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Abstract
Background and Purpose: Hematoma volume is a key determinant of outcome in acute in-
tracerebral hemorrhage (ICH). We aimed to compare estimates of ICH volume between simple 
(ABC/2, length, width, and height) and gold standard planimetric software approaches.  
Methods: Data are from the second Intensive Blood Pressure Reduction in Acute Cerebral 
Hemorrhage Trial (INTERACT2). Multivariable linear regression was used to compare ICH vol-
umes on baseline CT scans using the ABC/2, modified ABC/2 (mABC/2), and MIStar software. 
Other aspects of ICH morphology examined included location, irregularity, heterogeneity, 
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intraventricular and subarachnoid hemorrhage extension (SAH) of hematoma, and associated 
white matter lesions and brain atrophy. Results: In 2,084 patients with manual and semiau-
tomated measurements, median (IQR) ICH volumes for each approach were: ABC/2 11.1 (5.11–
20.88 mL), mABC/2 7.8 (3.88–14.11 mL), and MIStar 10.7 (5.59–18.66 mL). Median differences 
between ABC/2 and MIStar, and mABC/2 and MIStar were 0.34 (–1.01 to 2.96) and –2.4 (–4.95 
to –0.7416), respectively. Hematoma volumes differed significantly with irregular shape (ABC/2 
and MIStar, p < 0.001; mABC/2 and MIStar, p = 0.007) and larger volumes (mABC/2 and  
MIStar, p < 0.001; ABC/2 and MIStar, p = 0.07). ICH with SAH showed a significant discrep-
ancy between ABC/2 and MIStar (p < 0.001). Conclusions: Overall, ABC/2 performs better 
than mABC/2 in estimating ICH volume. The largest discrepancies were evidenced against 
automated software for irregular-shaped and large ICH with SAH, but the clinical significance 
of this is uncertain. © 2019 The Author(s)

Published by S. Karger AG, Basel

Introduction

Intracerebral hemorrhage (ICH) is the most severe type of stroke with case fatality 
ranging from 30 to 50% [1]. Age, clinical severity, and brain imaging features influence 
outcomes. Hematoma volume is the strongest predictor of 30-day mortality and a strong 
prognostic factor for patients with acute ICH [2]. Whilst various computer-assisted semi-
automated methods using Hounsfield unit threshold segmentation [3, 4] for determining 
hematoma volume are gaining popularity in research and clinical settings, the simple ABC/2 
method, which combines the largest measure in each of 3 dimensions of brain imaging slices, 
is most often used to derive a formal estimate of hematoma volume in this critical illness. The 
method was first reported by Kwak et al. [5] and Broderick et al. [6], and later validated by 
Kothari et al. [7], who suggested a variation to derive the C value for increased accuracy, the 
modified ABC/2 (mABC/2). However, as the ABC/2 method is based on the assumption that 
ICH has a bipyramidal ellipsoid shape, it may under- or overestimate actual ICH volume [8, 
9], particularly in an irregular shape [9–11]. Herein, we aimed to quantify differences between 
the 2 ABC/2 methods and semiautomated multislice techniques using MIStarTM (Apollo Inc, 
Melbourne, VIC, Australia) software for participants of the second Intensive Blood Pressure 
Reduction in Acute Cerebral Hemorrhage Trial (INTERACT2; the list of all study investigators 
is listed in the supplementary material; for all online supplementary material, see www.
karger.com/doi/10.1159/000504531) [12].

Methods

Design 
INTERACT2 was an international, multicenter, open, blinded endpoint, randomized 

controlled trial, as described in detail elsewhere [12, 13]. In brief, 2,839 patients with sponta-
neous ICH within 6 h of onset and elevated systolic blood pressure (SBP, 150–220 mm Hg) were 
randomly assigned to receive intensive (target SBP < 140 mm Hg within 1 h) or guideline-recom-
mended (target SBP < 180 mm Hg) blood pressure-lowering treatment. Demographic and clinical 
characteristics were recorded at the time of enrolment (baseline) of patients, with their neuro-
logical severity measured with the Glasgow Coma Scale and the National Institutes of Health 
Stroke Scale (NIHSS). The study protocols were approved by appropriate ethics committees at 
each site, and written informed consent was obtained from each patient or where appropriate, 
an approved surrogate. INTERACT2 is registered at ClinicalTrials.gov (NCT00716079).
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Procedures for Measuring ICH Parameters
Baseline computed tomography (CT) scans were obtained according to standardized 

