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VERSALITY IN MIRROR SYMMETRY

NICK SHERIDAN

Abstract. One of the attractions of homological mirror symmetry is that

it not only implies the previous predictions of mirror symmetry (e.g., curve

counts on the quintic), but it should in some sense be ‘less of a coincidence’
than they are and therefore easier to prove. In this survey we explain how

Seidel’s approach to mirror symmetry via versality at the large volume/large

complex structure limit makes this idea precise.
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1. Introduction

1.1. Mirror symmetry for Calabi–Yaus. Let us introduce the geometry that
we will study. We will call a complex manifold X Calabi–Yau if c1(X) = 0. A
complexified Kähler form is a closed form ωC = B + iω ∈ Ω1,1(X;C), such that
ω is a Kähler form. We define a Calabi–Yau Kähler manifold to be a complex
Calabi–Yau equipped with a complexified Kähler form.

We will consider invariants of Calabi–Yau Kähler manifolds, which only depend
on part of the structure:

• The B-model refers to invariants of the complex manifold X.
• The A-model refers to invariants of the symplectic manifold (X,ω) together

with the ‘B-field’ B ∈ Ω2(X;R).1

The mirror symmetry conjecture posits the existence of pairs (X,X◦) of Calabi–
Yau Kähler manifolds whose A- and B-models are swapped:

(1.1) A(X)
dd

$$

A(X◦)
::

zz
B(X) B(X◦).

We’re being vague because the definition of the A- and B-models, and the cor-
responding notion of equivalence implied by the arrows ‘↔’ above, is different in
different contexts. The ‘mirror’ in the name refers to one of the characteristic fea-
tures of mirror pairs, namely that the Hodge diamond of X◦ is a reflection of that
of X in an axis on a 45◦ angle: hp,q(X◦) = hn−p,q(X).2

Remark 1.1. Given a result or structure in algebraic geometry, we can hope that
it has a ‘mirror’ in symplectic geometry (and vice-versa). If we had a sufficiently
precise understanding of mirror symmetry the mirror result would be true ‘by mirror
symmetry’. So far we usually do not have such a precise understanding, and to
date mirror symmetry has been most useful as a motivating principle: we search
for the mirror result or structure within its own world, and deal with it there without
reference to mirror symmetry (see Remark 1.17).3 However, our focus in this paper
is on proving precise versions of the mirror conjecture.

1The ‘A-model/B-model’ terminology is inherited from [Wit92].
2An early hint of mirror symmetry came when this peculiar symmetry showed up in a census

of Hodge numbers of Calabi–Yau hypersurfaces in weighted projective spaces: see the celebrated

Figure 1 in [CLS90].
3In fact according to Givental [Giv99], “the mirror conjecture resembles a universal ‘physi-

cal’ principle (like the Energy Conservation Law which is to be modified every time it conflicts
with experimental data) rather than a precise mathematical conjecture which is to be proved or

disproved.”
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We can study the two arrows in (1.1) independently, so it is simplest to focus our
attention on one of them. For the rest of the paper we will study the equivalence
A(X)↔ B(X◦).

In order for the conjecture to have content, we need some interesting examples of
mirror pairs (X,X◦), and also to say what A(X) and B(X◦) are. We will start by
addressing the first question. In this paper we will mainly be interested in compact
Calabi–Yau mirror pairs (X,X◦).

Example 1.2. The mirror to an elliptic curve is another elliptic curve.

Example 1.3. Let X be a quartic surface, i.e., a smooth degree-4 hypersurface
in CP3. The family of mirror quartics X◦q is obtained in three stages: first, we
consider hypersurfaces of the form

{z1z2z3z4 = q(z4
1 + z4

2 + z4
3 + z4

4)} ⊂ CP3;

second we take the quotient by G := ker((Z/4)4/(1, 1, 1, 1)
+−→ Z/4), acting by

multiplication of the homogeneous coordinates by powers of i; third, we resolve the
six A3 singularities of this quotient, to obtain the smooth complex manifold X◦q .

Example 1.4. Let X be a quintic threefold, i.e., a smooth degree-5 hypersurface
in CP4. The construction of the family of mirror quintics X◦q is analogous to that
of the family of mirror quartics, replacing ‘4’ with ‘5’ everywhere (the resolution
procedure is more complicated though: there are 100 exceptional divisors).

Batyrev gave the following general construction of mirror Calabi–Yau hypersur-
faces in toric varieties [Bat94]:

Example 1.5. Let ∆ ⊂ Rn be a lattice polytope. There is a polarized toric variety
(V,L) such that the lattice points in ∆ are in bijection with a basis for the global
sections of L (see [Ful93, §3.4]). If ∆ contains the origin then we can define the
dual polytope ∆◦: it is the set of points in Rn whose inner product with every point
in ∆ is ≥ −1. If ∆◦ is also a lattice polytope, we say ∆ is reflexive. The dual
polytope ∆◦ corresponds to a dual polarized toric variety (V ◦,L◦). If ∆ is reflexive,
then the hyperplane sections X ⊂ V and X◦ ⊂ V ◦ (more precisely, their crepant
resolutions, if they are singular) are Calabi–Yau, and conjectured to be mirror.

Example 1.3 (respectively, Example 1.4) can be obtained from Batyrev’s con-
struction by taking ∆ to be the lattice polytope corresponding to the polarization
L = O(4) of CP3 (respectively, the polarization L = O(5) of CP4).

We do not have a complete conjectural list of mirror pairs. The most general
conjectural construction is that of Gross and Siebert [Gro13].

Remark 1.6. Other influential mirror constructions that we’ve omitted include
[GP90, Bor93, Dol96, BB97]. We’ve also omitted the string-theoretic history of
mirror symmetry: see, e.g., [HKK+03].

1.2. Moduli spaces. Having described some examples of mirror pairs (X,X◦),
the next step is to explain what A(X) and B(X◦) are. However before we get
there, we will discuss the parameters on which these invariants depend.

Let X be a Calabi–Yau Kähler manifold. The Kähler moduli space MKäh(X) is
the ‘moduli space of complexified Kähler forms onX’, with tangent space TMKäh(X) ∼=
H1,1(X;C). Similarly the complex moduli space Mcpx(X) is the ‘moduli space of
complex structures on X’, with tangent space TMcpx(X) ∼= H1(X,TX). A slightly
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more precise version of mirror symmetry says that there should exist an isomor-
phism

(1.2) ψ :MKäh(X)
∼−→Mcpx(X◦)

called the ‘mirror map’, and an equivalence

(1.3) A
(
X,ωC

p

)
↔ B

(
X◦ψ(p)

)
.

Remark 1.7. Note that the dimension of MKäh(X) is h1,1(X), while the dimen-
sion of Mcpx(X◦) is hn−1,1(X◦) by Serre duality. The existence of the mirror map
implies these dimensions should be the same, which is consistent with the Hodge
diamond flip hp,q(X) = hn−p,q(X◦).

Example 1.8. If X◦ is an elliptic curve, Mcpx(X◦) is the well-known moduli
space M1,1 of complex elliptic curves. It is isomorphic to the quotient of the upper
half-plane by SL2(Z), and is a genus-zero curve with one cusp and two orbifold
points.

Example 1.9. We saw in Example 1.3 that the mirror quartic X◦q depended on

a complex parameter q ∈ CP1. Deforming q does not give all deformations of the
complex structure of X◦ (which is 20-dimensional as X◦ is a K3 surface); rather
it gives a one-dimensional subspace which we denote by Mpol

cpx(X◦) ⊂ Mcpx(X◦).
It is not hard to see that X◦q

∼= X◦iq, and in fact one has

Mpol
cpx(X◦) ∼=

(
CP1 \ {q = 0, q4 = 1/44}

)
/(Z/4)

(we remove the fibres over q = 0 and q4 = 1/44 because X◦q becomes singular there).
This is a genus-zero curve with one cusp at q = 0, one order-4 orbifold point at
q =∞, and a nodal point at q4 = 1/44 (i.e., a point where X◦q develops a node).

Example 1.10. In contrast, deforming q does give the full complex moduli space of
the mirror quintic: we have Mcpx(X◦) ∼=

(
CP1 \ {q = 0, q5 = 1/55}

)
/(Z/5), which

is a genus-zero curve with one cusp at q = 0, one order-5 orbifold point at q =∞,
and one nodal point at q5 = 1/55 (also called the conifold point).

The cusps in these examples are examples of large complex structure limits: this
means that they can be compactified by adding a singular variety which is ‘maxi-
mally degenerate’ (in the sense that it is normal-crossings with a zero-dimensional
stratum). In the first case, M1,1 can be compactified to M1,1 by adding a nodal
elliptic curve; in the second and third Mcpx(X◦) can be partially compactified by
adding the point q = 0 corresponding to the singular variety X◦0 = {

∏
zi = 0}.

The Kähler moduli space is harder to define mathematically. More precisely, it
is difficult to define the A-model invariants away from a certain part of the Kähler
moduli space called the large volume limit which is mirror to the large complex
structure limit. It corresponds to complexified Kähler forms with ω → +∞. We
will see a precise definition of a formal neighbourhood of the large volume limit in
§4, together with an explanation of why it is hard to make mathematical sense of
the A-model away from it.

Example 1.11. In examples 1.3 and 1.4, the mirror map identifies the one-
dimensional space of complex structures on X◦ parametrized by q (in a formal
neighbourhood of the large complex structure limit q = 0) with the one-dimensional
space of complexified Kähler forms proportional to the Fubini–Study form (in a
formal neighbourhood of the large volume limit).
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Example 1.12. It is more compelling to consider the ‘other direction’ of mirror
symmetry for the quartic: the A-model on the mirror quartic versus the B-model
on the quartic. We have 22 natural divisors on the mirror quartic, which we can
naturally label by certain quartic monomials in four variables. Firstly, we have the
four proper transforms of the images of the coordinate hyperplanes {zi = 0}: we
label these by the monomials x4

i . Secondly, we have the eighteen exceptional divi-
sors that were created when we resolved the 6 A3 singularities. The A3 singularities
lie on the pairwise intersections {zi = zj = 0} of the coordinate hyperplanes, and
it is natural to label the three exceptional divisors of the resolution by x3

ixj, x
2
ix

2
j ,

xix
3
j . Of course, divisors are Poincaré dual to classes in H1,1, so we can deform the

Kähler form on the mirror quartic in the direction of these 22 divisors. We remark
that there is some redundancy: the divisors only span a 19-dimensional subspace
of H1,1. This corresponds, under the mirror map, to deforming the complex struc-
ture on the quartic by deforming the coefficients in front of the corresponding 22
monomials of its defining equation. Once again there is some redundancy: up to
isomorphism there is a 19-dimensional space of quartics.

Example 1.12 is an example of the ‘monomial–divisor correspondence’ [AGM93]
which underlies the mirror map for Batyrev mirrors:

Example 1.13. Let’s consider Batyrev’s construction (Example 1.5). The complex
structure on the hyperplane section X◦ depends on the defining equation, which is
a section of L◦. The global sections of L◦ have a basis indexed by lattice points
of ∆◦. The section corresponding to the origin cuts out X◦∞, the toric boundary
of V , which is maximally degenerate so a large complex structure limit point. We
can define nearby points in the complex moduli space by adding combinations of
the sections corresponding to the remaining lattice points to the defining equation
of the hypersurface. The remaining lattice points all lie on the boundary because
the polytope is reflexive, thus we have parameters on Mcpx(X◦) indexed by the
boundary lattice points of ∆◦.

On the other side of mirror symmetry, recall that the toric variety V can be
described either using the polytope ∆, or using a fan Σ. This Σ is the normal fan
to the polytope, and it can be identified with the cone over the boundary of ∆◦. The
toric variety V (and hence its hyperplane section X) will typically be singular, so
we resolve it by subdividing the fan Σ. We do this by introducing rays spanned by
boundary lattice points of ∆◦: so the resolution has one divisor for each boundary
lattice point. Of course, divisors define (1, 1) classes in cohomology, so we have
parameters on MKäh(X) indexed by the boundary lattice points of ∆◦.

To first order, the mirror map ψ : MKäh(X) → Mcpx(X◦) equates these two
sets of parameters (more details can be found in [AGM93] or [CK99, Section 6]).

1.3. Closed-string mirror symmetry: Hodge theory. ‘Closed-string mirror
symmetry’ has to do with numerical invariants of Calabi–Yau Kähler manifolds.
In the closed-string world, the B-model concerns periods (integrals of holomorphic
forms over cycles), while the A-model concerns Gromov–Witten invariants. We
recall that the Gromov–Witten invariants of X count holomorphic maps of Riemann
surfaces u : Σ → X, possibly with some marked points and constraints, with the
curve u weighted by exp

(
2πi · ωC(u)

)
. See Figure 1.4

4At first glance Gromov–Witten invariants look more like complex than symplectic invariants,
since they are weighted counts of holomorphic maps and ωC only enters via the weights; but



6 NICK SHERIDAN

z1 z2

z3

γ1 γ2

γ3
Figure 1. Three-point Gromov–Witten invariants define a map
GW0,3 : H∗(X;C)⊗3 → C. Given inputs α1, α2, α3 ∈ H∗(X;Z),
one chooses Poincaré dual cycles A1, A2, A3 and distinct points
z1, z2, z3 ∈ CP1. When the degrees |αi| add up to the dimension
of X, the space of holomorphic maps u : CP1 → X such that
u(zi) ∈ Ai for all i is (after ‘perturbing to achieve transversality’
[MS04, §6.7]) a discrete but potentially infinite set. We assign
a weight exp(2πi · ωC(u)) to each point u in this set, and define
GW0,3(α1, α2, α3) to be the sum of these weights. If the degrees
don’t add up to the dimension of X, such holomorphic maps may
come in a higher-dimensional family; in this case we define GW0,3

to be 0. This is called a closed-string invariant because it can
equivalently be interpreted as a sum of maps u as on the right,
where the marked points are replaced by punctures, along which
the map is asymptotic to ‘closed strings’ γi (as opposed to ‘open
strings’ which have boundary on ‘branes’, see Figure 2). Compare
§5.2.

