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We propose a method to reconstruct the two-dimensional (2D) velocity distribution of flow fields by laser absorption 
spectroscopy tomography. A mathematic model is established to reveal the dependence of spectral absorbance on 
line-of-sight velocity distribution. Then, with multiple laser beams from different angular views covering the region 
of interest, a nonlinear equation set of 2D velocity distribution is established according to the model. The integrated 
absorbance coefficient distribution is reconstructed using the Landweber iteration algorithm and substituted into 
the nonlinear equation set for further simplification. Finally, the velocity distribution is reconstructed by solving the 
simplified equation group via the interior-point algorithm. The proposed method is validated numerically by 
reconstructing the velocity distribution of water molecules, as calculated by Computational Fluid Dynamics, over a 
cross-section of a double-mode scramjet combustor. The method does not require adding extra tracer particles and 
avoids issues arising from the short lifetime of molecular tags. It is suitable for diagnosis of high-speed flow fields. 

OCIS codes: (300.0300) Spectroscopy; (300.1030) Absorption; (110.6960) Tomography; (120.7250) Velocimetry. 

http://dx.doi.org/10.1364/AO.99.099999

1. INTRODUCTION 
Velocity is a vital parameter in the investigation of 

aerodynamics [1] and combustion processes [2]. Velocimetry is 
therefore a topic that continues to draw the attention of many 
scientists in those areas [3–10].  

Particle image velocimetry [7] (PIV) is one of the most 
commonly used methods to measure flow velocity distribution. 
In a PIV system, small tracer particles, added into the airflow, are 
illuminated by means of a thin light sheet. The displacements of 
the particles during a short time interval are recorded using two 
image frames. Then, the velocities of the particles are calculated 
based on cross correlation techniques and used to represent the 
velocity distribution of the airflow [11]. However, the added 
particles may lead to complications in PIV. For instance, the size 
of the tracer particles can be reduced by the high-power laser 
used in PIV systems. The time delay of the light sources should 
be long enough to capture the displacement of the tracer 
particles and short enough to ensure that those particles that 
have an out-of-plane velocity component remain within the light 
sheet. Another technique similar to PIV is molecular tagging 
velocimetry [8,12,13] (MTV). In MTV, the molecules in the 
airflow act as tracers, by being raised to an excited state from 
which their subsequent decay can be detected. The geometry of 

the region of interest (RoI) is defined by the high-power laser 
beams deployed in the excitation process. The RoI should be 
interrogated at two successive times within the excited-state 
lifetime of the selected tracer (OH, NO, excited O2, etc.), which is 
a potential limitation of the technique. These molecules are 
always tagged by photo-dissociation, fluorescence, 
phosphorescence or other excitation techniques. The induced light may 
be extinct in some situations, e.g. fluorescence quenching. 

It has been more than two decades since laser absorption 
spectroscopy (LAS) was first used to measure gas flow velocity [14–16]. 
The flow velocity is calculated according to the Doppler shift of the 
absorption spectrum of a target molecule. Additional tracers are 
unnecessary in LAS. Moreover, the lifetimes of the molecules are no 
more a barrier because LAS requires only absorption of the incident 
light and does not detect any light from de-excitation, i.e. LAS does not 
track individual molecules, and laser absorbance is determined by the 
statistical characteristic of all target molecules along the laser 
beam [17].  However, in previous applications, most efforts were 
devoted to line-of-sight LAS, which could only measure the bulk velocity 
of the gas flow. Gamba reported the reconstruction of the spatially-
resolved velocity distribution [18]. In his work, the spectral absorbance 
profile was approximated by the discrete Fourier transform (DFT). 

Limited by the finite spectral ranges of devices, the absorbance profiles 
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are sometimes truncated, which can cause the DFT to become 
inaccurate. In the work reported here the problem was solved by 
modifying the model and reconstruction algorithm. 

