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Abstract

Background: Sequencing technology and assembly algorithms have matured to the point that high-quality de novo
assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and provide
an opportunity for comprehensive annotation of TEs. Numerous methods exist for annotation of each class of TEs, but
their relative performances have not been systematically compared. Moreover, a comprehensive pipeline is needed to
produce a non-redundant library of TEs for species lacking this resource to generate whole-genome TE annotations.

Results: We benchmark existing programs based on a carefully curated library of rice TEs. We evaluate the performance
of methods annotating long terminal repeat (LTR) retrotransposons, terminal inverted repeat (TIR) transposons, short TIR
transposons known as miniature inverted transposable elements (MITEs), and Helitrons. Performance metrics include
sensitivity, specificity, accuracy, precision, FDR, and F1. Using the most robust programs, we create a comprehensive
pipeline called Extensive de-novo TE Annotator (EDTA) that produces a filtered non-redundant TE library for annotation of
structurally intact and fragmented elements. EDTA also deconvolutes nested TE insertions frequently found in highly
repetitive genomic regions. Using other model species with curated TE libraries (maize and Drosophila), EDTA is shown to
be robust across both plant and animal species.

Conclusions: The benchmarking results and pipeline developed here will greatly facilitate TE annotation in eukaryotic
genomes. These annotations will promote a much more in-depth understanding of the diversity and evolution of TEs at
both intra- and inter-species levels. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.
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Background
Transposable elements (TEs) are repetitive, mobile
sequences found in most eukaryotic genomes analyzed
to date. Originally discovered by Barbara McClintock in
maize (Zea mays) [1], TEs are now known to comprise
the majority of genetic material in many eukaryotic
genomes. For example, TEs make up nearly half of the

human (Homo sapiens) genome [2] and approximately
85% of the genomes of wheat (Triticum aestivum) and
maize [3, 4]. The functional and evolutionary signifi-
cance of TEs has also become increasingly clear. Stow-
away and PIF/Harbinger transposons in rice (Oryza
sativa), for instance, are associated with subspecies-
specific hotspots of recombination [5], and specific TE
insertions have been associated with plant architecture
[6] and flowering time [7] in maize, generating pheno-
typic variation important during domestication and tem-
perate adaptation.
Despite their prevalence and significance, TEs have

remained poorly annotated and studied in all but a few
model systems. Transposable elements create a
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particularly challenging genome assembly problem due
to both their high copy number and the complex nesting
structures produced by new TE insertions into existing
TE sequences. While the low-copy, genic fraction of ge-
nomes has assembled well, even with short-read sequen-
cing technology, assemblies of TEs and other repeats
have remained incomplete and highly fragmented until
quite recently.
Long-read sequencing (e.g., PacBio and Oxford Nano-

pore) and assembly scaffolding (e.g., Hi-C and BioNano)
techniques have progressed rapidly within the last few
years. These innovations have been critical for high-
quality assembly of the repetitive fraction of genomes. In
fact, Ou et al. [8] demonstrated that the assembly contigu-
ity of repetitive sequences in recent long-read assemblies
is even better than traditional BAC-based reference
genomes. With these developments, inexpensive and
high-quality assembly of an entire genome is now possible.
Knowing where features (i.e., genes and TEs) exist in a
genome assembly is important information for using these
assemblies for biological findings. However, unlike the
relatively straightforward and comprehensive pipelines
established for gene annotation [9–11], current methods
for TE annotation can be piecemeal, can be inaccurate,
and are highly specific to classes of transposable elements.
Transposable elements fall into two major classes. Class

I elements, also known as retrotransposons, use RNA in-
termediates in their “copy and paste” mechanism of trans-
position [12]. Class I elements can be further divided into
long terminal repeat (LTR) retrotransposons, as well as
those that lack LTRs (non-LTRs), which include long in-
terspersed nuclear elements (LINEs) and short inter-
spersed nuclear elements (SINEs). Structural features of
these elements can facilitate automated de novo annota-
tion in a genome assembly. For example, LTR elements
have a 5-bp target site duplication (TSD), while non-LTRs
have either variable length TSDs or lack TSDs entirely, be-
ing instead associated with deletion of flanking sequences
upon insertion [13]. There are also standard terminal se-
quences associated with LTR elements (i.e., 5′-TG…C/G/
TA-3′ for LTR-Copia and 5′-TG…CA-3′ for LTR-Gypsy
elements), and non-LTRs often have a terminal poly-A tail
at the 3′ end of the element (see [14] for a complete de-
scription of structural features of each superfamily).
The second major class of TEs, Class II elements, also

known as DNA transposons, use DNA intermediates in
their “cut and paste” mechanism of transposition [15]. As
with Class I elements, DNA transposons have superfamily-
specific structural features that can be used to facilitate an
automated identification process [16]. For example, hAT el-
ements typically have an 8-bp TSD, 12–28-bp terminal
inverted repeat sequence (TIRs) and contain 5′-C/TA…
TA/G-3′ terminal sequences. Each Class II superfamily has
different structural features that need to be considered

when TE annotation programs are being developed and de-
ployed [16, 17]. Helitrons are a unique subclass of Class II
elements that replicate through a rolling-circle mechanism
and, as such, do not generate a TSD sequence and do not
have TIRs, but do have a signature 5′-TC…CTRR-3′ ter-
minal sequence and frequently a short GC-rich stem-loop
structure near the 3′ end of the element [16, 18, 19].
High-quality TE annotations have been generated for

several model species through extensive community efforts
and manual curation (e.g., human [2], Drosophila melano-
gaster [20], Arabidopsis thaliana [21], rice [22, 23], and
maize [4]). However, with numerous reference genome as-
semblies being generated both within and across species,
large-scale manual curation is no longer feasible, and auto-
mated annotation of TEs is required. Dozens of programs
have been developed for this purpose, and these generally
fall into one of three categories [24, 25]. First, general
repeat finders identify high copy number sequences in a
genome [26–28]. These programs can have high sensitivity
for identifying repetitive sequences, but have limited ability
to classify them into specific TE superfamilies and can mis-
identify non-TE features (e.g., high copy number genes).
Second, the sequence homology approach [29–32] is quick
and takes advantage of prior knowledge (i.e., databases),
but is limited by the depth and accuracy of this knowledge
and variability across TE sequences. The final approach
takes advantage of the structural makeup of classes and
superfamilies of TEs for de novo structural annotation [24,
25]. This approach is advantageous in that it is codable
and does not rely on repeat databases, therefore being ideal
for newly assembled species. However, the approach is lim-
ited by the knowledge of the sequence structure of TEs
and is often characterized by a high false discovery rate.
While numerous and, in some cases, redundant TE iden-

tification methods exist, their performance has not been
comprehensively benchmarked, despite recognition that
this would be an important exercise [33]. Here, we have
gathered a broad set of existing TE annotation software
and, using several metrics, have compared each program’s
performance to a highly curated TE reference library in rice
[34]. Based on our benchmarking results, we propose a
comprehensive pipeline for the generation of de novo TE li-
braries that can then be used for genome annotation. Exist-
ing curated TE libraries can also be integrated into this
pipeline to create an expanded library with new TE
exemplars.