techniques and analyzed centrally by blinded assessors, where hematoma volume was deter-
mined using computer-assisted multislice morphometric and voxel threshold techniques 
using MIStar version 3.2 (Apollo Medical Imaging Inc, Melbourne, VIC, Australia). Briefly, on 1 
axial slice, a region of interest was drawn within the ICH manually by an assessor: the Houns-
field unit range selected to include density of blood and region of interest “grown” automati-
cally to enclose the ICH on each slice. The software automatically applied thickness to calculate 
volume on each slice with volumes added up manually. Intraventricular blood was not 
included. Calcified structures included with a density close to blood were manually subtracted. 
Times invested in analyzing each CT scan varied from 30 s to 3 min according to the complexity 
of ICH and its proximity to the cranium and calcified structures. 

For this study, all CT scans had ICH volumes re-analyzed using both ABC/2 methods by 
3 independent neurologists (online suppl. Figure S1). Briefly, brain CT scan slices were first 
screened to measure the largest diameter A of hematoma, which was followed by measuring 
the largest diameter perpendicular to A on the same slice to yield B. Finally, the number of 
slices on which hematoma was seen was tabulated and multiplied by slice thickness C. For the 
mABC/2 approach, C was modified by comparing each CT slice with hemorrhage to the CT 
slice with the largest hemorrhage; if this was > 75% on the slice with the largest volume, a 
weighting of 1 was given in determining C; if the volume was in the range of 25–75% of the 
maximum slice area, a weighting of 0.5 was given; and if the area was < 25% of the largest 
hemorrhage, the slice was excluded from analysis. These weighted values of CT containing 
hemorrhages were then summed to determine the value for C, which was multiplied by slice 
thickness [7]. Given these methods discard slices at the margins of the hematoma, they are 
expected to yield smaller true volumes. Measurements for A and B were made on a linear 
scale (in cm) in MIStar, with A, B, and C then multiplied for the product to be divided by 2, to 
yield an estimated hemorrhage volume in milliliters.

Irregularity of shape and heterogeneity of density (clot density variation) for ICH were 
assessed using the scale of Barras et al. [14], with scores assigned from 1 (most regular shape 
or most homogeneous density) to 5 (most irregular shape or most heterogeneous density). 
For analytical purposes, these measures were dichotomized as heterogeneous/irregular 
(scores 3–5) or homogeneous/regular (scores 1–2). Brain atrophy was measured using linear 
measurements and visual rating from templates, as described elsewhere [15]; the presence 
of any atrophy defined on at least one scale. The presence of any white matter lesion was 
defined as a total score ≥1 on the scale by van Swieten et al. [16] from measures taken in the 
hemisphere contralateral to the ICH by location (anterior, posterior) and extent (absent 
[score = 0], partly involving the white matter [score = 1], or extending up to the subcortical 
region [score = 2]).

Statistical Analyses
Continuous baseline variables were compared using the Student t test and Wilcoxon 

rank-sum test, and expressed as means ± SD or medians (IQR). Categorical variables were 
compared using the χ2 test. ICH imaging parameters (lobar location, volume, irregular shape, 
heterogeneous density, intraventricular extension, subarachnoid extension, white matter 
lesions, and atrophy) contributing to differences between the planimetric measurement and 
ABC/2 were assessed in crude and multivariable linear regression models. Variables were 
included in the multivariable model if they were significant (p < 0.1) in the crude analyses. 
Discrepancies were defined as percentages (ABC/2-MIStar/MIStar and mABC/2-MIStar/
MIStar). Scatter plots were used to visualize the relationship between the discrepancy in 
volume measured by the ABC/2 and mABC/2 methods and MIStar measures and baseline 
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volume. Scatter plots were also used to visualize the relationship between the volume discrep-
ancies and ICH shape measured by the Barras scale. All data were analyzed using SAS software 
(version 9.3; SAS Institute, Cary, NC, USA).