In this paper, we propose a LAS tomographic method to reconstruct 
2D flow field velocity distributions. The mathematical model of our 
method is established in accordance with the Doppler spectral line shift 
of the target spectroscopic absorption. Combining with tomographic 
techniques, the velocity distribution is reconstructed by solving a 
nonlinear equation set directly. The method eliminates the adverse 
effects of isotropic line shifts and is not limited by truncation on the 
sampled absorbance. Reconstruction of a simulated velocity 
distribution validates the proposed method. 

 Laser absorption spectroscopy tomography has been used for the 
measurements of temperature, concentration and even pressure 
distributions for nearly two decades [19–27]. We show here that the 
velocity distribution can be synchronously reconstructed with all these 
parameters without any changes of the original measurement systems. 

2. METHODOLOGY 

A. Dependence of spectral absorbance on line-of-sight velocity 
distribution 

According to the LAS theory [15,28], for a specified spectral line of a 

molecule, the absorbance ratio ( )   at frequency   is, 
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where, 0( )I   and t ( )I  are the incident and transmitted laser 

intensities, respectively; L  is the optical length of the laser path; l is the 

local position where the laser interacts with the target molecule. The 

integrated absorbance coefficient ( )a l  is expressed as [17], 

 ( ) ( ) ( ( )),a l P l S T l   (2) 

where ( )P l and ( )T l  are the local partial pressure and local 

temperature, respectively; ( )S T  is the temperature-dependent line 

strength function of the target transition [17].  

The line shape function ( , )l   is approximated by the Voigt 

profile as [29–36], 
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where ( )l  and ( )l  are Gauss and Lorentz broadening parameters, 

respectively. The spectral line is broadened due to different factors and 
two of those are modeled by the Voight profile: random thermal 
motions of molecules result in Doppler broadening, and the Gauss 
broadening parameter expresses this temperature dependence [17]; 
collisions between molecules result in so-called collisional broadening, 
and the Lorentz parameter expresses the effect of pressure and 
concentrations of various molecules [17]. The central frequency shift, 

( )l , is the sum of two different parts, as 

 iso D( ) ( ) ( ) ,l l l         (4) 

where iso( )l  and D( )l  are the isotropic shift and the anisotropic 

Doppler shift, respectively. The isotropic shift is the sum of the 
absorption line shifts that are not related to the directions of the laser 
beams, including the absolute central frequency of the spectral line, the 
pressure shift due to the interactions between two collision partners, 
the signal transmission delays, etc. The Doppler shift is caused by the 
local gas bulk velocity relative to the incident laser beam direction. As 

shown in Fig. 1, the flow velocity at l  is ( )lV . The direction vector of 

the laser beam isu , and the optical length in the gas is dl . As a result, 

the Doppler shift of the absorption line is 
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where 
C  is the original central frequency of the spectral line, andc  is 

the speed of light. 

 

 

Fig. 1. Illustration of interaction between laser along direction u and 

local gas velocity ( )lV . 

In Fig. 1, if the z-axis is perpendicular to the tomographic RoI, the 
direction vector of the laser beam is written as,  

 (cos , sin , 0) , u   (6) 

where is the angle between u  and x-axis.  

Let 

 ( ) ( ( ), ( ), ( )) ,x y zl V l V l V lV   (7) 
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We rewrite D( )l  as D( , )l  to indicate the representation 

more clearly. With Eqs. (1), (4) and (8), the relationship between the 
absorption spectrum and the velocity along the laser beam can be 
expressed as 
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Eq. (9) expresses the relationship between the line-of-sight velocity 
distribution and the spectral absorbance. 