Results
In eukaryotic genomes, transposable elements (TEs) are
present as both structurally intact and fragmented
sequences. Development of a species-specific TE library is
an essential step in the annotation process, which begins
with structural identification of major TE classes and can
be followed by manual curation. Representative sequences
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in the library are then used to detect fragmented and mu-
tated TE sequences that are not recognizable using struc-
tural features. Importantly, if there are errors in the
annotation library, these will be propagated during the
whole-genome annotation process. We have benchmarked
commonly used programs for metrics including sensitiv-
ity, specificity, accuracy, and precision (Fig. 1). To evaluate
each program, we used a high-quality, manually curated
library developed for the model species Oryza sativa
(rice), which has a long history of TE discovery and an-
notation [23, 35–43]. The optimal set of programs de-
termined by this benchmarking have been combined
into a comprehensive pipeline called the Extensive de-
novo TE Annotator (EDTA) [34]. Additionally, the ro-
bustness of this pipeline was validated across maize and
Drosophila for which high-quality, manually curated
TE libraries were available [34].

Setting up a reference annotation for benchmarking
The reference annotation library for rice was created
through substantial manual curation of repeat families ob-
tained from an all-versus-all BLAST search of the rice
genome (details in the “Methods” section). This curated li-
brary was then used to annotate the rice genome for both
structurally intact and fragmented TE sequences, which
comprised 23.98% and 22.66% of the rice genome, respect-
ively (46.64% in total; Table 1). Since half of all TEs in the
rice genome are fragmented, structural annotation alone
would miss a substantial portion of TE sequences. Thus, a

homology-based approach that uses a TE library is neces-
sary to obtain a complete annotation. In this study, the
whole-genome TE annotation based on the curated library
was used as the ground-truth annotation for benchmark-
ing of TE annotation programs.
TEs in this curated library are broken down into a num-

ber of non-overlapping categories, including LTR (referring
to LTR retrotransposons), non-LTR (including SINEs and
LINEs), TIR (referring to DNA transposons with TIRs, in-
cluding MITEs), Helitron, and non-TE repeat sequence.
LTR retrotransposons contribute the largest component,
23.54% of the total genomic DNA (Table 1). Non-LTR ret-
rotransposons including SINEs and LINEs contribute the
smallest proportion of total sequence (7.6Mb or ~ 2% of
the genome; Table 1). DNA transposons contribute ~ 21%
(17.49% TIR elements and 3.57% Helitrons; Table 1).
To test various programs, the genome was partitioned

into target and non-target sequences (Fig. 1a). For ex-
ample, when testing the performance of an LTR annota-
tion program, predicted LTR sequences matching our
curated library were labeled “target” and all other
sequences were labeled “non-target.” Each program’s
annotation was then compared to that from our curated
library, with sequences included in our target subset
counted as true positives (TP), sequences in our non-
target subset categorized as false positives (FP), missed
targets counted as false negatives (FN), and the remain-
der of the genome (not TP, FP, nor FN) labeled as true
negative (TN; Fig. 1a).

Fig. 1 Schematic representation of benchmarking metrics. a Definition of TP, true positive; FP, false positive; FN, false negative; and TN, true
negative. b Definition of sensitivity, specificity, accuracy, precision, F1 measure, and false discovery rate (FDR). Each metric is calculated based on
genomic sequence length in bp

Ou et al. Genome Biology          (2019) 20:275 Page 3 of 18



We then used six metrics (sensitivity, specificity, accur-
acy, precision, FDR, and F1) to characterize the annotation
performance of the test library created by various pro-
grams (Fig. 1b). These metrics were calculated based on
the total number of genomic DNA bases, because misan-
notations occurring in the test library will be amplified in
the whole-genome annotation process. Sensitivity denotes
how well the test library can correctly annotate target TE
sequences. Specificity describes how well the test library
can correctly exclude non-target sequences. Accuracy de-
notes the true rate in discriminating target and non-target
sequences. Precision is the true discovery rate, while FDR
is the false discovery rate. Finally, the F1 measure is the
harmonic mean of precision and sensitivity; F1 is similar
to accuracy, but is useful because it does not require an
estimate of TN, which can be difficult to quantify. While
we can estimate TNs with the use of the curated annota-
tion, we still include the F1 measure in our study to allow
for comparison to previous work.
We exhaustively searched the literature for open-source

programs and databases that have been developed for gen-
eral repeat annotations as well as structural annotation
programs for LTR elements, SINEs, LINEs, TIR elements,
and Helitrons. We applied educated parameters based on
knowledge of transposon structures to run these programs
(see the “Methods” section and Additional file 1). We also
applied filters on initial program predictions to remove
low-quality candidates and potentially false predictions
such as short sequences and tandem-repeat-containing se-
quences (Additional file 1). For each program, a non-
redundant test library was created from filtered TE candi-
dates, which was then used to annotate the rice genome.
The annotation from each program for each category of
TEs was compared with those from the curated library for
calculation of benchmarking metrics.

Comparison of general repeat annotators
We benchmarked five general repeat annotators, including
RECON [44], RepeatScout [26], RepeatModeler [28], Red
[27], and Generic Repeat Finder (GRF) [45], as well as a
repeat database Repbase [30], which is widely used as the
default library in RepeatMasker [29]. For these TE annota-
tion approaches, only RepeatModeler and Repbase provide

classification of TE annotations. Among these methods,
we found that Repbase employing the rice TE database
had very high performance in both TE identification and
classification (Fig. 2), which is a product of continuous im-
provement and curation of rice TEs by the community.
However, if we exclude rice-related TEs in Repbase and
treat rice as a newly sequenced species (Repbase_norice in
Fig. 2), the annotation (Fig. 2a) and classification (Fig. 2b)
sensitivity both drop from ~ 94 to ~ 29%, despite ex-
tremely high specificity (~ 99%) and low FDR (~ 5%; Add-
itional file 2: Table S1A). This result was consistent for
each of the TE classes (Fig. 3a—LTR elements; Fig. 3c—
non-LTR elements; Fig. 4a—TIR elements; Fig. 4d—Heli-
tron), though the drop in sensitivity was substantially
greater for Helitrons (dropped from 78 to 3%) than for
other elements. For TE classifications, RepeatModeler per-
formed similarly to Repbase without rice sequences
(Fig. 2b), and both can, therefore, be used as high-quality
supplements to other specialized TE annotators. GRF is
the most recently developed general repeat finder. It had
the lowest sensitivity (75%; Fig. 2a; Additional file 2: Table
S1A), which is likely due to its inability to introduce gaps
during the multiple sequence alignment process [45].
Overall, the general repeat finders we tested have consist-

ently high performance in identifying repetitive sequences
in the rice genome, with the exception of Repbase without
rice sequences (Fig. 2a). What really differentiates these
programs is their ease in processing raw results. All are
open source and easy to install except Repbase (Add-
itional file 2: Table S2), which requires an institutional sub-
scription for access. Red runs on a single CPU and took the
shortest time for execution (~ 33min); however, Red pro-
duced the largest raw result file, which is highly redundant
(35Mb after clustering; Additional file 2: Table S2). Repeat-
Modeler and RepeatScout produced very compact outputs
(< 4Mb). The RepeatScout program runs more efficiently
but provides no classification of repeat sequences (Add-
itional file 2: Table S2). The RECON and RepeatScout
packages are not actively maintained, but have been incor-
porated into the RepeatModeler package. In summary,
RepeatModeler has the highest performance among the
general repeat annotators based on our evaluation metrics
(Fig. 2) and is open source, able to produce a compact

Table 1 TE content in the rice (Oryza sativa ssp. japonica cv. “Nipponbare” v. MSU7) genome

Class Std6.9.5* Complete** (%) Fragmented** (%) Total** (%)

LTR Class I 88.1 Mb 14.44 9.11 23.54

Non-LTR Class I 7.6 Mb 0.51 1.52 2.03

TIR Class II 65.5 Mb 7.93 9.56 17.49

Helitron Class II 13.4 Mb 1.10 2.47 3.57

Total – 174.6 Mb 23.98 22.66 46.64

*Annotation based on the curated library (v6.9.5)
**Percent of genome estimated based on a genome size of 374.3 Mb
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output, and able to classify TE families to some degree. Still,
further classification or use of more specialized software
based on the specific structures of each superfamily of TEs
is necessary to achieve more accurate annotations.

