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SpharaPy is a Python implementation of a new approach for spatial harmonic analysis (SPHARA).
SPHARA extends the classical spatial Fourier analysis to non-uniformly positioned samples on arbitrary
surfaces in R3. The basis functions (BF) used by SPHARA are determined by the eigenanalysis of
the discrete Laplace-Beltrami operator, which is defined on a triangular mesh specified by the
spatial sampling points. The SpharaPy Python toolbox provides classes and functions to compute
the SPHARA BF for data analysis and synthesis as well as classes to design and apply spatial filters.
An illustrative example of applying the SpharaPy package in the field of biosignal processing using
electroencephalography data is presented.
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1. Metivation and significance

Discrete Fourier analysis is very common in digital signal and
image processing, and it is a fundamental tool in many applica-
tions. In common digital image data, the pixels are arranged on
a flat surface in a Cartesian or rectangular grid. For such data,
the basis functions (BF) for the Fourier transformation are usually
implicitly specified by the transformation rule (cf. [1]).

In many applications, the sensors for data acquisition are not
located on a flat surface and cannot be represented by Cartesian
or regular grids. However, a spatial Fourier analysis for this kind

* Corresponding author.
E-mail address: uwe.graichen@tu-ilmenau.de (U. Graichen).
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of data is useful. An example from the field of biomedical engi-
neering, where sensors are non-regularly arranged on a curved
surface, is electroencephalography (EEG). In EEG, the sensors are
placed at known (predefined and/or tracked) positions on the
surface of the head. The positions of the sensors in these systems
can be described by means of triangular meshes. Because of the
non-regular sensor arrangement, standard 2D Fourier analysis
cannot be used for the spatial analysis of these multisensor data.

In this article, we present a Python implementation of
SPHARA, a new method for SPatial HARmonic Analysis of mul-
tisensor data [2]. SPHARA can be considered as a generaliza-
tion of the spatial Fourier analysis for spatially arbitrary sensor
arrangements. The SPHARA BF are computed as the eigenvec-
tors of the Laplace-Beltrami operator, which is defined on the
meshed surface of the sensor positions. Using this approach, BF

2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The simplified class diagram of the SpharaPy package: The class TriMesh describes the spatial configuration of the sample points and is an aggregation of
the SpharaBasis class. SpharaBasis is used to determine the BF. SpharaTransform and SpharaFilter are subclasses of SpharaBasis. The @property and

the setter of the attributes are not shown in this class diagram.

of spatial harmonics for arbitrary arrangements of sensors can
be generated. The recorded multisensor data are decomposed by
projections into the space of these SPHARA BF.

The presented Python-Toolbox is particularly suitable for the
spatial harmonic analysis of data measured with irregularly ar-
ranged sensors. Eigensystems of Laplace operators and Laplace-
Beltrami operators are also applied in graph theory [3] as well as
computer graphics and shape analysis [4-9].

2. Software description
2.1. Software architecture

SpharaPy is an object-oriented implementation of the SPHARA
approach in Python. The SpharaPy package consists of five mod-
ules trimesh, spharabasis, spharatransform, spharafil-
ter and datasets. The simplified class diagram of the classes
implemented in the SpharaPy package is shown in Fig. 1.

The trimesh module provides the TriMesh class, which is
used to specify the configuration of the spatial sample points. The
TriMesh class is an aggregation of the SpharaBasis class. The
class SpharaBasis is implemented in the module spharaba-
sis and can be employed to determine SPHARA BF for spatially
irregularly sampled functions with topology described by an in-
stance of the TriMesh class. SpharaBasis is the base class, with
two derived subclasses, SpharaTransform and SpharaFilter
(see Fig. 1). The module spharatransform provides the class
SpharaTransform to perform the SPHARA transformation, facil-
itating the SPHARA analysis and synthesis of spatially irregularly
sampled data. The module spharafilter provides the class
SpharaFilter, which can be employed for spatial filtering using
a SPHARA basis. In addition, it provides methods for designing
and applying different types of filters to spatially irregularly sam-
pled data. The datasets module is an interface for the example
data sets, which are included in the SpharaPy package.

To avoid unnecessary use of memory and computing power,
a lazy approach is used to calculate the data attributes of class
instances, such as BF or filter matrices. The attributes are not
calculated until they are required for the first time. They are then
saved and used as long as the underlying attributes do not change.