Thus, if (X,X◦) is a mirror pair then closed-string mirror symmetry relates
the genus-zero Gromov–Witten invariants of X to the periods of X◦. Periods are
relatively easy to compute, whereas Gromov–Witten are relatively hard to compute.
For this reason one often says that closed-string mirror symmetry yields predictions
for the genus-zero Gromov–Witten invariants of X in terms of the periods of X◦.

Example 1.14. Candelas, de la Ossa, Green and Parkes computed the mirror
predictions for the genus-zero Gromov–Witten invariants of the quintic threefold X
[CdlOGP91]. Their predictions were verified by Givental [Giv96] and Lian–Liu–Yau
[LLY97].

Example 1.15. Closed-string mirror symmetry also works for Examples 1.2 and
1.3, but is less interesting: it predicts that the genus-zero Gromov–Witten invariants
of elliptic curves and quartic surfaces should be equal to zero, and indeed this is true.

it turns out they are invariant under deformations of the complex structure. They can even
be defined using an almost-complex structure, i.e., a not-necessarily-integrable complex structure
J : TX → TX, so long as ω(·, J ·) is positive-definite.
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Although the most concrete formulation of closed-string mirror symmetry relates
numerical invariants on the two sides of the mirror, the explicit relationship is rather
complicated. Morrison showed how it can be formulated more conceptually by
assembling these numerical invariants into algebraic structures: namely, variations
of Hodge structures [Mor93] (see also [Voi96, CK99]). For us, a variation of Hodge
structures overM, written V →M, consists of a vector bundle E →M, equipped
with a filtration F≥•E and a flat connection ∇ satisfying Griffiths transversality:
∇F≥• ⊂ F≥•−1. Our Hodge structures also come with a polarization, which is a
covariantly constant pairing that respects the filtration in a certain way, but we’ll
omit it for simplicity.

The closed-stringB-model is the classical variation of Hodge structures V B(X◦)→
Mcpx(X◦). The vector bundle has fibre Ep := H∗(X◦p ;C), the filtration F≥• is the
Hodge filtration, and the connection is the Gauss–Manin connection.

The closed-string A-model is the so-called ‘A-variation of Hodge structures’
V A(X) → MKäh(X). The vector bundle has fibre Ep := H∗(X;C) (it is triv-
ial), the filtration is F≥•E := H−∗≥•(X;C), and the connection is the Dubrovin or
Givental connection: the connection matrix

Γ : H1,1(X;C)→ End(H∗(X;C))

can be identified with the restriction of the three-point Gromov–Witten invariant
GW0,3 (see caption to Figure 1) to H1,1(X;C) ⊗ H∗(X;C)⊗2 ⊂ H∗(X;C)⊗3, via
the identification of H∗(X;C) with its dual arising from Poincaré duality.

Thus, closed-string mirror symmetry says that there is an isomorphism of varia-
tions of Hodge structures V A(X)

∼−→ V B(X◦), covering the mirror mapMKäh(X)
∼−→

Mcpx(X◦). We will only consider this isomorphism near the large volume/large
complex structure limit points, due to the previously-mentioned difficulty with
defining the Gromov–Witten invariants away from the large volume limit point.
The monodromies of the connections around these points have a certain property
called maximal unipotence.

There is a procedure for extracting numerical invariants from a variation of
Hodge structures over a neighbourhood of a maximally unipotent limit point, which
outputs Gromov–Witten invariants when applied to V A and periods when applied
to V B . In particular, closed-string mirror symmetry in the form of an isomor-
phism of variations of Hodge structures V A(X) ∼= V B(X◦) implies the relationship
between Gromov–Witten invariants of X and periods of X◦ referenced above.

Remark 1.16. We have focused on closed-string mirror symmetry ‘at genus zero’
(on the A-side, this means we only considered Gromov–Witten invariants counting
maps u : Σ → X where Σ is a curve of genus zero). There is a generalization to
‘higher-genus closed-string mirror symmetry’ which relates higher-genus Gromov–
Witten invariants to ‘BCOV theory’ [BCOV94]. This has been used to predict
higher-genus Gromov–Witten invariants, for example up to genus 51 on the quintic
[HKQ09], and these predictions have been verified in genus one [Zin09] and two
[GJR17].

1.4. Open-string (a.k.a. homological) mirror symmetry: categories. Ho-
mological mirror symmetry (HMS) was proposed by Kontsevich [Kon95]. In the
open-string world, rather than variations of Hodge structures, the relevant in-
variants are A∞ categories (we define these in §3.1). The B-model is denoted
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DCoh(X◦): it is ‘a differential graded enhancement of the bounded derived cate-
gory of coherent sheaves on X◦’. The A-model is denoted DFuk

(
X,ωC): it is ‘the

split-closed bounded derived category of the Fukaya category of
(
X,ωC)’ (we will

summarize the definition in §4.2). Thus, HMS predicts a (quasi-)equivalence of A∞
categories

DFuk
(
X,ωC

p

)
' DCoh

(
X◦ψ(p)

)
where ψ :MKäh(X)

∼−→Mcpx(X◦) is the mirror map.

Remark 1.17. We have seen that closed-string mirror symmetry predicts inter-
esting enumerative invariants which have been proved in many cases, but are there
similar reasons to have ‘faith’ in HMS? To start with it has been established in a (rel-
atively small) number of examples: [Abo17] builds on [PZ98, KS01, Fuk02, AS10b]
to prove HMS for nonsingular SYZ torus fibrations; [Sei14, She15b] prove it for
hypersurfaces in projective space; [SS17a] proves it for ‘generalized Greene–Plesser
mirrors’; and generalizations to many non-compact and non-Calabi–Yau examples
have also been proved. In cases where it has been established, it has been used
to prove results about the structure of symplectic mapping class groups [SS17b] and
classification of Lagrangian submanifolds [AS10b], by translating them into tractable
questions in the world of algebraic geometry.

Perhaps more importantly, it has turned out to be extremely powerful as a mo-
tivating principle (compare Remark 1.1). Motivation from HMS has led to fun-
damental advances in algebraic geometry, such as the construction of braid group
actions on derived categories of coherent sheaves [ST01], stability conditions on
triangulated categories [Bri08b, Bri08a], and knot invariants [CK08]; and in sym-
plectic geometry, such as results on symplectic mapping class groups [Sei08b], and
the development of quilts [MWW16]; furthermore, it has been observed that it is
intimately related with the geometric Langlands program [HT03]. This is far from
an exhaustive list.

Besides its power as a motivating principle, Kontsevich emphasized the explana-
tory power of HMS [Kon95]:

“Our conjecture, if it is true, will unveil the mystery of Mirror Sym-
metry. The numerical predictions mean that two elements of an
uncountable set (formal power series with integral coefficients) co-
incide. Our homological conjecture is equivalent to the coincidence
in a countable set (connected components of the ‘moduli space of
triangulated categories’, whatever it means).”

In other words, it is ‘less of a coincidence’ that HMS should be true, than that
closed-string mirror symmetry should be true; since HMS implies closed-string mir-
ror symmetry (at least at genus zero, as we will see in §7.4), this goes some way
towards ‘explaining’ closed-string mirror symmetry. One of our main aims in this
survey is to expand on this idea, and explain how it leads to an efficient approach
to proving (both versions of) mirror symmetry.

1.5. Using versality. Let X◦ be a Calabi–Yau Kähler manifold. The Bogomolov–
Tian–Todorov theorem says that X◦ admits a local universal deformation X◦ →
Mcpx with Mcpx smooth, T0Mcpx

∼= H1(X◦, TX◦). This means that any local
family of deformations of X◦ parametrized by a base B is pulled back via a classi-
fying map B →Mcpx, which is unique.
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More straightforwardly, if X is Calabi–Yau Kähler manifold with complexified
Kähler class

[
ωC], then it is obvious that we have a universal family of complexified

Kähler classes parametrized by a neighbourhood of
[
ωC] ∈ H1,1(X;C).

Strategy 1. Suppose that we had proved a version of mirror symmetry (closed- or
open-string) at one point in moduli space:

A(X,ωC
p ) ∼= B(X◦q ) for some p ∈MKäh(X), q ∈Mcpx(X◦),

and furthermore that the corresponding deformations of the invariants (Hodge struc-
tures in the closed-string case, categories in the open-string case) parametrized by
the moduli spaces were universal in a neighbourhood of the points p and q. Then it
would follow by universality that there existed a mirror map ψ identifying a neigh-
bourhood of p with a neighbourhood of q = ψ(p), and an isomorphism

A(X,ωC
p′)
∼= B(X◦ψ(p′)).

So mirror symmetry would be proved for all p′ in a neighbourhood of p.

A fundamental difference between closed-string and homological mirror symme-
try is that, whereas the variations of Hodge structure we consider are usually not
universal, the categories are. So Strategy 1 can work to prove homological mirror
symmetry, but not to prove closed-string mirror symmetry.

Indeed, variations of Hodge structures V → M can be classified by a period
map M → P where P is a ‘period domain’ [Gri68]. Griffiths transversality says
that the differential of the period map lies in the horizontal distribution. If the
differential mapped TM isomorphically to the horizontal distribution, we would
have a universal variation of Hodge structures: the image of the period map would
be the unique maximal integral submanifold for the horizontal distribution. This
happens for Calabi–Yaus of dimension one and two, if we take the polarizations
on our Hodge structures into account in the latter case, but it cannot happen for
a Calabi–Yau of dimension ≥ 3: the dimension of the horizontal distribution is
always strictly greater than that of Mcpx (see [Voi02, Remark 10.20]).

To clarify the situation, let us choose local coordinates in P so that the im-
age of the period map can be written as the graph of a function. The horizon-
tal distribution determines a differential equation satisfied by this function, which
under-constrains it because the dimension of the submanifold is less than that of
the distribution. Thus, if we were trying to prove closed-string mirror symmetry by
identifying the images of the period maps classifying V A and V B , and had identified
the corresponding functions to order one million, they might still differ at higher
order. This is why Kontsevich says that closed-string mirror symmetry means that
“two elements of an uncountable set coincide”.

In fact the procedure for extracting numerical invariants from a variation of
Hodge structures consists, roughly, in choosing these local coordinates in a standard
way and then taking the Taylor coefficients of the corresponding function. That is
why closed-string mirror symmetry doesn’t give interesting numerical information
for Calabi–Yaus of dimension ≤ 2 (Example 1.15): there’s ‘no room’ for interesting
Taylor coefficients in this situation.

The situation for HMS, on the other hand, is different: as we will explain in §5,
in many situations the family of derived categories DCoh(X◦p ) parametrized by p ∈
Mcpx(X◦), or of Fukaya categories DFuk(X,ωC

p ) parametrized by p ∈ MKäh(X),
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is universal (more precisely, versal). Thus, Strategy 1 can work to prove HMS. Fur-
thermore, we will explain in §7.4 that HMS implies closed-string mirror symmetry
in a certain sense: so from the versal invariant (the category), we can extract the
non-versal invariant (the variation of Hodge structures), from which the enumera-
tive invariants can be extracted as the Taylor coefficients ‘measuring its failure to
be versal’.

1.6. Versality at the large volume limit. There are two problems with Strategy
1 for proving HMS, as stated. First, as we have already mentioned, it is difficult to
make sense of the A-model (in this case, the Fukaya category) away from the large
volume limit. We will see in §4 that in fact, we can only define the A-model in
a formal neighbourhood of the large volume limit – so there are no interior points
p ∈ MKäh(X) where the program could get started. Second, even if we could
make sense of the Fukaya category at an interior point of the moduli space, it’s
not clear that establishing HMS at that particular point would be any easier than
establishing it at every point.

The solution to both of these is to employ Strategy 1 at the large volume limit
point. In other words we construct compactifications MKäh ⊂ MKäh including
the large volume limit point p, and Mcpx ⊂ Mcpx including the large complex
structure limit point q. We then start by proving HMS at these limit points, then
try to extend to the formal neighbourhood by versality. We will see, however, that
the versal deformation space is typically not smooth at these boundary points,
which is an obstruction to applying versality. However, in §6 we explain an ad-hoc
way to fix this by modifying the deformation problem, which we expect to work in
many cases (e.g., many Calabi–Yau hypersurfaces in toric varieties).

Thus, in certain circumstances, we reduce the problem of proving HMS to the
problem of proving it in the large volume/large complex structure limit. We will
explain what this means more explicitly in §7.

Remark 1.18. Let us explain why this makes HMS ‘easier to prove’. One reason
it’s hard to prove mirror symmetry is that the A-model is hard to compute: it in-
volves enumerating holomorphic maps from Riemann surfaces into X, and there’s
no systematic way to do so. The original proofs of closed-string mirror symme-
try for complete intersections in toric varieties employed equivariant localization
(with respect to the algebraic torus action on the ambient toric variety) to do this
enumeration. One of the nice things about the versality strategy we will outline is
that it reduces the number of enumerations we need to a finite number: rather than
computing infinitely many Taylor coefficients separately, we only need the zeroth-
and first-order Taylor coefficients to apply a versality theorem.

