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Abstract Analysis of the genome of ‘‘Ferroplasma

acidarmanus’’ Fer1, an archaeon that is an extreme

acidophile, identified an open reading frame encoding

a putative ATP-dependent DNA ligase, which we

termed FaLig. The deduced amino acid sequence of

FaLig contains 595 amino acids, with a predicted

molecular mass of 67.8 kDa. ‘‘F. acidarmanus’’ Fer1 is

classified as a Euryarchaeote, but phylogenetic analysis

using amino acid sequences showed that FaLig is more

similar to DNA ligases from Crenarchaeota, suggesting

that lateral transfer of these genes has occurred among

archaea. The gene sequence encoding FaLig was

cloned into a bacterial expression vector harbouring an

upstream His-tag to aid purification. Conditions for

expression and purification from Escherichia coli were

identified and recombinant FaLig was confirmed to be

an ATP-dependent DNA ligase. Optimal conditions

for nick-joining by the protein were pH 6–7, 0.5 mM

ATP, in the presence of either Mg2+ or Mn2+. Using a

range of nicked, double-stranded nucleic acids, ligation

was detected with the same substrates as previously

determined for other DNA ligases. Although FaLig is

the DNA ligase from one of the most extreme acido-

philic organism yet studied, this characterization sug-

gests that its biochemical mechanism is analogous to

that of enzymes from other cellular systems.
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Abbreviations
DTT Dithiothreitol

FaLig ‘‘Ferroplasma acidarmanus’’ Fer1 DNA ligase

IPTG Isopropyl b-D-1-thiogalactopyranoside

LB Luria-Bertani broth

T4Dnl T4 DNA ligase

Introduction

‘‘Ferroplasma acidarmanus’’ Fer1 (hereafter referred

to as F. acidarmanus Fer1) is an acidophilic archaeon,

which was first identified as a dominant prokaryote in

the acid-drainage biofilm at Iron Mountain in Northern

California (Dopson et al. 2004; Edwards et al. 2000;

Golyshina and Timmis 2005; Tyson et al. 2004). F.

acidarmanus Fer1 is mesophilic, with optimal growth at

about 40�C, but it survives in extremely acidic condi-

tions, with optimal growth at pH 1.2. This group of

Archaea plays important roles in geochemical iron and

sulphur cycles and has also been implicated as a major

contributor in the process of acid mine drainage, which

causes considerable environmental damage by the re-

lease of metal-rich acidic effluents into groundwater

(Dopson et al. 2004; Edwards et al. 2000; Golyshina

and Timmis 2005; Schleper et al. 2005). Coupling these

points with its unusual microbiology, identification of
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factors involved in the metabolism of F. acidarmanus

Fer1 holds considerable interest for both applied and

basic sciences.

The two major phyla of the Archaea, the Cre-

narchaeota and the Euryarchaeota, both contain

organisms that inhabit low pH environments (Makar-

ova and Koonin 2003; Makarova and Koonin 2005;

Schleper et al. 2005). The only family of cultured aci-

dophiles among the Crenarchaeota are the Sulfoloba-

ceae, which grow at pH 2–4 (Makarova and Koonin

2003; Makarova and Koonin 2005; She et al. 2001). The

Euryarchaeota contains several members that grow at

extremely low pH, including F. acidarmanus Fer1 and

the other identified member of this family, F. acid-

iphilum (Edwards et al. 2000; Golyshina and Timmis

2005). The Ferroplasmaceae lie within the order of

Thermoplasmatales, which also contains the other

characterized acidophiles, the Thermoplasmaceae and

Picrophilaceae (Darland et al. 1970; Futterer et al.

2004; Golyshina et al. 2006; Golyshina and Timmis

2005). The Thermoplasmatales are able to grow at very

low pH, typically <pH 2, with Picrophilus torridus and

F. acidarmanus Fer1 being the most extreme with

growth observed at pH 0 (Dopson et al. 2004; Futterer

et al. 2004). However, all of these organisms are be-

lieved to maintain an intracellular pH of around 5

(Golyshina et al. 2006; Golyshina and Timmis 2005;

Macalady et al. 2004; Searcy 1976). Thus, the cyto-

plasmic conditions of these organisms are distinct from

their environment, which is aided by the fact that their

single cytoplasmic membrane has low permeability to

protons (Golyshina et al. 2006; Golyshina and Timmis

2005). It would, therefore, be expected that the pro-

teins of these organisms have optimal activity close to

the mildly-acidic cytoplasmic pH, as supported by

characterization of a novel DNA repair protein en-

coded by F. acidarmanus Fer1 (Kanugula et al. 2005).

By contrast, a recent study identified that several

intracellular or membrane-bound proteins of F. acid-

iphilum had optimal activity in the pH range 2–4

(Golyshina et al. 2006). It is not yet clear how this

observation relates to the environment within the cell

and its impact upon cell metabolism. However, if the

cytoplasm of the archaeon experiences acidity levels of

pH 2, even briefly, then it is likely that extensive DNA

damage would be induced, with a concomitant effect

on DNA metabolism.

