We see that one can choose
∣∣ξ̃∣∣

Dβ
≤ B̃λ′(ω) such that

∣∣ỹ
T̃

∣∣
D2β
≤ 2

3
Bλ′(ω) ≤ Bλ′(θT̃ω).
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4 Dynamics of Rough Evolution Equations

Thus, Lemma 4.5 and Theorem 4.20 show that for all t ≥ T̃

|yt|D2β
≤ e−λ′(t−T̃ ) = eλ

′T̃ e−λ
′t (4.35)

holds true.
In the second step let ξ ∈W . The deliberations are very similar to the one of the first step. Let
y = ϕ(·, ω, ξ) and z the corresponding area term. Now, consider (3.78) and note that analogously
to Remark 4.21 the mapping t 7→ B̃λ′(θtω) is continuous, too. So, consider 0 < T = T (ω) ≤ 1 such
that

|yT |Dβ ≤ CSC(ω) |ξ|W T−β +
1

3
B̃λ′(ω),

2

3
B̃λ′(ω) ≤ B̃λ′(θTω).

Hence, there is B̂λ′(ω) > 0 such that if |ξ| ≤ B̂λ′(ω) we have

|yT |Dβ ≤
2

3
B̃λ′(ω) ≤ B̃λ′(θTω).

Consequently, by Lemma 4.5 and (4.35) we see that for all t ≥ T (ω) + T̃ (θT (ω)ω) the estimate

|yt| ≤ |yt|D2β
≤ eλ′(T+T̃ (θT ·))e−λ

′t

holds true. Finally, for t ≤ T + T̃ (θT ·) ≤ 2 we know by Lemma 3.30 that y remains bounded which
concludes the proof.

4.3 Global Exponential Stability

Unlike in the Section 4.2 now we are interested in proving global exponential stability of the trivial
solution. The drawback of an in general not Markovian random input is still present, compare
Section 4.2. In [18] and [17] the authors show global exponential stability for the trivial solution
in the Young respectively in the rough case but always for small noise, meaning that influence of
the random noise is chosen sufficiently small. Here, we want omit this restriction and analyze a
fractional Brownian motion with arbitrary but fixed trace class operator Q.

Definition 4.23 (Global Exponential Stability). The trivial solution of (1.1) is called globally
exponentially stable with a rate λ′ > 0 if there exists a random variable M(ω) > 0 such that for
almost all ω ∈ Ω the path component fulfills

|yt| ≤M(ω)e−λ
′t for all t ≥ 0. (4.36)

Clearly, global exponential stability with rate λ′ > 0 implies local exponential stability with rate
λ′. Furthermore, we only assume

(SG1) For a λ > 0 the operator A + λId is strictly negative. Thus, it generates an analytic
exponentially stable semigroup S.

(SG2) F (0) = 0,

(SG3) G(0) = 0.

Note that (SG1) coincides with (SL1) while (SG2)–(SG3) are less restrictive than (SL2)–(SL3).
Hence, we can in general not expect to get as good convergence rates as in Section 4.2.

Moreover, during this section we will focus on the case of a fractional Brownian motion with Hurst
parameter H > 1

2 . Recall that the fractional Brownian motion is not Markovian for H 6= 1
2 , as
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mentioned in Section 4.2. However, it still has stationary increments which is equivalent to the
fact that for all t ∈ R the shift θtω is a fractional Brownian motion, too. Since in this section we
will work with a sequence of stopping times we want to show this property for a non-deterministic
time shift by a stopping time. For this purpose, we further use an integral representation w.r.t. to
a Brownian motion. Hence, we cannot consider Ω = Cα

′
0 (R, V ) with 1

2 < α < α′ < H as in Section
4.1 as the Brownian motion cannot be embedded into Cα′0 (R, V ).
We consider a two-sided Brownian motion B = (Bt)t∈R on a complete probability space (Ω,F ,P).
Then, by [53, Proposition 2.3] or [49] we have specific integral representation for a fractional
Brownian motion, namely for all H ∈ (0, 1

2) ∪ (1
2 , 1) there is a constant cH > 0 such that

BH
t := cH

( 0∫
−∞

[
(t− r)H−

1
2 − (−r)H−

1
2

]
dBr +

t∫
0

(t− r)H−
1
2dBr

)
, t ≥ 0, (4.37)

is a one-sided fractional Brownian motion with Hurst parameter H.