 



B. Discretization of the model 

In a tomographic problem, a RoI is discretized into N cells. Partial 
pressure, temperature and velocity are assumed uniform in each cell. 
Then the integral equation (9) can be written as a summation equation, 
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where n is the index of the cell, ( )nl   the optical length of the laser beam 

in the n-th cell. In addition, the number of laser beams is restricted to an 

integer, M. In Eq. (10),  ( , )   , ( )nl  and θ are related to the position 

of laser beam. Thus, for the m-th laser beam, 
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As shown in Fig. 2, the absorbance profile is sampled at discrete 
frequency points, and the j-th frequency point is denoted 

j . Then, we 

have a completely discrete equation, 
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The equation can be abbreviated to 
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Fig. 2. Illustration of discrete LAS tomography. The region of interest 

(RoI) is divided into N cells withM  laser beams penetrating the RoI. 

The absorbance profile of each beam is sampled at J frequency points.  

C. Reconstruction of 2D velocity distribution 

Following Eq. (13),  a set of equations can be established with 

different j and m, 

 

1 11 11

1

1

1

,

,

.

N

n n n

n

N

mn n jmn jm

n

N

Mn n JMn JM

n

l a

l a

l a

 

 

 



















 








  (14) 

The distribution of velocities in the RoI is reconstructed by solving 
the nonlinear system described by Eq. (14).   

The line shape function is normalized, i.e. 

 ( , ) d 1.l  




   (15) 

Thus, for all frequency values, Eq. (1) can be rewritten as follows: 
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where A is called the integrated absorbance. A discrete form of Eq. (16) 
is  
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The integrated absorbance coefficient distribution, 

{ | 1, ..., }na n N  can be obtained by solving a linear equation group in 

advance [37,38],  
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The above equation can be rewritten as 

 .La = A   (19)  

There are a number of methods to solve this linear inverse 
problem [39,40]. We adopt the Landweber iteration algorithm [24,37] 
in this work. The iteration starts from a uniform distribution and in the 
k-th step, the iteration point is updated by  

 ( 1) ( ) ( ) T ( )( ),k k k k   a a L A La   (20) 

where 
( )k  is the relaxation parameter. In each iteration, the relaxation 

parameter is selected using the line search algorithm [41]. 

Substituting the solution of Eq. (18) into Eq. (14), the 2D velocity 
distribution can be reconstructed by solving an equivalent nonlinear 
programming problem as 
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where x is the vector of all unknowns, and both
1( )c x  and 

2 ( )c x are 

constraint functions. Proper constraints can be given by a priori 
information.  

The solution of Eq. (21) is the least square approximation of the 
solution of Eq. (14). In this paper, Eq. (21) is solved by using the interior 
point algorithm [42].  

3. NUMERICAL STUDY AND DISCUSSIONS 

A.  Phantom Description 

    The method is validated numerically using the Computational 
Fluid Dynamics (CFD) simulation data of a double-mode scramjet 
combustor [43]. The main stream of the gas flow along the combustor is 
illustrated by the green arrow in Fig. 3(a). An inclined cross-section of 
the flow, marked in red in Fig. 3(a) is employed as the RoI. The 
distributions of velocity and integrated absorbance distribution  are 
shown in Fig. 3 (b) and (c) 

 

 

Fig. 3. Phantom for numerical experiment. (a) Object calculated by CFD. 
The green arrow illustrates the main steam direction in a double-mode 
scramjet combustor and the phantom is the cross-section marked in 
red. The other figures are the distribution of (b) velocity and(c) 
integrated absorbance coefficient distributions. The color map in (d) 
indicates the flow speed [m/s] 

B.  Numerical experiment  

A H2O transition near 1334 nm was selected. The spectral 
parameters of this line are obtained from HITRAN 2012 [44] and listed 

in Table 1, including its original central frequency C , line strength 

function at 296 [K] (296)S  , air-broadened half-width 
air  , self-

broadened half-width
self , lower-state energy "E , temperature-

dependence exponent 
airn  , and air pressure-induced line shift air . 

This spectral line is isolated and has strong absorbance at high 
temperature. The absorbance profile (approximated by Puerta and 
Martin’s algorithm  [45]) of water vapor at 1500 [K], 0.4 [atm] is shown 
in Fig. 4.  