We conclude the paper by outlining, in §8, an approach to proving HMS in the
large volume/large complex structure limit which was suggested by Kontsevich and
has recently been developed by Nadler. The idea is to reduce computation of the
Fukaya category in the large volume limit to a sheaf-theoretic computation, which
can be phrased in terms of microlocal sheaf theory on the ‘Lagrangian skeleton’.
Unfortunately it’s not immediately clear how to input this to the versality results
that we describe, but we speculate on what might be needed to make this connec-
tion.

Remark 1.19. This paper is longer on ideas than precise statements of theorems,
by design. Our main aim is to paint an overall picture, which would be obscured by
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extra notation and hypotheses if we tried to make precise statements, so we have
mostly omitted them and instead given references to the literature where they can be
found. It’s worth emphasizing that many of the basic objects that we discuss have
only been constructed under certain hypotheses (and/or are work in preparation).
We do not enumerate these hypotheses, but rather talk as if everything has been
constructed in full generality; the reader who wants to prove theorems about these
objects will have to consult the references to see the degree of generality in which
they have actually been constructed.

Acknowledgments: I am supported by a Royal Society University Research Fellow-
ship. I am very grateful to my collaborators Strom Borman, Sheel Ganatra, Tim
Perutz and Ivan Smith, from whom I’ve learned a lot about this material, and in
particular to Sheel Ganatra who helped me with §8 (mistakes are my own of course).
I’m also very grateful to Helge Ruddat, who pointed out the connection with ver-
sal deformation spaces of d-semistable K3 surfaces [Fri83]; and to Siu-Cheong Lau,
who suggested that anti-symplectic involutions could be used to constrain deforma-
tions of Fukaya categories (which is what §6.3 is about); and to John Lesieutre, for
a conversation about ample cones. Finally, my work on this subject wouldn’t have
gotten started if Paul Seidel hadn’t explained to me how to define the coefficient
ring RX,D of the relative Fukaya category, and many other things.

2. Deformation theory via L∞ algebras

We recall that many natural deformation problems can be phrased in terms of
differential graded Lie algebras [Man99], or more generally L∞ algebras [Kon03a,
Get09, KS]. This framework is fundamental for our study of deformation spaces
of the categories involved in HMS, so in this section we summarize the important
background. We work over a field k of characteristic zero throughout.

2.1. L∞ algebras. Recall that an L∞ algebra g is a graded vector space equipped
with multilinear maps

`s : g⊗s → g for all s ≥ 1, denoted

v1 ⊗ . . .⊗ vs 7→ {v1, . . . , vs}.

These maps should have degree 2 − s, they should be graded symmetric with re-
spect to reduced degrees (which means that swapping two adjacent inputs v and w
changes the sign by (−1)(|v|+1)(|w|+1)), and they should satisfy the L∞ relations:∑

j,σ

(−1)†{{vσ(1), . . . , vσ(j)}, vσ(j+1), . . . , vσ(s)},

where the sum is over all j and all ‘unshuffles’ σ: i.e., permutations σ satisfying
σ(1) < . . . < σ(j) and σ(j + 1) < . . . < σ(s). The sign † is the Koszul sign
associated to commuting the inputs vi through each other, equipped with their
reduced degrees |vi|+ 1 as before. If `≥3 = 0, then g is called a differential graded
Lie algebra.

The first of the L∞ relations says that `1(`1(v)) = 0, so `1 is a differential: we
denote its cohomology by H∗(g). The second says that `2 satisfies the Leibniz rule,
so defines a bracket on H∗(g). The third says that `2 satisfies the Jacobi relation
up to a homotopy given by `3, and in particular the bracket on H∗(g) satisfies the
Jacobi relation.
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There is a notion of L∞ morphism f : g 99K h, which consists of multilinear
maps fs : g⊗s → h for s ≥ 1 satisfying certain axioms [Kon03a]. The first of these
says that f1 : (g, `1) → (h, `1) is a chain map: if it induces an isomorphism on
cohomology, then f is called an L∞ quasi-isomorphism and we say that g and h
are quasi-isomorphic. This is an equivalence relation: L∞ quasi-isomorphisms can
be composed and inverted [Kon03a, Theorem 4.6].

An L∞ algebra h is called minimal if `1 = 0. Any L∞ algebra admits a minimal
model, i.e., a quasi-isomorphic L∞ algebra which is minimal [Kon03a, Lemma 4.9].

2.2. Maurer–Cartan elements. Given an L∞ algebra g, we would like to define
the set of solutions to the Maurer–Cartan equation:

MCg :=

α ∈ g1 :
∑
s≥1

1

s!
{α, . . . , α︸ ︷︷ ︸

s

} = 0

 ,

but the infinite sum may not converge, so we need to be a bit careful. What we
can define is MCg(R), where (R,m) is a complete Noetherian local k-algebra. It
is the set of α ∈ g1⊗̂m satisfying the Maurer–Cartan equation, where the hat on
the tensor product means we complete with respect to the m-adic filtration after
tensoring. The Maurer–Cartan equation then converges by completeness.

For any γ(t) in the m-adic completion of g0 ⊗ m[t], there is a corresponding
t-dependent vector field v(γ, t) on g1⊗̂m, defined by

v(γ, t)α :=
∑
i≥0

1

i!
{γ(t), α, . . . , α︸ ︷︷ ︸

i

}.

One can verify that this vector field is tangent to MCg(R), and that its flow exists
for all times. We say that two solutions of the Maurer–Cartan equation are gauge
equivalent if they are connected by a finite series of flowlines of such vector fields:
we denote this equivalence relation by ∼. The following theorem is fundamental
in the study of deformation problems via L∞ algebras (see [GM88, Theorem 2.4],
[Kon03a, Theorem 4.6], [Fuk03, Theorem 2.2.2]):

Theorem 2.1. An L∞ quasi-isomorphism f : g 99K h induces a bijection

MCg(R)/∼ −→ MCh(R)/∼ .

2.3. Versal deformation space.

Definition 2.2. We say that α ∈MCg(S) is

• Complete if any β ∈ MCg(R) is gauge-equivalent to ψ∗α for some ψ∗ :
S → R;
• Universal if furthermore this ψ∗ is uniquely determined;
• Versal if instead ψ∗ : mS/m

2
S → mR/m

2
R is uniquely determined.

We start by studying versal deformation spaces of a minimal L∞ algebra g,
which we will assume to be finite-dimensional in each degree for simplicity (this
will be the case in all of our applications in this paper). Choose a basis ~e1, . . . , ~ea
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for g1 and ~f1, . . . , ~fb for g2. Define Pj ∈ k [[x1, . . . , xa]] by∑
s≥1

1

s!
{αv, . . . , αv︸ ︷︷ ︸

s

} =

b∑
j=1

Pj(x1, . . . , xa) · ~fj , where(2.1)

αv :=

a∑
i=1

xi · ~ei.(2.2)

Definition 2.3. We define the complete Noetherian local k-algebra

Rv := k [[x1, . . . , xa]] /(P1, . . . , Pb).

There is a tautological Maurer–Cartan element αv ∈MCg(Rv), defined by (2.2),
and any element of MCg(R) is equal to ψ∗αv for a unique ψ∗ : Rv → R. It is
immediate that αv is complete, and it is also versal; however it need not be universal,
because there may be a gauge equivalence αv ∼ ψ∗αv for some ψ∗ : Rv → Rv which
induces the identity map on m/m2 but differs from the identity at higher order.
Thus it makes sense to define the versal deformation space of g to be

MCg := Spec(Rv).

If g is an arbitrary L∞ algebra with finite-dimensional cohomology in each de-
gree, then we can construct a minimal model h for g. We can then construct a
versal Maurer–Cartan element for h via the above construction, which yields one
for g by Theorem 2.1.

Remark 2.4. We say that g is homotopy abelian if it is quasi-isomorphic to an L∞
algebra h which has all operations `s equal to 0. In this case the versal deformation
space is very simple: the Pj in (2.1) vanish, so the versal deformation space is a
formal neighbourhood of 0 ∈ H1(g).

2.4. Versality criterion. Any Maurer–Cartan element α ∈ MCg(R) determines
a Kodaira–Spencer map

KSα :
(
m/m2

)∗ → H1(g).

Explicitly, the projection of α to g1 ⊗ m/m2 is `1-closed by the Maurer–Cartan
equation, so defines an element in H1(g) ⊗ m/m2. The Kodaira–Spencer map is
defined to be contraction with this element.

Theorem 2.5. Let R = k [[r1, . . . , rk]] be a formal power series algebra, and β ∈
MCg(R). If KSβ is an isomorphism (respectively, surjective) then β is versal
(respectively, complete).

Proof. Let h be a minimal model for g. Then β corresponds to some α ∈MCh(R)
under Theorem 2.1. Therefore α = ψ∗αv for some ψ∗ : Rv → R. The composition

k [[x1, . . . , xa]]→ k [[x1, . . . , xa]] /(P1, . . . , Pb) = Rv
ψ∗−−→ R = k [[r1, . . . , rk]]

defines a map mv/m
2
v → m/m2 which is an isomorphism (respectively, injective) by

hypothesis, because KSα can be identified with KSβ . It follows by the inverse func-
tion theorem that the composition is an isomorphism (respectively, left-invertible).
Therefore αv = φ∗α for some φ∗ : R→ Rv, so α is complete. If KSα is an isomor-
phism then φ∗ defines an isomorphism m/m2 ∼−→ mv/m

2
v, from which it follows that

α is furthermore versal. �
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3. Deformations of A∞ categories

We introduce basic definitions of A∞ categories, following [Sei08a, Chapter I]
and [FOOO10b], and their deformation theory (compare [Sei14, She17]).

3.1. A∞ categories. If R is a ring, we will define an A∞ algebra A over R to be
a free graded R-module equipped with multilinear maps

µs : A⊗s → A

for s ≥ 1, of degree 2− s, satisfying the A∞ relations:
(3.1)∑

(−1)|a1|+...+|ai|+i · µs+1−j(a1, . . . , ai, µ
j(ai+1, . . . , ai+j), ai+j+1, . . . , as) = 0.

The first A∞ relation says that µ1(µ1(a)) = 0, so µ1 is a differential; we denote
its cohomology by H∗(A). The second says that µ2 satisfies the Leibniz rule, so
defines a product on H∗(A). The third says that µ2 is associative up to a homotopy
given by µ3, and in particular the product on H∗(A) is associative, so H∗(A) is an
R-algebra.

There is a notion of A∞ morphism F : A 99K B, which consists of multilinear
maps F s : A⊗s → B for s ≥ 1 satisfying
(3.2)∑
i,j

F s+1−j(a1, . . . , ai, µ
j
A(. . . , ai+j), . . . , as) =

∑
i1,...,ik

µkB(F i1(a1, . . . , ai1), . . . , F ik(. . . , as)).

There is an induced homomorphism of R-algebras H∗(F ) : H∗(A) → H∗(B). If it
is an isomorphism we call F a quasi-isomorphism. As a special case, if F 1 is an
isomorphism we call F an isomorphism. Morphisms can be composed, and any A∞
isomorphism admits an inverse (i.e., a morphism G : B→ A such that G ◦ F = id;
in particular, not just an ‘inverse up to homotopy’). If F≥2 = 0, we say that F is
strict.

There is an analogous notion of an A∞ category. An R-linear A∞ category
A consists of a set of objects, morphism spaces which are free graded R-modules
hom∗A(K,L) for each pair of objects, and A∞ structure maps

µs : hom∗A(L0, L1)⊗ . . .⊗ hom∗A(Ls−1, Ls)→ hom∗A(L0, Ls)

satisfying (3.1). One can define the cohomological category H∗(A) by analogy with
the case of algebras. The notion of A∞ morphism extends to a notion of A∞ func-
tor; an A∞ functor between A∞ categories induces an honest functor between the
cohomological categories. If this functor is an equivalence (respectively, an embed-
ding, i.e. fully faithful), we call the A∞ functor a quasi-equivalence (respectively, a
quasi-embedding). If the functor is bijective on objects and F 1 is an isomorphism
on each morphism space, we call F an isomorphism.

3.2. Curved A∞ categories. There is a notion of curved A∞ categories, which
is exactly the same except one allows the existence of µ0 in the definition. The
A∞ relations (3.1) no longer involve finitely many terms for each s, so one needs
a reason for the infinite sum to converge. We will deal with this issue in the
same way that we did for the Maurer–Cartan equation: namely by considering
A∞ categories of the form A0⊗̂R where (R,m) is a complete Noetherian local k-
algebra, and requiring µ0 ∈ A0⊗̂m. The A∞ equations (3.1) then converge by
completeness. There similarly exists a notion of a curved A∞ functor between
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curved A∞ categories, which is a set of maps F s for s ≥ 0 satisfying (3.2), with
F 0 ∈ A0⊗̂m.

Note that our assumptions ensure that A/m := A⊗R R/m is an (uncurved) A∞
category, and a curved functor A 99K B induces an uncurved functor A/m 99K B/m.

Curved A∞ categories are not good objects to deal with. For example a curved
A∞ category A only has a well-defined cohomology category H∗(A) if the curvature
µ0 vanishes. In particular the notion of ‘quasi-equivalence’ does not make sense for
curved categories; since HMS is expressed as a quasi-equivalence between two A∞
categories, we really want to work in the uncurved world.

The standard way to turn a curved A∞ category into an uncurved one is to form
the category of objects equipped with bounding cochains [FOOO10b]. A bound-
ing cochain α for an object L of a curved A∞ category A is an element α ∈
hom1

A0
(L,L)⊗̂m satisfying the Maurer–Cartan equation:5∑

s≥0

µs(α, . . . , α) = 0.