With the help of this representation we can show the next lemma.

Lemma 4.24. Let H ∈ (0, 1
2)∪ (1

2 , 1) and T = T (ω) ≥ 0 be a stopping time w.r.t. to the augmented
Brownian filtration (FBt )t∈R. Then, θTBH is again a fractional Brownian motion with Hurst
parameter H.
Consequently, for each stopping time T = T (ω) > 0 w.r.t the augmented fractional Brownian
filtration (FBHt )t≥0 the randomly shifted process θTBH is again a fractional Brownian motion with
Hurst parameter H.

Proof. By (4.37) we have

(θT (ω)BH)t = BH
t+T (ω) −B

H
T (ω)

= cH

( 0∫
−∞

[
(t+ T (ω)− r)H−

1
2 − (−r)H−

1
2

]
dBr +

t+T (ω)∫
0

(t+ T (ω)− r)H−
1
2dBr

)

− cH
( 0∫
−∞

[
(T (ω)− r)H−

1
2 − (−r)H−

1
2

]
dBr +

T (ω)∫
0

(T (ω)− r)H−
1
2dBr

)

= cH

( t∫
−∞

(t− r)H−
1
2dθT (ω)Br −

0∫
−∞

(−r)H−
1
2dθT (ω)Br

)
.

By the strong Markov property we know that θT (ω)B is a Brownian motion. Hence, by Representa-
tion (4.37) we know that θT (ω)B

H is a fractional Brownian motion with Hurst parameter H.
Furthermore, Representation (4.37) yields that for each t ≥ 0 we have FBHt ⊂ FBt . Thus, each
stopping time T ≥ 0 w.r.t (FBHt )t≥0 is a stopping time w.r.t. (FBt )t∈R which finishes the proof.

Note that for the rest of this section we will work with the one-sided fractional Brownian motion
given by Representation (4.37). For notational simplicity we set ω = BH . However, in contrast to
all previous sections ω is locally α-Hölder continuous with α < H just almost surely.
Here it is important to mention that the set Cα0 (R+, V ) is θ-invariant. Hence, we can follow the
pathwise deliberations given in Chapter 3 and obtain the same results but just for those paths
with ω ∈ Cα0 (R+, V ).
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Let us recall important estimates given in Corollary 3.15 and (3.92). Keeping in mind Remark 3.58
and (4.21) for ω ∈ Cα and y ∈ Cβ,β with α+ β > 1 we have for 0 < s ≤ t ≤ T∣∣∣∣∣∣

t∫
s

S(t− r)F (yr)dr

∣∣∣∣∣∣ ≤ CSCF ‖y‖β,β,T (t− s) and

∣∣∣∣∣∣
t∫
s

S(t− r)G(yr)dωr

∣∣∣∣∣∣ ≤ CSCG |||ω|||α,T ‖y‖β,β,T (t− s)β−α.

Hence, by combining these results we obtain

‖Iω(y, F,G)‖β,β,T ≤
(
CSCFT + CSCGT

α |||ω|||α,T
)
‖y‖β,β,T (4.38)

Consider a solution y of (1.1) on R+ for H > 1
2 . In Section 4.2 we used a truncation technique in

order to prove local exponential stability. Now, we will exploit the possibility to choose the time
parameter in estimate (4.38) small.

Therefore, consider a fixed 0 < µ ≤ 1
2 , and similar to [29], define a sequence of increasing stopping

times (Tn)n∈N0 = (Tn(ω, µ))n∈N0 with T0 ≡ 0 and

CS(CF (Tn+1 − Tn) + CG(Tn+1 − Tn)α |||θTnω|||α,Tn+1−Tn) = µ for all n ∈ N0, (4.39)

if ω ∈ Cα0 (R+, V ) and Tn = 0 for all n ∈ N0 else.

Let us summarize the important properties of this sequence of stopping times in the next lemma.

Lemma 4.25. For all ω ∈ Ω and µ ∈ (0, 1
2 ] it holds

(i) The sequence (Tn)n∈N0
is well defined.