Results

Among the 2,829 INTERACT2 participants, 2,084 (74%) had available brain CT scans in 
a format suitable for hematoma volume measurement using semiautomated (MIStar) and 
manual (ABC/2 and mABC/2) methods. CT scans of 745 patients were excluded from ABC 
measurements because the examiners judged them to be too complex and most (740; 99%) 
had an infratentorial ICH location. Included patients were less often of Chinese ethnicity (66.4 
vs. 71.9%; p = 0.006), were randomized earlier (3.7 vs. 3.8 h; p = 0.009), and had higher 
median Glasgow Coma Scale scores (14 [13–15) vs. 14 [12–15); p = 0.001), smaller hema-
tomas on planimetric measurements (10.7 vs. 12 mL; p < 0.001) and SAH extension (8 vs. 5%, 
p = 0.01) than those excluded (online suppl. Table S1). 

Table 1. Crude and adjusted linear regression analyses for discrepancies between mABC/2 and MIStar methods (mABC/2 – MIStar) 
for estimating volume of intracerebral hemorrhage (ICH)

ICH features Crude Adjusted

β 95% CI p value β 95% CI p value

Lobar location –2.190 –3.194 –1.185 <0.001 0.2419 –0.7648 1.2485 0.6376
Volume, mL –2.994 –3.259 –2.729 <0.001 –3.3039 –3.6371 –2.9707 <0.001
Irregular shape –0.575 –1.176 0.027 0.061 1.8723 1.2903 2.4542 <0.001
Heterogenous density –1.654 –2.268 –1.040 <0.001 0.1273 –0.4607 0.7153 0.6712
Intraventricular extension –0.751 –1.413 –0.090 0.026 –0.0607 –0.6788 0.5573 0.8472
Subarachnoid extension –4.115 –5.202 –3.028 <0.001 –1.4648 –2.5513 –0.3782 0.0083
White matter lesion 0.871 0.264 1.479 0.005 0.6500 0.0803 1.2197 0.0254
Atrophy 0.434 –0.355 1.223 0.281 –0.4020 –1.2034 0.3994 0.3254

CI, confidence interval. Volume data were log transformed. Model adjusted for age, sex, ethnicity, high National Institutes of 
Health Stroke Scale score (<14 vs. ≥14), and history of ischemic stroke, hypertension, and antithrombotic use.

Table 2. Crude and adjusted linear regression analyses for discrepancies between ABC/2 and MIStar (ABC/2-MIStar) for 
 estimating volume of intracerebral hemorrhage (ICH)

ICH features Crude Adjusted

β 95% CI p value β 95% CI p value

Lobar location 4.181 2.730 5.632 <0.001 0.8269 –0.7504 2.4041 0.304
Volume, mL 1.588 1.165 2.011 <0.001 0.2888 –0.2274 0.8050 0.273
Irregular shape 3.787 2.931 4.644 <0.001 2.5545 1.6466 3.4624 <0.001
Heterogeneous density 2.050 1.159 2.942 <0.001 0.9493 0.0279 1.8708 0.044
Intraventricular extension 1.162 0.203 2.120 0.018 0.3953 –0.5675 1.3580 0.421
Subarachnoid extension 7.268 5.703 8.833 <0.001 5.1520 3.4574 6.8466 <0.001
White matter lesion 0.968 0.086 1.850 0.031 0.6005 –0.2923 1.4933 0.187
Atrophy –0.339 –1.483 0.805 0.562 –1.8004 –3.0520 –0.5488 0.005

CI, confidence interval. Volume data were log transformed. Model adjusted for age, sex, ethnicity, high National Institutes of 
Health Stroke Scale score (<14 vs. ≥14), and history of ischemic stroke, hypertension, and antithrombotic use. 
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The median volumes across ABC/2, mABC/2, and MIStar measures were 11.1 (5.11–
20.88), 7.8 (3.88–14.11), and 10.7 mL (5.59–18.66), respectively. Median differences 
between ABC/2 and MIStar (ABC/2-MIStar) were 0.34 mL (–1.01 to 2.96) and between 
mABC/2 and MIStar (mABC/2-MIStar) –2.4 mL (–4.95 to –0.7416) (online suppl. Tables 
S2, S3).
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Fig. 1. Association between baseline hematoma volume and measurement discrepancy. Linear regression 
model. a ABC/2 versus MIStar. Discrepancy = 0.28692 – 0.25488 × hematoma volume (r2 = 0.3131). A posi-
tive correlation for differences between the ABC/2 method and MIStar and increasing volume of ICH (mea-
sured using MIStar) is seen with larger discrepancies when ICH volume increases. b mABC/2 versus MIStar. 
Discrepancy = –0.18106 + 0.13183 × hematoma volume (r2 = 0.0399). A positive correlation for differences 
between the mABC/2 method and MIStar and increasing volume of ICH with larger discrepancies is seen 
when ICH volume increases. 