Comparison of LTR annotators
LTR retrotransposons have received the most attention in
TE annotation software development due to their abun-
dance in eukaryotic genomes. In addition to the two gen-
eral repeat identification methods with classification
(RepeatModeler and Repbase), we found seven structure-
based methods that are specifically designed for de novo
LTR identification. Chronologically in order of develop-
ment, they are LTR_STRUC [46], LTR_FINDER [47],
LTRharvest [48], MGEScan3 [49], LTR_retriever [40],
LtrDetector [50], and GRF [45]. In a previous study [40],
we developed LTR_retriever and compared its perform-
ance to LTR_STRUC, LTR_FINDER, LTRharvest, and
MGEScan_LTR [51]. Here, we update the comparison
with the recently developed MGEScan3, LtrDetector, and
GRF. Meanwhile, the LTR_retriever package has been up-
dated from v1.6 to v2.7 since its initial publication.
The six structure-based methods that we tested all had

very high sensitivity (> 96%) but also high FDR (28–55%);
specificity, accuracy, and F1 measures were also somewhat
suboptimal (Fig. 3a). Among these six methods, LTR_
FINDER demonstrated the best balance of performance
across metrics followed by MGEScan3 (Fig. 3a). However,
it runs slowly partly because it is single-threaded. For fas-
ter execution of LTR_FINDER, we developed LTR_
FINDER_parallel that splits chromosome sequences into

shorter segments and executes LTR_FINDER in parallel
[52]. We used LTR_FINDER_parallel for all related ana-
lyses in this study.
LTR_retriever does not have its own search engine;

rather, it was designed as a stringent filtering method for
raw results of other LTR programs. LTR_retriever can
process results of all six aforementioned LTR methods or
any combination of them. We used LTR_retriever in
conjunction with each of the six programs and with all six
programs together to benchmark its performance. Our re-
sults show that LTR_retriever has consistently high speci-
ficity (94.8% ± 3%), accuracy (92.2% ± 3%), precision
(84.9% ± 7%), and F1 measure (82.4% ± 10%) and relatively
low FDR (15.1% ± 7%) (Fig. 3b; Additional file 2: Table
S1B). The sensitivity of LTR_retriever is also high (≥ 93%),
except when used in combination with LTR_STRUC and
LtrDetector (Fig. 3b; Additional file 2: Table S1B). This is
due to the imprecisely defined sequence boundaries of
LTR candidates of these two methods, preventing LTR_
retriever from finding microstructures like TSD and
terminal motifs [40], yielding a high false negative rate.
Overall, LTR_retriever represents the best compromise

between sensitivity and specificity. LTR_retriever also
generated the most compact LTR library in comparison
to the other programs (Additional file 2: Table S2),
allowing efficient and precise whole-genome LTR anno-
tations. It is not necessary to run all six structure-based
programs along with LTR_retriever. Instead, the com-
bination of LTR_FINDER and LTRharvest with LTR_re-
triever achieved the best performance and the shortest
processing time as previously demonstrated [40].

Fig. 2 Annotation performance of general repeat annotators compared to the rice curated annotation. a Annotation and b classification
performance of various methods. Sens, sensitivity; Spec, specificity; Accu, accuracy; Prec, precision; FDR, false discovery rate; F1, F1 measure
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Comparison of non-LTR annotators
Non-LTR retrotransposons include LINEs and SINEs that
propagate via reverse transcription of RNA intermediates
[16]. Identification of non-LTR retrotransposons is very
challenging due to the lack of a terminal repeat structure
and also their sequences often degenerate quickly [32]. In
addition to the general repeat annotators described above,
we also benchmarked a dedicated database for SINEs
(SINEBase) and three structure-based methods.
SINEBase [32] is a species-agnostic database that per-

formed poorly in terms of sensitivity, similar to the non-rice
Repbase library (Fig. 3d). The specialized structure-based
annotation methods, including MGEScan3, SINE-Finder,

and SINE_Scan also exhibited suboptimal sensitivity (< 60%)
and very high FDRs (51–95%) (Fig. 3; Additional file 2:
Table S1C). SINE_Scan is a successor of SINE-Finder, which
aims to detect all known types of SINEs with higher accur-
acy [53]. Based on our results, SINE_Scan did have a much
lower FDR compared to SINE-Finder; however, its sensitiv-
ity was also much lower (Fig. 3d).
The possibility remains that SINEs are under-annotated

in the curated library, which may contribute to the high
FDR values that were observed across programs. To test
the validity of these SINE candidates, we followed the
instructions in the SINE_Scan package and manually
inspected terminal alignments of all candidate SINE

Fig. 3 Annotation performance of retrotransposon-related programs as compared to the rice curated annotation. a Various methods to identify
LTR retrotransposons. GRF-LTR_FINDER combines the terminal direct repeat search engine in GRF and the filtering engine in a modified version
of LTR_FINDER for detection of LTR retrotransposons. The LTR_FINDER result was generated by the parallel version. b LTR_retriever-specific results,
which were generated using LTR_retriever to process results from other programs specified in each of the names in the figure. c Non-LTR
retrotransposon annotation methods. d Short interspersed nuclear element (SINE) annotation methods. Sens, sensitivity; Spec, specificity; Accu,
accuracy; Prec, precision; FDR, false discovery rate; F1, F1 measure
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families (n = 35). Out of 35 candidate families, we found six
longer than 99 bp that possess clear sequence boundaries
with poly-A or poly-T tails. These six families were already
present in the curated library, indicating the high FDR is a
product of false discovery rather than a limitation of the cu-
rated library being used to evaluate these programs.
In summary, we found general methods such as

RepeatModeler, the non-rice Repbase, and SINEBase
provided high-quality annotations for non-LTR retro-
transposons, while structure-based methods such as

MGEScan3, SINE-Finder, and SINE_Scan have low sen-
sitivity and high rates of false discovery. Therefore, re-
searchers may want to use RepeatModeler for de novo
annotation of non-LTR elements, and supplement these
annotations with SINEBase or Repbase.