(ii) We can iteratively calculate the stopping times meaning that

Tn+1(ω) = Tn(ω) + T1(θTn(ω)ω). (4.40)

(iii) For all 0 ≤ s < t we have

s+ T1(θsω) < t+ T1(θtω). (4.41)

(iv) For all n ∈ N0 we have the estimates

Tn+1 − Tn ≤
µ

CSCF
(4.42)

and

Tn+1 − Tn ≥
µ

1
α

(µ1−αCαSC
α
F + CSCG |||θTnω|||α)

1
α

. (4.43)

(v) Tn tends to infinity for n→∞ and

lim
n→∞

Tn
n

= ET1 almost surely.
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Proof. For defining the sequence according to (4.39) the first time T1 is crucial. It is implicitly
given by

CS(CFT1 + CGT
α
1 |||ω|||α,T1) = µ.

Consider the function

Tω : R+ → R+,

Tω(q) = CS(CF q + CG q
α |||ω|||α,q).

This function is monotonically increasing and continuous and fulfills Tω(0) = 0 and lim
q→∞

Tω(q) =∞.

Hence, there exists T1 such that Tµ,ω(T1) = µ.

The same deliberations yield (4.40) and so the existence of the whole sequence.

In order to prove (4.41) we assume the contrary. This yields

µ = CS(CFT1(θsω) + CGT1(θsω)α |||θsω|||α,T1(θsω))

= CS(CFT1(θsω) + CGT1(θsω)α |||ω|||α,s,s+T1(θsω))

We have s < t ≤ t+ T1(θtω) ≤ s+ T1(θsω) which yields T1(θsω) > T1(θtω). Hence,

µ = CS(CFT1(θsω) + CGT1(θsω)α |||ω|||α,[s,s+T1(θsω)])

> CS(CFT1(θtω) + CGT1(θtω)α |||ω|||α,[t,t+T1(θtω)])

= CS(CFT1(θtω) + CGT1(θtω)α |||θtω|||α,T1(θtω)) = µ.

Clearly, this is not possible.

Estimate (4.42) follows directly by (4.39). By using this estimate we derive

µ = CSCFT1 + CSCGT
α
1 |||ω|||α,T1 ≤

(
CSCF

µ1−α

C1−α
S C1−α

F

+ CSCG |||ω|||α,T1

)
Tα1 .

This yields

T1 ≥
µ

1
α(

CαSC
α
Fµ

1−α + CSCG |||ω|||α,T1
) 1
α

.

So, (4.40) implies (4.43). Finally, (4.40) entails

Tn
n

=
1

n

n−1∑
j=0

Tj+1 − Tj =
1

n

n−1∑
j=0

T1(θTjω).

Since (θTn)n∈N0 is measure preserving, see Lemma 4.24, Birkhoff’s Ergodic Theorem guarantees
the existence of the limit for all ω on a (θTn)n∈N0-invariant set with full measure. Define

T ∗(ω) :=

{
lim
n→∞

Tn(ω)
n , if the limit exists,

0, else.

Then, it holds ET ∗ = ET1.

However, to our best knowledge it is not clear if this shift (θTn)n∈N0 is ergodic. Hence, we have to
manually prove that the limit T ∗ is constant almost surely.

We will prove that for all t > 0 and all n ∈ N0 we have

Tn(ω) < t+ Tn(θtω). (4.44)
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4 Dynamics of Rough Evolution Equations

The case n = 0 is trivial and n = 1 is given by (4.41). Furthermore, by (4.40) we have

Tn+1(ω) = Tn(ω) + T1(θTn(ω)ω) and

t+ Tn+1(θtω) = t+ Tn(θtω) + T1(θTn(θtω)θtω)

t+ Tn(θtω) + T1(θTn(θtω)+tω).

By induction assumption we have Tn(ω) < t+ Tn(θtω). So, (4.41) yields

Tn+1(ω) = Tn(ω) + T1(θTn(ω)ω)

< t+ Tn(θtω) + T1(θTn(θtω)+tω)

= t+ Tn+1(θtω).

Consequently, for all t > 0 there exists k = k(t, ω) ∈ N0 such that

Tk(ω) < t ≤ Tk+1(ω).