Table 1. Spectral parameters of the selected spectral line 

Parameters Values Units 
C  7495.504 cm-1 

(296)S  1.573 × 10-25 cm-1 / (molecule cm-2) 

air  0.0524 cm-1 / atm 

self  0.195 cm-1 / atm 

''E   4174.285 cm-1 

airn  0.41  

air  -0.00996 cm-1 / atm 

 

 

Fig. 4. The relative absorbance profile of H2O from 7495 to 7496 [cm-1] 
at 1500 [K] and 0.4 [atm]. The absorbance was calculated by using an 
online spectroscopic tool [46].   

Forty-eight laser beams are launched into the region from four 
angular views, i.e., 0, 45, 90 and 135 degrees, and each beam has 200 
sample points within the absorption feature. Thus, the total number of 
sample points is 9600. The beam arrangement is shown in Fig. 5.  

 

 

Fig. 5. Laser beam arrangement for numerical experiment. 

In terms of the tomographic problem, the RoI is evenly divided into 
a 10×10 square grid; i.e. 100 cells. Random Gaussian noise is added 

independently to each simulated measurement of absorbance, and the 
standard deviation value of the noise is varied to yield measurement 
signal-to-noise ratio (SNR) values from 30 to 60 dB. The numerical 
simulations are repeated ten times in each noise condition. The values 
of SNR are calculated according to the total energy of absorbance signal 
and random noise. The energies of signal and noise are,  
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where mjg  is the value of Gaussian noises added to mj . The value of 

SNR is calculated by 
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C. Results and analysis 

The distribution of integrated absorbance coefficient was 
reconstructed firstly. The results corresponding to the SNR of 40 dB are 
shown in Fig. 6. As the values of some pixels are close to zero, the 
distribution of relative error in Fig. 6(b) is calculated as 
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where recon

na and orig

na are the reconstructed and original integrated 

absorbance coefficient, respectively. meana  is the mean value of original 

integrated absorbance coefficient. The average relative error is 4.5 %. 

 

 

Fig. 6. Images of (a) reconstructed distribution of integrated absorbance 
coefficient when the SNR is 40 dB and (b) corresponding relative errors. 

The values of integrated absorbance coefficient are substituted in Eq. 
(14), which is further solved by nonlinear programming to get the 
velocity distribution. The upper and lower bounds are given in the 
numerical case as constraints. The upper bound is 20% higher than the 
maximum value of the corresponding variables and the lower bound is 
20 % lower than the minimum value of the corresponding variables. 

The reconstructed results corresponding to 30, 40, 50 and 60 dB 
noise conditions are shown in Fig. 7. These results were calculated on a 
computer with an i7-4790 processor (3.6 GHz, without parallel 
acceleration). For 500 iterations of inner-point algorithm, we could get 
one reconstructed result in 12 minutes. 

The streamlines of the images on the left column are calculated 
according to the mean value of reconstructed velocity distributions, i.e. 
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The reconstructed velocity is located in the central of each pixel when 
the streamlines are calculated. 

The streamlines of the images on the right column represent the 
distribution of relative errors. The color map corresponds to magnitude 
of relative error, i.e. 
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Fig. 7. Reconstructed velocity distributions. Streamlines in (a1) are 
calculated according to the mean values of reconstructed velocity 
distributions of ten simulations when the SNR is 30 dB. Streamlines in 
(b1) represent the relative reconstruction error corresponding to (a1). 
Similarly, (a2), (a3) and (a4) are the reconstructed results when the 
SNRs are 40, 50 and 60 dB, respectively. Their corresponding relative 
reconstruction errors are shown in (b2), (b3) and (b4), respectively.  