If L admits a bounding cochain, we say it is unobstructed ; otherwise we say it is
obstructed.

There is an (uncurved) A∞ category Abc whose objects consist of pairs (L,α)
where α is a bounding cochain for L. If A and B are curved A∞ categories of the
above type, then a curved A∞ functor F : A 99K B induces an (uncurved) A∞
functor

F bc : Abc 99K Bbc.

If F/m is a quasi-embedding, then so is F bc by a comparison argument for the
spectral sequences induced by the m-adic filtration. We refer to [She17, §2.7] for
more details.

3.3. Curved deformations of A∞ categories. One might ask why we bothered
to introduce curved A∞ categories and functors, since we already said they are not
the objects we wish to deal with. The answer is that they fit naturally into the
deformation theory framework outlined in §2, whereas uncurved A∞ categories do
not.

Let A0 be an A∞ category over k, and (R,m) a complete Noetherian local k-
algebra with R/m = k. A deformation of A0 over R is a curved A∞ structure
µ∗ on A := A0⊗̂R, such that A/m = A0. We say that deformations A and A′ are
equivalent if there is an A∞ functor F : A 99K A′ which is equal to the identity
modulo m.

We introduce the space of Hochschild cochains on A0:
(3.3)

CC∗(A0) :=
∏

L0,...,Ls

Hom(hom∗A0
(L0, L1)⊗ . . .⊗ hom∗A0

(Ls−1, Ls), hom
∗
A0

(L0, Ls)).

Equipping it with the Hochschild differential and the Gerstenhaber bracket turns
it into a differential graded Lie algebra g. A deformation of A0 over R is equivalent
to a Maurer–Cartan element α ∈ MCg(m) for g = CC∗(A0). If two such Maurer–
Cartan elements are gauge equivalent, then the corresponding deformations are
equivalent.

5This is a different Maurer–Cartan equation from the one we considered for L∞ algebras.
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Remark 3.1. An uncurved deformation of A0 over R is equivalent to a Maurer–
Cartan element with vanishing length-zero component: i.e., the part of the Maurer–
Cartan element in the s = 0 component

∏
L0
hom∗A0

(L0, L0) of (3.3) is equal to
0. These do not fit into the framework of §2 except in certain circumstances, for
example when one knows a priori (for example, for grading reasons) that α0 = α1 =
0, in which case one can instead use the truncated Hochschild cochain complex
[Sei14, §3b].

Remark 3.2. For this reason, the mantra ‘Hochschild cochains control deforma-
tions of an A∞ category’ requires some caution. For example, even if A0 is un-
curved, there might exist curved deformations A for which Abc is empty (i.e., all
objects might be obstructed). See [BKP17] for a more detailed analysis.

Theorem 3.3. Let B be a curved A∞ category over R = k [[x1, . . . , xa]], such that
the corresponding Kodaira–Spencer map

KSB : (m/m2)∗ → HH2(B0)

is surjective. If A is a curved A∞ category over a complete Noetherian local k-
algebra (S,m) with S/m = k, such that there is an A∞ isomorphism B0 99K A0,
then there exists Ψ∗ : R→ S and an A∞ quasi-embedding

(Ψ∗B)bc ↪→ Abc.

Proof. One first shows that there is a curved A∞ functor F : Ψ∗B 99K A which
reduces to the isomorphism B0 99K A0 modulo m. When A0 = B0, this is an imme-
diate consequence of Theorem 2.5 and the preceding discussion; to put ourselves in
that situation, we use the fact that we can modify the A∞ structure on A to make
F0 strict by [Sei08a, §1c].

The resulting A∞ functor F bc is then a quasi-embedding because F/m is, by the
discussion in §3.2. �

Remark 3.4. Analogously to L∞ algebras, A∞ quasi-equivalences defined over a
field can be inverted up to homotopy [Sei08a, Corollary 1.14]. Over a ring the same
is not true, which is why we unfortunately need to assume that A0 and B0 are A∞
isomorphic (rather than quasi-equivalent) in our theorem. It’s likely possible to
prove a generalization that works for quasi-equivalences, but I don’t know precisely
how to formulate it.

4. The large volume limit

In §1.2 we saw examples of the compactification Mcpx of the complex mod-
uli space, which includes the large complex structure limit point corresponding to
a maximally degenerate variety. In this section we will discuss the correspond-
ing compactification MKäh of the Kähler moduli space, which includes the ‘large
volume limit point’ where ω = +∞. We can give a more precise definition of a for-

mal neighbourhood of the large volume limit point M̂Käh(X), and its intersection

M̂Käh(X) with MKäh(X). We will explain why the A-model can typically only
be defined over this formal neighbourhood.

Example 4.1. If the Kähler moduli space is one-dimensional then M̂Käh ⊂ M̂Käh

will be isomorphic to a formal punctured disc Spec(C ((q))) sitting inside the formal
disc Spec(C [[q]]).
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4.1. Closed-string: Gromov–Witten invariants.

4.1.1. One complexified Kähler form. We will not go into the precise definition of
the Gromov–Witten invariants, which is rather technical. However, the simple fact
that they are defined by a sum of counts of holomorphic maps u : Σ→ X, weighted
by exp

(
2πi · ωC (u)

)
(where ωC(u) :=

∫
Σ
u∗ωC), allows us to see how one should

define the large volume limit of the Kähler moduli space.
To start with, we observe that the magnitude of this weight is exp (−2π · ω(u)),

so one might hope that the sums converge if ωC is close enough to the large volume
limit because the weights become very small as ω → +∞. However, actually
proving convergence would require estimates on the growth rate of Gromov–Witten
invariants which are difficult to obtain, so it doesn’t make sense to bake them into
the theory. Instead we work in a formal neighbourhood of the large volume limit.

The idea is to start with a complexified Kähler form ωC = B + iω, and consider
the family of complexified Kähler forms ωC

q := B + (log(q)/2πi) · ω in the limit

q → 0+. A curve u : Σ→ X then gets weighted by

e2πi·ωC
q (u) = qω(u) · e2πi·B(u).

We regard these weights as elements of the Novikov field Λ := C
((
qR
))

(the algebra
of complex combinations of real powers of q, completed with respect to the q-adic
filtration). Convergence of our sums in the Novikov field requires that for every
N , there are finitely many curves u with ω(u) ≤ N . This is true by Gromov’s
compactness theorem for holomorphic curves [Gro85].

Remark 4.2. Observe that, given the complex manifold X, the Gromov–Witten
invariants only depend on the cohomology class

[
ωC] of the complexified Kähler

form ωC. In fact, one can easily see that they only depend on the image of
[
ωC] in

H2(X;C)/H2(X;Z), since adding an integral class to the B-field does not change
the weight e2πi·B(u).

4.1.2. Many complexified Kähler forms. Following these ideas through, we can give
a precise definition of a formal neighbourhood of the large volume limit point of
the Kähler moduli space. If X is a Kähler manifold, we set

NE(X) := {u ∈ H2(X) : ω(u) ≥ 0 for all Kähler forms ω}

where H2(X) := H2(X;Z)/torsion (NE(X) is the ‘closure of the cone of effective
curve classes on X’). This cone is strongly convex, so the group ring C

[
NE(X)

]
has a unique maximal ideal m. We denote the completion at this ideal by RX :=
C
[[
NE(X)

]]
.

Definition 4.3. The formal neighbourhood of the large volume limit point of the
Kähler moduli space of X is

M̂Käh(X) := Spec (RX) .

Let’s explain why this is a good definition. We can define the Gromov–Witten
invariants to count holomorphic curves u : Σ→ X with a weight r[u] ∈ C

[
NE(X)

]
.

Gromov compactness ensures that these infinite weighted sums converge in the com-

pleted ring, so the Gromov–Witten invariants define regular functions on M̂Käh(X).
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Furthermore, a complexified Kähler form ωC defines a Λ-point p of this scheme:

p∗ : RX → Λ(4.1)

p∗ (ru) := qω(u) · e2πi·B(u),

and the Gromov–Witten invariants of
(
X,ωC) are obtained by specializing to this

Λ-point.

4.1.3. At the large volume limit point. The large volume limit point is the C-point

0 ∈ M̂Käh(X) corresponding to the maximal ideal m. The specialization of the
Gromov–Witten invariants to the large volume limit point is rather simple: a curve
u gets weighted by 1 if it is constant, and by 0 if it is non-constant. So the Gromov–
Witten invariants at the large volume limit point count constant maps of Riemann
surfaces to X: they essentially only contain information about intersection theory
on X.

Remark 4.4. Let’s assume for the moment that NE(X) is rational polyhedral, so
C[NE(X)] is the coordinate ring of the affine toric variety corresponding to its dual
cone (the nef cone). The formal neighbourhood of the large volume limit point is,
by definition, the formal neighbourhood of the unique torus-fixed point in this toric
variety corresponding to the vertex of the nef cone. The toric divisors correspond
to degenerate Kähler forms, and their complement (the intersection of the formal
neighbourhood with the dense torus orbit) to honest Kähler forms. The dense torus
orbit has coordinate ring C[H2(X)] ⊃ C[NE(X)]. Thus it makes sense to define

M̂Käh(X) := Spec
(
RX ⊗C[NE(X)] C[H2(X)]

)
.

Note that the Λ-point corresponding to a complexified Kähler form ωC lies in M̂Käh(X) ⊂
M̂Käh(X), but the large volume limit point does not.

4.2. Open-string: Fukaya category. We summarize the definition of the Fukaya
category (see [Aur14] for an excellent introduction). We will start by assuming that
the B-field vanishes, so ωC = iω. We will explain how to incorporate a non-zero
B-field into the definition in §4.2.4, but remark that it will be ignored for the rest
of the paper so the uninterested reader can safely skip that section.

4.2.1. One Kähler form. If ωC = iω, then the objects of the Fukaya category are
Lagrangian branes, which consist of:

• a Lagrangian submanifold L ⊂ X: i.e., a half-dimensional submanifold with
ω|L = 0.
• a spin structure on L, and a grading of L (in the sense of [Sei99]).

We will not talk further about the spin structure (which allows us to define signed
counts of holomorphic curves) or grading (which allows us to define gradings on
our morphism spaces).

The morphism space between transversely-intersecting Lagrangian branes L0, L1

is the (graded) vector space with basis elements indexed by intersection points:

hom∗Fuk(X,ωC)(L0, L1) :=
⊕

p∈L0∩L1

k · p
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p1

p0
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L1
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L3

γ1

γ2
γ3

γ0
Figure 2. On the left, a picture of a holomorphic disc contribut-
ing to the coefficient of p0 ∈ hom∗(L0, L3) in µ3(p1, p2, p3). On the
right, an explanation of why these are called ‘open-string’ invari-
ants: the intersection points pi can equivalently be interpreted as
constant ‘strings with boundary’ γi stretching between the ‘branes’
Li. Compare Figure 1.

for some coefficient field k to be specified.6

The “composition maps” in this category are k-linear graded maps

µs : hom∗(L0, L1)⊗ hom∗(L1, L2)⊗ . . .⊗ hom∗(Ls−1, Ls)→ hom∗(L0, Ls)[2− s].

They are defined by giving their matrix coefficients in terms of the bases of intersec-
tion points: the coefficient of p0 ∈ L0 ∩Ls in µs(p1, . . . , ps) is the (signed) count of
holomorphic maps u : D→ X, where D ⊂ C is the closed unit disc with boundary
points ζ0, ζ1, . . . ζs removed; we require that u(∂iD) ⊂ Li, and u(z)→ pi as z → ζi
(see Figure 2).

Similarly to the Gromov–Witten invariants, we would like to count the disc u
with weight exp(2πi·ωC(u)) (where again ωC(u) :=

∫
D u
∗ωC). However, as happened

for the Gromov–Witten invariants, we have no good reason for the weighted sum
to be finite, even close to the large volume limit. Therefore we are forced to work
over the Novikov field Λ, and weight curves by

e2πi·ωC
q (u) = qω(u) ∈ Λ.

Thus we must take k = Λ above.
The composition maps µs satisfy the A∞ relations:∑

i,j

±µs+1−j(p1, . . . , pi, µ
j(pi+1, . . . , pi+j), pi+j+1, . . . , ps) = 0,

6 Of course not every pair of Lagrangians intersects transversely, but there exist technical
workarounds that we won’t go into (for example, one can make an auxiliary choice of perturbations

of each pair of Lagrangians making them transverse [Sei08a]).
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so the Fukaya category Fuk
(
X,ωC) is a Λ-linear A∞ category. This category may

be curved, and we would like to turn it into an uncurved A∞ category using bound-
ing cochains as in §3.2. To put ourselves in an appropriate context to introduce
bounding cochains, we use the q-adic filtration on morphism spaces. For this we
need to observe that the Fukaya category can in fact be defined over the complete
Noetherian local C-algebra Λ0 := C

[[
qR≥0

]]
: that is because the holomorphic discs

u that define its composition maps have non-negative symplectic area ω(u) ≥ 0.7

We then consider bounding cochains in

hom1
Fuk(X,ωC)(L,L)>0 :=

⊕
p∈L0∩L1

Λ>0 · p ⊂ hom1
Fuk(X,ωC)(L,L),

where Λ>0 ⊂ Λ is the maximal ideal consisting of Laurent series with strictly
positive powers of q. This ensures the convergence of the Maurer–Cartan equation,
by completeness of the q-adic filtration, so we can define the corresponding uncurved
Λ0-linear A∞ category of bounding cochains, then tensor with Λ to obtain the

uncurved Λ-linear A∞ category Fuk
(
X,ωC)bc.