DNA ligases are a class of proteins that are involved

in many aspects of DNA metabolism. These enzymes

act to join breaks in the backbone of DNA and are

essential for all cellular organisms due to the require-

ment for completion of replication, but they also par-

ticipate in the repair and recombination of DNA

(Doherty and Suh 2000; Shuman and Lima 2004;

Tomkinson et al. 2006; Wilkinson et al. 2001). All nu-

cleotidyl transferases are believed to operate through

similar biochemical mechanisms consisting of three

separate steps (Doherty and Suh 2000; Lehman 1974;

Shuman and Lima 2004; Timson et al. 2000; Wilkinson

et al. 2001). For DNA ligases the first step involves the

enzyme attacking the a-phosphate of the nucleotide co-

substrate to form a covalent enzyme-adenylate (AMP)

intermediate. For the Archaea, the AMP moiety is

generally provided by ATP (EC 6.5.1.1), while the

essential DNA ligases of bacteria obtain this from

NAD+ (EC 6.5.1.2) (Wilkinson et al. 2001). High res-

olution structures of several DNA ligases confirm that

they exhibit a modular structure, with the common

core required for adenylation linked to other domains

that bind substrate (Doherty and Suh 2000; Shuman

and Lima 2004; Tomkinson et al. 2006).

The first archaeal DNA ligase was identified in 1992

from a hyperthermophilic Crenarchaeon, Delsulfurol-

obus ambivalens, with the amino acid sequence of this

protein being most similar to those of Eukaryotic viral

and cellular ATP-dependent ligases (Kletzin 1992;

Nakatani et al. 2000). This is not particularly surprising

since Archaea have been shown to be similar to Euk-

arya in many aspects of DNA metabolism, despite

their morphological and structural resemblance to

Bacteria (Kelman and White 2005; White 2003).

Generally, the putative DNA ligases of Archaea are of

fairly uniform size and their primary structures are

extensively conserved. Despite this overall similarity,

DNA ligases from Crenarchaeota and Euryarchaeota

differ in the sequence of motif V as well as in the

spacing between some motifs (Lai et al. 2002) (also see

Fig. 1b).

More recently, recombinant versions of DNA lig-

ases have been characterized from a number of ar-

chaea that grow at high temperature or salinity . The

observation of some unexpected characteristics pro-

vides increasing interest in this class of proteins. For

example, ATP-dependent DNA ligases from Thermo-

coccus kodakaraensis (Nakatani et al. 2000) and T.

fumicolans (Rolland et al. 2004) are also able to use

NAD+ as the cofactor for ligation. The ability for DNA

ligases to use both ATP or NAD+ as a cofactor appears

to be specific to DNA ligases from Thermococcales, an

order of hyperthermophilic microorganisms that be-

longs to the Euryarchaeota (Rolland et al. 2004). The

relationship between ATP- and NAD+-dependent

DNA ligases has taken a further twist upon analysis of

Haloferax volcanii, since this organism encodes both

types of protein that share the essential DNA-joining

functions (Zhao et al. 2006).
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To extend analysis of this essential class of enzymes

even further, we have evaluated the DNA ligase from

F. acidarmanus Fer1, the most extreme acidophile yet

studied. We characterized a recombinant version of the

DNA ligase by analysing the in vitro nick-joining

activity of the enzyme using a variety of double-

stranded nucleic acids. The biochemical properties of

the recombinant protein were similar to previously

described ATP-dependent DNA ligases, though opti-

mal activity was obtained at pH 6–7, close to the

measured intracellular pH of the organism.

Material and methods

Growth of bacterial cultures

Details of bacterial strains and host plasmids used for

cloning and protein expression have been described

previously (Lavesa-Curto et al. 2004; Wilkinson et al.

2003; Wilkinson et al. 2005). Growth of E. coli was

performed at a variety of temperatures on plates and in

liquid cultures. In all cases, Luria broth (LB) was the

nutrient media. Antibiotics were added to media as

required, with final concentrations of ampicillin at

100 lg ml–1 and kanamycin at 50 lg ml–1. Stock cul-

tures containing 25% glycerol were stored at –80�C

and used to streak on to fresh LB-agar plates as re-

quired. Bacterial cells were made chemically compe-

tent for DNA transformation and stored in 200 ll

aliquots at –80�C (Sambrook and Russell 2001).

Bioinformatic analyses

The genome sequence of F. acidarmanus Fer1 was

obtained from http://www.genome.jgi-psf.org/draft_

microbes/ferac/ferac.home.html. BLAST analysis was

Fig. 1 Ferroplasma acidarmanus DNA ligase. Standard single-
letter abbreviations indicate specific amino acids. Residues in bold
are conserved components of the active site (Shuman and Lima
2004), whilst those underlined are identical to those conserved in
bacterial ATP-dependent DNA ligases (Wilkinson et al. 2001). a
Schematic diagram of conserved domains within the putative
DNA ligase from Ferroplasma acidarmanus Fer1. All numbers
refer to the position of the amino acid within the total protein of
595 amino acids. The position of five motifs conserved within
ATP-dependent DNA ligases is indicated. Sections marked in
grey and the Pfam names directly above them highlight
significant similarity to domains within the conserved domain
database (CDD) (Marchler-Bauer et al. 2005). Pfam04675
relates to a conserved N-terminal region among ATP-dependent
DNA ligases; Pfam01068 relates to a conserved catalytic

(adenylation) domain of DNA ligases; Pfam04679 relates to a
conserved C-terminal region among ATP-dependent DNA
ligases. b Alignment of motif V identified for DNA ligases from
a variety of archaea. Fuller names of organisms are provided in
(c). Complete sequences and organism names are available at the
NCBI database (http://www.ncbi.nlm.nih.gov/). c Evolutionary
distance dendogram of DNA ligase amino acid sequences
estimated by neighbour-joining as described in the Materials
and methods. The bacterial NAD+-dependent ligase sequences,
from S. coelicolor and E. coli, were used as the out-group.
Branch points supported by the maximum-likelihood estimations
are indicated by filled circles. Evolutionary distances are
indicated by the sum of horizontal branch lengths and the scale
bar represents changes per amino acid. Protein sequence
accession numbers are included in the tree