Then, (4.44) yields for all j ∈ N.

Tk+j(ω) < t+ Tj(θtω) ≤ Tk+1+j(ω).

This implies

T ∗(ω) = lim
n→∞

Tn(ω)

n
= lim

n→∞

Tn(θtω)

n
= T ∗(θtω)

for all t > 0. Since (θt)t≥0 is ergodic, see [31] it follows that the limit is constant almost surely.

Now, we have all tools ready for proving global exponential stability.

Theorem 4.26. Given the coefficients F and G fulfilling (SG2) and (SG3), a trace class fractional
Brownian motion with trVQ < ∞ and a linear operator A that generates an analytic semigroup
and satisfying (SG1) with a sufficiently large λ > 0, i.e. λ > λ0(CS , CF , CG, α, trVQ), then the
trivial solution of (1.1) for H > 1

2 is globally exponentially stable.

Proof. For n ∈ N0 define the function

ynt := yt+Tn , for 0 ≤ t ≤ Tn+1 − Tn.

Lemma 4.9 yields that for t ∈ [Tn, Tn+1]

ynt−Tn = S(t)ξ +
n−1∑
j=0

S(t− Tj+1)ITj+1−Tj ,θjω(yj , F,G) + It−Tn,θnω(yn, F,G).

Hence, by (4.7) and (4.38) it follows

‖yn‖β,β,Tn+1−Tn

≤ CSe
−λTn |ξ|

+ CS

n−1∑
j=0

e−λ(Tn−Tj+1)(CF (Tj+1 − Tj) + CG(Tj+1 − Tj)α
∣∣∣∣∣∣θTjω∣∣∣∣∣∣α,Tj+1−Tj

)
∥∥yj∥∥

β,β,Tj+1−Tj

+ CS(CF (Tn+1 − Tn) + CG(Tn+1 − Tn)α |||θTnω|||α,Tn+1−Tn) ‖yn‖β,β,Tn+1−Tn .

The definition of the stopping times yields

eλTn ‖yn‖β,β,Tn+1−Tn ≤
CS

1− µ
|ξ|+ µ

1− µ

n−1∑
j=0

eλ(Tj+1−Tj)eλTj
∥∥yj∥∥

β,β,Tj+1−Tj
.
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4.3 Global Exponential Stability

We apply the Gronwall Lemma (Lemma 4.14) with an = eλTn ‖yn‖β,β,Tn+1−Tn , bn = µ
1−µe

λ(Tn+1−Tn)

and c = CS |ξ|. This leads to

‖yn‖β,β,Tn+1−Tn ≤
CS

1− µ
|ξ| e−λTn

n−1∏
j=0

(1 +
µ

1− µ
eλ(Tj+1−Tj))

= 2CS |ξ|
n−1∏
j=0

(e−λ(Tj+1−Tj) +
µ

1− µ
)

= 2CS |ξ| exp
( n−1∑
j=0

log(e−λ(Tj+1−Tj) +
µ

1− µ
)
)
.

We know by (4.42) that

λ(Tn+1 − Tn) ≤ λµ

CSCF
, for all n ∈ N0.

If λ > 2CSCF we can set µ = CSCF
λ ≤ 1

2 which yields λ(Tn+1 − Tn) ≤ 1.

Since the function q 7→ log(e−q + µ
1−µ) is convex, we have for all 0 ≤ q ≤ 1 the estimate

log(e−q +
µ

1− µ
) ≤ log(1 +

µ

1− µ
)−

(
log(1 +

µ

1− µ
)− log(e−1 +

µ

1− µ
)

)
q. (4.45)

The coefficient of q is monotonically decreasing in µ, it attains it minimum for µ = 1
2 , namely

log(2)− log(1 + e−1) > e−1.
Consequently, we obtain

n−1∑
j=0

log(e−λ(Tj+1−Tj) +
µ

1− µ
) ≤ n log(1 +

µ

1− µ
)− λ

e
Tn.

Hence, by dividing this inequality by (nµ) and passing to the limit we see

lim sup
n→∞

1

nµ

n−1∑
j=0

log(e−λ(Tj+1−Tj) +
µ

1− µ
) ≤ 1

µ
log(1 +

µ

1− µ
)− λ

eµ
lim sup
n→∞

Tn
n
.