Irregularity

50

0

–50

100

–100

32 41 5

D
isc

re
pa

nc
y

50

0

–50

100

–100

D
isc

re
pa

nc
y

*p = 0.1754

Irregularity
32 41 5

*p < 0.001

a b

Fig. 2. Association between baseline hematoma irregularity and measurement discrepancy. Linear regres-
sion model. a ABC/2 versus MIStar. Discrepancy = –3.10078 – 0.17191 × shape score (r2 = 0.0009). The larg-
est differences between ABC/2 and MIStar are seen with irregular ICH, corresponding to Barras scale scores 
3–5. b mABC/2 versus MIStar. Discrepancy = –3.92960 + 2.24211 × shape score (r2 = 0.0714). The largest 
differences between the mABC/2 and MIStar are seen with irregular ICH, corresponding to Barras scale  
score 3–5.
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Tables 1 and 2 provide results of crude and multivariable linear regression analyses. ICH 
cases showing the biggest differences in volumes between both methods were those that 
were irregular and associated with SAH extension. Figure 1 shows a positive correlation for 
differences between both methods and increasing ICH volume with larger discrepancies 
when ICH volume increases. Figure 2 illustrates the differences by shape according to the 
Barras scoring system. Irregular ICH, corresponding to Barras scale score 3–5, showed the 
largest differences between the 2 methods. 

Discussion

These secondary analyses of the INTERACT2 imaging database show that estimated 
volumes of acute ICH in cases where the hematoma is round to ellipsoid in shape without SAH 
extension are comparable utilizing the ABC/2 and mABC/2 approaches against a semiauto-
mated measurement. However, significant differences emerge when the hematoma is large 
and irregular, with mABC/2 tending to underestimate volume due to its modified method of 
deriving the C value. However, any measurement error of volume is small (1–2 mL) and 
unlikely to be clinically important for most ICH cases, as such a difference is estimated to 
translate into 5–10% increased odds of poor outcome [14, 15].

The difference seen between conventional ABC/2 and MIStar for regular ICH is similar to 
a report by Kothari et al. [7] in 118 cases, where the simple method performs well for most 
ICH types. There are many reports of differences in the approaches for patients with large and 
irregular ICH [6–8, 16], and this appears greater for hematomas in a lobar location [4, 7, 16]. 
In INTERACT2, lobar ICH was present in only 10% of cases and did not influence measurement 
error in our analyses. This was not the case for SAH expansion, which produces technical chal-
lenges in delimitating from ICH when it is often irregular. Although white matter lesions have 
been shown to be associated with large ICH, possibly from rarefaction of brain tissue and 
blood brain barrier damage [17], the only differences in hematoma volumes introduced were 
between the mABC/2 and planimetric methods. 

Strengths of our analysis include the large dataset derived from a pragmatic interna-
tional multicenter study with systematic data collection and rigorous central analysis of 
imaging. However, we had to exclude cases of infratentorial ICH from analyses due an 
inability to clearly define the hematoma border, introducing further selection bias in a 
clinical trial population of hypertensive, predominantly mild/moderately severe ICH. Finally, 
these were post hoc analyses subject to chance associations and incomplete adjustment for 
confounders.

In summary, the easy-to-use ABC/2 method provides an accurate estimate of hematoma 
volume in mild/moderately sized, ellipsoid-shaped ICH. While measurement error is apparent 
for large and irregular ICH, an accurate measurement of hematoma volume may be less 
relevant in such cases due to the overall poor prognosis [1]. The alternative, more compli-
cated mABC/2 method consistently underestimates hematoma volumes and is not recom-
mended for practice or research. 

Statement of Ethics

The study protocols were approved by appropriate ethics committees at each site, and 
written informed consent was obtained from each patient or where appropriate, an approved 
surrogate.
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