2.2. Software functionalities

The SpharaPy package provides essentially four classes to
specify triangle meshes, to calculate spatial harmonic BF, for data
analysis, and for spatial filtering.

The class TriMesh contains routines to define triangle meshes
describing an arbitrary spatial multisensor arrangement. It also
provides methods for determining matrices derived from the tri-
angular mesh that are required to compute the SPHARA BF, such
as weight, mass, stiffness, and Laplacian matrices (cf. [2,3,10,11]).

Using the class SpharaBasis, a generalized spatial Fourier
basis (SPHARA basis) is computed by eigenanalysis of the discrete
Laplace-Beltrami operator, which is defined on the triangular
mesh. For discretizations using the inverse Euclidean or the unit
weighting scheme, the following Laplace eigenvalue problem has
to be solved

LX; = AiXi, (1

with the Laplacian matrix L (comprises the discretization of the
Laplace-Beltrami operator), the eigenvalues A;, and the eigenvec-
tors X;. If the FEM discretization is used the Laplacian matrix L is
computed by L = B~! S, with mass matrix B and stiffness matrix
S. Inversion of the mass matrix B can be avoided by solving the
generalized eigenvalue problem

SX = AiBX;. )

Various discretization methods are provided by the class
SpharaBasis to determine the Laplace-Beltrami operator, the
FEM approach, the inverse Euclidean, and unit weighting of the
edges in the triangular grid [2,3,10,12]. If the Laplace-Beltrami
operator is discretized with unit weighting of the edges of the
triangular grid, then the coordinates of the positions of the
vertices are not considered, but adjacencies, defined by edges
in the triangle mesh. For inhomogeneous triangular meshes, the
weighting function of the edges has to be adapted according to
the mesh geometry. A common choice is to use the inverse of
the Euclidean distance [4]. Another approach to adapt the dis-
cretization of the Laplace-Beltrami operator to inhomogeneous
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Fig. 2. A butterfly plot of all channels of the EEG data (a) is compared to the visualization of the power contributions of the first 60 low-frequency SPHARA BF
(b). Each EEG channel in the butterfly plot is represented in a different color, the components P14, N20 and N30 are marked by red, blue and green vertical lines
respectively (a). Only the first 60 out of 256 BF are used for the visualization, as the low-frequency BF carry most of the signal power (b).. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

spatial sampling is the FEM approach. In this case, the Laplace-
Beltrami operator is generated using a mass matrix and a stiffness
matrix determined from the properties of the triangular mesh
[2,10,13]. The eigenvalues A; can be considered as discrete spatial
frequencies. Using the inverse Euclidean and unit weighting the
corresponding eigenvectors X; form a harmonic orthonormal basis
regarding the scalar product of the vector spaces. The eigenvec-
tors X; computed by the FEM approach are orthogonal regarding
the B-relative scalar product, cf. Eq. (4). Further details on the
properties of the discrete Laplace-Beltrami operators and the
resulting SPHARA bases are given in Appendix, cf. also [2,14].

The class SpharaTransform provides methods for the anal-
ysis (forward transformation) of discrete data defined on the
vertices of the triangular mesh and the synthesis (inverse trans-
form) of SPHARA coefficients. If the inverse Euclidean or unit
weighting are used for discretization, the inner product for vector
spaces is employed for the transformation from spatial into spa-
tial frequency domain (analysis). The transformation from spatial
into spatial frequency domain is computed by

T=fTX, 3)

where the columns of the matrix X contain the SPHARA BF
(eigenvectors X; in Eqs. (1) and (2)), f represents the data sam-
pled in the spatial domain, and ¢ are the SPHARA coefficients,
the representation in the domain of spatial frequencies. For an
analysis using eigenvectors computed by the FEM approach, the
inner product incorporating the mass matrix B that assures the B-
orthogonality needs to be applied [2,13]. The transformation from
the spatial into the spatial frequency domain is then computed by

¢T=fTBX, (4)

with the mass matrix B. Discrete dataf in the spatial domain
are synthesized using the linear combination of the SPHARA
coefficients ¢ and the corresponding BF X

FT=0¢TXT. (5)

The class SpharaFilter can be used to design different types
of filters and to apply these filters to spatially irregularly sampled
data. A filter matrix F can be determined by