We have by Lemma 4.25 (v) and (4.43)

lim
n→∞

Tn
n

= ET1 ≥ E
[ µ

1
α

(µ1−αCαSC
α
F + CSCG |||ω|||α,T1)

1
α

]
Jensen’s inequality and Lemma 4.2 show

ET1 ≥
µ

1
α

(µ1−αCαSC
α
F + CSCGE |||ω|||α)

1
α

≥ µ
1
α

(µ1−αCαSC
α
F + CSCGcQ)

1
α

,

where cQ = cα,H
√
trVQ. So, finally we have

lim sup
n→∞

1

nµ

n−1∑
j=0

log(e−λ(Tj+1−Tj) +
µ

1− µ
)

≤ 1

µ
log(1 +

µ

1− µ
)− λ

eµ

µ
1
α

(µ1−αCαSC
α
F + CSCGcQ)

1
α

≤ 1

1− µ
− 1

e

λ2− 1
α (CSCF )

1
α
−1

(µ1−αCαSC
α
F + CSCGcQ)

1
α

≤ 2− 1

e

λ2− 1
α (CSCF )

1
α
−1

(CαSC
α
F + CSCGcQ)

1
α

=: −K(λ,CS , CF , CG, α, trVQ).
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4 Dynamics of Rough Evolution Equations

Hence, we conclude that if λ > 0 is large enough then K = K(λ,CS , CF , CG, α, trVQ) > 0 and
there exists a constant M = M(ω) > 0 such that

‖yn‖β,β,Tn+1−Tn ≤MCS |ξ| e−nµK for all n ∈ N0.

This entails for t ∈ [Tn, Tn+1]

|yt| ≤ ‖yn‖β,β,Tn+1−Tn ≤MCS |ξ| e−nµK ≤MCS |ξ| e−
n
n+1

CSCFTn+1K ≤MCS |ξ| e−
n
n+1

CSCFKt,

which grants global exponential stability for all λ′ < CSCFK.

We point out a concluding remark.

Remark 4.27. During this section we assumed H > 1
2 in order to obtain α > 1

2 ⇔ 2 − 1
α > 0.

This guarantees K to be positive for sufficiently large λ. However, the general approach does not
need this assumption. At the moment we are not able to show ergodicity of (θTn)n∈N0 . If this would
be true we could benefit from much better estimates than (4.45). Thus, we could derive a much
better stability rate and prove global exponential stability also for H ∈ (1

3 ,
1
2).

74



5. Conclusion and Outlook

We summarize the main results of this thesis and indicate possible extensions.

This work can be structured into two main parts. Firstly, we developed a solution theory for rough
evolution equations and afterwards we analyzed the dynamics of the corresponding solution.

One general drawback is given by Assumption (G) as we demand a smoothing property of G. This
assumption was necessary in order to rigorously define the supporting process b, see Lemma 3.26,
as well as for showing the necessary spatial regularity for the path component of the solution,
see (3.84). Combined with the assumption that the diffusion coefficient is three times Frechét
differentiable it is hard to think of more general examples than the one presented in Section 3.7.
A promising approach to relax (G) is to consider estimates in a negative fractional domain of the
linear operator, see [32]. We strongly believe that by similar deliberations as in Chapter 3 working
with negative fractional domains leads to the same results for diffusion coefficient satisfying

(G)’ G : D−β → D−β is bounded and three times Frechét differentiable with bounded derivatives.
Furthermore, the restriction G : W →W is Lipschitz continuous.

This assumption is quite similar to the ones stated in [32], which are the most general as far as we
know. However, the authors in [32] are working with finite-dimensional noise.

The algebraic framework developed in Chapter 3 is influenced by the rough paths theory for Evolu-
tion Equations, see [37], [10] or [32] but also uses ideas from fractional calculus, see [50], [25] or [27].
We are aware that the algebraic framework respectively the solution space, see (3.63), we are work-
ing with is more complicated than the Gubinelli space used in the rough paths theory. The setting
introduced in this thesis is somehow more natural due to the time-singularity of the semigroup in
zero and can be hopefully extended to discontinuous p-variation processes, as in the original works
of [61] and [48]. The Hölder (semi)norms used in (3.63) can be transformed to variation (semi)norms.