Extremophiles (2007) 11:315–327 317

123



performed upon sequences contained within the NCBI

database (http://www.ncbi.nlm.nih.gov/). For phyloge-

netic analysis the DNA ligase amino acid sequences

were managed using ARB, a software environment for

sequence data (Ludwig et al. 2004). Multiple sequence

alignments were performed using ClustalW. Evolu-

tionary distance and tree topology was estimated using

the neighbour-joining method and this was repeated by

the maximum likelihood method using Dayhoff’s

model and star decomposition.

Cloning of Ferroplasma acidarmanus

Fer 1 DNA ligase

Cloning of the predicted DNA ligase from F. acid-

armanus Fer1 was performed following the strategies

employed for bacterial DNA ligases described previ-

ously (Lavesa-Curto et al. 2004; Wilkinson et al. 2003;

Wilkinson et al. 2005). The gene was amplified by PCR

with a proof-reading DNA polymerase from genomic

DNA using the following primers:

‘‘Forward primer’’: 5¢-CAT ATG ACA AAA TCT

TAT AAT ATA CTA TAT G-3¢.
‘‘Reverse primer’’: 5¢-GGA TCC TTA TTT TGT

TTT TTT CTG CAT TTT ATA AAG-3¢.
Proteins were over-expressed from pET-16b (Nov-

agen) and contained a 10-His tag within 21 additional

amino acids (2.5 kDa) at the N-terminus. To allow

over-expression of proteins in E. coli GR501, the full-

length gene plus the His-tag were excised from pET-

16b vectors using the NcoI and BamHI sites and cloned

into pTRC99A (Amersham Pharmacia), as described

previously (Lavesa-Curto et al. 2004; Wilkinson et al.

2003; Wilkinson et al. 2005).

Protein purification

For protein expression, all E. coli cultures were grown

in LB containing ampicillin and kanamycin. Initial

experiments identified that over-expressed FaLig was

highly insoluble in E. coli. The amount of soluble

protein was not increased despite testing a wide range

of growth conditions, including temperatures from 16 –

37 �C, slower rates of shaking, different concentrations

of IPTG, cold- and heat-shock, and strains encoding

extra copies of tRNA genes that are rare in E. coli

(data not shown). Some soluble FaLig was obtained

when the pET16b derivatives were transformed into E.

coli BL21 (DE3) harbouring pOFX-bad-KJ1, which

expresses the E. coli chaperone proteins DnaK and

DnaJ under the control of the pBAD promoter

(Castanie et al. 1997). After transformation, cells were

plated on LB-agar containing antibiotics and grown

overnight at 37�C. Single colonies were inoculated into

10 ml liquid media, grown overnight at 37�C and di-

luted 100-fold into fresh media (1 l). After growth at

25�C to mid log phase (OD600=0.5), expression of

chaperones from pOFX-bad-KJ1 was induced by

addition of 0.2% L-arabinose and expression of FaLig

was induced by addition of IPTG to 0.4 mM. After

incubation at 25�C for 20 h, cells were harvested,

sonicated and centrifuged to separate soluble and

insoluble fractions. Proteins were purified from the

soluble fraction using columns with affinity for the His-

tag (Novagen His•Bind�). Fractions containing the

purified protein were confirmed by SDS-PAGE,

pooled together in volumes of 2.5 ml and the buffer

was exchanged using disposable PD-10 desalting col-

umns (Amersham Biosciences, UK), with the proteins

being eluted in 20 mM Tris, pH 7.5, 200 mM NaCl.

Protein concentrations within cell extracts were

determined by the Bradford method (Bio-Rad Protein

Assay). Since low amounts of FaLig were obtained, the

amount of purified FaLig was estimated from com-

parison with known amounts of bovine serum albumin

after electrophoresis and silver staining of SDS-PAGE

(Sambrook and Russell 2001). In general, 40 lg of

FaLig was obtained from each litre of induced culture.

For long-term storage at –80�C, glycerol was added to

a final concentration of 25% (v/v).

Analysis of ligation activity

In vitro assays of ligation activity were performed using

the nicked, 40 bp DNA described previously (Lavesa-

Curto et al. 2004; Wilkinson et al. 2003; Wilkinson et al.

2005). Additional experiments assessed the activity of

FaLig with a variety of nicked, 20 bp RNA:DNA hy-

brids (Bullard and Bowater 2006). Oligonucleotides

were purchased from MWG-Biotech, Germany. The

nicked 40-bp substrates were used in end-point and

time-course assays of the in vitro ligation activity. The

buffer used for standard reactions was 100 mM Tris–

acetate, pH 6.5, 20 mM MgCl2, 20 mM DTT, 2 mM

ATP. End-point reactions were performed as follows:

0.66–1.28 pmoles ligase, 22.5 pmol oligonucleotide

substrate in a total volume of 10 ll. The reaction mix

was incubated at 30oC for 18 h then stopped using

10 ll formamide stop solution (Sambrook and Russell

2001). The effect of pH on the extent of ligation was

examined by performing assays in reaction buffer as

indicated above except that it contained Tris-acetate

(pH 4–7) or Tris–HCl (pH 7–9); measurements of the

pH of all solutions were performed at 20�C. Time-

course reactions were performed as follows: 17.9 pmol

ligase, 315 pmoles oligonucleotide substrate in a total
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volume of 140 ll. The reaction mix was incubated at

30oC, with 10 ll aliquots being removed at various

time points and added to 10 ll formamide stop solu-

tion. Reactions were also performed with a variety of

nucleotides and divalent metals at the described con-

centrations in 100 mM Tris-acetate, pH 6.5, 20 mM

DTT. In many reactions, the extent of ligation by T4

DNA ligase was compared using optimal amounts as

identified previously (Bullard and Bowater 2006).

