

Aalto University
School of Science
Master’s Programme in Information Networks

Kaisa Halmetoja

Designing a tool for scalable
customization of marketplace
transaction processes

Master’s Thesis
Espoo, November 24, 2019

Supervisor: Marko Nieminen, Professor
Thesis advisor: Juho Makkonen, M. Sc. (Tech.)

Aalto University
School of Science ABSTRACT OF
Master’s Programme in Information Networks MASTER’S THESIS

Author : Kaisa Halmetoja

Title of the thesis:
Designing a tool for scalable customization of marketplace transaction processes

Date : 24. November 2019 Number of pages: vi + 91

Major: User-Centered Design

Supervisor : Professor Marko Nieminen

Thesis advisors : Juho Makkonen, M. Sc. (Tech.)

The marketplace transaction process defines in which ways the users can create value at the
marketplace. Being able to customize the process efficiently is essential for the success of
the marketplace business. To be useful, the tool for customizing the transaction processes
must correspond to the needs of the marketplace operators and developers. These needs
were researched and categorized by using job stories. Additionally, users’ instinctive ways
of visualizing their own processes was studied.

Deriving from the user research an incremental design for customizing the transaction
processes was created. A listing of marketplace transaction processes and their details, and a
graphical presentation of a selected process and its details was created to inform the users of
their processes, supported by documentation. A command line tool was designed to enable
users to observe and customize their transaction processes. A visual tool was designed to
enable the users to choose their first transaction process and its functionalities.

Analytical evaluation of the designs revealed that informing the users about their process
details decreased the number of support tickets requesting information about transaction
processes by two thirds. Offering the users a way to choose their initial transaction process
was able to meet 66% of users’ initial requirements from the process. Together with the
command line tool, these two tools offer users the possibility to get all their transaction
process-related needs met.

Keywords : User-centered design, transaction process,
 marketplace, job stories, user research

Publishing language:
English

ii

Aalto Yliopisto
Perustieteiden korkeakoulu DIPLOMITYÖN
Informaatioverkostojen maisteriohjelma TIIVISTELMÄ

Tekijä: Kaisa Halmetoja

Työn nimi:
Markkinapaikan transaktioprosessien muokkaukseen sopivan skaalautuvan työkalun
suunnittelu

Päiväys: 24. marraskuuta 2019 Sivumäärä: vi + 91

Pääaine: Käyttäjäkeskeinen suunnittelu

Valvoja : Professori Marko Nieminen

Ohjaaja : Diplomi-insinööri Juho Makkonen

Markkinapaikan transaktioprosessi määrittelee ne tavat, jolla asiakkaat voivat luoda
keskenään arvoa markkinapaikalla. Tämän prosessin sujuva muokkaaminen on
markkinapaikan valvojalle tämän liiketoiminnan onnistumisen kannalta oleellista. Jotta
transaktioprosessin muokkaukseen sopiva työkalu olisi käyttäjilleen hyödyllinen, tulee sen
vastata markkinapaikan valvojien ja ohjelmistokehittäjien tarpeita. Näitä tarpeita tutkittiin
ja luokiteltiin käyttötarinoiden avulla. Tämän lisäksi tutkittiin, kuinka käyttäjät itse
visualisoivat prosessinsa.

Tutkimustuloksia hyväksikäyttäen luotiin inkrementaalinen suunnitelma
transaktioprosessien muokkaamiseen. Käyttäjien tiedottamiseen suunniteltiin
dokumentaatio, listaus markkinapaikan prosesseista ja niiden tiedoista, sekä kuvaaja ja
mahdollisuus saada yksitoiskohtasta tietoa valituista prosesseista. Muokkaukseen
suunniteltiin komentorivityökalu, jonka avulla transaktioprosesseja pystyy tarkastelemaan,
muokkamaan ja niiden kelvollisuutta arvioimaan. Ensimmäisen transkatioprosessin
valitsemiseen suunniteltiin visuaalinen työkalu, jolla käyttäjä voi valita ensimmäisen
prosessinsa ja sen ominaisuuksia.

Suunnitelmien analyyttisen arvioinnin mukaan asiakkaiden tiedottaminen heidän
prosesseistaan ja niiden yksityiskohdista vähensi transaktiprosesseihin liittyviä kyselyjä
kolmannekseen. Tarjoamalla asiakkaille mahdollisuus valita heille sopiva ensimmäinen
transaktioprosessi tyydytti 66% tutkitun joukon lähtökohtaisista vaatimuksista.
Komentorivityökalu on työkaluna vaativampi, mutta tarjoaa laajat mahdollisuudet

Avainsanat : Käyttäjäkeskeinen suunnittelu,
 transaktioprosessi, markkinapaikka,
 käyttötarinat, käyttäjätutkimus

Kieli: Englanti

iii

Acknowledgements

ln a diary I had written on the first grade I had predicted my future career:

Mitä minusta tulee isona? Minusta tulee psykoloki, kirjailija tai diblomi-insinööri.