F=R-X-(R-X). (6)

The matrix X contains the SPHARA BF, and the matrix R is a
selection matrix, which contains a 1 on the main diagonal if the
corresponding SPHARA BF from X is chosen. All other elements
of this matrix are 0. If the Laplace-Beltrami operator with FEM
discretization is used to calculate the SPHARA BF, the mass matrix
B must be included in the equation to compute the filter matrix

Fem=B-R-X-(R-X). (7)

The spatial SPHARA filter is applied by multiplying the data
matrix D with the filter matrix F

D=D-F. (8)

In the data matrix D, the rows represent the time samples and
the columns the spatial samples (sensor positions). The matrix D
represents the filtered data.

As for filters in the temporal Fourier domain, an inappropriate
filter design in the spatial Fourier domain can cause artifacts
and disturbances such as Gibbs and Ringing phenomena. These
disturbances can be reduced by choosing appropriate filter co-
efficients. The API of the SpharaPy package offers parameters to
design adapted filters.
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The computational complexity of the eigenanalysis of the dis-
crete Laplace-Beltrami operator for determining the BF is O(n?),
where n is the number of spatial sample points. The SPHARA
transformation and SPHARA filtering are performed by the multi-
plication of a vector containing the data and a matrix, where the
columns are the SPHARA BF. The complexity of the transforma-
tion and the filtering is O(n?). The amount of memory required to
store the BF is O(n?).

3. Illustrative examples

Our example demonstrates the application of the SpharaPy
package for the processing of EEG signals. We show three fea-
tures of the SpharaPy package: computation of the SPHARA basis
for the sensor setup of a waveguard 256-channel EEG system
(ANT Neuro BV, Enschede, The Netherlands), SPHARA analysis of
EEG data, and spatial low-pass filtering using a SPHARA-based
filter. The data used in this example originate from a previously
performed EEG experiment (see [2]) addressing the cortical ac-
tivation related to somatosensory-evoked potentials (SEP). The
median nerve of the right forearm of a volunteer was stimulated
by bipolar electrodes. Data were sampled at 2048 Hz and software
high-pass (24 dB/oct, cutoff-frequency 2Hz) and notch (50Hz
and two harmonics) filtered. All recorded trials were manually
checked for artifacts, and the remaining trials were averaged. The
data include 256 channels and a time interval of 50 ms before
to 130 ms after stimulation (369 time samples). A butterfly plot
of all channels of the averaged EEG data is shown in Fig. 2(a).
The components P14, N20 and N30, which are particularly im-
portant for the medical assessment of the SEP data, were selected
manually for the volunteer [15,16]. In Fig. 2(a), these components
are marked by red, blue and green vertical lines. The study was
approved by the Ethics Committee of the Unitexversity Hospital
Jena, and written informed consent was obtained.

In this article, only parts of the source code are presented.
The complete source code of this example, which can also be
used to generate the images of the manuscript and furthermore
for the SPHARA analysis of the EEG data, is included in the
SpharaPy package (Python and IPython notebook format, files
SpharaPy_example. [py|ipynb]).

First, we import the required SpharaPy and Python modules
for numerical calculations and visualization.

# import SpharaPy modules

import spharapy.trimesh as tm

import spharapy.spharatransform as st
import spharapy.spharafilter as sf
import spharapy.datasets as sd

# aimport further Python modules and functions
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
import numpy as np

In the next step, the dataset of the EEG experiment is loaded. This
dataset is included in the SpharaPy toolbox and contains vertex
lists, triangle lists, and the averaged EEG data.

data_in = sd.load_eeg_256_channel_study ()

vertlist = np.array(data_in[’vertlist’])
trilist np.array(data_in[’trilist’])
eegdata np.array(data_in[’eegdata’])

Subsequently, we create an instance of the class TriMesh from
the list of vertices and triangles. In this instance, we specify the
spatial arrangement of the sensor positions.

mesh_eeg = tm.TriMesh(trilist, vertlist)

Then, we create an instance of the class SpharaTransform,
which is used for the spatial SPHARA analysis of the EEG data.
The SPHARA basis is determined using an FEM discretization of
the Laplace-Beltrami operator. The power contribution of the
60 low-frequency SPHARA BF to the EEG data is illustrated in
Fig. 2(b).