Comparison of TIR annotators
TIR transposons are a subclass of TEs that carry
inverted repeats at their ends [16]. Miniature inverted
transposable elements (MITEs) are a special kind of TIR

Fig. 4 Annotation performance of DNA transposon-related programs as compared to the rice curated annotation. a General methods and c structure-
based methods to identify TIR elements. The TIR-Learner_rmLTR and TIRvish_rmLTR libraries had LTR-related sequences removed using the curated
library. b Structure-based methods and specialized database to identify miniature inverted transposable elements (MITEs). d Annotation performance
of Helitron-related methods as compared to the rice curated annotation. The HelitronScanner_clean result had non-Helitron TE sequences removed
using the curated library. Sens, sensitivity; Spec, specificity; Accu, accuracy; Prec, precision; FDR, false discovery rate; F1, F1 measure
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transposon that lack any coding potential (non-autono-
mous) and are usually shorter than 600 bp [16]. These
elements are highly abundant in eukaryotic genomes,
and many annotation programs have been designed for
their identification. We tested P-MITE [31], a specialized
database of curated plant MITEs; IRF [54], TIRvish [55],
TIR-Learner [17], and GRF (grf-main -c 0) [45], which
structurally identify TIR elements; and finally MITE-
Hunter [56], detectMITE [57], MUSTv2 [58], miteFin-
derII [59], MITE-Tracker [60], and GRF (grf-mite),
which structurally identify MITEs specifically.
The P-MITE database performed similarly to what we

observed for classifications from the general repeat an-
notators; the rice-specific database (P-MITE_rice) anno-
tated TIR elements accurately and sensitively, while the
non-rice database (P-MITE_norice) had very low FDR
and low sensitivity (Fig. 4b), suggesting the necessity of
using structure-based methods for de novo annotation.
We tested four structure-based methods for TIR anno-

tation: IRF, GRF with educated parameters (GRF-TIR_
edu), TIRvish, and TIR-Learner. Each of these methods
had high sensitivity (> 90%; Fig. 4c; Additional file 2: Table
S1D); however, IRF and GRF-TIR_edu performed poorly
for the remaining metrics (Fig. 4c). The poor performance
of IRF and GRF-TIR_edu is due to the large number of
candidates they identified, with 4.7 Gb and 630 Gb (13×–
1684× the size of the 374-Mb rice genome) of raw TIR
candidate sequences produced, respectively. The majority
of raw candidate sequences were overlapping and nested
within each other. The output of both programs was sub-
stantially filtered and condensed using EDTA utility
scripts (Additional file 1; Additional file 2: Table S2), but
still had poor performance based on our analysis metrics
(Fig. 4c). TIRvish was among the fastest TIR programs
(Additional file 2: Table S2); however, it does not provide
further classification of superfamilies. In contrast, TIR-
Learner provided superfamily classifications and demon-
strated relatively high sensitivity, specificity, and accuracy
(Fig. 4c), which is promising for TIR annotation.
For structure-based MITE annotation, GRF with edu-

cated parameters (GRF-mite_edu) also produced large out-
put files similar to IRF and GRF-TIR_edu. After filtering
for false discovery and redundancy (Additional file 1), the
candidate sequence file was reduced from 47Gb (130× the
size of the rice genome) to 10Mb (Additional file 2: Table
S2). Still, given its inferior annotation performance relative
to other MITE methods (Fig. 4b), GRF-mite_edu is not
ideal for de novo annotation. Interestingly, GRF with de-
fault parameters (GRF-mite_dft) had high performance
similar to MITE-Hunter and MITE-Tracker (Fig. 4b). The
poor performance of GRF-mite_edu is mostly due to chan-
ging the internal region length from default 780 bp to 10
Kb (Additional file 1), which captured significantly more
non-MITE sequences, suggesting the default parameters of

GRF may have been optimized for MITE detection. These
three MITE methods all had high specificity (≥ 95%) and
accuracy (≥ 94%), reasonable sensitivity (79–84%), but
somewhat lower precision (64–79%) (Fig. 4b; Add-
itional file 2: Table S1D), suggesting high potential for
these programs. miteFinderII and detectMITE also had
high performance but with comparatively lower sensitivity
for miteFinderII and lower specificity and accuracy for
detectMITE (Fig. 4b; Additional file 2: Table S1D).
MUSTv2 performed similar to GRF-mite_edu and worse
than other MITE programs (Fig. 4b).
We identified promising methods for TIR transposon

and MITE annotation including TIR-Learner, MITE-
Hunter, MITE-Tracker, and GRF-mite_dft. These
methods all have relatively high specificity but somewhat
high FDR (Fig. 4), indicating each program generated
annotations that matched our curated library as well as
additional potential TEs. Our curated library is likely in-
complete, and these new candidates could be real TIR
elements or MITEs. We compared these new TE candi-
dates with the curated library and to TIR element-
specific conserved domains (Additional file 1). On an
element basis, we found over 65% (5688 out of 7435
novel TIR elements and 11,885 out of 18,093 novel
MITEs) of the candidates shared similar TIR sequences
with our curated library, but included more diverse in-
ternal sequences, with a subset of elements showing po-
tential to be autonomous (Additional file 3: Table S3).
Such variation is common in non-autonomous TIR
transposons, such as Ds elements [61]. For MITE candi-
dates with novel TIRs, the majority had more than three
copies in the rice genome (Additional file 3: Table S3),
suggesting these are likely real TEs that were not in-
cluded in the curated library. Out of the four MITE pro-
grams, MITE-Hunter identified sequences most similar
to the curated library (Additional file 3: Table S3).
TIR-Learner demonstrated great promise for structural

annotation (Fig. 4), and a large proportion of the novel can-
didates it identified may be non-autonomous forms of
known TIR elements (Additional file 3: Table S3). Among
the novel TIR elements with novel TIRs, less than half had
more than three copies in the rice genome (Additional file 3:
Table S3). This is because TIR-Learner does not impose a
copy number filter [17], given that some TEs may share
similar TIRs but different internal regions (Additional file 3:
Table S3). Still, some of these low-copy candidates could be
contaminants such as misclassified LTR sequences. In fact,
comparison to the curated library showed that 6.38% of
TIR-Learner reported TIR candidates were actually LTR
sequences. After removal of these contaminants, the specifi-
city and accuracy increased to 91.6% and 91.3%, respect-
ively, while the sensitivity remained at ~ 90%. Importantly,
the FDR dropped from 57.3 to 30.8% (Fig. 4c; Add-
itional file 2: Table S1D), suggesting that the high observed
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FDR was partially caused by misclassification of LTR se-
quences as TIR elements. We also removed LTR sequences
from the TIRvish identified candidates and observed a 27%
increase of specificity (80.5%) without any loss of sensitivity
(94.5%; Fig. 4c; Additional file 2: Table S1D), suggesting
that LTR sequences were a common source of false posi-
tives during structural identification of TIR elements.
In summary, MITE-Hunter and TIR-Learner showed

the best performance for structural identification of
MITEs and TIR elements (Fig. 4b, c), respectively, when
TIR-Learner results were filtered to control false discovery
(Fig. 4c). RepeatModeler, Repbase, and P-MITE had high
accuracy but low sensitivity (Fig. 4a, b) and could be used
to supplement structural annotations of MITE and TIR
elements.