So here I am now, fulfilling one of the three professionally, one in secrecy, and one in the
kitchen.

I’d like to thank my supervisor Marko Nieminen for excellent advice and convincing me not
to panic. I’d like to thank my wonderful colleagues at Sharetribe for showing what is it like to
work with integrity and passion with the firm belief in our ability to change the future.

I’d like to give my parents the warmest thanks for the inspiration and love for self-growth,
books and making things work better. And I’d like to thank Dan, for convincing me that
writing a thesis is not a big deal, making it the reality.

Espoo, November 24th, 2019
Kaisa Halmetoja

iv

Contents

1. Introduction 1

1.1 Background and motivation 1

1.2 The company and the product 2

1.3 Research questions and scope of the study 3

2. Literature review 5

2.1 Designing complexity 5

2.2 Information visualization 8

2.3 Process modeling 10

2.4 Developer experience 13

2.5 Command line interface 14

2.6 Case study: Intercom Chat Bot 17

2.7 Synthesis 18

3. Methodology and research context 2 0

3.1 Design science research 20

3.2 Product and process context 21

3.2.1 Sharetribe customers 21

3.2.2 The transaction process 24

3.2.3 The transaction process terminology and components 28

3.3 Research methodology 30

3.3.1 User interviews 32

3.3.2 Sketching and mental models 33

3.3.3 Jobs-to-Be-Done (JTBD) 34

3.4 Design evaluation 37

4. User research 40

4.1 Target user group 40

v

https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.446babacl0f5
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.o76k8tj7qzc6
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.jrdpvhs479vh
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.n0mw70sa1l27
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.vzrqy4lmku79
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.m8k0qkv8e2k5
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.rgsla4cwh8ov
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.qqjv24vi2r5s
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.a8xzuy2axgqy
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.a8xzuy2axgqy
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.dkd0r66s8yh7
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.dkd0r66s8yh7
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.avgozwbn42za
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.avgozwbn42za
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.yzv3ihhx17sk
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.yzv3ihhx17sk
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.bvllccsmtq33
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.bvllccsmtq33
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.13w8b83oc7id
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.13w8b83oc7id
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.vwacymp0qhyp
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.vwacymp0qhyp
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.hpn61x66mr6x
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.hpn61x66mr6x
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.89bww3lnh061
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.89bww3lnh061
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.jglv9ygodzfj
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.jglv9ygodzfj
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.7z9i64t28192
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.7z9i64t28192
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.lkycf8y24o0d
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.lkycf8y24o0d
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.l6v4l2uz4ad3
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.l6v4l2uz4ad3
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.z2sfo8vwn2qs
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.z2sfo8vwn2qs
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.bw54gr4yzyjt
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.bw54gr4yzyjt
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.8i15lydmu1g2
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.8i15lydmu1g2
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.lmou45d5ytni

4.2 Defining user needs 41

4.2.1 Operators 41

4.2.2 Developers 45

4.3 User sketches 49

4.4 Existing user data 54

5. Design 5 5

5.1 Job stories for design 55

5.2 Versions for iterative building 57

5.2.1 Listing processes, versions, and aliases 57

5.2.2 Graphical representation 58

5.2.3 Editing the EDN in command line interface 63

5.2.4 Choosing the initial transaction process 68

6. Evaluation 71

6.1 Informing customers about their transaction processes 71

6.2 Enabling users to customize their transaction process 0

7. Analysis and discussion 85

8. Conclusions 89

References 92

Appendix A - Interview template for operators 97

Appendix B - Interview template for developers 98

Appendix C - Interview template and assignment for user sketches 99

vi

https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.egn3sbg5u0pi
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.egn3sbg5u0pi
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.r5cqshpzd7vd
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.r5cqshpzd7vd
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.vdrasil1ukfz
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.vdrasil1ukfz
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.kn345bod0ha6
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.l8hew73zn429
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.l8hew73zn429
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.fcg5mwndt2a8
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.fcg5mwndt2a8
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.6ykr3kfhflum
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.6ykr3kfhflum
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.7lry5vy3l2k8
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.7lry5vy3l2k8
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.5gex8htutzwg
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.5gex8htutzwg
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.p1tl0w105rjk
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.p1tl0w105rjk
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.filiq98vm3pb
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.filiq98vm3pb
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.yrr2w85n9uly
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.yrr2w85n9uly
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.5k95dkei0akf
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.5k95dkei0akf
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.l78fpglz851e
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.l78fpglz851e
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.fgtpd1c736zg
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.haj2x89biwqw
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.haj2x89biwqw
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.gktb05x5stdv
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.auo1t2lnejwu
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.auo1t2lnejwu
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.m5w8mlbghozg
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.h4kndd4w2mqj
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.h4kndd4w2mqj
https://docs.google.com/document/d/1vIwk1v8RfFZ6hp5qpjjjxPX7iKqD0LaM0xJjvgbdWpA/edit#heading=h.wa7s5xaj75z1