We conjecture that the ideas of Section 3.3 can be adapted to the discontinuous p-variation case,
compare [61], [48], [21]. One of the main obstacles is then to give meaning to the supporting
processes, introduced in Section 3.4, in order to give meaning to the rough integral (1.2).

In Chapter 4 we considered a trace class fractional Brownian motion as noisy input and
analyzed the stability of the solution of (1.1). Clearly, one can consider more general classes of
stochastic processes, like e.g. Gaussian processes with stationary increments, see [20], [22] or
Volterra processes investigated in [6], [7] which are in general not Gaussian nor have stationary
increments and thus, do not define a metric dynamical system. In case we are able to estab-
lish the solution theory for discontinuous noise analyzing Lévy processes, see [1], would be of interest.

Furthermore, one natural extension is to generalize the results of Section 4.3 for rough noise, e.g. a
fractional Brownian motion with Hurst parameter H ∈ (1

3 ,
1
2). We believe that the techniques used

in the Sections 4.2 and 4.3 with slight modifications can lead to global stability results. In case one
can prove ergodicity of the random shift family, see Remark 4.27, one could even derive better
estimates in the Young case as well as in the rough case.
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5 Conclusion and Outlook

Moreover, one could analyze further dynamical aspects, for instance random fixed points, random
attractors or invariant manifolds, see [26], [23], [5], [41], [45], [15] or [34]. Finally, one could be
interested in generalizing the linear operator, e.g. to consider non-autonomous rough semilinear
SPDEs, as investigated in [33]. Since the estimates for the evolution family stated in [55, Chapter
5] are similar to the one for the semigroup, see Section 2.1, we believe that one can extend the
results to the non-autonomous case by similar deliberations.
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A. Appendix

A.1 Preliminary Results for the Sewing Lemma

The following facts will be employed in Section 3.3.

Lemma A.1. Let % > 1 and κ ∈ C([0, T ] ,W ) such that

κ0 = 0 and
∣∣∣(δ̂κ)ts

∣∣∣ ≤ c (t− s)% .

Then κ ≡ 0.

Proof. For any partition P of [0, t] we have

κt = (δ̂κ)t0 =
∑

[u,v]∈P

S(t− v)(δ̂κ)vu.

Hence, we derive

|κt| ≤ cSc |P|%−1 t, which tends to 0 as |P| → 0.

Consequently κ ≡ 0.

Lemma A.2. Let 0 < α, β < 1, % > 1 and κ ∈ C([0, T ] ,W ) such that

κ0 = 0,∣∣∣(δ̂κ)ts

∣∣∣ ≤ C (t− s)α ,∣∣∣(δ̂κ)ts

∣∣∣ ≤ Cs−β (t− s)% , for s 6= 0.

Then κ ≡ 0.

Proof. Let t ∈ [0, T ] be arbitrary but fixed. Consider Pn a dyadic partition of [0, t]. We have

κt = (δ̂κ)t0 =
∑

[u,v]∈Pn

S(t− v)(δ̂κ)vu.

Consequently,

|κt| ≤ C
∑

[u,v]∈Pn

∣∣∣(δ̂κ)vu

∣∣∣
≤ C tα

2nα
+ C

∑
[u,v]∈Pn
u6=0

u−β
t%

2n%

= C
tα

2nα
+ C

t%−1

2n−1

∑
[u,v]∈Pn
u6=0

u−β
t

2n

≤ C tα

2nα
+ C

t%−1

2n−1

t∫
0

q−βdq

≤ C tα

2nα
+ C

t%−β

2n−1
.
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A Appendix

Since, this statement has to be valid for all n ∈ N we must have κ ≡ 0.

Lemma A.3. Given 0 < γ, ε < 1 then there is a constant C = C(γ, ε) such that for all n ∈ N the
estimate

n−1∑
k=1

k−γ(n− k)−ε ≤ C
n−1∑
k=0

(k + 1)−γ(n− k)−ε (A.1)

holds true.