Comparison of Helitron annotators
Helitrons are a subclass of DNA transposons that lack
terminal repeats and do not generate target site duplica-
tions when transposed due to their rolling-circle mech-
anism of transposition [62], making identification of
these elements particularly challenging. We found only
one structure-based software, HelitronScanner [18], that
is available, is bug-free (no errors in our test), and pro-
duced Helitron predictions.
HelitronScanner produced 52Mb of raw candidate

sequences in rice (13.9% of the genome; Additional file 2:
Table S2). Since Helitrons may capture DNA sequences
when transposed, many non-Helitron TE sequences and
even protein-coding sequences are present in the raw pre-
diction. Nested insertions between different TE classes are
also likely to be present in these initial candidate sequences.
Using the curated library, we found that 1.8% of Helitron
candidates consisted of non-LTR sequences (LINEs and
SINEs); 21% were LTR sequences and 11% were TIR se-
quences. With no filter applied, these Helitron candidates
would include all classes of TEs, resulting in a high false
discovery rate (93.7%; Additional file 2: Table S1E) and low
annotation performance (Fig. 4d). To control for false dis-
covery, we filtered Helitron candidates that lacked the sig-
nature 5′-TC...CTRR-3′ (R =G or A) terminal sequence
structure, as well as those not inserted into AT or TT target
sites (Additional file 1) [63]. We also removed non-Helitron
TE sequences in these candidates using the curated library.
After applying these filters, both the specificity and accur-
acy improved to 86%, while sensitivity was maintained at
95% (Fig. 4d; Additional file 2: Table S1E).
Similar to TIR-Learner for TIR element identification,

HelitronScanner identified most of the curated Helitrons
in the curated library, and also many additional elements
not contained in the library (Fig. 4d). We further filtered
these candidates with the EDTA pipeline (see the
“Methods” section) and annotated the rice genome. Our
filters yielded annotated sequences covering 7.3% of the

rice genome compared to only 3.6% annotated using the
curated library (Additional file 3: Table S4). Evaluation of
the 30-bp sequences of both terminals with 10-bp flanking
sequences as sequence logos showed the AT or TT target
sites we required in our filtering and also that these candi-
dates clearly have the canonical terminal structure 5′-
TC...CTRR-3′ (with 5′-TC...CTAG-3′ dominating) which
is required by HelitronScanner (Additional file 3: Figure
S1). These candidates were also located in relatively AT-
rich regions with significantly higher AT content in the 5′
terminal (Additional file 3: Figure S1), consistent with pre-
vious observations by Yang and Bennetzen regarding tar-
get site preference [64]. We found enriched CG content at
the 3′ terminals especially at the − 13 and − 14 positions,
which could produce a hairpin loop, a canonical Helitron
feature [18]. While these elements contain the terminal
features of a Helitron, this does not necessarily confirm
their validity as intact elements. Further confirmation of
these results will require meticulous curation and intra-
specific comparisons [18, 63].

Comparison of resource consumption and usage
In this study, we benchmarked 25 TE annotation pro-
grams and three databases, while nine others were
attempted with failure due to a variety of reasons includ-
ing (1) lack of maintenance with unresolved program
bugs, (2) outdated programs required by the software
and a lack of alternatives, (3) required programs or data-
bases that are not open-source, and (4) programs take
too long to run. For programs that were run successfully,
some were more challenging than others. One of the
main obstacles was installation. We found compile-free
and precompiled programs were the easiest to use,
followed by those available via conda and bioconda [65].
In addition to benchmarking the quality of the output

of each program, we also benchmarked the algorithmic
efficiency of these TE annotation programs. Since these
programs were executed in different high-performance
computational platforms (Additional file 2: Table S2), al-
gorithmic performance could be slightly variable. Over-
all, most programs completed within 24 h with an
average of 5.5 h (Additional file 2: Table S2). Longer run
time was not associated with higher performance in
terms of the six analysis metrics, and for some programs
would become a barrier for annotation of large genomes.
Most programs were not memory intensive, with a mini-
mum of 7.2 Mbyte (SINE-Finder), an average of 8.7
Gbyte, and a maximum of 76 Gbyte (the GRF-LTR_
FINDER method; Additional file 2: Table S2). Approxi-
mately two-thirds of the programs can be multi-
threaded. However, the average CPU usage of programs
was not significantly correlated with run time (r = − 0.19,
p = 0.26, F test), indicating run time is primarily deter-
mined by algorithmic efficiency.
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Construction and benchmarking of the EDTA pipeline
From the benchmarking results, we identified a set of pro-
grams that presented high sensitivity, specificity, and ac-
curacy, but, in some instances, high FDR. Using these
programs, we have developed a pipeline called Extensive
de-novo TE Annotator (EDTA), which combines the best-
performing programs and subsequent filtering methods
for de novo identification of each TE subclass and com-
piles the results into a comprehensive non-redundant TE
library. The EDTA pipeline incorporates LTRharvest, the
parallel version of LTR_FINDER, LTR_retriever, GRF,
TIR-Learner, HelitronScanner, and RepeatModeler as well
as customized filtering scripts (Fig. 5a). We applied basic
filters for LTR candidates, TIR candidates, Helitron candi-
dates, and RepeatModeler results to remove short se-
quences, tandem repeats, and a portion of false positives
(stage 0; the “Methods” section). Advanced filters were ap-
plied reciprocally for stage 0 sublibraries to further remove
misclassified sequences (stage 1; the “Methods” section).
To test the performance of the EDTA pipeline, we an-

notated the rice genome using the curated TE library and
the test library generated from the EDTA pipeline. Per-
formance metrics for annotation generated using the stage
0 library showed low sensitivity (≤ 71%) for the annotation
of LTR elements, TIR elements, and MITEs, and also sub-
optimal specificity (~ 75%) and accuracy (~ 76%) for Heli-
tron annotations (Fig. 5b; Additional file 2: Table S1F).
This is due to the nested TEs, captured TEs, or false dis-
covery in Helitron candidates that impair the annotation
performance in the combined stage 0 library. After recip-
rocal removal of misclassified TEs in each category (stage
1; Fig. 5a; the “Methods” section), the performance met-
rics were high for the EDTA stage 1 annotation (Fig. 5c).
For all four TE subclasses and the overall repetitive se-
quences, the annotation sensitivity averaged 75.4%, specifi-
city averaged 95.0%, and accuracy averaged 93.0%
(Additional file 2: Table S1F). FDRs of these categories
ranged from 3–36%, with the exception of Helitrons that
had 70% of annotations not identified by the curated li-
brary (Additional file 2: Table S1F).
Overall, 96% of TEs were annotated in the rice gen-

ome using EDTA (Additional file 2: Table S1F), which
was very close to the estimation based on the curated li-
brary (Fig. 5d, e). We did not identify any non-LTR ret-
rotransposons with the RepeatModeler module (Fig. 5e).
This is likely due to the low level of non-LTR elements
in the rice genome (Table 1; Fig. 5d) that could have
been misclassified as other TE subclasses, which is not
the case for many of the larger eukaryotic genomes. Fur-
ther annotation of non-LTR retrotransposons is neces-
sary to exhaustively annotate TEs in the genome. As
new programs become available for non-LTR elements,
they will be benchmarked and potentially added to the
EDTA pipeline based on performance metrics.