At the end of all ligation experiments, samples were

heated in a 95oC heating block for 5 min and analysed

on a 15% polyacrylamide-urea gel (8.3 · 6.2 cm) in

0.5 · TBE. Reaction products on the gel were visual-

ized using a Bio-Rad Molecular Imager FX. Quanti-

tation was performed using the public domain NIH

Image/J program (available at http://www.rsb.info.-

nih.gov/nih-image/). For time-course experiments, the

extent of ligation was expressed as mole of ligated

product per mole of ligase per minute of reaction time.

The initial rates of reactions were measured from the

extent of ligation in the linear section of the plotted

data.

To assay for ligation activity in vivo, we used E. coli

GR501, which has a temperature-sensitive mutation in

ligA (Dermody et al. 1979; Lavesa-Curto et al. 2004).

Cells were transformed with pTrc99A containing falig

downstream of an inducible promoter. To assist pro-

duction of soluble FaLig, pOFX-bad-KJ1 was also

transformed into the cells and the chaperone proteins

DnaK and DnaJ were induced by addition of 0.2%

L-arabinose (Castanie et al. 1997). Following strategies

described previously (Lavesa-Curto et al. 2004),

growth was assessed at 30 and > 43�C.

Results

Identification of an ATP-dependent DNA ligase

within the genome of Ferroplasma acidarmanus

Fer1

Ferroplasma acidarmanus Fer1 has a genome of

1.8 Mbp, which is 73% A+T base-pairs and encodes

1,713 candidate proteins (see http://www.genome.jgi-

psf.org/draft_microbes/ferac/ferac.home.html). Anno-

tation of the genome identified a homologue of an

ATP-dependent DNA ligase (EC 6.5.1.1) encoded by

gene 542 (NCBI accession number ZP_00610046). This

is the only open reading frame in F. acidarmanus Fer1

predicted to be a functional DNA ligase so, for con-

venience, we refer to this gene as falig and its protein

product as FaLig. Three regions of the predicted amino

acid sequence have significant similarity to domains

within the Conserved Domain Database (CDD)

(Marchler-Bauer et al. 2005) (Fig. 1a). Each of these

domains is found in other DNA ligases, as indicated by

their Pfam nomenclature (Finn et al. 2006): Pfam04675

relates to a conserved N-terminal region present in

many, but not all, ATP-dependent DNA ligases;

Pfam01068 relates to the conserved catalytic (adeny-

lation) domain of DNA ligases; Pfam04679 relates to a

conserved C-terminal region present in many, but not

all, ATP-dependent DNA ligases. Interestingly,

BLAST analysis of FaLig at the NCBI database iden-

tified that eukaryotic sequences have relatively high

similarity to FaLig. Among these, the closest homo-

logs, at approximately 30% identity, were several types

of mammalian DNA ligase I, which participate in

DNA replication.

Along with RNA ligases and mRNA capping en-

zymes, DNA ligases form a group of enzymes known

as covalent nucleotidyl transferases. These enzymes

are defined by the essential lysine residue situated

within motif I, the first of a series of conserved co-

linear motifs (Doherty and Suh 2000; Shuman and

Lima 2004; Tomkinson et al. 2006). Closer examination

of the sequences within the motifs of FaLig confirmed

that it contains all amino acids that are essential for the

function of nucleotidyl transferases (Shuman and Lima

2004) and all amino acids that are highly conserved in

predicted bacterial ATP-dependent DNA ligases

(Wilkinson et al. 2001) (Fig. 1a). Previous analysis

suggests that enzymes from Crenarchaea are homo-

logues of Eukaryotic DNA ligase I, whilst the versions

from Euryarchaea are more similar to ATP-dependent

enzymes from some Viruses (Lai et al. 2002). Inter-

estingly, motif V of DNA ligases from the Thermopl-

asmatales, which includes FaLig, are more similar to

DNA ligases from Crenarchaeota compared to those

from Euryarchaeota (Fig. 1b). This relationship is

supported by phylogenetic analysis of the complete

DNA ligase sequences (Fig. 1c). ATP-dependent

DNA ligases and the classical bacterial NAD+-depen-

dent enzymes are distant in evolutionary terms

(Nakatani et al. 2000). Thus, the amino acid sequences

of the NAD+-dependent DNA ligases from E. coli and

Streptomyces coelicolor (Wilkinson et al. 2003) were

used as an out-group to improve confidence in the

phylogenetic description. To allow comparison with

ATP-dependent DNA ligases from other organisms,

sequences from human DNA ligase I and bacterio-

phages T4 and RB43 were also included. In agreement

with an earlier, more-detailed phylogenetic description

(Nakatani et al. 2000), our analysis confirms that all

archaeal ATP-dependent DNA ligases have a closer

evolutionary relationship to each other than to other

Extremophiles (2007) 11:315–327 319
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ATP-dependent DNA ligases. In addition, our analysis

shows that Thermoplasmatales are grouped in a clade

that is separated from the other Euryarchaeota but

branches with the Crenarchaeota (Fig. 1c). This is not

congruent with the general evolutionary relationship of

the Thermoplasmatales that places these organisms in

the Euryarchaeota (Dopson et al. 2004; Ruepp et al.