1

1.Introduction

1.1 Background and motivation

Sharing economy is a term used for a new method of exchanging and trading goods and
services from peer to peer through online marketplace platforms, bypassing big
corporations that traditionally acted as a middleman (Hamari, Sjöklint & Ukkonen, 2016).
The emergence of digital economy, particularly online marketplaces, has given space for
this new form of economy (Wang & Zhang, 2012). The sharing economy enables
consumers to become producers and micro-entrepreneurs with the aid of digital
technologies (Basselier, Lagenus & Walravens, 2018). The field has a wide range of
names, from collaborative economy to access economy and from peer to peer to business
to consumer marketplaces (Hamari, Sjöklint & Ukkonen, 2016).

The field of sharing economy is on the rise. Forbes (Geron, 2013) has estimated that the
sharing economy has created revenue worth over €3.5 billion in 2013, with growth over
25%. Simultaneously, investors have invested hundreds of millions to sharing economy
start-ups, estimating it to be the new mega-trend (Alsever, 2013). Simultaneously, the rise
of the digital age and sharing economy gives the opportunity to new kind of
entrepreneurship. The digital world lowers the barriers of launching new products and
trying out ideas. (Richter et al., 2017)

For an entrepreneur interested in establishing an online marketplace, there are multiple
choices available. One might build it from scratch, but many offer software solutions to
build upon. Building a marketplace is a business and software project, needing skills
accordingly. A new entrepreneur can choose from all-goods-included packages for their
bases or choose a headless product.

Readily available online marketplace software solutions such as Arcadier
(https://www.arcadier.com), Marketplacer (https://marketplacer.com) or Kreezalid
(https://www.kreezalid.com) include a certain set of tools that the user is limited to. In this
kind of solution, the user is confined to the feature set of the service provider. As the
marketplace solutions offer tools and features needed by a generalized marketplace, niche
ideas usually have a specified set of needs and features the entrepreneur will wish to have.

API-first software solutions seek to fill the gap between fixed feature set and the often
costly and time-consuming process of creating a marketplace software from scratch. The
solution offers the basic functionalities of a generalized marketplace together with
application programming interface (API). This gives the entrepreneur means to develop

2

the features they wish to extend the standard feature set of the solution, and considerably
reduces the time and resources needed to reach the market.

Creating a generalized marketplace platform often means generalized solutions. At the
heart of any marketplace is its transaction process. It can be considered as the engine that
defines and guides the interactions between the users and their possible outcomes within a
marketplace. Being able to customize this process structure to meet their needs is crucial
for many entrepreneurs. The goal of this thesis is to find out, how this need could be
fulfilled in the context presented in the next section.

1.2 The company and the product

Sharetribe is a Finnish software company founded in 2011. The company develops online
marketplace software with the goal of democratizing the sharing economy. Sharetribe, so
forth called the company in this thesis, offers two products: Sharteribe Go and Sharetribe
Flex.

Sharetribe Go is easy to use and affordable platform for aspiring marketplace owners. The
main value proposition is that with Go, a marketplace can be set up in a matter of minutes,
and it requires no technical skills to set it up. It offers a basic layout suitable for many
types of marketplaces and a selection of customization tools. However, marketplace
functionalities are limited to those that Sharetribe offers and the user interface can be
customized only to certain limits.

Sharetribe Flex is targeted to entrepreneurs or companies with moderate funds and access
to sufficient technical skills. Flex is directed to those entrepreneurs whose needs exceed
what Go can offer. For these entrepreneurs, customizing and scaling their business is their
main focus. With Flex, the ability to customize at least the front-end is needed for the
successful establishment of the marketplace. This requires programming skills that either
need to exist within the team or to be bought externally.

Transaction process defines the marketplace transactions, or in other words, how the users
can interact with each other to create value at the marketplace. This is the core engine
running the marketplace, and being able to customize this process to meet the needs of the
marketplace users is of utmost importance to the marketplace operators. As the transaction
process for renting out camping equipment and booking professional trainers differs
remarkably, being able to customize the process to suit these needs directly affects the
marketplace’s success. This thesis seeks to how to empower the users to customize their
processes in a way that is both effective and profitable for them.

3

1.3 Research questions and scope of the study

This thesis introduces the process of designing a tool for visualizing and customizing
marketplace transaction processes. In the process, a set of designs is created based on a
process of collecting and analyzing information collected with various user research
methods. The value of the designs is based on the additional value they bring to the
customers using the product.

The main research question is:

What kind of tool for customizing transaction process offers additional value to
customers?