The purpose of EDTA is to ease the construction of non-
redundant TE libraries for newly sequenced eukaryotic ge-
nomes, which can be subsequently used to generate whole-
genome de novo TE annotations of structurally intact and
fragmented elements. Our initial benchmarking was com-
pleted using the model species rice. To demonstrate its util-
ity in other species, we applied the pipeline to maize [4, 66]
and Drosophila [20], both of which have high-quality
genomes and manually curated TE libraries to which we
could compare the output of EDTA (Additional file 3: Ta-
bles S5-S6). Our results show that EDTA has high perform-
ance in the genomes of maize and Drosophila similar to
that in the rice genome (Fig. 5c; Fig. 6h, i). Across the dif-
ferent types of TEs and species, sensitivity is averaged 77%,
specificity is averaged 90%, and accuracy is averaged 92%
(Fig. 6h, i; Additional file 2: Table S1F). EDTA annotated
many more Helitrons in both species compared to their re-
spective, curated libraries (FDR averaged 80%; Fig. 6h, i;
Additional file 2: Table S1F), which is likely due to the in-
completeness of curated libraries. In particular, the curated
Drosophila library has only one Helitron sequence and this
does not carry the canonical 5′-TC...CTRR-3′ terminal
structure which is currently critical for automated identifi-
cation of Helitrons.
We also estimated whole-genome TE misclassification

rates for annotations generated by both the curated li-
braries and EDTA-generated libraries within each of the
three species. Here, we define misclassification as TE se-
quences that are inconsistently classified into different
subclasses (LTR retrotransposon, TIR transposon, and
Helitron) in the whole-genome annotation (Add-
itional file 1). The curated libraries demonstrate ex-
tremely low misclassification rate (≤ 2.4%) in each of the
TE categories as well as the overall TE annotation
(Fig. 6a–c), suggesting they are high quality with regard
to classification consistency. This is expected based on
the extensive manual curation efforts that have been
employed to generate these curated libraries. To test the
EDTA pipeline for this misclassification metric, we first
evaluated annotations based on the best-performing
structure-based programs without advanced downstream
processing in rice. With only basic filtering (EDTA stage
0), the misclassification rate across TE subclasses ranged
from 32 to 41% (Fig. 6g). However, the EDTA pipeline is
more than just a compilation of programs, it also incor-
porates advanced filtering schemes to reduce misclassifi-
cation and false identification of elements (Fig. 5a).
Using the complete utility of the EDTA pipeline, which
includes post hoc filtering scripts, the overall misclassifi-
cation rate decreased to only 1–7% (Fig. 6d–f). Across
the different classes of elements, the LTR and TIR ele-
ments in the three species were consistently classified
across all of the species, with 1–13% of misclassification
(Fig. 6d–f). Helitrons had a higher misclassification rate
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(14–39%), which is likely due to the sequence capture
nature of these TEs. Our results indicate the potential
need for careful verification and curation of Helitron an-
notations generated by HelitronScanner used within the
EDTA pipeline.

There are a number of existing annotation pipelines for
de novo TE annotation. REPET [67] is a well-known pipe-
line developed for de novo TE identification and annota-
tion facilitated by the RepBase database [30]. Tephra was
originally developed for structure-based TE annotations of

Fig. 5 The Extensive de-novo TE Annotator (EDTA) pipeline. a The EDTA workflow. LTR retrotransposons, TIR elements, and Helitron candidates are
identified from the genome sequence. Sublibraries (such as LTR library, TIR library, etc.) are filtered using EDTA library filtering scripts (including
both basic filters and advanced filters, see the “Methods” section for details) for removal of misclassified TEs and are then used to mask TEs in the
genome. The unmasked part of the genome is processed by RepeatModeler to identify non-LTR retrotransposons and any unclassified TEs that
are missed by the structure-based library. Nested insertions and protein-coding sequences are removed in the final step to generate the final TE
library. Performance of b EDTA stage 0 sublibraries and c EDTA stage 1 sublibraries after basic filtering and advanced filtering, respectively.
Annotation of the rice genome using d the curated library and e the final EDTA-generated library
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the sunflower (Helianthus annuus) genome [68]. We
benchmarked EDTA against these two pipelines in the
rice genome. The overall sensitivity of these two pipelines
(≥ 96%) was comparable to the EDTA result (96%), despite
the lack of functionality of Helitron detection in REPET
(Additional file 3: Figure S2; Additional file 2: Table S1F).
However, neither of the programs were sensitive in TIR
and MITE detection (27–62%), nor were they specific in
LTR and Helitron (only for tephra) detection (67–78%;
Additional file 3: Figure S2; Additional file 2: Table S1F).
This suggests a poor balance between sensitivity and

specificity. We also observed a high misclassification rate
of the REPET annotation (15–62%) and a medium level of
misclassification of the tephra annotation (21–36%; Add-
itional file 3: Figure S2). The overall misclassification rate
of REPET and tephra (22–28%; Additional file 3: Figure
S2) is lower than that of the EDTA stage 0 annotation
(37%; Fig. 6g), but much higher than the final EDTA an-
notation (6%; Fig. 6d).
Overall, we observed high performance of EDTA

across multiple species including both plant and animal
species with varying genome size and TE content. EDTA

Fig. 6 Benchmarking of the EDTA pipeline. Misclassification rate of whole-genome TEs annotated by a our curated rice library, b the Maize TE
Consortium curated maize library (Maize_MTEC), c the community curated Drosophila library (Dmel_std6.28), d the EDTA-generated rice library, e
the EDTA-generated maize library, f the EDTA-generated Drosophila library, and g the EDTA-generated stage 0 library with only basic filtering.
Benchmarking of EDTA-generated maize (h) and Drosophila (i) libraries using Maize_MTEC and Dmel_std6.28 libraries, respectively
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has demonstrated promise in automated high-quality TE
annotations that facilitate whole-genome annotation and
TE studies without the need for extensive manual
annotation.

Discussion
Recent innovations in third-generation (i.e., long-read) se-
quencing have enabled rapid and high-quality assembly of
the repetitive fraction of genomes, creating an opportunity
and need for high-throughput annotation of TEs. Annota-
tion of TEs presents a substantial algorithmic and computa-
tional challenge. Different classes of TEs have distinct
sequence characteristics, which has led to the development
of software programs for each type. While anecdotally re-
searchers have known the strengths and weaknesses of each
of these methods, no comprehensive benchmarking study
has quantified their relative annotation (i.e., sensitivity and
specificity) and computational (i.e., run time and memory
requirements) metrics. We have exhaustively tested these
programs against a high-quality, manually curated rice TE
library and have compiled the best-performing software as
part of a comprehensive TE annotation pipeline known as
EDTA. We have further demonstrated that the pipeline is
robust across species.
All TEs were capable of transposition in the genome.

However, the ability to amplify varies dramatically among
different TE families. In fact, only a few TE families can
amplify to high copy number. For example, in maize, the
top 20 families of LTR retrotransposons comprise ~ 70%
of the genome, whereas the remainder (380 or more)
comprise only ~ 5% [69]. From this perspective, if a TE
identification program captures elements with high copy
number, the majority of the TE body in the genome will
be characterized. Consistent with this notion, we observed
that all general repeat identification programs, which de-
pend on sequence repeatedness, performed well (high sen-
sitivity and specificity, good precision and accuracy;
Fig. 2a). Most importantly, the results from these pro-
grams are associated with very low FDR, suggesting when
a sequence is repetitive to a certain degree, it is very likely
to be a TE. However, most repeats from general programs
are not classified and their sequence boundaries are often
approximate. Not all tasks require TE classifications. For
example, repetitive sequences are usually masked prior to
gene annotation to minimize interference. For such pur-
poses, general repeat identification programs and subse-
quent filtering for duplicated genes would suffice.
In contrast to the general repeat annotators, structure-

based programs can identify low- or even single-copy ele-
ments and are therefore more sensitive. Moreover, these
programs provide the exact coordinates of elements and
are ideal for targeted study of TEs and their interactions
with other components in the genome. However, based
on our results, the majority of structure-based programs