Remark 4.5. Given the complex manifold X, the Fukaya category Fuk
(
X,ωC)bc

only depends on the Kähler class [ω] ∈ H2(X;R) up to quasi-equivalence (compare
Remark 4.2). That is because the space of Kähler forms with the same Kähler class
is convex, so any two are symplectomorphic by Moser’s theorem, and the Fukaya
category is a symplectic invariant.

Finally, let us recall that the category appearing on one side of HMS was de-
noted ‘DFuk’ rather than ‘Fuk’. If A is an A∞ category (which we’ll assume to
be linear over a field), then DA denotes the smallest A∞ category containing A
which is triangulated and split-closed (it is denoted Π(TwA) in [Sei08a, §4c]). Since
DCoh(X◦) has these properties, HMS will only have a chance to be true if we en-
large Fuk to DFuk in this way. One can think of this formal enlargement as an
algebraic substitute for having to include all sorts of singular Lagrangians in one’s
definition of the Fukaya category, which might cause serious analytical difficulties.
It is a fact that there is a quasi-isomorphism of differential graded Lie algebras
CC∗(DA) 99K CC∗(A), so curved deformations of A are equivalent to curved defor-
mations of DA.

4.2.2. Many Kähler forms. It is not immediately clear how to carry out the ana-
logue of §4.1.2 for the Fukaya category. Whereas Gromov–Witten invariants count
maps u : Σ→ X defining a homology class [u] ∈ H2(X), to which we can assign a
weight r[u] ∈ C

[
NE(X)

]
, the discs u that we count in the definition of the Fukaya

category don’t define a homology class [u] in any fixed homology group.
The solution to this problem was explained by Seidel [Sei02]: we use the relative

Fukaya category Fuk(X,D). This depends on an auxiliary piece of data: a normal-
crossings divisor D ⊂ X which supports an effective ample divisor. We will only
consider certain Lagrangians that avoid D, so the discs u that we count in the
definition of the Fukaya category define homology classes [u] ∈ H2(X,X \D).

7We’re sweeping some thorny technical details under the rug here: for example, the pertur-

bations that one needs to introduce to deal with non-transverse intersections of Lagrangians can

interfere with this positivity of symplectic areas (the failure of positivity can however be made
arbitrarily small by choosing sufficiently small perturbations). Moreover the invariance properties

of the Fukaya category over the Novikov ring are much subtler than over the Novikov field.
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Example 4.6. Let X be a hypersurface in a toric variety V , as in Batyrev’s mirror
construction (Example 1.5). We will use the divisor D ⊂ X that is the intersection
of X with the toric boundary divisor of V in this case.

More precisely, we suppose that α ∈ Ω1(X \ D;R) is a one-form such that
ω|X\D = dα. This defines a lift of [ω] ∈ H2(X;R) to [ω;α] ∈ H2(X,X \D;R), by

[ω;α](u) :=

∫
u

ω −
∫
∂u

α.

We observe that, if D = ∪p∈PDp is the decomposition of D into irreducible com-
ponents, then H2(X,X \D;R) has a basis given by the Poincaré duals to the Dp.
Therefore we have

[ω;α] =
∑
p

λp · PD(Dp)

for some λp. If λp > 0 for all p, then we call the pair (ω, α) a relative Kähler form.

Remark 4.7. The condition λp > 0 for all p is called convexity at infinity. This
is related to X \D being Stein: for example, if α = dcρ for some plurisubharmonic
ρ : X \ D → R, then convexity at infinity means ρ is exhausting (bounded below
and proper). In fact, there exists a relative Kähler form with cohomology class∑
p λp · PD(Dp) if and only if the R-divisor

∑
p λp · Dp is effective and ample

[She17, Lemma 3.3].

We now define

NE(X,D) := {u ∈ H2(X,X\D) : u·E ≥ 0 for all effective ample R-divisors E supported on D}.

We observe that any holomorphic curve u : (Σ, ∂Σ) → (X,X \ D) has homology
class [u] ∈ NE(X,D).8 As before, the algebra C[NE(X,D)] has a unique toric
maximal ideal m, and we complete at it to get RX,D := C

[[
NE(X,D)

]]
.

Definition 4.8. The formal neighbourhood of the large volume limit point of the
relative Kähler moduli space is

M̂Käh(X,D) := Spec (RX,D) .

Observe that there is a map M̂Käh(X,D) → M̂Käh(X), induced by H2(X) →
H2(X,X \ D): this is the forgetful map from the moduli space of complexified
relative Kähler forms on (X,D) to the moduli space of complexified Kähler forms
on X.

The objects of the Fukaya category are relative Lagrangian branes, which consist
of:

• a Lagrangian brane L ⊂ X, avoiding D.
• a function h : L→ R with dh = α|L.

8If u were a map from a smooth curve Σ which is not contained in D, we would have u ·E ≥ 0
for all effective divisors E supported on D by positivity of intersection. The reason we restrict to
ample divisors has to do with the fact that we must take into account nodal curves Σ, some of

whose components may get mapped inside D. Such components may have negative intersection
number with components of D, but will still have positive intersection number with an ample
class.
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The morphism spaces are

hom∗Fuk(X,D)(L0, L1) :=
⊕

p∈L0∩L1

RX,D · p.

The A∞ structure maps count holomorphic discs u as before, now weighted by
r[u] ∈ RX,D.

Analogously to what happened for the Gromov–Witten invariants, the relative

Kähler class [ω;α] determines a Λ-point p of M̂Käh(X,D) by

p∗ : RX,D → Λ

p∗ (ru) := q[ω;α](u).

Furthermore, there is an embedding

Fuk(X,D)p ↪→ Fuk(X,ω),

where the subscript p means we take the fibre of the category over the Λ-point p.
Explicitly, this means we tensor each morphism space with Λ, via the morphism
p∗.

The embedding is obvious on the level of objects: it simply forgets the function
h. It sends a morphism p ∈ L0∩L1 of Fuk(X,D)p to the morphism qh1(p)−h0(p) ·p of
Fuk(X,ω). One can check that this embedding respects the A∞ maps: the structure
maps count the same holomorphic discs, and a simple application of Stokes’ theorem
shows that each disc gets counted with the same weight in Λ [She15b, §8.1].

By a similar argument, there is an embedding(
Fuk(X,D)bc

)
p
↪→ Fuk(X,ω)bc.

One needs to be a little bit careful to ensure that the image of an order-m bounding
cochain is a positive-energy bounding cochain, because qh1(p)−h0(p) may be a neg-
ative power of q: in general the embedding only exists after one applies the reverse
Liouville flow to the Lagrangians for a sufficiently long time (see [She17, Remark
5.22]).

4.2.3. At the large volume limit point. By analogy with what we saw for the Gromov–

Witten invariants, the large volume limit point 0 ∈ M̂Käh(X,D) is defined to be
the C-point corresponding to the toric maximal ideal m. The fibre Fuk(X,D)0 of
the relative Fukaya category over the large volume limit point is the C-linear A∞
category with the same objects, counting holomorphic discs with weight 1 if they do
not intersect D and weight 0 if they intersect D. In other words, it is Fuk(X \D),
the Fukaya category of the affine variety X \ D. This A∞ category is uncurved:
this follows from the fact that the Lagrangians we consider are exact in X \D, so
only bound constant holomorphic discs.

It is then clear that Fuk(X,D) is a (possibly curved) deformation of Fuk(X \D)
over RX,D.

4.2.4. Complexified Kähler forms. Now we explain how to define Fuk
(
X,ωC) in the

case that the B-field is non-vanishing: ωC = B + iω (compare [KO04]). Objects
are Lagrangian branes L as before, now equipped with a complex vector bundle EL
with a unitary connection ∇L, whose curvature is required to be id ⊗ B|L. The
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morphism spaces are now

hom∗Fuk(X,ωC)(L0, L1) :=
⊕

p∈L0∩L1

Hom(E0,p, E1,p).

The A∞ composition maps count holomorphic discs u as in §4.2.1. Each such disc
determines a ‘monodromy’ map

mon(u) : Hom(E0,p1 , E1,p1)⊗ . . .⊗ Hom(Es−1,ps , Es,ps)→ Hom(E0,p0 , Es,p0)

by composition interspersed with parallel transport maps

Ei,pi → Ei,pi+1

along ∂iD with respect to ∇i. The contribution of the disc u to the composition
map µs is then qω(u) · e2πi·B(u) ·mon(u).

Remark 4.9. The situation considered in §4.2.1 corresponded to the case B = 0,
and each E was the trivial line bundle with trivial connection.

Remark 4.10. The condition that the curvature of each ∇L is id ⊗ B|L ensures
that e2πiB(u) ·mon(u) is invariant under isotopies of u, by the relationship between
parallel transport and curvature.

Remark 4.11. Given the complex manifold X, the Fukaya category Fuk
(
X,ωC)

only depends up to equivalence on the image of the complexified Kähler class
[
ωC]

in H2(X;C)/H2(X;Z) (compare Remark 4.2). In light of Remark 4.5, to show
this it suffices to check that for any closed real 2-form B′ representing an integral
cohomology class, adding B′ to the B-field does not change the Fukaya category up
to equivalence. Indeed, there exists a complex line bundle V with unitary connection
∇V on X having curvature form B′: so there is an equivalence

Fuk(X,B + iω)→ Fuk(X,B′ +B + iω), which on the level of objects sends

(L, (EL,∇L)) 7→ (L, (V,∇V)⊗ (EL,∇L)).

Now we consider the relative situation. A complexified relative Kähler form is a
complexified Kähler form ωC together with θC = β + iα ∈ Ω1(X \D;C) satisfying
ωC|X\D = dθC, such that (ω, α) is a relative Kähler form. This defines a lift of[
ωC] ∈ H2(X;C) to [ωC; θC] ∈ H2(X,X \D;C) as before, and hence a Λ-point p

of M̂Käh(X,D) by

p∗ : RX,D → Λ

p∗ (ru) := q[ω;α](u) · e2πi·[B;β](u).

There is an embedding

(4.2) Fuk(X,D)p ↪→ Fuk
(
X,ωC)

as before: on the level of objects, it sends

L 7→ (L, (C,∇β)|L)

where ∇β is the connection on the trivial line bundle C on X \ D with unitary
connection d+ 2πiβ.

Remark 4.12. Note that we did not need to alter the definition of Fuk(X,D) for
the embedding (4.2) to exist: the relative Fukaya category ‘already knew’ about the
B-fields. We note that it would be natural to extend the definition of Fuk(X,D) to
include unitary vector bundles with flat connections on the Lagrangians.
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5. Versality in the interior of the moduli space

5.1. Bogomolov–Tian–Todorov theorem. Let X be a complex projective man-
ifold. Then there is a differential graded Lie algebra gcs, with cohomologyH∗(gcs) ∼=
H∗(TX), which controls the deformations of X [Man04]. In other words, for any
complete Noetherian local C-algebra R, deformations of X over R up to isomor-
phism are in bijection with Maurer–Cartan elements in MCgcs

(R) up to gauge
equivalence.

The Bogomolov[Bog78]–Tian[Tia87]–Todorov[Tod89] theorem can be phrased as
saying that if X is Calabi–Yau then gcs is homotopy abelian, so the versal defor-
mation space of X is a formal neighbourhood of 0 ∈ H1(TX) [GM90, IM10].

There is a larger differential graded Lie algebra g ⊃ gcs, with cohomology
H∗(g) ∼= HT ∗(X) := H∗(∧∗TX). It controls (curved) deformations of the A∞
category DCoh(X) in accordance with §3, because there is a quasi-isomorphism

I∗ : g 99K CC∗(DCoh(X))

(this is the composition of Kontsevich’s formality quasi-isomorphism g 99K CC∗(X)
[Kon03a] with the quasi-isomorphism CC∗(X) 99K CC∗(DCoh(X)) constructed in
[LV05]). It also is homotopy abelian when X is Calabi–Yau (see [Kon03a, BK98]
for the complex case), so the versal deformation space of DCoh(X) is a formal
neighbourhood of 0 in the vector space

HH2(DCoh(X)) ∼= HT 2(X).

Deformations of the category ‘coming from deformations of the complex structure’
correspond to H1(TX) ⊂ HT 2(X).

Remark 5.1. Recall that we’re only describing curved deformations of the cate-
gory: we are not claiming that all objects are unobstructed under all such deforma-
tions. Our approach later when actually studying deformations of DCoh(X) will be
to fix a deformation, fix a generating subcategory which happens to remain uncurved
under that deformation, and focus attention on that subcategory. Thus we bypass
the problem of dealing with obstructed objects, albeit in an essentially ad-hoc way.

5.2. Floer homology. Let X be a Calabi–Yau Kähler manifold with complexified
Kähler form ωC = B + iω. Then there is an L∞ algebra CF ∗(X), called the
Hamiltonian Floer cochains on X, whose cohomology is HF ∗(X) ∼= H∗(X; Λ).