Proof. For the right sum we see

n−1∑
k=0

(k + 1)−γ(n− k)−ε = n−ε +

n−1∑
k=1

(k + 1)−γ(n− k)−ε

Hence, (A.1) is fulfilled if

n−1∑
k=1

[
k−γ − (k + 1)−γ

]
(n− k)−ε ≤ Cn−ε

Furthermore, we estimate

n−1∑
k=1

[
k−γ − (k + 1)−γ

]
(n− k)−ε =

n−1∑
k=1

k+1∫
k

γx−γ−1dx (n− k)−ε

≤
n−1∑
k=1

k+1∫
k

γx−γ−1(n− x)−εdx =

n∫
1

γx−γ−1(n− x)−εdx.

Therefore, it is sufficient to show that for all u ≥ 1 it holds

g(u, γ, ε) :=

u∫
1

γx−γ−1(u− x)−εdx ≤ Cu−ε.

To prove this we define

h(u, γ, ε) :=uγ+ε g(u, γ, ε)

=uγ+ε

u∫
1

γx−γ−1(u− x)−εdx

=

u∫
1

γ
(u
x

)γ−1 (
1− x

u

)−ε u
x2
dx

=−
u∫

1

γ
(u
x

)γ−1 (
1− x

u

)−ε
d
(u
x

)

=

u∫
1

γxγ−1

(
1− 1

x

)−ε
dx.

If γ + ε ≤ 1 consider

h(u, γ, 1− γ) =

u∫
1

γ (x− 1)γ−1dx = (u− 1)γ ≤ uγ .
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A.2 Fundamental estimates for the fixed-point argument

Since 0 < 1− 1
x < 1 for all x ≥ 1 we see that h is monotonously increasing in ε. Hence, we obtain

for 0 ≤ ε ≤ 1− γ

h(u, γ, ε) ≤ h(u, γ, 1− γ) ≤ uγ ,

consequently

g(u, γ, ε) ≤ u−ε.

If γ + ε > 1 we estimate

h(u, γ, ε) =

u∫
1

γxγ−1

(
1− 1

x

)−ε
dx

=

u∫
1

γxγ+ε−1 (x− 1)−εdx

≤ γuγ+ε−1

u∫
1

(x− 1)−εdx

=
γ

1− ε
uγ+ε−1 (u− 1)1−ε ≤ γ

1− ε
uγ ,

which directly yields

g(u, γ, ε) ≤ γ

1− ε
u−ε.

A.2 Fundamental Estimates for the Fixed-Point Argument

In the next deliberations we illustrate a technique which is required in Section 3.5. This is based
on the division property for smooth functions, see p. 109 in [20]. This is also used for rough SDEs,
in order to estimate the difference of the norm of two controlled rough paths, consult [20, Chapter
8], especially the proof of Theorem 8.4 in [20].

In the following CG stands for a universal constant which exclusively depends on G and its
derivatives. The next result can immediately be obtained applying the mean value theorem.

Lemma A.4. Let Ŵ be a separable Banach space, G ∈ C2
b (W, Ŵ ) and x1, x2, x3, x4 ∈ W . The

following estimate

|G(x2)−G(x1)−G(x4) +G(x3)|
≤ CG |x2 − x1 − x4 + x3|+ CG |x4 − x3| (|x3 − x1|+ |x4 − x2|)

(A.2)

holds true.

Keeping this in mind we derive the following result.

Corollary A.5. Let yi ∈ Cβ,β([0, T ];W ) for i = 1, 2 and G ∈ C2
b (W, Ŵ ). Then, for all 0 < s <

t ≤ T we have ∣∣G(y1
t )−G(y1

s)−G(y2
t ) +G(y2

s)
∣∣

≤ CG
(∣∣∣∣∣∣y1 − y2

∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

∥∥y1 − y2
∥∥
∞

)
s−β (t− s)β ,

(A.3)

as well as ∣∣G(y1
t )−G(y1

s)−G(y2
t ) +G(y2

s)
∣∣

≤ CG
(∥∥y1 − y2

∥∥
∞ +

∥∥y2
∥∥
∞
∥∥y1 − y2

∥∥
∞
)
.