As shown in Fig. 7, the velocity distribution is reconstructed with 
high fidelity. In other words, both the magnitudes and directions of the 
velocities fit those in the phantom. The reconstruction errors close to the 
lower boundary of the image are large, which is mainly caused by two 
factors. On one hand, the speeds in these pixels are slower than that of 



others. On the other hand, the integrated absorbance coefficients in 
these pixels are smaller than that of others. The latter one makes the 
weights of the Doppler shifts of these pixels smaller than those of the 
others as indicated by Eq. (13). Meanwhile, the absorbance values 
corresponding to the laser beams through these pixels are smaller than 
those corresponding to the other beams. As a result, their profiles are 
more sensitive to random noise. In Fig. 8(b), two profiles of spectral 
absorbance corresponding to different laser beams are compared when 
the SNR is 40 dB: the original phantom (Figs. 3(b) and 3 (e)) shows that 
beam 2 traverses a region of much higher absorbance than is the case 
for beam 1, as reconstructed in Fig. 8(a); also, as determined by the 
original phantom (Fig. 3(d)), beam 2 traverses a region of significantly 
higher gas velocity than does beam 1. Fig. 8(b) shows that the spectral 
absorbance profile of 

1  is obviously much more affected by noise than 

that of 
2 . 

 

 

Fig. 8. Comparison of absorbance profiles along low and high 
absorbance laser beams. (a)  reconstructed distribution of the 

integrated absorbance coefficient. (b) Absorbance profiles, 1 and 2 ,  

along the two laser beams shown in (a), when the SNR is 40 dB. 

The quality of the reconstructed velocity distribution is evaluated by 
examining the root mean square error (RMSE) for each reconstructed 
distribution, i.e. 
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The mean values and standard deviations of RMSE as the SNR is 
varied from 30 to 60 dB are plotted in Fig. 9.  

 

 

Fig. 9. Variation of RMSE with SNR. 

Fig. 9 shows, for each SNR value, the mean RMSE of ten numerical 
simulations at that noise level, and the lengths of the error bars show the 
standard derivation in RMSE at that noise level. It can be seen that both 

the mean value and standard deviation of the RMSE decrease as the SNR 
increases, although the variation is very small for SNR above 50 dB.  

D. Discussions 

In Eq. (10), we use the sum formula to approximate the integration. 
Apparently, increasing the image resolution could improve the 
modeling accuracy, but makes Eq. (14) more complex in the meanwhile. 

Increasing one pixel means increasing five unknowns, i.e. n , n , 

iso

n , x

nV , and y

nV , during the reconstruction of velocity distribution. 

This may dramatically affect the convergence property of the nonlinear 
programing iteration, making it slow and unstable.  

The higher the flow speed along the laser beam, the greater the 
Doppler shift. Therefore, the method is suitable for reconstructing high-
speed velocity distribution. The line shift is a part of line shape and small 
broadening parameters makes the spectral line more distinct with each 
other in different pixels. Thus, a ‘thin’ spectral line can improve the 
precision of resolving line shift. Thus, spectral line with smaller 
broadening coefficient is preferred in the proposed method. The line 
strength function should also be considered. In the above case, the 
selected spectral line is suitable for measurement at high temperature.  

It is significant to point out that at least four laser beams from 
different projection views should pass through the voxels to decouple 
the two velocity components in a voxel. The line shift item in a voxel 

contains three unknowns, iso

n , x

nV , and y

nV . To solve these 

unknowns, there should be at least three independent measurements.  
Finally, we discuss the influence of the Fourier transform on the 

method. In the proposed work [18] the author used the Fourier 
transform to change the mathematical formulation of the 
reconstruction problem. In practice, the absorbance profile is sampled 
only a finite number of times in the sampling sequence and the 
continuous Fourier transform is approximated by the discrete Fourier 
transform (DFT). Conventionally, the original sequence is regarded as 
one cycle of a periodic signal. However, the absorbance profile is not 
periodic. The truncation of the profile may affect the accuracy of DFT as 
shown in Fig. 10. The sequence illustrated in Fig. 10 (a) is truncated and 
two subsequences are obtained as shown in Fig. 10 (b). Their DFTs 
(demonstrated in Fig. 10 (c) and (d)) are obvious different from each 
other and cannot be used to approximate the Fourier transform of 
original profile. 