sphara_transform_fem = st.SpharaTransform(mesh_eeg
, *fem’)
sphara_trans_eegdata =
sphara_transform_fem.analysis (eegdata.
transpose ())

We determine an instance of the spharapy.SpharaFilter,
which is used to design and apply the spatial filter. The SPHARA
basis in this example is determined by means of an FEM dis-
cretized Laplace-Beltrami operator. We implement a spatial low-
pass filter using the twenty lowest frequency SPHARA BF. Nine
of the twenty lowest frequency BF used for spatial filtering are
shown in Fig. 3.

sphara_filter_fem = sf.SpharaFilter (mesh_eeg,
mode=’fem’, specification=20)

# extract the BF used in the filter design,

# for wisualization

basis_functions_fem, natural_frequencies_fem =
sphara_filter_fem.basis ()

We apply this filter to the EEG data. The result of the filtering
in comparison to the unfiltered data is shown in the first row of
Fig. 4.

sphara_filt_eegdata =
sphara_filter_fem.filter (eegdata.transpose()).
transpose ()

In the last step of our example, the effectiveness of the spatial
SPHARA-based filter is demonstrated. We increase the noise in
the EEG data by adding artificially created white noise at different
signal-to-noise ratios (3dB, 0dB, and -3dB). The spatial low-pass
SPHARA filter employing 20 BF is applied to these data.

# wector with SNR in dB
db_val_vec = [3, 0, -3]

# compute the power of the SEP data
power_sep = np.sum(np.square (np.absolute (eegdata)))
/ eegdata.size

# wector with standard deviations of the noise

# relative to signal power for given SNR

noise_sd_vec = list(map(lambda db_val:

np.sqrt (power_sep / (10 **x (db_val / 10))),
db_val_vec))

# add the noise to the EEG data

eegdata_noise = list(map(lambda noise_sd:

eegdata + np.random.normal (0, noise_sd, [256, 369]),
noise_sd_vec))

# apply the spatial SPHARA lowpass filter the
# EEG data containing the artificial noise
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Fig. 3. The nine low-frequency SPHARA BF for the 256-channel EEG system; the spatial DC component subfigure is indicated with BF0. The individual BF are plotted

on the triangular grid, which specifies the EEG sensor setup.

eegdata_noise_filt = list(map(lambda eeg_noise:
(sphara_filter_fem.filter(eeg_noise.transpose()).
transpose()), eegdata_noise))

The results of the SPHARA filtering are shown in the Figs. 4 and 5.
In Fig. 4 the EEG time series are plotted. The left column contains
the unfiltered and the right column the filtered time series. Three
time points (P14, N20 and N30) are marked by vertical lines (red,
blue and green) in the individual plots. For these points in time,
the distributions of the electrical potential on the scalp are shown
in Fig. 5. In correspondence to Figs. 4 and 5 shows unfiltered data
in the left three columns and SPHARA filtered data in the right
three columns.

4. Impact

Using the presented SpharaPy Python package, it is possible
to determine customized spatial Fourier bases for multi-sensor
systems with spatially arbitrarily arranged sensors. The BF can
be explicitly determined for the spatial domain of the measured
data. For this reason, the mapping of the spatial domain of the
data to a domain (e.g., rectangular plane with Cartesian grid or
unit spherical surface), for which a Fourier basis can be implicitly
defined in the transformation rule, can be omitted. As the BF are
adapted to the spatial domain of the data, window functions for
handling the boundaries of the domain can also be omitted, which
is another advantage of SPHARA.

These properties result in a number of potential applications of
the SPHARA transformation, such as spatial analysis and filtering
as well as dimension reduction and data compression.

In many other multivariate data decomposition methods, such
as PCA, ICA, and PARAFAC, recorded data sets are used to generate
the components for spatial data decomposition. In SPHARA, how-
ever, the BF are only determined from topological information

about the sensor setup and positions. Thus, SPHARA BF can be
computed before data recording.

SPHARA-based spatial filters are applied separately on the data
of individual time samples. For this reason, the phase proper-
ties of recorded time series are not affected, and phase analysis
methods can be applied to noise-reduced data sets.

The SPHARA BF can be efficiently computed, and the two intro-
duced SAHARA-based applications, transformation and filtering,
can also be applied very rapidly. This high processing speed
enables the online application of SPHARA-based methods.