The cochain complex (CF ∗(X), `1) was introduced by Floer [Flo89b], and should
be thought of as a semi-infinite Morse complex for a certain ‘action functional’
on the free loop space LX := {γ : S1 → X}. Explicitly, we choose a function
H : S1 ×X → R, and consider the corresponding (multi-valued) action functional
AH on LX, whose differential is given by

dAH(ξ) :=

∫
S1

ω(γ′(t)− VHt
, ξ(t))dt

where γ ∈ LX, ξ ∈ TγLX is identified with a section ξ of γ∗TX by abuse of nota-
tion, and VHt

is the ‘Hamiltonian vector field corresponding to Ht’, characterized
by the property that ω(VHt

,−) = dHt. Critical points of this functional are loops
γ ∈ LX which are time-1 orbits of the vector field VHt

:

γ : S1 → X

γ′(t) = VHt .
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Figure 3. On the left, the domain of a pseudoholomorphic map
defining the L∞ structure on CF ∗(X). We have omitted some
important information from the diagram, which is the ‘starting
point t = 0’ for each of the parametrized orbits γi; by keep-
ing track of this information one can see that the algebraic op-
erations on CF ∗(X) should in fact be controlled by chains on
the framed little discs operad (which contains the L∞ opera-
tions as a sub-operad). On the right, we have illustrated the
domain of a pseudoholomorphic map defining the L∞ homomor-
phism CO : CF ∗(X) 99K CC∗(Fuk(X)). Specifically, we have
shown the part of the Hochschild cochain CO2(γ1, γ2) which sends
p1 ⊗ p2 ⊗ p3 7→ p0.

The Floer cochains are the free Λ-vector space spanned by such orbits:

CF ∗(X) :=
⊕
γ

Λ · γ,

graded by Conley–Zehnder index (we refer to [Sal99] for details).
The L∞ operations `s on CF ∗(X) are constructed analogously to the A∞ oper-

ations in the Fukaya category: the coefficient of γ0 in `s(γ1, . . . , γs) is the count of
(pseudo-)holomorphic maps u : Σ→ X with domain as in Figure 3, asymptotic to
the orbits γi as shown, weighted by qω(u) · e2πiB(u) (compare [Fab13]).

There is an L∞ homomorphism, called the closed–open map

CO : CF ∗(X) 99K CC∗(Fuk(X)),

which is defined by counting (pseudo-)holomorphic maps with domain as in Figure 3
(compare [FOOO10b, Theorem Y]). This is mirror to the map I∗ from the previous
section. We recall that the differential graded Lie algebra of Hochschild cochains
controls the curved deformations of Fuk(X) (or equivalently, DFuk(X)). Therefore,
if CO is a quasi-isomorphism, then the L∞ algebra CF ∗(X) controls the curved
deformations of the Fukaya category by Theorem 2.1. In fact there is a general
criterion for this to be the case:
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Theorem 5.2. (see [Gan16, Theorem 6], and [GPS15, Gan13]) If X is compact
Calabi–Yau and DFuk(X) is homologically smooth, then CO is a quasi-isomorphism.

Remark 5.3. Roughly, a category is said to be homologically smooth if it admits a
categorical ‘resolution of the diagonal’. It is certainly not clear when DFuk(X)
should be homologically smooth: for example, symplectic manifolds such as the
Kodaira–Thurston manifold have very few interesting Lagrangian submanifolds, and
one might expect that they ‘don’t have enough Lagrangians to resolve the diagonal
with’. The most efficient way to check homological smoothness of the Fukaya cat-
egory seems to be via homological mirror symmetry, as we will see in the next
section.

Besides constructing the differential `1 in the L∞ structure on CF ∗(X), Floer
also proved that its cohomology is HF ∗(X) ∼= H∗(X; Λ) [Flo89a] (see also [PSS96]).
Morally, the Floer homology ‘localizes at constant loops’: in other words, the in-
clusion X ↪→ LX ‘induces an isomorphism on cohomology’.

In fact it is not difficult to show, using the philosophy ‘loop rotation acts trivially
on the constant loops’, that the L∞ algebra CF ∗(X) is homotopy abelian (compare
[Fab13, Theorem 5.1]).9 Therefore, when CO is a quasi-isomorphism the versal
deformation space of Fuk(X) is a formal neighbourhood of 0 in the vector space

HH2(DFuk(X)) ∼= H2(X; Λ).

Thus in this situation, all deformations of the Fukaya category come from defor-
mations of the symplectic form.

Remark 5.4. The decomposition

H2(X) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

corresponds, under mirror symmetry of Hodge diamonds combined with Serre du-
ality, to the decomposition

HT 2(X◦) = H0(∧2TX◦)⊕H1(TX◦)⊕H2(OX◦).
Thus we see that deformations of DCoh(X◦) ‘coming from complex deformations
of X◦’ correspond to deformations of DFuk(X) ‘coming from deformations of the
symplectic form that remain Kähler’.

Remark 5.5. One can study which unobstructed objects L become obstructed if we
deform Fuk

(
X,ωC) by deforming

[
ωC] in the direction of η ∈ H2(X; Λ). There is

a hierarchy of obstruction classes [FOOO10b, Theorem C] that must vanish if L is
to remain unobstructed, and the leading one can be identified with η|L ∈ H2(L; Λ).
This reflects the fact that, when we deform ω by adding a small closed 2-form
representing η, we can geometrically deform L so that it remains Lagrangian if and
only if η|L is exact.

5.3. HMS and versality. Let X be a Calabi–Yau Kähler manifold with complex-
ified Kähler form ωC, and X◦ a smooth projective Calabi–Yau variety over Λ.

Definition 5.6. We say that
(
X,ωC) and X◦ are homologically mirror if there is

a quasi-equivalence of Λ-linear A∞ categories

DFuk
(
X,ωC)bc ' DCoh(X◦).

9This rather simple observation is ‘mirror’ to the much deeper Kontsevich formality theorem
[Kon03a].
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Note that X◦ has to be defined over Λ for the definition to make sense: we can
only make sense of the Fukaya category as a Λ-linear category, so HMS can only
identify it with another such. In other words, we can only define the Fukaya category
over certain Λ-points of M̂Käh(X); so we can only make a precise statement of HMS
which identifies it with the derived category of the fibre over the corresponding Λ-
point of M̂cpx(X◦).

If
(
X,ωC) and X◦ are homologically mirror, then DFuk

(
X,ωC) is homologically

smooth because DCoh(X◦) is; so Theorem 5.2 implies that the closed–open map
is a quasi-isomorphism. Therefore, Strategy 1 and the previous sections allow us
to identify a formal neighbourhood of 0 ∈ H2(X; Λ) with a formal neighbourhood
of 0 ∈ HT 2(X◦), in a way that matches up the corresponding deformations of
DFuk(X,ωC) and DCoh(X◦).

Now let us summarize some unsatisfactory aspects of this implementation of
Strategy 1.

• We had hoped that versality would allow us to conclude something about
mirror symmetry for complexified Kähler forms nearby ωC. But the only Λ-
point in a formal neighbourhood of 0 ∈ H2(X; Λ) is 0 itself, so the deformed
Fukaya category doesn’t ‘know about’ any Λ-linear categories other than the
original DFuk(X,ωC). In particular, versality does not allow us to upgrade
to ‘HMS for complexified Kähler forms close to ωC’.
• It’s not clear that the identification of versal deformation spaces matches

up the deformations of complex structure with the Kähler deformations:
i.e., it’s not clear how to define the Hodge decomposition of Remark 5.4 in
categorical terms.
• The deformed categories might have too few unobstructed objects to be

‘interesting’: e.g., they might have no unobstructed objects at all, or they
might have too few unobstructed objects to be homologically smooth.

Let us finish by expanding somewhat on the first point. The universal family of
curved deformations of DFuk(X,ωC) over Rv = Λ

[[
H2(X; Λ)

]]
is closely related to

the ‘bulk-deformed Fukaya category’ [FOOO10b], which is defined over S = Λ⊗Λ0

Λ0

[[
H2(X; Λ)

]]
. Indeed one can show that the universal family is the pullback of

the bulk-deformed Fukaya category via the map induced by the inclusion S ↪→ Rv.
We observe that Spec(S) is a larger analytic domain than Spec(Rv): it has Λ-

points corresponding to all p ∈ H2(X; Λ>0), none of which lift to Spec(Rv) except
for 0. Thus the bulk-deformed Fukaya category can be specialized to such non-
trivial Λ-points, in contrast to the universal family of curved deformations. The
fibre over such a point corresponds to the Fukaya category equipped with a family
of Kähler forms parametrized by q ∈ Λ, which is equal to ωC

q plus terms of positive

valuation. However note that we can’t get from ωC
q to a different ηCq by adding

elements with positive valuation, because log(q) /∈ Λ>0. Therefore, even the bulk-
deformed Fukaya category doesn’t ‘know about’ the Fukaya category for nearby
Kähler forms.

One could hope to extend the domain of definition of the Fukaya category to
an even larger analytic domain than Spec(S) which does ‘know about’ the Fukaya
category for nearby Kähler forms, using a variation of the ‘Fukaya trick’ [Fuk10].
However this does not appear straightforward.

Nevertheless, supposing one could extend the parameter space of the Fukaya
category in this way, one could furthermore hope to extend the domain over which
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HMS holds using a standard tool in deformation theory known as Artin approxi-
mation [Art68]: this allows one to upgrade a formal solution of a system of analytic
equations to an analytic solution. This can be applied to the system of analytic
equations that must be satisfied by the components of an A∞ functor realizing
homological mirror symmetry. However we note that there are infinitely many
equations involved in the definition of an A∞ functor, whose solutions may have
radii of convergence tending to 0. Furthermore, even if it were possible to construct
an A∞ functor with a finite radius of convergence, the domain of convergence may
still be contained entirely within the locus corresponding to bulk deformations of
the Fukaya category. In this case we would have a proof of HMS for certain bulk-
deformed Fukaya categories, but not for any nearby Kähler forms.

6. Versality at the boundary

6.1. Versal deformation space at the large complex structure limit. Let’s
consider the maximally degenerate quartic surface {z1z2z3z4 = 0} ⊂ CP3, which
is isomorphic to four copies of CP2 glued along six lines. We will study its versal
deformation space Mv.

One way to deform this variety is to deform the defining quartic equation: this
part of the versal deformation space is called the smoothing locus Msm ⊂ Mv.
There also exist locally trivial deformations, which arise by deforming the gluing
maps between the six lines along which the four planes are glued: this part of the
versal deformation space is called the regluing locus Mrg ⊂Mv.

The existence of these two parts of the versal deformation space is a general
phenomenon. In fact, the versal deformation space of a ‘d-semistable’ maximally
degenerate K3 surface is precisely Mv = Msm ∪Mrg, and these two irreducible
components meet transversely [Fri83, Theorem 5.10].10 In particular we cannot
expect a versality criterion as simple as Theorem 2.5 in this case.

We are really only interested in the smoothing locus Msm (unless we want to
study HMS for degenerate varieties). So we would like to modify our deformation
problem so that the versal deformation space consists only of the smoothing locus.
One way to do this is provided by [KN94], which shows that the logarithmic versal
deformation space of a d-semistable K3 surface is smooth (the regluings do not
preserve the log structure so they are ruled out). This gives us a chance to im-
plement Strategy 1, if we only knew what logarithmic deformations corresponded
to on the Fukaya category. Unfortunately I have no idea, so instead we will use a
different modification of the deformation problem, motivated by the other side of
mirror symmetry.

6.2. Versal deformation space at the large volume limit. We study the versal
deformation space at the large volume limit, following Seidel [Sei02, Sei14].

Let X be a Calabi–Yau Kähler manifold and D ⊂ X be a simple normal-crossings
divisor supporting an effective ample divisor as in §4.1.2. We have seen in §4.2.3
that the relative Fukaya category Fuk(X,D) is a deformation of the affine Fukaya

10We should clarify that the maximally degenerate quartic surface we have used as an example
is not d-semistable, but becomes so after blowing up an appropriate collection of 24 singular points

[Fri83, Remark 1.14]
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category Fuk(X \ D) over RX,D. Thus we would like to study the curved defor-
mations of Fuk(X \D), which are controlled by CC∗(Fuk(X \D)). We denote the
versal deformation space of this category by Mv again.

The relative Fukaya category gives one deformation, classified by a map M̂Käh(X,D)→
Mv. One can obtain others by applying birational modifications to X along D to
obtain a new compactification (X ′, D′) with X ′ \D′ = X \D: these all fit together
into an extended relative Kähler moduli space, which we call the compactification
locus Mcomp (see [CK99, §6.2.2] for a discussion). So we have a mapMcomp →Mv,

through which all of the classifying maps from M̂Käh(X ′, D′) factor.
However there’s another way to deform the category: by deforming the exact

symplectic form ω|X\D to a non-exact one, by analogy with §5.2. Such deformations

are parametrized by a formal neighbourhood of 0 ∈ H2(X \D), which we call the
non-exact locus Mne. I expect that the compactification locus is mirror to the
smoothing locus, and the non-exact locus is mirror to the regluing locus (this was
initially suggested to me by Helge Ruddat).

Analogously to §5.2, there exists an L∞ algebra SC∗(X \D) which one expects
should come with an L∞ morphism

(6.1) CO : SC∗(X \D) 99K CC∗(Fuk(X \D))

(see [Fab13]), which can be hoped to be a quasi-isomorphism by analogy with
work of Ganatra [Gan13]. The cochain complex (SC∗(X \D), `1) was introduced
in [FH94] and its cohomology is called the symplectic cohomology SH∗(X \ D)
(references include [Vit99, Oan04, Sei11]).

Once again, SH∗(X \ D) is the semi-infinite Morse cohomology of an action
functional AH on the free loop space of X. However because X \D is non-compact,
there are various growth conditions one can put on the Hamiltonian Ht at infinity,
giving rise to different versions of symplectic cohomology. The standard condition,
and the one for which (6.1) turns out to be a quasi-isomorphism in examples, is that
Ht should ‘go to +∞ sufficiently rapidly near D’. As a consequence, SH∗(X\D) no
longer ‘localizes at constant loops’, because there will exist orbits γ of XHt

linking
D. In fact there is a short exact sequence of cochain complexes

(6.2) 0→ C∗(X \D)→ SC∗(X \D)→ SC∗+(X \D)→ 0,

where C∗(X \ D) corresponds to the ‘constant loops’ and SC∗+(X \ D) to loops
‘linking D’ [BEE12].