(A.4)
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Proof. Applying Lemma A.4, see also Lemma 7.1 in [54], with x1 = y1
s , x2 = y1

t , x3 = y2
s and

x4 = y2
t we infer ∣∣G(y1

t )−G(y1
s)−G(y2

t ) +G(y2
s)
∣∣

≤ CG
∣∣y1
t − y1

s − y2
t + y2

s

∣∣+ CG
∣∣y2
t − y2

s

∣∣ (∣∣y1
s − y2

s

∣∣+
∣∣y1
t − y2

t

∣∣)
We have two possibilities to estimate this expression. On the one hand we have∣∣G(y1

t )−G(y1
s)−G(y2

t ) +G(y2
s)
∣∣

≤ CG
∣∣y1
t − y1

s − y2
t + y2

s

∣∣+ CG
∣∣y2
t − y2

s

∣∣ (∣∣y1
s − y2

s

∣∣+
∣∣y1
t − y2

t

∣∣)
≤ CG

(∣∣∣∣∣∣y1 − y2
∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

∥∥y1 − y2
∥∥
∞

)
s−β (t− s)β .

On the other hand we obtain∣∣G(y1
t )−G(y1

s)−G(y2
t ) +G(y2

s)
∣∣

≤ CG
∣∣y1
t − y1

s − y2
t + y2

s

∣∣+ CG
∣∣y2
t − y2

s

∣∣ (∣∣y1
s − y2

s

∣∣+
∣∣y1
t − y2

t

∣∣)
≤ CG

(∥∥y1 − y2
∥∥
∞ +

∥∥y2
∥∥
∞
∥∥y1 − y2

∥∥
∞
)
.

This proves the statement.

Lemma A.6. Let G ∈ C3
b (W, Ŵ ) and x1, x2, x3, x4 ∈W . Then

|G(x2)−G(x1)−DG(x1)(x2 − x1)−G(x4) +G(x3) +DG(x3)(x4 − x3)|
≤ CG (|x2 − x1|+ |x4 − x3|) |x2 − x1 − x4 + x3|
+ CG |x4 − x3|2 (|x3 − x1|+ |x4 − x2|) .

(A.5)

For a complete proof, see p. 2716 in [42].

This helps us further obtain an essential estimate for our fixed-point argument.

Corollary A.7. Given yi ∈ Cβ,β([0, T ];W ) for i = 1, 2 and G ∈ C3
b (W, Ŵ ). Then the following

estimates are valid for all 0 < s < t ≤ T :∣∣G(y1
s)−G(y1

t ) +DG(y1
s)(y

1
t − y1

s)−
(
G(y2

s)−G(y2
t ) +DG(y2

s)(y
2
t − y2

s)
)∣∣

≤ CG
[(∣∣∣∣∣∣y1

∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

) ∣∣∣∣∣∣y1 − y2
∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣2
β,β

∥∥y1 − y2
∥∥
∞

]
s−2β (t− s)2β ,

(A.6)

as well as ∣∣G(y1
s)−G(y1

t ) +DG(y1
s)(y

1
t − y1

s)−
(
G(y2

s)−G(y2
t ) +DG(y2

s)(y
2
t − y2

s)
)∣∣

≤ CG
(∣∣∣∣∣∣y1

∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
β,β

∥∥y2
∥∥
∞

)∥∥y1 − y2
∥∥
∞ s
−β (t− s)β .

(A.7)

Proof. As previously argued, we apply Lemma A.6 with x1 = y1
s , x2 = y1

t , x3 = y2
s and x4 = y2

t .
This results in∣∣G(y1

s)−G(y1
t ) +DG(y1

s)(y
1
t − y1

s)−
(
G(y2

s)−G(y2
t ) +DG(y2

s)(y
2
t − y2

s)
)∣∣

≤ CG
(∣∣y1

t − y1
s

∣∣+
∣∣y2
t − y2

s

∣∣) ∣∣y1
t − y1

s − y2
t + y2

s

∣∣+ CG
∣∣y2
t − y2

s
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Again, we use have two possibilities to obtain the following inequalities. First of all we infer that∣∣G(y1
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A.2 Fundamental estimates for the fixed-point argument

On the other hand we finally get∣∣G(y1
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