2000). However, the tree topology was supported by

both the neighbour-joining and the maximum likeli-

hood analyses and suggests lateral gene transfer has

occurred during the evolution of the DNA ligase genes

of the Euryarchaeota.

In summary, bioinformatic and phylogenetic analy-

sis of the predicted sequence of FaLig suggests that it is

likely to be an ATP-dependent DNA ligase that has

characteristics of the Eukaryotic class of enzymes that

participate in DNA replication.

Purification of FaLig and confirmation

of ATP-dependent DNA ligase activity

No detailed experimental analysis of a DNA ligase

from such an extreme acidophile has yet been re-

ported, so it is unclear if such a hostile environment

affects the biochemical activity of these enzymes. To

allow biochemical assessment of the activity of this

class of enzymes, we wished to determine the ability of

a recombinant form of FaLig to join nicks in double-

stranded nucleic acids. The gene for FaLig was cloned

into the bacterial expression vector pET-16b, over-

expressed and purified by affinity chromatography to

an in-frame N-terminal His-tag, as has been used in

studies of a number of different nucleic acid ligases

(Ho and Shuman 2002; Ho et al. 2004; Lavesa-Curto

et al. 2004; Nandakumar et al. 2004; Nandakumar and

Shuman 2004; Wilkinson et al. 2003; Wilkinson et al.

2005; Yin et al. 2003; Yin et al. 2004). Including the

addition of the His-tag from pET-16b, the total

molecular weight of FaLig is 70.3 kDa. Preliminary

expression analysis of FaLig induced in several deriv-

atives of E. coli BL21 identified that it was almost to-

tally insoluble (data not shown). Since the gene has

61% A+T base pairs it is rather atypical for E. coli, and

the use of some unusual codons may lead to problems

with folding that could be a factor in producing insol-

uble protein. Solubility of proteins was improved by

growth at 25�C and inclusion of plasmids expressing E.

coli chaperonins (Castanie et al. 1997), but it was

possible to obtain only relatively small amounts of

FaLig; in the experiments reported here the concen-

tration of His-tagged FaLig was approximately 12 lg/

ml. Analysis on SDS-PAGE showed the final sample

contained a number of polypeptides (Fig. 2), as is

typical for samples prepared using the assistance of

induced chaperonins (Castanie et al. 1997; Chen et al.

2003; Goenka and Rao 2001). Western blot analysis

using an antibody to E. coli LigA (Lavesa-Curto et al.

2004) did not detect the presence of this NAD+-

dependent DNA ligase in the preparation of FaLig

(data not shown).

The standard biochemical assay of nucleic acid

ligation activity uses denaturing gel electrophoresis to

detect increases in length of an oligonucleotide upon

ligation. The nick-joining activity of FaLig was assessed

using the substrate described previously (Lavesa-Curto

et al. 2004; Wilkinson et al. 2003; Wilkinson et al.

2005), consisting of a 40-bp double-stranded oligo-

nucleotide containing a gap between bases 18 and 19 of

one strand. In all experiments we compared the activity

of FaLig with a recombinant form of the ATP-depen-

dent DNA ligase from bacteriophage T4 (T4Dnl),

which has been well characterized as being efficient in

joining nicks in this substrate (Bullard and Bowater

Fig. 2 Purified recombinant Ferroplasma acidarmanus DNA
ligase. SDS-PAGE analysis of FaLig and T4Dnl used during
this study. Purified proteins were analyzed by electrophoresis on
a 10% SDS-polyacrylamide gel. Proteins were identified by silver
staining (a) or western blot using a monoclonal antibody to the
His-tag (b). Molecular weights refer to proteins contained in a
marker included on the same gel

320 Extremophiles (2007) 11:315–327

123



2006). Preliminary experiments confirmed that FaLig

harboured ATP-dependent DNA ligase activity under

conditions that are used for T4 DNA ligase obtained

from commercial sources, i.e. pH 7.5, 1 mM ATP (data

not shown).

From this confirmation that FaLig is a DNA ligase,

it is to be expected that it will join nicks that occur

during replication—since it is the only DNA ligase

encoded within its genome. To assess this function of

the protein, we expressed the recombinant protein in

E. coli GR501. This strain contains a temperature-

sensitive mutation in chromosomal-encoded E. coli

LigA (Dermody et al. 1979), which prevents growth on

LB-agar plates at temperatures of 42 �C and above.

Use of this strain in complementation experiments

with a plasmid-expressed DNA ligase has proved use-

ful for analysis of in vivo activity of a variety of DNA

ligases, including human DNA ligase I, which is ATP-

dependent (Kodama et al. 1991; Lavesa-Curto et al.

2004; Wilkinson et al. 2003, 2005). To assist production

of soluble FaLig in E. coli GR501, the chaperone

proteins DnaK and DnaJ were also induced from

pOFX-bad-KJ1 (Castanie et al. 1997). Induction of the

chaperone proteins allowed slight growth of E. coli

GR501 on LB-agar plates, even up to 45�C, though the

extent of growth was much reduced compared to

strains expressing wild-type E. coli LigA. Over-

expression of FaLig in E. coli GR501 allowed more

vigorous growth of the host compared to over-expres-

sion of proteins without DNA ligase activity (data not

shown). This observation is consistent with FaLig being

able to seal nicks produced during replication of DNA

in E. coli.