are associated with high FDR (up to 95%), and such error
could be propagated in subsequent analyses. One factor
contributing to this high error rate is misidentification
due to nested insertion of TEs from different classes. We
have developed an approach to minimize this issue by
cross-checking sequences derived from programs for dif-
ferent classes of TEs. Another potential strategy to reduce
FDR is to incorporate copy number control, but this
would actually compromise the most important advantage
of structure-based programs, which is sensitivity. Thus,
this is an unsolvable problem without improvement to
structure-based programs; particularly those for non-LTR
retrotransposons and Helitrons. While more specific
search engines or efficient filters may reduce the FDR,
some level of manual curation may still be necessary for
the generation of high-quality libraries.
Few species beyond rice have TE libraries of sufficient

quality and genomes that are tractable enough to be used
for benchmarking purposes. Furthermore, TEs comprise a
relatively high proportion of the rice genome (~ 46%), and
extensive manual curation efforts make it one of the only
species in which a benchmarking study can reliably calcu-
late true positive, false positive, true negative, and false
negative rates across annotation programs. However,
relative performance of TE annotation programs should
be similar across systems. Programs have primarily been
developed to detect specific types of TEs and are largely
agnostic to species. This is possible because classes of TEs
generally have similar structures across species [14, 16,
18]. Throughout this benchmarking exercise, we have
based our tuning of programs (i.e., our educated parame-
ters) on current knowledge of the structure of each target
TE subclass [14, 16, 18], which, again, is not specialized to
a particular system or species. As an example of the broad
utility of these methods, the LTR_retriever program [40]
has been tested for annotation of Arabidopsis, rice, maize,
and sacred lotus (Nelumbo nucifera) [70] and demon-
strated similar performance across systems. Furthermore,
when we applied the EDTA pipeline to generate de novo
libraries for maize and Drosophila, we saw consistent per-
formance metrics to those observed for the initial bench-
marking with rice.
We do anticipate some limits to the broad applicability

of the EDTA pipeline across systems. For instance, based
on our metrics, the performance of methods for detect-
ing the non-LTR elements (i.e., SINEs and LINEs) was
generally suboptimal and better algorithms are needed.
Particularly, there is no structure-based program avail-
able for the identification of LINEs. The EDTA package
may therefore miss a number of elements in, for in-
stance, vertebrate genomes that contain many SINEs
and LINEs [71]. Finally, our knowledge of TE structure
is rapidly expanding, and parameterization and tuning of
methods will therefore need to be continually updated.
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For example, variation in terminal motifs and target site
duplication in LTR elements was previously poorly char-
acterized. In the development of LTR_retriever, it was
found that the terminal motif 5′-TG..CA-3′ occurs 99% of
the time and that the vast majority of LTR TSDs are 5 bp
[40]. While some programs set very flexible parameters
for these features (e.g., LTRharvest), in our implementa-
tion of LTR_retriever, we applied our new knowledge and
observed a substantial improvement in performance with
regard to the FDR [40].
Moving forward, we see opportunities for improved an-

notation of highly variable TE classes including MITE/TIR
elements and SINE/LINE, where, upon insertion, mutations
and indels can be created. In these situations, construction
of a consensus sequence is necessary for more precise TE
annotation. Many programs do not currently have this
feature. The GRF program for detection of interspersed
repeats (grf-intersperse) has a consensus function, but the
program does not allow indels, resulting in the lowest sensi-
tivity but also the lowest FDR. For SINE/LINE detection,
we found very low sensitivity and very high FDR, which is
likely due to variation in these TEs (e.g., most LINEs are
truncated upon insertion) and the lack of terminal repeats,
making detection very challenging. Further development of
consensus-based methods will be important. As new
methods are generated and existing methods are improved,
they will be benchmarked relative to our rice library and in-
cluded in the EDTA pipeline when they result in a marked
increase in annotation performance.

Conclusions
Advances in sequencing technology are facilitating as-
sembly of the repetitive portion of many genomes, which
necessitates the annotation of these features. Using a
highly curated library of rice TEs, we have created a
benchmarking platform to test TE annotation software.
We used this platform to exhaustively test currently
available software based on output (i.e., sensitivity and
specificity) as well as the performance of the software
(i.e., run time and memory usage). From this bench-
marking exercise, the EDTA pipeline was developed that
combines the highest performing software with neces-
sary filtering and processing scripts such that the pipe-
line can be applied to any new genome assembly.

Methods
Manual curation of transposable elements in rice
Manual curation of TEs in rice was started after the re-
lease of the map-based rice genome [22]. Repetitive se-
quences in the rice genome were compiled by RECON
[44] with a copy number cutoff of 10. Details for manual
curation of LTR sequences were previously described in
the LTR_retriever paper [40]. In brief, for the curation of
LTR retrotransposons, we first collected known LTR

elements and used them to mask LTR candidates.
Unmasked candidates were manually checked for ter-
minal motifs, TSD sequences, and conserved coding se-
quences. Terminal repeats were aligned with extended
sequences, from which candidates were discarded if
alignments extended beyond their boundaries. For the
curation of non-LTR retrotransposons, new candidates
were required to have a poly-A tail and TSD. We also
collected 13 curated SINE elements from [53] to com-
plement our library.
For curation of DNA TEs with TIRs, flanking sequences

(100 bp or longer, if necessary) were extracted and aligned
using DIALIGN2 [72] to determine element boundaries.
A boundary was defined as the position to which sequence
homology is conserved over more than half of the aligned
sequences. Then, sequences with defined boundaries were
manually examined for the presence of TSD. To classify
the TEs into families, features in the terminal and TSD se-
quences were used. Each transposon family is associated
with distinct features in their terminal sequences and
TSDs, which can be used to identify and classify elements
into their respective families [14]. For Helitrons, each rep-
resentative sequence requires at least two copies with in-
tact terminal sequences, distinct flanking sequences, and
inserts into “AT” target sites.
To make our non-redundant curated library, each new

TE candidate was first masked by the current library. The
unmasked candidates were further checked for structural
integrity and conserved domains. For candidates that were
partially masked and presented as true elements, the “80-
80-80” rule (≥ 80% of the query aligned with ≥ 80% of
identity and the alignment is ≥ 80 bp long) was applied to
determine whether this element would be retained. For el-
ements containing detectable known nested insertions,
the nested portions were removed and the remaining re-
gions were joined as a sequence. Finally, protein-coding
sequences were removed using the ProtExcluder package
[73]. The curated library version 6.9.5 was used in this
study and is available as part of the EDTA toolkit.

Calculation of benchmarking metrics
The curated TE annotation of the rice genome (Oryza
sativa L. ssp. japonica cv. “Nipponbare” v. MSU7) was
created using the standard library (v6.9.5) and RepeatMas-
ker v4.0.8 with parameters “-pa 36 -q -no_is -norna
-nolow -div 40 -cutoff 225.” These parameters identified
homologous sequences with up to 40% divergence without
detecting bacterial insertion elements, small RNA
(pseudo) genes, and low complexity DNA. This annota-
tion was used as the curated annotation for the calculation
of benchmarking metrics. For genomic regions that cover
more than 80% of a TE sequence in the curated library,
the region was counted as a complete copy, and those that
covered less than 80% were counted as a fragmented copy.
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When we obtained a non-redundant test library from a
target program (details in the next section), the test library
was used to annotate the rice genome with the same
RepeatMasker parameters, except that the test library was
provided as a custom library. Then, the testing annotation
was compared to the curated annotation for calculations
of sensitivity, specificity, accuracy, precision, FDR, and F1
measures (Fig. 1). These six metrics were calculated using
the script “lib-test.pl” in our EDTA toolkit.