In order to find the answer to the main research question, it first must be understood what
is the additional value it brings to the customers. It is known that the main users are
marketplace operators and marketplace developers. Additional value is something that
answers to these users’ needs and requirements for the tool that will be designed.
Therefore, to answer the research question, two secondary research questions are needed:

1. What kind of needs do marketplace operators have considering customizing their
marketplace’s transaction process?

2. What kind of needs do developers have considering the tool for customizing
transaction process?

Section one of this thesis introduces the background and goals of this research. Section two
concentrates on creating an understanding of the processes and concepts that are used in
designing the new tooling. The literature review sets the base for further review by
creating an image of how related studies have addressed the issues presented in this thesis.
After creating an understanding of the overall context, section three concentrates on
defining a set methodologies that can be used to understand, categorize and analyze user
research amongst users in this particular context. These are needed to create a basis for
answering the two secondary research questions.

After the methodologies have been described, in section four these methods are taken into
use and the results of user research are presented. These results give us answers to the
secondary research questions. In section five, these results are put in to use and designs are
created based on them. These designs present an answer to the main research question. To

4

be confident that the suggested designs answer the users’ needs and therefore bring
additional value to them, the designs are evaluated in section six.

The scope of this thesis is limited to creating designs that answer to these users’ needs. The
thesis concentrates on introducing a process of solving a novel business problem and
creating design artifacts as solutions. To properly introduce the research process and to
properly create designs and conduct the evaluation processes, the scope does not include
the actual development of the tool, usability evaluation, or iterating the designings.
Therefore, the evaluation consists of evaluating how well the designs are able to answer
the needs that arise in the user research phase. Also, evaluating the effects of the designs
on the company’s performance is not included in the scope.

5

2. Literature review
To create a better understanding of the context around the research question and this
particular application area within software development, the literature review will examine
topics in closely related areas. As the subject of this thesis belongs to the area of software
design, the literature review will concentrate on creating an understanding of what are the
best practices in software design and user research in this area.

The literature review will concentrate on creating an understanding of how to better
approach complex design problems (section 2.1) and what others have done while facing
similar problems (section 2.6). It will review the best practices and approaches in
information visualization (2.2) and process modeling (2.3). To understand the context of
use and users, the review will seeks to create an understanding of how to design for
developers (2.4) and how is a common developer tool, command line interface, used (2.5).

2.1 Designing complexity

Rittel and Webber (1984) introduce wicked problems. They introduce these as problems
that are characterized by unstable requirements, complex interactions among
subcomponents and critical dependence upon human cognitive abilities. These are often
also characteristics of designing complex tools within information systems.

The transaction process itself is not complex, but editing it brings novel and complex
challenges, as the logic behind the simplified graphical model includes several
dependencies, some of which cannot be validated computationally. The requirements for
the process are set, but they include a vast quantity of various combinations and the
process can take several paths. There are complex interactions between the
subcomponents. Finding all the dependencies between various components requires human
inspection as the intended combinations cannot be validated without it. For example, a
certain transition can be accessed through multiple nodes (states) and will be passed
parameters according to the path it has been accessed to. It is possible to try to use
parameters that are not passed through this particular path or that will present themselves
incorrectly if accessed through another path than intended.

Customizing the transaction problem quickly becomes a complex problem, especially if
any kind of graphical WIMP approach is considered, as including necessary data,

6

dependencies and element combinations into a single graphical interface will quickly turn
hard to use due to its complexity.

The need for flexibility and maintaining several complex elements is what makes this
specific problem complex. Hevner et al (2004) describe how design science research
addresses complexity. In design science research, the problem is simplified by explicitly
representing only a subset of the relevant means, ends, and laws or by decomposing a
problem into simpler sub-problems. Such simplifications and decompositions may not be
realistic enough to have a significant impact on practice but may represent a starting point.

Any design problem can be divided into smaller subproblems as any system can be divided
into smaller subsets. The needs that users have for inspecting and editing the process can
be divided into simpler problems. Job stories, introduced in the Methodology chapter, are a
tool used for dividing customer needs into subproblems. Similarly, the needs and cognitive
processes, such as learning to use a new technology and understanding graphical
descriptions, can be addressed in subsets. The transaction process itself can be divided into
multiple subsets. For example, handling aliases and versions, making changes to the
process structure, changing parameters and validating the process.

Hevner et al (2004) further suggest that progress can be made iteratively as the scope of
the design problem is expanded. As means, ends, and laws are refined and made more
realistic the design artifact becomes more relevant and valuable. In this thesis, the users’
needs are divided into steps by using the aforementioned Job stories that implement
solutions incrementally. This also provides incremental value and makes it possible to
expand the scope piece by piece.

Simon (1996) reminds that given the wicked nature of many information system design
problems, it may not be possible to determine, let alone explicitly describe the relevant
means, ends, or laws. In such situations, the search is for satisfactory solutions, without
explicitly specifying all possible solutions. The design task involves the creation,
utilization, and assessment of heuristic search strategies. That is, constructing an artifact
that works well for the specified class of problems.