 

 

Fig. 10. Effects of truncation to the DFT of unimodal profile. (a) A 
sequence with 400 sample points. (b) Two subsequences of the original 



sequence. (c) The amplitude of DFT of the subsequences. (d) Enlarged 
view of the low-frequency region of (c). 

4. CONCLUSION  
In this paper, we have presented a method for the reconstruction of 

2D gas flow velocity distribution by laser absorption spectroscopy 
tomography.  

The method was verified by a series of numerical simulations. The 
results indicate that the proposed method is valid in reconstructing the 
velocity distribution. The average value of image error, as expressed by 
RMSE, is less than 6% when the measurement SNR is greater than 30 
dB, and it reduces with the increase of SNR. The integrated absorbance 
coefficient in a grid determines the weight of Doppler shift in this grid. 
Moreover, lower absorbance is more easily affected by random noise. 
Thus, the reconstruction error in the grid with higher absorbance is 
overall less than that in the grid with lower absorbance. 

 
Funding Information.  National Natural Science Foundation of China 
(No. 61620106004, No. 61522102, No. 61327011). Ministry of Science 
and Technology of the People’s Republic of China (No. 
2016YFF0100600). Hugh McCann and Chang Liu acknowledge funding 
support by the UK EPSRC via Platform Grant EP/P001661/1. 

References 
1.   J. D. Anderson Jr., Fundamentals of Aerodynamics (Tata McGraw-Hill 

Education, 2010). 
2.   B. Lewis and G. Von Elbe, Combusion, Flames and Explosions of Gases 

(Elsevier, 2012). 
3.   S. A. Filatyev, J. F. Driscoll, C. D. Carter, and J. M. Donbar, "Measured 

properties of turbulent premixed flames for model assessment, 
including burning velocities, stretch rates, and surface densities," 
Combust. Flame 141, 1–21 (2005). 

4.   X. R. Duan, W. Meier, P. Weigand, and B. Lehmann, "Phase-resolved 
laser Raman scattering and laser Doppler velocimetry applied to 
periodic instabilities in a gas turbine model combustor," Appl. Phys. B 
Lasers Opt. 80, 389–396 (2005). 

5.   S. Dubsky, R. A. Jamison, S. C. Irvine, K. K. W. Siu, K. Hourigan, and A. 
Fouras, "Computed tomographic x-ray velocimetry," Appl. Phys. Lett. 
96, 023702 (2010). 

6.   M. S. Singh and H. Jiang, "Estimating both direction and magnitude of 
flow velocity using photoacoustic microscopy," Appl. Phys. Lett. 104, 
23–28 (2014). 

7.   M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle 
Image Velocimetry (Springer, 2007), Vol. 79. 

8.   R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. a 
DeBarber, S. Deusch, and P. E. Dimotakis, "Unseeded molecular flow 
tagging in cold and hot flows using ozone and hydroxyl tagging 
velocimetry," Meas. Sci. Technol. 11, 1259–1271 (2000). 

9.   L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, and R. A. Yetter, "Hydroxyl 
tagging velocimetry (HTV) in experimental air flows," Appl. Phys. B 
Lasers Opt. 74, 175–183 (2002). 

10.   L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, "Multiline hydroxyl 
tagging velocimetry measurements in reacting and nonreacting 
experimental flows," Exp. Fluids 37, 65–74 (2004). 

11.   C. Tropea, A. L. Yarin, and J. F. Foss, eds., Springer Handbook of 
Experimental Fluid Mechanics (Springer Science & Business Media, 
2007). 