Execution of TE programs
We exhaustively searched the literature for open-source
programs and databases that have been developed for
both general repeat annotation and structural annotation.
We executed each of these programs to obtain candidate
sequences or downloaded sequences from specialized da-
tabases. All programs were executed using parameters
consistent with current knowledge of TE structure (edu-
cated parameters). A description of each of these pro-
grams, observations we made about accessibility/ease of
use of these programs, and the specific parameter options
that were used are provided in Additional file 1. To
benchmark the algorithmic efficiency, these programs
were executed in multiple high-performance computing
platforms (Additional file 2: Table S2). Run time (wall
clock), average CPU usage, and maximum memory con-
sumption were recorded using “/usr/bin/time -v.”
After we obtained raw sequences from programs, we

went through three steps to construct non-redundant test
libraries. The first step was to remove short tandem repeat
contamination sequences that were present in the raw can-
didates. Identification of tandem sequences was achieved by
Tandem Repeats Finder [74] with parameters “2 7 7 80 10
3000 2000 -ngs -h -l 6”. The second step was to remove
missing characters (Ns) in candidates as well as short se-
quences. The minimum sequence length was set to 80 bp
for TIR candidates and 100 bp for other types of TE candi-
dates. We used the script “cleanup_tandem.pl” in the LTR_
retriever package [40] for the first two steps with parame-
ters “-misschar N -nc 50000 -nr 0.9 -minlen 100 (or 80)
-minscore 3000 -trf 1 -cleanN 1.” The third step was to re-
move redundant sequences and nested insertions, which
was achieved using the script “cleanup_nested.pl” in the
LTR_retriever package [40] with default parameters. The
third step was iterated five times to resolve heavily nested
TEs for a thorough reduction of sequence redundancy. The
resulting sequences were used as the non-redundant test li-
brary for the focal programs. Databases were used directly
as test libraries without any filtering or manipulations.

Construction of the Extensive de-novo TE annotator
pipeline
Extensive de-novo TE Annotator (EDTA) is a pipeline
for comprehensive and high-quality TE annotation for

newly assembled eukaryotic genomes or to expand cu-
rated TE libraries. We combined open-source programs
that are either specialized for a particular subclass of
TEs or general for all repetitive sequences. The pro-
grams we selected had the highest performance from our
benchmarking and together deliver the best TE annotation
for a new genome that is possible given current program
performance. Still, based on our benchmarking results,
substantial contamination will exist due to misclassifica-
tion of elements, nested insertions, and sequences cap-
tured by TEs.
The EDTA pipeline contains a set of scripts for filtering

the output of each program to reduce the overall false
discovery rate. The first set of scripts included in EDTA
applies a simple filter for each of the initial predictions to
remove tandem repeats and short sequences (< 80 bp for
TIR elements and < 100 bp for LTR elements and Heli-
trons). For LTR candidates identified by LTRharvest and
LTR_FINDER, false discoveries are filtered by LTR_re-
triever. For TIR candidates identified by TIR-Learner, se-
quences are reclassified as MITEs if their length is ≤ 600
bp. For Helitron candidates reported by HelitronScanner,
filters based on target site (AT or TT) and prediction
scores (≥ 12) are performed (Additional file 1).
To obtain high-quality intact TEs, higher level fil-

ters are applied to remove false positives. Terminal
features of TIR elements and Helitrons are relatively
short, which can cause them to be falsely reported
based on the sequence of other TEs. In this case, the
flanking sequence of these false elements is likely to
have high copy number similar to their terminal se-
quences. To identify this source of false positives, the
EDTA pipeline extracts 60-bp sequences centered on
the start and end of candidate elements and searches
for their copy number in the genome. Candidates
with abundant full-length copies (≥ 20) in either
terminus are determined to be false positives. For
those with abundant full-length copies in both ter-
mini, a 60-bp sequence centered on the target site
(30 bp joined from both flanking regions) is searched
in the genome. If the copy number of both terminal
regions are not significantly more (< 20,000 times)
than that of the target site, the focal candidate is de-
termined as a true candidate that is nested within the
annotated element. After the above filtering, the
EDTA pipeline uses mdust (© Dana-Farber Cancer
Institute) to identify simple sequence repeat (SSR) in
the remaining TIR and Helitron candidates. Elements
carrying significant SSR sequences in either terminus
(more than 15 out of 20 bp) are classified as false ele-
ments. SSR sequences are subsequently removed from
any retained elements in the library. For LTR ele-
ments, due to the rigorous filtering and high-quality
results produced by LTR_retriever, the list of intact
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LTR elements is reported as intact LTR elements.
After these basic filtering steps, TE candidates are
named stage 0 (full-length TEs in Fig. 5).
Advanced filters are necessary to generate a com-

prehensive and high-quality TE library. In stage 0 TE
candidates, a fraction (0.3–27%) of them still contain
misclassified TE sequences that are augmented when
the library is used for whole-genome TE annotation.
To further reduce misclassifications, TE sequences are
filtered based on their relative richness between subli-
braries. For each candidate sequence, the richness was
estimated in both the target sublibrary (e.g., LTR) and
the other sublibraries (e.g., TIR and Helitron) based
on sequence homology. If the richness of the candi-
date sequence is not significantly higher in the target
sublibrary than in another sublibrary, it is classified as
a contaminant to the target sublibrary and discarded.
Purification of TE candidates is performed recipro-
cally between sublibraries.
After these reciprocal filtering steps, updated subli-

braries are aggregated and subjected to nested inser-
tion removal and clustering, which generates the non-
redundant stage 1 library (raw library in Fig. 5). Be-
cause LTR_retriever serves as a strong filter of results
from LTRharvest and LTR_FINDER, no further filter-
ing was necessary (LTR.stage0 = LTR.stage1). Non-
redundant stage 1 TEs are then used to mask the
genome. The remaining unmasked portion of the gen-
ome is scanned by RepeatModeler with default pa-
rameters to identify non-LTR retrotransposons and
any unclassified TEs that are missed by structure-
based TE identification. Finally, all remaining TEs are
aggregated and protein-coding sequences are filtered
in order to produce the final EDTA TE library. In
this process, users can (1) provide TE-free coding se-
quences (CDS) of this species or closely related spe-
cies for removal of gene-related sequences in the TE
library and (2) provide a curated library; then, EDTA
will only identify novel TEs that are not present in
the provided library. All EDTA results presented here
for rice and maize were based on de novo TE scans
without using existing TE libraries. The EDTA library
has RepeatMasker-readable sequence names and can
be used to annotate whole-genome TE sequences.
To facilitate genome annotation and TE studies, we

also provide a number of helpful functions in the
EDTA package: (1) Users can white-list genomic re-
gions from repeat masking (such as predicted gene
regions); (2) output intact TE structural annotation
information; (3) users can choose to annotate whole-
genome TEs as well as perform low-threshold TE
masking for downstream gene annotation; and (4)
users can evaluate the TE annotation consistency
without using external curated TE libraries.
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