Remembering this in design work encourages the designer to looks for solutions out of the
box and looking for satisfactory solutions instead of perfect solutions. There is the danger
of creating solutions that seemingly solves all users’ problems, but simultaneously are
difficult to use and include unnecessary steps for most use cases. This kind of solution
could be described to be a Swiss army knife - it does everything, but badly. If users’
experience and the ease of use is considered a valuable part of the process, it can be argued
that if the solution is unnecessarily complex, it is not satisfactory.

7

It can be seen that complexity reduces the efficiency of the product used and therefore also
the user satisfaction. Frokjar, Hertzum, and Hornbak (2000) define efficiency as “the
relation between the accuracy and completeness with which users achieve certain goals
and resources expended in achieving them”. Efficiency is indicated by task completion
time and time used for learning to use the product.

Usability composes of various parts, including ease of use, user satisfaction and efficiency
(Nielsen, 1993). However, effectiveness does not guarantee satisfaction nor does ease of
use guarantee with effectiveness. This is an important aspect when designing a tool for
complex problems. However, the same goes other way around - the ease of use does not
guarantee user satisfaction. A solution may be complex but efficient or easy to use and
inefficient. The balance between complexity, efficiency, and ease of use must be balanced
against the user requirements. In some cases, users are more ready to use more time to
learn to use complex tooling than use inefficient tooling.

Creating satisfactory, easy to use solutions for complex problems can also be achieved by
removing some of the complexity - according to Hevner et al’s (2004) theory, this means
removing some of the requirements, interactions, dependencies or human dependencies.
Hevner et al. suggest removing some of the user requirements, which can be done through
prioritization. Reducing interactions or dependencies may lead to decreasing the quality of
the solution, but it is also possible to find subcomponents of the process that do not have
dependencies. It is also possible, that the solution realm offers a way to address the
complexity in a way that does not require simplification.

More user-centered than process centered ways to address complexity in design are
making use of the existing models that the users have and chunking. When users’ mental
models match how the actual system model works, people find the user interface intuitive
(Fitzpatrick, 2016).

On way to address complexity in design is chunking the information that is presented.
Chunking is a term used in cognitive psychology to refer to a process of binding individual
pieces of information together to create meaningful entities (Neath & Suprenant, 2003).
These pieces of information can be, for example, a group of numbers or syllables.

The term was first introduced by George Miller in 1956 in his article The Magical Number
Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information.
Miller found out that our immediate memory is limited by the number of items, which is
seven chunks of information, plus or minus two.

8

Chunking reduces the cognitive strain and therefore leads to a high amount of collect
recalls. In other words, chunking is a form of strategic encoding that involves transforming
the set of data into a compressed form and therefore it can extend the capacity of working
memory. It can be used as a strategy for learning and recalling information. Decreasing the
load for working memory is essential for the successful performance of many cognitive
processes. (Bor et al., 2003)

2.2 Information visualization

The book Information Visualization: Human-Centered Issues and Perspectives by Kerren,
Stasko, Fekete, and North (2008) defines information visualization (shortly infovis) as a
research area that is focused on aiding people on data analyzation by the use of tools and
techniques of information visualization. The subject of this thesis is not directly related to
helping people extract information from large datasets, which is what most infovis
principles concentrate on. Rather the focus of this thesis is visualizing process
descriptions, which can be considered as a subset in infovis. Infovis techniques, such as
guidelines on pattern recognition, help in this subject.

Visualization can reduce time required for searching relevant information and decreases
the amount of needed cognitive resources and memory capacity (Card, Mackinlay &
Shneiderman, 1999). With transaction processes, visualizing the process would help the
users to understand the connections and marketplace use flow. It can be said that
visualization would with no doubt decrease the cognitive resources needed to get an
understanding of the transaction process as a whole. It can also help the users to search and
locate relevant information locating in a certain part of the process, and to memorize it.

Information visualization is not, in itself, a scientific tool, but a tool for helping users make
insights on the collected data (Kerren et al., 2008). There is no specific way the
information visualization tools should be used or another goal for their use than the
subjective experience of the user. As such, the only way to validate developed
visualization tools is to create a working implementation where the tool is used (Purchase
et al. 2008).

It is arguable where information visualization ends and design work begins. In infovis, the
goal is to help the user to make insights from the data. The infovis tools or principles do
not consider user experience or usability in interaction. They do not include guidelines
considering beauty, excitement or pleasure of use, which can be considered as goals of

9

design (Hevner et al, 2004). They do not either consider ease of use or efficiency, as the
tools consider graphical output without interaction.

Interacting with the data presentation has been recognized to help the users to engage and
make them more prone to understand the intended messages (Heer et al., 2008). This is a
notion that is especially valuable when the dataset consists of complex information or if
the user has to modify the dataset. As the goal of this thesis is to create a tool for
customizing the transaction process, it is essential that the user is able to understand all the
relations in the process. Being able to interact with the data and discover relations and
connections deepens the user’s understanding of the process and enables them to do more
informed decisions when it comes to customization.