5. Conclusions

In this paper we have introduced SpharaPy, a Python im-
plementation of SPHARA, which is a new method for spatial
harmonic analysis of multisensor data. SPHARA can be considered
as a generalization of the discrete spatial Fourier transform. We
have discussed some theoretical basics of SPHARA in the paper.
In an application example of the new software toolbox from
the field of biosignal processing the calculation of the SPHARA
basis, the design of a spatial low-pass filter and the filtering of
multichannel data were shown.

Recently, spatially distributed multisensor networks have be-
come increasingly relevant. This opens up further application
areas for SPHARA-based methods. Examples from the fields of
meteorology and geosciences include multi-sensor systems for
monitoring weather, glacier, earthquake, and volcanic activities as
well as technical applications, such as traffic control and vibration
monitoring.
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Fig. 4. Application of the SPHARA-based spatial filter to EEG data, represented in the time domain; left column shows unfiltered data, while the right column shows
SPHARA low-pass-filtered data. Each EEG channel is indicated in a different color. In the first row, the data contain no additional artificial noise. In the second
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Appendix. Theoretical aspects

The properties of the SPHARA basis are essentially determined
by the method used to discretize the Laplace-Beltrami operator.
The eigenvectors X; and eigenvalues A; are computed according to
Egs. (1) and (2). Advantageous properties of the Laplace matrix

L, containing the discrete Laplace-Beltrami operator, are sym-
metry, positive weights, positive semi-definiteness, locality and
convergence, cf. [2,14].

The symmetry L; = L; leads to real eigenvalues and or-
thogonal eigenvectors regarding the scalar product of vector
spaces. Positive edge weights for the determination of the dis-
crete Laplace-Beltrami operator and matrix symmetry, lead to
the positive semi-definiteness of L. The locality property enables
to determine the Laplace-Beltrami operator from a vertex and
its neighboring vertices, adjacent via an edge of the triangular
mesh. The convergence property signifies the convergence from
the discrete to the continuous Laplace-Beltrami operator for a
sufficient refinement of the mesh.

The Laplacian matrices L discretized by means of inverse Eu-
clidean or unit weighting are positive semi-definite, symmetric
and use positive weights. Due to these properties, the eigenvalues
for these two discretizations are non-negative A; € R with
Ai > 0 and can be considered as discrete spatial frequencies. The
eigenvectors X; are real-valued and form an orthonormal basis
regarding the scalar product of vector spaces.

The FEM approach does not fulfill the positive weight prop-
erty, if the mesh contains triangles with interior angles in the
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Fig. 5. Application of the SPHARA-based spatial filter to EEG data, represented in the spatial domain; the potential distributions on the scalp are shown from the top
left. The frontal (F), occipital (O) and left (L) positions of the head are indicated. The three left columns show unfiltered data, while the three right columns show
SPHARA low-pass-filtered data. In the first row, the data contain no additional artificial noise. In the second to fourth rows, the data were disturbed with spatially
non-correlated artificial Gaussian noise with signal-to-noise ratios 3, 0, and —3dB. Columns that correspond to components P14, N20 and N30 are marked by red,
blue and green frames respectively, cf. also Fig. 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

interval (r /2, 7), for which the cotangent is negative. For the
FEM formulation, the basis is computed by solving the gener-
alized symmetric definite eigenproblem, cf. Eq. (2). Thus, the
inversion of the mass matrix B is avoided. Because B~!S is not
symmetric, the eigenvectors X; are real-valued, but not orthonor-
mal with respect to the scalar product for vector spaces. To use
these eigenvectors as basis, the inner product defined in Eq. (4)
has to be used, which assures the B-orthogonality. For more
details see also [2,13].

If the triangular mesh representing the spatial multisensor
arrangement possesses a boundary, several boundary conditions
(BC) can be applied to compute the basis functions by using the
Egs. (1) or (2). Assuming that the values measured on the bound-
ary are not 0 or constant, the Neumann BC is more appropriate.
But also other BC such as Dirichlet are feasible. The basis func-
tions are determined adaptively for the domain specified by the
triangulation of the sensor positions. Thus, a special processing of
the boundary of the domain, e.g. by means of a window function,
is not required.
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