12.   R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. 
Carter, K.-Y. Hsu, C. Lum, and M. M. Koochesfahani, "Hydroxyl tagging 
velocimetry in a supersonic flow over a cavity," Appl. Opt. 44, 6692–
6700 (2005). 

13.   R. Pitz, "Hydroxyl Tagging Velocimetry," in 38th Fluid Dynamics 
Conference and Exhibit (2008), pp. 1–18. 

14.   A. Y. Chang, M. D. Dirosa, D. F. Davidson, and R. K. Hanson, "Rapid 
tuning cw laser technique for measurements of gas velocity, 

temperature, pressure, density, and mass flux using NO," Appl. Opt. 30, 
3011–3022 (1991). 

15.   L. C. Philippe and R. K. Hanson, "Laser diode wavelength-modulation 
spectroscopy for simultaneous measurement of temperature, pressure, 
and velocity in shock-heated oxygen flows," Appl. Opt. 32, 6090–6103 
(1993). 

16.   L. S. Chang, C. L. Strand, J. B. Jeffries, R. K. Hanson, G. S. Diskin, R. L. 
Gaffney, and D. P. Capriotti, "Supersonic Mass-Flux Measurements via 
Tunable Diode Laser Absorption and Nonuniform Flow Modeling," Aiaa 
J. 49, 2783–2791 (2011). 

17.   R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and 
Optical Diagnostics for Gases (Springer, 2016). 

18.   M. Gamba, "Multi-parameter estimation for spatially-resolved 
measurement of two-component velocity using absorption 
tomography," in 53rd AIAA Aerospace Sciences Meeting (2015). 

19.   F. P. Hindle, S. J. Carey, K. Ozanyan, D. E. Winterbone, E. Clough, and H. 
McCann, "Measurement of gaseous hydrocarbon distribution by a near-
infrared absorption tomography system," J. Electron. Imaging 10, 593 
(2001). 

20.   P. Wright, C. a Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. 
M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. 
Crossley, K. B. Ozanyan, and H. McCann, "Toward in-cylinder absorption 
tomography in a production engine," Appl. Opt. 44, 6578–6592 (2005). 

21.   S. Pal, K. B. Ozanyan, and H. McCann, "A computational study of 
tomographic measurement of carbon monoxide at minor 
concentrations," Meas. Sci. Technol. 19, 094018 (2008). 

22.   P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, 
S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. 
B. Ozanyan, and H. McCann, "High-speed chemical species tomography 
in a multi-cylinder automotive engine," Chem. Eng. J. 158, 2–10 (2010). 

23.   M. P. Wood and K. B. Ozanyan, "Simultaneous temperature, 
concentration, and pressure imaging of water vapor in a turbine 
engine," IEEE Sens. J. 15, 545–551 (2015). 

24.   C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, "Development of a fan-
beam TDLAS-based tomographic sensor for rapid imaging of 
temperature and gas concentration," Opt. Express 23, 22494 (2015). 

25.   L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, "Tunable diode laser 
absorption spectroscopy-based tomography system for on-line 
monitoring of two-dimensional distributions of temperature and H2O 
mole fraction," Rev. Sci. Instrum. 87, 013101 (2016). 

26.   W. Cai and C. F. Kaminski, "A tomographic technique for the 
simultaneous imaging of temperature, chemical species, and pressure 
in reactive flows using absorption spectroscopy with frequency-agile 
lasers," Appl. Phys. Lett. 104, 034101 (2014). 

27.   W. Cai and C. F. Kaminski, "Multiplexed absorption tomography with 
calibration-free wavelength modulation spectroscopy," Appl. Phys. Lett. 
104, 154106 (2014). 

28.   M. P. Arroyo, S. Langlois, and R. K. Hanson, "Diode-laser absorption 
technique for simultaneous measurements of multiple gasdynamic 
parameters in high-speed flows containing water vapor," Appl. Opt. 33, 
3296–307 (1994). 