Keim et al. (2008) recognize the problem of information overload. The term is used when
there is a danger of the user getting lost in the data and losing the connection to the task at
and. This may be due to the irrelevance of the data presented, the data being presented in
an inappropriate way or processed in an inappropriate way. This can be used as a guideline
when deciding what information should be shown and when. Keim et al. suggest that only
relevant data should be represented and it should be grouped so that it creates meaningful
entities.

Keim et al. (2008) guide to concentrate on the relevance of the information for the task at
hand. They also suggest concentrating on how interaction could facilitate problem solving
and decision making. To support this, the task at hand should be clearly defined so it can
be recognized what information is needed. This can be addressed by creating clear
sub-problems to be solved and offer information related to those problems, with the right
timing. Chunking the information so that it is visible only when it is searched for decreases
the amount of clutter and mental load.

Keim et al. (2008) also note the problem that fully automated data processing methods
represent the results in a way that is ineffective in communicating the knowledge it
contains. This might be the case with automatically made visualizations of the transaction
process, too. For example, graphs that are created by automatic functions are not designed
to be easy to read or to emphasize important information over less important information.
Even though a graph would include all the information that a graph formed by a human
would, the information might be presented in a form that does not convey the information
in an effortless way. This can be easily addressed by bringing a visual design component
into the process, instead of trusting automated processes.

10

2.3 Process modeling

Aguilar-Saven (2002) describes the term business process as follows: “A business process
is the combination of a set of activities within an enterprise with a structure describing
their logical order and dependence whose objective is to produce a desired result.”
According to her, business process modeling enables a common understanding and
analysis of a business process and can provide a comprehensive understanding of it.

This description of the benefits of process modeling matches the goals of this thesis. The
transaction process is, at the core of it, a technical description of a marketplace business
process. For the operators and developers to be able to communicate effectively and plan
their work and operations, they need to have a comprehensive understanding of the
process.

Phalp et al. (1998) suggest that different approaches for modeling business processes
attempt to satisfy different goals. Phalp et al. distinguish two approaches to business
process modeling: pragmatic approach and rigorous paradigms. Pragmatic approaches seek
to capture the process and present it in an understandable way. This kind of presentation
has to be easy to understand and fast to learn to be efficient in communication. As models
can be complex, it is common that they are found to be difficult to understand, so it must
be considered what kind of audience will be using the model. The other approach, rigorous
paradigms, is used for process analysis. In this approach, the model should be able to show
both dynamic and functional aspects of the process. The transaction process description
doesn’t fit directly in either of the categories, as the goal is to inform in-depth and offer
some tools for the analysis. However, the exact goal is not to use the model for analyzing
the process, but rather to understand it and the technical aspects of it.

As the transaction process is a technical description, it has some characteristics that differ
from traditional business models, such as transition parameters. This might cause it to be
too different from any traditional, non-technical process modeling techniques that they can
fully be applied to use. However, understanding the basics of process modeling techniques
and the various ways to model processes offers a background for creating a model suitable
for this project. Aguilar-Saven (2002) introduces, amongst others, flowcharts, role action
diagrams and unified modeling language.

11

Figure 1. Example of flowchart

Figure 2. Example of RID

Flowchart can be used to describe almost any process, and it is used to graphically
represent program logic sequences, work processes, organizations and other formalized
structures (Lakin et al., 1996). The main advantage of flowchart is its flexibility and
communication ability (Kraljic et al., 2008). The form offers a flexible way to present
processes while being easy to understand. Flowchart offers a way to make processes easily
recognizable and brings out the process flow direction and any inconsistencies or dead
ends.

12

Role interaction diagrams concentrate on the actions by different actors, roles. The
activities are shown on left vertically, while the roles are shown horizontally on top. The
actions are represented as arrows pointed from a role to another and further explained by
text. Role interaction diagrams are intuitive and easy to read, but more rigid than flow
diagrams. The diagram is best used only with only few actors and activities and gets hard
to read with a greater amount of information. The diagram is mainly used for workflow
design and coordinating activities between different actors. (Kraljic et al., 2008.)

Unified modeling language (UML) is a standard object-oriented modeling language. It is
specified into visualizing, constructing and documenting software systems and artifacts,
but can also be used for business modeling. UML consists of nine different diagrams out
of which Activity diagrams are the closest to the research subject of this thesis. (UML,
2002.)

Activity diagrams reveal the work involved in changing the object states (UML, 2002). It
consists of object states and activities. According to UML, activities are drawn as boxes,
containing the name of the operation. The arrows indicate transitions that are activated by
the completion of an activity and the direction of the activities. Guard conditions can be
written next to the arrows.