Let us assume that the closed–open map is an isomorphism, so HH2(Fuk(X \
D)) ∼= SH2(X \D). The short exact sequence (6.2) induces a long exact sequence

(6.3) . . .→ H2(X \D)→ SH2(X \D)→ SH2
+(X \D)→ . . . .

We have seen that the versal deformation space sits inside a formal neighbourhood
of 0 ∈ HH2(Fuk(X\D)) ∼= SH2(X\D), so its tangent space is TMv

∼= SH2(X\D).
This allows us to see the two components of our deformation space we mentioned

above. The derivative of the map Mne → Mv is identified with the inclusion
H2(X \ D) ↪→ SH2(X \ D). The derivative of the map Mcomp → Mv can be
composed with a map from the long exact sequence (6.3) to give

(6.4) TMcomp → TMv = SH2(X \D)→ SH2
+(X \D),

which can be interpreted as follows. Firstly, under our assumption that X is Calabi–
Yau and some mild hypotheses on D, SH2

+(X \ D) has one generator for each
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γp

Dp
Figure 4. Holomorphic maps (in grey) with an asymptotic con-
dition along the orbit γp linking Dp, correspond to holomorphic
maps with an intersection point with Dp.

irreducible component of D, corresponding to an orbit γp linking that component
(compare, e.g., [GP16]). Deforming the relative Kähler class in the direction of
PD(Dp) corresponds, under the map (6.4), to moving in the direction of γp (Figure
4 is supposed to suggest why this is true).

Thus we see that the tangent spaces ofMcomp andMne span the tangent space
of Mv at the origin. It could still be the case that the versal deformation space is
smooth, but we can give a heuristic argument indicating that this is not the case
in general. Namely, if we deform alongMne to a Kähler form η whose cohomology
class [η] ∈ H2(X \ D) does not lie in the image of the restriction map H2(X) →
H2(X \D), then we can no longer deform in the compactification direction: so the
dimension of the tangent space drops when we move in this direction.

6.3. Cutting down the deformations. We have seen that our respective versal
deformation spaces have additional components (the regluing and non-exact loci,
respectively), which are an obstruction to applying Theorem 3.3. One solution to
this problem would be to prove a better versality theorem; another would be to
eliminate the extra components by modifying our deformation problem. No doubt
there’s more than one way to do this, but we will choose to do it by imposing an
additional equivariance constraint (as was done in [Sei14], although our equivariance
will be with respect to anti-symplectic rather than symplectic symmetries).

Namely, we suppose that (X,D) is equipped with a real structure. This induces
an anti-holomorphic involution ι : X → X, preserving D as a set. It acts on
cohomology by

ι∗ : H∗(X)→ H∗(X), sending

PD(Dp) 7→ −PD(Dp)

for any component Dp of D (because it reverses orientation on the normal bundle
to Dp). In particular it acts on the cohomology class of any relative Kähler form
[ωC; θC] by −1.

Let us suppose that ι∗ : H2(X \D)→ H2(X \D) acts by the identity. Then it
acts by +1 on the tangent space to Mne, but −1 on the tangent space to Mcomp.
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Therefore if we restrict to ‘ι-anti-invariant’ deformations in the appropriate sense,
the versal deformation space will consist only of the desired component Mcomp.

Example 6.1. Let X ⊂ V be a hypersurface in a toric variety as in Batyrev’s
mirror construction, and let D ⊂ X be its transverse intersection with the toric
boundary divisor ∂V . If the defining equation of X is real, then the real structure
on (V, ∂V ) descends to one on (X,D). Complex conjugation acts by the identity
on H2(V \ ∂V ), so if the restriction map

H2(V \ ∂V )→ H2(X \D)

is surjective, then it also acts by the identity on H2(X \ D). This is the case as
soon as X has dimension ≥ 3, by the affine Lefschetz hyperplane theorem [Dim92,
Theorem 6.5].

Whereas a holomorphic involution induces an involution on the Fukaya category
(an endofunctor squaring to the identity), an anti-holomorphic involution ι induces
a functor from the Fukaya category to its opposite category:

(6.5) D : Fuk(X \D)
∼−→ Fuk(X \D)op,

satisfying Dop ◦D = id. This observation is due to [CBMS10], where such functors
are called dualities. The name is motivated by the other side of mirror symmetry,
where a natural duality is the functor

(6.6) RHom(−,OX◦) : DCoh(X◦)
∼−→ DCoh(X◦)op

The duality D manifestly extends to the relative Fukaya category, so we modify
our deformation problem to consider only such deformations. This modified defor-
mation problem is controlled by a sub-dg Lie algebra of CC∗(Fuk(X \D)), which
is the invariant subspace of the involution induced by the functor (6.5).

With this modification, there is a chance that the versal deformation space at
the large volume limit point is realized by the compactification locus. Therefore
we have a chance to implement Strategy 1, which is what we will do in the next
section.

Remark 6.2. Observe that any relative Kähler form has [ωC] =
∑
k λk ·PD(Dk) ∈

H1,1(X). Comparing with Remark 5.4, we notice another advantage of our current
setup: by moving within the compactification locus we avoid non-Kähler deforma-
tions of the symplectic form, which correspond to non-commutative deformations
of the mirror.

7. Proving mirror symmetry

In this section we summarize the implementation of Strategy 1 suggested by the
arguments of §6.

7.1. Setup. Let X be Calabi–Yau Kähler, D = ∪p∈PDp ⊂ X simple normal-
crossings such that (X,D) admits a real structure, and (ωC, θC) a complexified
relative Kähler form. Recall that we denote

M̂Käh(X,D) := Spec(RX,D),

and the complexified relative Kähler form determines a Λ-point p of M̂Käh(X,D).
Let X◦ be a scheme over R := C [[r1, . . . , rk]]. We denote

M̂cpx(X◦) := Spec(R),
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and let X◦p denote the fibre of X◦ over a Λ-point p of M̂cpx(X◦).
Suppose that we are trying to prove a version of HMS of the form:

Conjecture 7.1. There exists a map Ψ : M̂Käh(X,D) → M̂cpx(X◦) such that
there is a quasi-equivalence

DCoh(X◦Ψ(p)) ' DFuk
(
X,ωC)bc .

Example 7.2. Batyrev mirror symmetry fits into this setup (Example 1.5). In this
case X is a hypersurface in a toric variety V , and D is the intersection with the
toric boundary. The components of D can be indexed by a certain set Ξ of boundary
lattice points of the reflexive polytope ∆◦, so RX,D is a power series ring in certain
monomials in variables {rk}k∈Ξ (more precisely this is the ‘ambient’ coordinate
ring, compare [SS17a]). On the mirror, the lattice points k ∈ ∆◦ index a monomial
basis {χk} of the anticanonical bundle of the mirror toric variety V ◦, so we can
take X◦ to be the family of hypersurfaces in V ◦ defined by

χ0 =
∑
k∈Ξ

rk · χk.

It is defined over R := C [[rk]]k∈Ξ.

7.2. Applying versality at the boundary. Let A ⊂ Fuk(X,D) be a subcate-
gory of the relative Fukaya category, preserved by the duality D : Fuk(X,D) →
Fuk(X,D)op induced by the real structure (so A has a duality).

Let B ⊂ DCoh(X◦) be a subcategory of an appropriate DG enhancement for the
derived category, preserved by the duality (6.6).

We now have an RX,D-linear A∞ category A, and an R-linear DG category B,
both equipped with dualities. We denote the respective quotients by the maximal
ideals by A0 and B0. We will suppose that we have ‘proved HMS at the limit
points’: there is an A∞ isomorphism B0 99K A0 which preserves dualities.11

Secondly we will assume that ‘B is versal among duality-preserving deforma-
tions’: if g ⊂ CC∗(B0) is the invariant subspace of the involution induced by the
duality, then the Kodaira–Spencer map associated to the deformation B

(7.1) KSB : (m/m2)∗ → H1(g)

is an isomorphism.
Under these assumptions, we have:

Theorem 7.3. There exists a map Ψ∗ : R→ RX,D together with a quasi-embedding
of A∞ categories

Ψ∗B ↪→ Abc.

Proof. By Theorem 3.3 (modified to take the dualities into account), we have a
quasi-embedding

Ψ∗Bbc ↪→ Abc.

Since Ψ∗B is uncurved, it is a full subcategory of Ψ∗Bbc (corresponding to equipping
each object with the zero bounding cochain). Thus we have an embedding Ψ∗B ↪→
Abc as required. �

11To the reader who smells a rat already, we’ll come clean in Remarks 7.4 and 7.5.
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Remark 7.4. The hypothesis that A0 and B0 are A∞ isomorphic (rather than
quasi-equivalent), which is imposed by Theorem 3.3 (see Remark 3.4), will never,
ever be satisfied. The reason is that morphism spaces in the Fukaya category can
be chosen to be finite-dimensional on the cochain level, whereas those in the de-
rived category are typically infinite-dimensional (although they may have finite-
dimensional cohomology). One can fix this by passing to quasi-isomorphic models
for A and B, although one needs to be a little careful about what one means since A∞
quasi-isomorphisms over a ring like R need not be invertible up to homotopy, and
minimal models need not exist (in contrast to the case over a field). In examples,
one can check the existence of appropriate minimal models using ad-hoc methods
[She15b, SS17a].

Remark 7.5. Identifying A0 with B0 is only part of ‘proving HMS at the limit
points’. However it’s sufficient for our purposes (compare §8).

7.3. Automatic generation. The map Ψ∗ provided by Theorem 7.3 can be in-
terpreted as the pullback of functions via the mirror map

Ψ : M̂Käh(X,D)→ M̂cpx(X◦).

Taking fibres, we obtain a quasi-embedding BΨ(p) ↪→ Abc
p . This allows us to identify

quasi-embeddings

DCoh(X◦Ψ(p)) DFuk
(
X,ωC)bc

BΨ(p)

?�

OO

� � ∼ // Abc
p .
?�

OO

We now seek to show that these subcategories (split-)generate, so that the iden-
tification extends to the categories upstairs (see [Sei08a, §4]). Abouzaid gives an
extremely useful criterion for a subcategory to split-generate the Fukaya category
[Abo10], and there are results showing that his criterion is automatically satisfied
under certain conditions, which dramatically reduce the amount of work required
[PS15, Gan16]:

Theorem 7.6. (Ganatra [Gan16]) If BΨ(p) split-generates DCoh(X◦Ψ(p)), then its

image split-generates DFuk
(
X,ωC)bc. In particular we have a quasi-equivalence

DCoh
(
X◦Ψ(p)

)
' DFuk

(
X,ωC)bc ,

so
(
X,ωC) and X◦Ψ(p) are homologically mirror.

In the case of Batyrev mirrors (Example 7.2) we might, for example, choose B to
be the full subcategory of derived restrictions of some split-generators of DCoh(V ◦).
These split-generate whenever X◦Ψ(p) is smooth (see [Sei14, Lemma 5.4]), so in order

to apply Theorem 7.6 in this case it would suffice for us to check this smoothness.
In order to determine something about the smoothness of X◦Ψ(p), we need to know

something about Ψ: for example, if Ψ sent all of M̂Käh(X,D) to the large volume
limit point then X◦Ψ(p) would never be smooth so we would never be able to apply

Theorem 7.6.
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We can gain some control over Ψ by making a versality-type assumption on the
Fukaya category: a natural such assumption is that all of the maps

(7.2) SH2
+(X \D)

CO // H1(g)
OO
∼=
��(

m/m2
)∗ KSB // H1(g)

are isomorphisms. Although this rules out pathologies like Ψ being constant, in
general it is still not strong enough to allow us to guarantee that X◦Ψ(p) is smooth,

as the following example shows.

Example 7.7. The strategy we describe has been implemented in [SS17a] to prove
HMS (in the form of Conjecture 7.1) for Batyrev mirrors in the case that ∆ is a
simplex (also known as Greene–Plesser mirrors [GP90]), as well as certain gen-
eralizations within the Batyrev–Borisov framework [BB97]. It turned out that, in
order to get sufficient control over Ψ to establish smoothness of X◦Ψ(p), Theorem

7.3 was not quite strong enough. After establishing that the maps in (7.2) were
all isomorphisms, we had to apply the more elaborate versality theorem proved in
[She17], which takes advantage of certain extra structures present in this case (the
algebraic torus action on the toric variety V ◦ containing X◦, which is mirror to the
‘anchored Lagrangian Floer theory’ in (X,D) [FOOO10a], some convenient facts
about the shape of the Kähler cone of the toric variety V containing X, and a cer-
tain finite symmetry group of (X,D)). This gave us sufficient information about the
valuations of Ψ∗(rk) to establish smoothness of X◦Ψ(p) using the mirror relationship

between the Kähler cone of X and the secondary fan associated to Ξ (see [CK99,
§6] for this relationship, and [GKZ94, OP91, DFS07] for background).

Remark 7.8. Example 7.7 explains one reason why the more elaborate versality
criterion of [She17] is necessary: it gives us important extra control over the mirror
map Ψ. Another reason is that it applies even if the complex moduli space is not
smooth at the large complex structure limit point. This smoothness was built into
our assumptions, since we assumed R was a formal power series ring, but in general
the large complex structure limit point can be more complicated.