Biochemical characterization of nick-joining

by FaLig

The most remarkable aspect of the physiology of F.

acidarmanus Fer1 is its ability to grow at very low pH.

Therefore, to assess whether pH might be an important

influence on its ability to ligate DNA, we characterized

the activity of FaLig and T4Dnl across a range of pH.

Experiments were performed at 30�C from pH 4–9

using two different buffers (Ho and Shuman 2002; Ho

et al. 2004; Yin et al. 2003): experiments at pH 4–7

were performed with Tris–acetate (Fig. 3a) and pH 7–9

were performed with Tris–HCl (Fig. 3b). All other

components of the reaction were unchanged. Note that

ligation was only detected in reactions containing

buffer, cations and ATP and could not, therefore, be

provided by residual NAD+-dependent DNA ligase

from the E. coli cell extract. Quantitation of the extent

of ligation identified that T4Dnl had optimal nick-

joining activity at pH 7–8, in broad agreement with that

identified previously for T4Dnl (Bullard and Bowater,

2006). By contrast, for FaLig optimal nick-joining

activity was observed at pH 6–7 (Fig. 3c).

The majority of archaeal DNA ligases that have

been experimentally analysed use ATP as the co-factor

for ligation, although those from some Euryarchaeota

can also use other nucleotides (Jeon and Ishikawa

2003; Nakatani et al. 2000; Rolland et al. 2004; Zhao

et al. 2006). To assess the situation with FaLig, we

analysed nick-joining in the presence of a variety of co-

factors (Fig. 4a). Ligation was only observed in the

presence of ATP or, to a lesser extent, dATP. The lack

of ligation in the presence of NAD+ confirmed that the

nick-joining activity was not due to the DNA ligase

encoded on the E. coli chromosome. The concentra-

tion of the nucleotides used in the reaction was varied

to provide a more detailed analysis of co-factor utili-

zation (Fig. 4b). This experiment showed that optimal

activity was obtained at concentrations equal and

greater than 0.5 mM ATP; no inhibition of activity was

observed up to 4 mM ATP. This analysis demonstrated

that the maximal activity of FaLig in the presence of

dATP was about 50 times less compared to that ob-

tained with ATP. We also determined the nick-joining

activity in the presence of a variety of cations (Fig. 5).

Using the standard buffer conditions for FaLig, effi-

cient nick-joining was observed in the presence of

Mg2+ and Mn2+, but no ligation was detected in the

presence of Ca2+, Cu2+, Co2+, Ni2+ or Zn2+.

To allow further comparison with previously studied

DNA ligases, the rate of nick-joining by FaLig was

determined. The extent of ligation at 30 �C was anal-

ysed at various times (Fig. 6a). The amount of ligation

at each time-point was quantitated and the initial rates

of nick-joining were determined for FaLig and T4Dnl

under the same conditions (Fig. 6b). For FaLig, the

extent of nick-joining increased linearly during a per-

iod of 2 h, giving a rate during this period of approxi-

mately 0.2 ligation events min–1. The reaction with T4

Dnl occurred faster, with a maximal rate of approxi-

mately 2 ligation events min–1 during the initial 10 min.

Thus, FaLig joins nicks in dsDNA approximately 10

times less efficiently than T4Dnl.

Recent studies identify that DNA ligases may join

breaks in a variety of double-stranded nucleic acids

(Martins and Shuman 2004; Pascal et al. 2004; Sekig-

uchi and Shuman 1997; Sriskanda and Shuman 1998;

Tomkinson et al. 2006), with the range of active sub-

strates varying compared to enzymes characterized as

‘‘RNA’’ ligases (Bullard and Bowater 2006). To assess

how FaLig fitted into these categories, we analysed its

nick-joining activity on a range of substrates. Each of

Extremophiles (2007) 11:315–327 321

123



the three individual strands used in substrate prepa-

ration was used as ribo- or deoxyribonucleotides.

Appropriate mixing of each strand produced eight

different combinations of double-stranded, nicked nu-

cleic acids (Fig. 7a). These consisted of DNA only

(substrate 1), RNA only (substrate 2) and a variety of

DNA:RNA hybrids (substrates 3–8). End-point liga-

tion analysis identified that FaLig was able to join the

nicks in substrate 1 (dsDNA) most efficiently and that

it also had significant activity with substrate 7, which

has RNA as the donor of the 3’-OH at the nick

(Fig. 7b). The same range of substrates was ligated by

T4Dnl (Bullard and Bowater 2006), thus confirming

that FaLig is effectively a functional ‘‘DNA’’ ligase.