Table 1: Comparison of process modeling techniques

 Description Strengths Weaknesses

Flow Chart Graphical
representation of the
flow of actions

Simple and easy to
understand
The base for many
different models

Doesn’t support
sub-activities

Role interaction
Diagram

Activities connected to
roles in a matrix

Clear distinction
between roles

Tend to be messy with
many roles and/or
activities

Activity Diagram Graphical
representation of a
workflow; steps of
activities

Includes different
symbols to mark
various actions

Remembering various
notations might prove
difficult

These process modeling techniques give us an understanding of how it could be possible to
depict the transaction process or what kind of elements could be taken and combined from
various techniques.

13

2.4 Developer experience

In their article Developer Experience: Concept and Definition (2012), Fagerholm and
Münch seek to define the term developer experience and explain the need for such term.
They define developer experience as “a concept that captures how developers think and
feel about their activities within their working environments, with the assumption that an
improvement of the developer experience has a positive impact on software project
outcomes.” Developer experience is seen to derive from experiences relating to
development infrastructure, feelings about their own work and the value of one’s own
contribution.

Figure 3. Conceptual framework of developer experience (Fagerholm & Münch, 2012)

Fagerholm and Münch (2012) note that a positive human experience is a strong indicator
of a successful development process, while various tools and methods can increase the
productivity of already highly skilled and motivated teams. How developers experience
their working environment, their tooling, and the work itself is the factor to successfulness.

The subject of this thesis is to design a tool for developers and operators alike. Having
efficient, usable development infrastructure is one of the key parts of developer
experience. The tool for process customization is meant to bring more autonomy and
efficiency to developers’ work with Flex. Another important aspect of concentrating on
developer experience is that developers are, in increasing amount, the key influencers in
purchasing decisions (Bhowmick, 2018).

14

Designing a tool for developers is designing a tool for a specialized profession. These tools
are often built to enable developers to do something they have not been able to do before.
The tools are made to enhance functional power, the developers’ capability of getting
things done, and ease of use is not the first criterion when designing these tools.

In his article Designing for developers (2018), Arin Bhowmick introduces how
developers’ needs differ from everyday application users. Bhowmick advises to use tools
that are already familiar to developers and warns from assuming that a graphical interface
is necessary. He reminds us that many developers are using command line tools daily and
they are used to specific tools. Especially for repetitive tasks, many developers prefer the
fastest way

Bhowmick (2018) mentions that “it’s worth remembering that many developers can handle
more complexity in their products than other users we might be used to designing for.” For
many, efficiency is more important than simplicity. Bhowmick recommends making the
tool as simple as possible for the new users but also recommends providing the more
experienced users with as much power and control as possible for them to be able to work
fluently. Additionally, it is good to remember that even the new users are already
professional on the field and can handle complexity.

2.5 Command line interface

Command line interface (CLI) is a way of interacting with software and operating systems
by giving commands as textual inputs. In the early era of computers, CLI was the primary
way of interacting with computers. (The Linux information project, 2004) Even as
graphical interfaces have nowadays replaced command line interfaces, many in technical
professions such as developers or system operators use command line interface and tools
in their daily work. As command line interfaces are already a part of developers’ toolset,
they might offer an effective way to study and edit the transaction process.

In CLI, the commands for the system are given usually as short textual inputs consisting of
few letters to few words. CLI is an efficient tool for experienced users and also enables
users to automate tasks, but for inexperienced users, learning the commands may be
difficult, as well as learning how to use the tool without mistakes (Westerman, 1997). In
general, CLI is expected to offer minimal feedback, which may slow down learning and
make the work more prone to errors. As also people who are not familiar with using CLI
must understand and be able to communicate about changes to the transaction process,
command line tool might not answer to the operators’ needs.

15

There are several studies suggesting that users perceive command line interfaces as harder
to learn and use than graphical interfaces. Shneiderman (1987) found that using direct
manipulation interfaces, such as WIMP interfaces, enhanced the accuracy, facilitated
learning and diminished errors when compared to command line interfaces. Hasan and
Ahmed (2007) studied the influence of interface style to perceived ease of use and
usefulness, finding that the participants favoured menu-based interface over
command-based interface. However, they noted that the participants in the study had little
experience on using similar systems, which might have an effect on the results.

Feizi and Wong (2012) studied how interface designers and software developers perceived
the learnability and ease of use of a graphical software application that uses both graphical
interface and command line interface. The tasks included such as setting a background
colour for canvas (GUI), changing image transparency (CLI) and creating a mouse over
event for an image (GUI or CLI). They concluded that CLI was found more difficult to
learn and use than the GUI. However, it can be argued that as the system was using both of
the interface styles, how to results apply to systems using only one of the styles. Also, as
the application has not been designed for one approach, it might have lowered the overall
usability of the product as the product lacks consistency.