29.   E. E. Whiting, "An empirical approximation to the Voigt profile," J. 
Quant. Spectrosc. Radiat. Transf. 8, 1379–1384 (1968). 

30.   J. J. Olivero and R. L. Longbothum, "Empirical Fits To Voigt Line-Width: 
a Brief Review," J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977). 

31.   J. He and C. Zhang, "The accurate calculation of the Fourier transform 
of the pure Voigt function," J. Opt. A Pure Appl. Opt. 7, 613–616 (2005). 

32.   J. Humlicek, "Optimized computation of the voigt and complex 
probability functions," J. Quant. Spectrosc. Radiat. Transf. 27, 437–444 
(1982). 

33.   J. Westberg, J. Wang, and O. Axner, "Fast and non-approximate 
methodology for calculation of wavelength-modulated Voigt lineshape 
functions suitable for real-time curve fitting," J. Quant. Spectrosc. 
Radiat. Transf. 113, 2049–2057 (2012). 

34.   A. Berk, "Voigt equivalent widths and spectral-bin single-line 
transmittances: Exact expansions and the MODTRAN®5 
implementation," J. Quant. Spectrosc. Radiat. Transf. 118, 102–120 
(2013). 



35.   N. H. Ngo, D. Lisak, H. Tran, and J. M. Hartmann, "An isolated line-shape 
model to go beyond the Voigt profile in spectroscopic databases and 
radiative transfer codes," J. Quant. Spectrosc. Radiat. Transf. 129, 89–
100 (2013). 

36.   L. Xu, C. Liu, D. Zheng, Z. Cao, and W. Cai, "Digital signal processor-
based high-precision on-line Voigt lineshape fitting for direct absorption 
spectroscopy," Rev. Sci. Instrum. 85, 0–9 (2014). 

37.   W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-
reconstruction algorithm based on Landweber’s iteration method for 
electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065–1069 
(1999). 

38.   C. Lindstrom, C.-J. Tam, R. Givens, D. Davis, and S. Williams, "Diode laser 
absorption tomography using data compression techniques," Comput. 
Imaging Vi 6814, 1–17 (2008). 

39.   C. Liu and L. Xu, "Laser absorption spectroscopy for combustion 
diagnosis in reactive flows: A review," Appl. Spectrosc. Rev. 4928, 1–44 
(2018). 

40.   W. Cai and C. F. Kaminski, "Tomographic absorption spectroscopy for 
the study of gas dynamics and reactive flows," Prog. Energy Combust. 
Sci. 59, 1–42 (2017). 

41.   P. C. Hansen and M. Saxild-Hansen, "AIR tools - A MATLAB package of 
algebraic iterative reconstruction methods," J. Comput. Appl. Math. 
236, 2167–2178 (2012). 

42.   R. H. Byrd, M. E. Hribar, and J. Nocedal, "An Interior Point Algorithm for 
Large-Scale Nonlinear Programming," SIAM J. Optim. 9, 877–900 (1998). 

43.   Z. Yan, L. Yuzhen, L. Wei, W. Jianchen, and X. Xu, "Numerical Simulation 
of a Dual-Mode Scramjet Combustor," in 50th AIAA/ASME/SAE/ASEE 
Joint Propulsion Conference (AIAA, 2014). 

44.   L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. 
Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. 
Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. 
Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, 
D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. 
M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. 
Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. 
Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, 
J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, "The 
HITRAN2012 molecular spectroscopic database," J. Quant. Spectrosc. 
Radiat. Transf. 130, 4–50 (2013). 

45.   J. Puerta and P. Martin, "Three and four generalized Lorentzian 
approximations for the Voigt line shape," Appl. Opt. 20, 3923 (1981). 

46.   C. S. Goldenstein, V. A. Miller, R. Mitchell Spearrin, and C. L. Strand, 
"SpectraPlot.com: Integrated spectroscopic modeling of atomic and 
molecular gases," J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 
(2017). 

 