Discussion

Due to their fundamental role during replication, DNA

ligases are likely to have been required within the

earliest cells. Although there are two types of enzyme

that use different co-factors during ligation and there

are distinct versions in the different kingdoms of life, it

is clear that all DNA ligases harbour similar ‘‘core’’

Fig. 3 Effect of pH on the nick-joining activity of Ferroplasma
acidarmanus DNA ligase. Nicked 40-bp substrates were used in
assays of the in vitro ligation activity of DNA ligase from F.
acidarmanus Fer1 (FaLig) and bacteriophage T4 (T4Dnl) at
various pH. The buffer for reactions was 100 mM Tris–acetate or
Tris–HCl at the appropriate pH containing 20 mM MgCl2,
20 mM DTT and 2 mM ATP. Reactions were performed in 10 ll
for 18 h at 30�C with 1.28 pmol of FaLig or 1 pmol of T4Dnl.
Samples were analysed on a denaturing polyacrylamide gel. The

marker contained a mixture of fluorescein-labelled oligonucle-
otides of the specified size. The lanes referred to as ‘‘No buffer’’
are negative controls to assess the effect of buffer constituents
and contained only protein, DNA and water. a Buffer used for
all reactions contained Tris–acetate at pH 4–7. b Buffer used for
all reactions contained Tris–HCl at pH 7–9. c Quantitation of
extent of ligation by FaLig. Experiments performed with Tris–
acetate and Tris–HCl are shown by the grey and white bars,
respectively
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features (Shuman and Lima 2004; Tomkinson et al.

2006; Wilkinson et al. 2001). Recently, however, char-

acterization of DNA ligases from some archaea have

identified unexpected features, particularly in relation

to the role of the co-factor in enzyme function (Jeon

and Ishikawa 2003; Nakatani et al. 2000; Rolland et al.

2004; Zhao et al. 2006). We have cloned and charac-

terized the single DNA ligase encoded by the genome

of F. acidarmanus Fer1, an archaeon that is viable at

extremely acidic conditions.

Bioinformatic analysis of the gene sequence sug-

gested that gene 542 (falig) of the F. acidarmanus Fer1

genome would be an ATP-dependent DNA ligase and

our in vitro biochemical studies using recombinant

protein confirmed this to be the case. The bioinfor-

matic analysis suggests that FaLig is likely to exhibit a

modular three-dimensional structure, closely related to

those obtained for other DNA ligases (Doherty and

Suh 2000; Shuman and Lima 2004; Timson et al. 2000;

Tomkinson et al. 2006). We observed that FaLig fa-

voured Mg2+ over other divalent cations, though sig-

nificant activity was retained with Mn2+. FaLig was also

able to join nicks between a ribonucleotide containing

Fig. 4 Co-factor requirements for the nick-joining activity of
Ferroplasma acidarmanus DNA ligase. Nicked 40-bp substrates
were used to assess the effect of nucleotide on in vitro ligation
activity of F. acidarmanus Fer1 DNA ligase (FaLig). a Reactions
were performed in a total volume of 10 ll (100 mM Tris–acetate,
pH 6.5, 20 mM MgCl2, 20 mM DTT) for 18 h at 30�C with
1.28 pmol of FaLig using the specified co-factor at 2 mM, or
52 lM for NAD+. All samples were analysed on a denaturing

polyacrylamide gel. The marker contained a mixture of fluores-
cein-labelled oligonucleotides of the specified size. b Reactions
were performed in a total volume of 10 ll for 18 h at 30�C with
1.28 pmol of FaLig using various concentrations of ATP (filled
squares) or dATP (open triangles). The extent of ligation in each
sample was quantitated from analysis of the samples on a
denaturing polyacrylamide gel. The lines represent an approx-
imate best fit through the data points

Fig. 5 Cation requirements for the nick-joining activity of
Ferroplasma acidarmanus DNA ligase. Nicked 40-bp substrates
were used to analyse the effect of cation on the in vitro ligation
activity of F. acidarmanus Fer1 DNA ligase (FaLig). Reactions
were performed in a total volume of 10 ll (100 mM Tris–acetate,
pH 6.5, 20 mM DTT, 2 mM ATP) for 18 h at 30�C with
1.28 pmol of FaLig using the specified cation at 10 mM. After
analysis on a denaturing polyacrylamide gel, the extent of nick-
joining was quantitated
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the 3¢-hydroxyl and deoxyribonucleotide containing

the 5¢-phosphate. These effects on biochemical activity

have been observed for other nucleic acid ligases,

including human DNA ligase I (Pascal et al. 2004), the

bacterial cellular enzyme DraRnl from Deinococcus

radiodurans (Martins and Shuman 2004) and viral

enzymes Chlorella PBCV-1 DNA ligase (Sriskanda and

Shuman 1998), Vaccinia DNA ligase (Sekiguchi and

Shuman 1997) and T4 RNA ligase 2 (Nandakumar et al.

2004; Nandakumar and Shuman 2004; Nandakumar and

Shuman 2005).

In most facets that we examined, FaLig was observed

to be a rather typical ATP-dependent DNA ligase. This

is not particularly surprising since it is the only DNA

ligase encoded within the genome and it must, there-

fore, act in fundamental metabolic pathways, such as

joining nicks at Okazaki fragments. As might be ex-

pected from such cellular requirements, FaLig has high

levels of homology to eukaryotic DNA ligases that

participate in DNA replication. Phylogenetic analysis of

the sequences presented here is consistent with previous

studies of DNA ligases (Nakatani et al. 2000). However,

the addition of amino acid sequences for FaLig and re-

lated enzymes from other Thermoplasmatales identified

that these are more similar to DNA ligases that have

been characterized from Crenarchaeota (Jeon and

Ishikawa, 2003; Kletzin 1992; Lai et al. 2002) compared

to those from Euryarchaeota (Gunther et al. 2002;

Keppetipola and Shuman 2005; Nakatani et al. 2000;

Rolland et al. 2004; Sriskanda et al. 2000; Zhao et al.