Remark 7.9. Although we assume X to be Calabi–Yau in this paper, HMS also
makes sense if X is Fano [Kon98, Sei01b, Sei01a] or of general type [KKOY10,
Sei11]. The versality criterion of [She17] assumes that −KX is nef, and in partic-
ular can be applied in Calabi–Yau or Fano situations.

7.4. Closed-string mirror symmetry. It remains to make the connection back
to closed-string mirror symmetry. Closed-string mirror symmetry can be formu-
lated in this setting as an isomorphism of variations of Hodge structures V A(X) ∼=
Ψ∗V B(X◦), where Ψ : M̂Käh(X,D) → M̂cpx(X◦) is the mirror map. One of the
features of closed-string mirror symmetry is that the variations of Hodge structures
determine ‘canonical’ or ‘flat’ coordinates on the respective moduli spaces: roughly,
this is something like an affine structure (the procedure for determining these co-
ordinates is due to Saito [Sai83], see [CK99] for an explanation in the setting of
mirror symmetry). If closed-string mirror symmetry holds, it follows that Ψ must
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match up these canonical coordinates, and this determines Ψ uniquely up to a lin-
ear change of variables. This linear change of variables is fixed by knowing the
derivative of Ψ at the origin.

In the previous sections we described a set of hypotheses (including ‘HMS holds
at the large volume/large complex structure limit’) and how they should imply
HMS in the form of Conjecture 7.1. While it is not the case that this version of
HMS implies closed-string mirror symmetry in any useful sense (at least as far as
I understand), in this section we explain how the same set of hypotheses leads to
a proof of closed-string mirror symmetry involving the same mirror map Ψ. As
discussed above, this determines Ψ up to a linear change of variables which is fixed
by knowing the derivative of Ψ at the origin. This derivative corresponds to the
composition of isomorphisms (7.2), so if we can compute that then Ψ is determined
uniquely.

To summarize: versality gives us a mirror map Ψ whose derivative at the origin
is determined by (7.2), but does not give any information about its higher-order
derivatives. However, these higher-order derivatives turn out to be determined
uniquely by Hodge theory.

The basic idea is that, associated to a family of A∞ categories A overM, there is
a variation of Hodge structures HP•(A) overM called the periodic cyclic homology
of A (the connection was constructed by Getzler [Get93]; see [KKP08], [Cos09] or
[She15a] for more precise statements). It is convenient for us to work exclusively
with variations of Hodge structures over the formal punctured disc Spec(C ((q))).

Let p be a C ((q))-point of M̂cpx(X◦) such that X◦p is smooth. Then there is an
isomorphism of bundles over the formal punctured disc

(7.3) HP•(DCoh(X◦p )) ∼= V B(X◦p )

which is conjectured to be an isomorphism of variations of Hodge structures (see
[GPS15, Conjecture 1.14]; as explained there, we believe this is ‘standard’ in
the right community but the precise statement has not appeared in the litera-
ture). Under our previous assumption that Bp split-generates DCoh(X◦p ), we have
HP•(DCoh(X◦p )) ∼= HP•(Bp) by Morita invariance of periodic cyclic homology.

On the mirror, let us suppose that we have an integral complexified relative
Kähler class: i.e., [ωC; θC] ∈ H2(X,X \ D;R ⊕ iZ). Then we can define a corre-

sponding C ((q))-point p of M̂Käh(X,D) by (4.1), and there is a homomorphism of
variations of Hodge structures called the cyclic open–closed map

(7.4) ÕC : HP•(Fuk(X,D)bcp )→ V A(X)p

(this was announced in [GPS15], but we believe it to be implicit in [Cos07]; the
morphism of bundles will be constructed in [Gan], and it will be proved to be a mor-
phism of variations of Hodge structures in [GPS]). Under our previous assumption

that BΨ(p) split-generates DCoh(X◦Ψ(p)), the restriction of ÕC to the subcategory

Abc
p is an isomorphism

ÕC : HP•(A
bc
p )

∼−→ V A(X)p

(this is a consequence of [Gan16] combined with [GPS15, Theorem 5.2]).
As a consequence, the embedding Ψ∗B ⊂ Abc determines isomorphisms V A(X)p ∼=

V B(X◦)Ψ(p) for all such p. Thus we have proved closed-string mirror symmetry over
certain formal punctured discs in the moduli space. This is not quite the same as a
complete proof of closed-string mirror symmetry, but it serves the same purpose: in
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particular it determines the mirror map uniquely (see [She17, Appendix C] for pre-
cise statements), and it also allows us to extract all of the enumerative information
that we want from closed-string mirror symmetry at genus zero.

Remark 7.10. It is expected or hoped that the higher-genus versions of closed-
string mirror symmetry can also be recovered from HMS: see [Kon03b, Cos07, KS08,
Cos09, CT17].

Remark 7.11. Note that we did not need the category Fuk
(
X,ωC) to prove closed-

string mirror symmetry: the relative Fukaya category Fuk(X,D) sufficed.

8. The wrapped Fukaya category

8.1. HMS at the limit points. In our application of versality in §7, our first step
when trying to identify the subcategories A ⊂ Fuk(X,D) and B ⊂ DCoh(X◦) was
to identify them ‘at the limit’: A0 ' B0. It might be tempting to conjecture that
one can go beyond these subcategories, and identify

DFuk(X \D) ' DCoh(X◦0 ).

However these categories can’t be quasi-equivalent: as soon as X◦0 is singular,
there exist objects (e.g., a skyscraper sheaf at a singular point) whose endomor-
phism algebra in the derived category is infinite-dimensional. Such a sheaf can’t
be mirror to a compact Lagrangian L ⊂ X \D, since a generic perturbation of L
off of itself will intersect it in finitely many points so hom∗Fuk(X\D)(L,L) is always

finite-dimensional.
Instead, one expects that HMS at the large volume/large complex structure limit

should give quasi-equivalences

(8.1) DWFuk(X \D) oo
∼ //

⋃
DCoh(X◦0 )

⋃
DFuk(X \D) oo

∼ // Perf(X◦0 ).

Here, Perf(X◦0 ) ⊂ DCoh(X◦0 ) is the subcategory generated by locally-free coher-
ent sheaves (it has finite-dimensional morphism spaces). The other category we’ve
introduced is the wrapped Fukaya category WFuk(X \D) [AS10a]. This is a cate-
gory which admits possibly non-compact Lagrangians L ⊂ X \D (which however
are required to go to infinity in a prescribed way), and whose morphism spaces
hom∗WFuk(X\D)(K,L) count intersection points between a K and a ‘wrapped’ ver-

sion of L (the ‘wrapping’ is by the same Hamiltonian flow whose orbits are the gen-
erators of symplectic cohomology). It can in particular have infinite-dimensional
morphism spaces. See [Aur14] for an expository account of the wrapped Fukaya
category.

One nice thing about the wrapped Fukaya category is that it always has ‘enough
objects’ when X \ D is an affine variety: it is generated by the ascending mani-
folds of the middle-dimensional critical points of a plurisubharmonic Morse function
[CRGG17] (see also [BEE12, Gan13]). In contrast, there is no such natural source
of compact Lagrangians in X \ D, so we have no guarantee that DFuk(X \ D) is
well-behaved.

The subcategory Perf(X◦0 ) ⊂ DCoh(X◦0 ) can be characterized as the subcategory
of proper objects K, i.e., those such that hom∗DCoh(X◦0 )(K,L) has finite-dimensional
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cohomology for all L [Bal11, Lemma 3.11]. Any object of the subcategory Fuk(X \
D) ⊂WFuk(X\D) also has this property, because a compact Lagrangian K ⊂ X\D
will only intersect L in finitely many points, even if L is non-compact and gets
wrapped (this property persists under the formal enlargement procedure denoted
‘D’). However there may exist proper objects which do not come from compact
Lagrangians, so (8.1) will have a better chance of being true if we replace the
lower left-hand corner by the category DWFuk(X \D)prop of proper objects of the
wrapped Fukaya category.

8.2. Computing the wrapped category. The wrapped Fukaya category is ex-
pected to exhibit ‘sheafy’ behaviour. A result in this direction was proved in
[AS10a], which (besides giving the original definition of the wrapped Fukaya cate-
gory) established the existence of restriction maps to certain subdomains. A conjec-
ture in a rather different direction was made by Kontsevich [Kon09]. He considered
the ‘skeleton’ of X \ D, which is the limit of the reverse Liouville flow: it is an
isotropic cell complex which is a deformation retract Λ ⊂ X \D [Bir01]. His con-
jecture said that the wrapped Fukaya category should be the the global sections of
some cosheaf of categories on this skeleton, defined in terms of its local geometry.

This idea was developed by several authors [Abo11, STZ14, PS16, Syl16]. Nadler
in particular has made it more precise, by describing a sufficiently generic class of
skeleta to work with (the ‘arboreal’ ones), and formulating Kontsevich’s conjecture
as a quasi-equivalence

(8.2) µShΛ(X \D)w ' DWFuk(X \D)

where the left-hand side is the category of ‘wrapped microlocal sheaves’ supported
along such a skeleton Λ [Nad14, Nad17a, Nad17b, Nad15]. It has been announced in
[GS17] that this equivalence will be established in work-in-preparation of Ganatra–
Pardon–Shende, building on the partial results in [GPS17].

The nice thing about wrapped microlocal sheaves is that they are computable.
In contrast, direct computation of the wrapped Fukaya category requires us to
enumerate pseudoholomorphic discs, and there’s no systematic way to do that (we
made the point in Remark 1.18 that versality ideas reduce us to a finite number of
such enumerations, but we still have to do them somehow!). Thus it may be easier
to prove

(8.3) µShΛ(X \D)w ' DCoh(X◦0 ),

which implies HMS at the large volume limit, in the sense of the top line of (8.1), if
(8.2) holds. This has been the approach taken in [Nad16b, Nad16a, Nad17a, GS17],
where versions of the HMS equivalence (8.3) have been proved in various cases.

8.3. Deforming the wrapped category. Since the wrapped Fukaya category is
so much better-behaved and more computable than the compact Fukaya category
Fuk(X \D), it’s tempting to try to incorporate it into the strategy outlined in §7.
The problem is that it’s not obvious what the analogue of Fuk(X,D) should be.
Whereas it’s easy to deform Fuk(X \ D) by counting holomorphic discs passing
through D, it’s not immediately clear how to deal with discs passing through D
but having boundary on objects of WFuk(X \ D), which may be non-compact
Lagrangians that approach D in a complicated way.

There is a formal solution to this problem, building on ideas of [Sei02, Fab14]:
in work-in-preparation with Borman [BSb, BSa], we construct a Maurer–Cartan
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element in the L∞ algebra SC∗(X \D) (under rather restrictive hypotheses on D
however: we require each irreducible component to be ample). The pushforward of
this Maurer–Cartan element via the closed–open map

CO : SC∗(X \D) 99K CC∗(Fuk(X \D))

should be gauge equivalent to the Maurer–Cartan element corresponding to the
deformation Fuk(X,D) of Fuk(X \D). The closed–open map should extend to an
L∞ homomorphism

CO : SC∗(X \D) 99K CC∗(DWFuk(X \D))

(the leading-order term is constructed in [Gan13]). It follows that we can define
a curved A∞ category by deforming the wrapped category by the image of the
Maurer–Cartan element under this morphism. Passing to bounding cochains, then
taking the fibre over the appropriate Λ-point p, we obtain a Λ-linear A∞ category
which we denote by DWFuk(X,D)bcp .

This leads us to the following idea: perhaps there is a ‘better’ Fukaya category
˜Fuk
(
X,ωC), such that:

• DFuk
(
X,ωC)bc ⊂ ˜Fuk

(
X,ωC) is a full subcategory;

• For appropriate divisorsD ⊂ X, the category of proper objects of DWFuk(X,D)bcp
embeds into ˜Fuk

(
X,ωC).

It’s not clear exactly how to construct such a category – it would likely involve
incorporating additional objects supported on singular Lagrangians (e.g., skeleta
of divisor complements).12 Whatever the construction, it would certainly have a

payoff: by analogy with our previous discussion, ˜Fuk would have a better chance
of ‘having enough objects to be well-behaved’; and the large volume/large complex
structure limit HMS equivalences described in §8.2 could be combined with the ver-
sality techniques of §7 to prove mirror symmetry for compact Calabi–Yau varieties
in the form

˜Fuk
(
X,ωC) ' DCoh

(
X◦Ψ(p)

)
.

For example, one could hope to prove HMS for many Batyrev mirrors via this
approach, using the results of [GS17].

Remark 8.1. We suggest that DFuk
(
X,ωC)bc ⊂ ˜Fuk

(
X,ωC) would be a useful

condition because it would allow us to address questions about symplectic topology
of (X,ω) (for example, ruling out the existence of closed Lagrangian submanifolds
with a given topology à la [AS10b]) without ever having to construct or compute
with a non-trivial closed Lagrangian in X.

Remark 8.2. If what one wants is to prove closed-string mirror symmetry, then
in light of Remark 7.11 it is not necessary to construct the category ˜Fuk: instead,
one would need to construct the cyclic open–closed map

ÕC : HP•
(
DWFuk(X,D)bc

)
→ V A(X)

and show it is a morphism of variations of Hodge structures. This is a much more
tractable question, and in fact Ganatra has constructed the analogue of this map in
the absence of the deformation by the Maurer–Cartan element [Gan].

12Of course the idea to include singular Lagrangians in the Fukaya category is of interest in
other contexts, for example in family Floer theory [Fuk02a].
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