2006). This phylogenetic description suggests that

lateral gene transfer has occurred in the evolution of the

DNA ligases of the Euryarchaeota. Detailed analysis of

additional archaeal genome sequences will be required

to resolve whether this observation is only associated

with DNA ligases or whether additional genes have

undergone such evolution.

The most significant result from this biochemical

study is that optimal nick-joining by FaLig occurs at

pH 6-7. Similar observations were made for an unusual

type of DNA repair protein from F. acidarmanus Fer1

(Kanugula et al. 2005). These results suggest that at

least some of the enzymes involved in DNA metabo-

lism are optimized to function in the intracellular

environment of this organism, which has been mea-

sured to be at pH 5.6 (Macalady et al. 2004). The sit-

uation may not be the same for all proteins, since a

recent in vitro study suggests some intracellular or

membrane-bound proteins of F. acidiphilum—a close

relative of F. acidarmanus Fer1—have optimal activity

in the pH range 2–4 (Golyshina et al. 2006). The pre-

cise explanation for the variations in observed pH

optima in these different studies is unclear. It is pos-

sible that proteins experience different pH conditions

Fig. 6 Time-course analysis of the nick-joining activity of
Ferroplasma acidarmanus DNA ligase. Nicked 40-bp substrates
were used to determine the rates of in vitro ligation activity of
DNA ligase from F. acidarmanus Fer1 (FaLig) and bacterio-
phage T4 (T4Dnl). a Representative reaction performed with
FaLig for various times at 30�C. Reactions contained 315 pmol
of substrate and 18 pmol of FaLig in a total volume of 140 ll. At

each time-point, 10 ll of sample was removed and the reaction
stopped. All samples were analysed on a denaturing polyacryl-
amide gel. The marker contained a mixture of fluorescein-
labelled oligonucleotides of the specified size. b The extent of
nick-joining was quantitated for T4Dnl (filled square, dashed
line) and FaLig (open triangle, solid line)
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in F. acidiphilum and F. acidarmanus Fer1, but this

seems unlikely given that all available evidence sug-

gests that the organisms are extremely closely related.

Perhaps more likely is that the differences are due to

the studies of different types of enzymes and that this

may indicate that different compartments within the

organisms experience different pH (Golyshina et al.

2006). In this case, the pH optima of enzymes acting on

DNA are closest to neutral (Kanugula et al. 2005),

perhaps suggesting that the organisms have evolved

mechanisms to protect their genome from harsh, acidic

environments. A further explanation for the observa-

tions of different pH optima for proteins is that some

of them may not be functioning at their optimal level

within the cell. Further experimentation is required to

identify whether these acidophilic organisms experi-

ence variation of pH within their cells or if some of the

enzymes are not functioning at their optimal pH.

The pH profile of FaLig is similar to that observed

for a variety of DNA ligases, but it is now clear that the

optimal pH for activity varies for enzymes from dif-

ferent organisms. In terms of archaea that grow at

neutral pH, the optimal activity of their DNA ligases

has been detected to be pH 7–8.5 (Jeon and Ishikawa

2003; Keppetipola and Shuman 2005; Rolland et al.

2004; Sriskanda et al. 2000). For DNA ligase from S.

shibatae, which is able to grow at pH 2–4, optimal nick-

joining was detected at pH 6–7 (Lai et al. 2002). From

these results it is tempting to speculate that those

organisms that can grow in acidic environments have

DNA ligases with pH optima that are more acidic.

However, this is probably too simplistic, as indicated

by the fact that there is a different pH optima for two

nucleic acid ligases from bacteriophage T4, which will

obviously experience the same cellular environment

(Bullard and Bowater 2006).

Fig. 7 Substrate specificity of
Ferroplasma acidarmanus
DNA ligase. The nick-joining
activity of F. acidarmanus
Fer1 DNA ligase (FaLig) was
tested on 20 bp double-
stranded substrates
containing differing
fragments of DNA and RNA.
a Schematic diagram of the
substrates used in the ligation
assay, with DNA and RNA
being represented by filled
and hatched boxes,
respectively. b In vitro
ligation assays performed in a
total volume of 5 ll (50 mM
Tris–acetate, pH 6.5, 10 mM
MgCl2, 10 mM DTT, 1 mM
ATP) for 18 h at 30�C with
0.66 pmol of FaLig and the
various substrates (45 pmol).
Samples were analysed on a
denaturing polyacrylamide
gel
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Analysis of the activity of FaLig in the presence of

different co-factors identified optimal ligation with

ATP, with a low-level of activity with dATP. Similar

observations were made with the DNA ligase from

Methanobacterium thermoautotrophicum (Sriskanda

et al. 2000). Extensive ligation by FaLig was detected

in the presence of Mg2+ or Mn2+, as observed with

many other DNA ligases (Shuman and Lima 2004;

Tomkinson et al. 2006). F. acidarmanus Fer1 can grow

in the presence of high concentrations of a wide range

of metals, but our in vitro experiments only detected

nick-joining activity in the presence of Mg2+ or Mn2+.

Further studies will be required to assess whether Fa-

Lig may be active in the presence of other cations

under cellular conditions present within F. acidarm-

anus Fer1.

In summary, this study describes the cloning and

characterization of the single DNA ligase encoded by

the genome of F. acidarmanus Fer1. In providing this

characterization of a DNA ligase from an extreme

acidophile, knowledge of these essential proteins is

extended to another phylogenetic family.
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