However, all the studies do not agree and there are mixed results. Davis and Bostrom
(1992) studied the effect of interface style on the learnability of computer system and
found that there was no significant effect on ease of use. In their study, Wiedenbeck and
Davis (1997) compared novice users’ perceived usefulness and ease of use of a software
application in cases where they used either direct manipulation interfaces or command
driven interfaces. They found no significant effect on perceived usefulness and even
though they found an significant effect on perceived ease of use, they noted that the effect
was small.

A possible explanation for these differences of results in these studies is that the results
may relate to the nature and complexity of the task at hand rather than to the user interface
style. Mathieson and Keil (1998) found that the perceived ease of use was dependable on
the fit between the system and task at hand, rather than the system itself.

It seems that the perceived ease of use and usefulness is also related to the users’ previous
experience with CLI. Wiedenbeck and Davis (1997) found that the users that had previous
experience on a different user interface style had very negative attitudes towards any other
style. The study suggests that users’ attitudes towards software were significantly
influenced by their prior experience. Wiedenbeck and Davis summarise that “these results
suggest that users' attitudes toward software are strongly influenced by their past history of

16

usage, including what interaction styles the user has encountered, and this should be
considered in the design of software and training programs.” As the subjects of the studies
mentioned above had previous experience on using computer, and most computer users are
used to graphical interfaces, the negative attitude towards new interface styles might have
biased the results of the aforementioned studies.

These studies suggest that the significance of perceived usefulness may even be much
higher when the user are not novice with the tooling and area of work. With complex
tasks, CLI might prove even more useful, than GUI. Davis (1989) explains, systems that
offer more functionalities are perceived as more useful than systems that offer less
functionality. When tasks become more complex, the CLI may better receive the correct
task-system fit.

Feizi and Wong (2012) argument that “CLIs afford more options than their equivalent
GUIs, leading to greater flexibility available for users or one can perform a task by using
command that its function is not supported by its GUI counterpart.” In general, a user is
able to achieve more and in a shorter time than using GUI. In CLI, commands are usually
short and executing them happens using only the keyboard. For example, deleting a file
will require several clicks and confirmations in using GUI, but in CLI this can be done
with a single command. For users who value efficiency, this brings along satisfaction and
feelings of usefulness. In some cases, especially when considering operating systems,
some functions can only be run through CLI.

One possible argument against the usability of CLI is the lack of feedback and lack of
visual cues. Many command line tools offer minimal feedback, showing it only when
asked for or in case of errors. However, what an inexperienced user might describe as a
lack of feedback, might experienced user find as lack of unnecessary distractions. Lack of
feedback and confirmation can lead to errors more easily. Therefore proper help and just
the right amount of feedback is necessary.

The lack of visual cues and using only typed commands also causes memory load, as the
user has to remember all the commands. However, having a high memory load and
learning phase doesn’t mean bad usability. In professional tools used for carrying out
complex tasks, the expected learning time can be longer. Having help available makes the
learning process easier and using autofill, commonly used syntax, and full sentence
commands without abbreviations make the learning process easier.

17

2.6 Case study: Intercom Chat Bot

Intercom is a company offering a messaging platform for businesses to support and
connect to their customers through various platforms. In August 2018 they released
Custom bots - a feature that offers their customers the ability to customize the chat bot to
meet their business’s needs (Donhue & Shepard, 2018).

Intercom’s process of designing and creating shares many facets with the subject of this
thesis. They have a highly complex tool - a chat bot - and customers who needed
customizability. Their work is rather novel and it includes making a complex, technical
tool to be customizable by those who do not have technical or programming background.

The background of Intercom’s chatbot resembles the background of the subject of this
thesis. Donhue and Shepard (2018) open up the background of the project in their article,
explaining that even though their chatbot offered an excellent user experience, the clients
wanted to be able to create their own conversation flows in their own order. Sharetribe’s
default transaction process is functional and meets very well the basic needs of a
marketplace, but as customers want to be fully in control of their marketplace user
experience, they wish to have the power to customize it to their needs.

Julien Zmiro, product designer at Intercom, described Intercom’s approach in his article
The hidden cost of design complexity (2017): “If we go back to our initial definition of
complexity (“many” parts “entwined” together), it seems that there are two very high level
ways to prevent it: one is to fight the “many” by reducing the amount of parts to the core
essential, the other is to fight the “entwined” by untangling those remaining essential parts
– in other words, to make the parts as few and as independent as possible.” Zmiro does not
claim all complexity to be unnecessary. However, he does suggest that while creating
complex tools, unnecessary complexity should be removed. The unnecessariness of a
feature or component is defined by the value it brings, and Zmiro suggests that everything
that is not absolutely required, should be removed to avoid unnecessary complexity.

The other way to reduce complexity that Zmiro (2017) suggests, is to untangle the
elements that are included in the process, tool or software. This means making screens
modular or chopping up the process to multiple steps. The transaction process includes
multiple steps, such as choosing what actions the user can take and what kind of
notification can be sent. Even though these are tied in the technical description of the
transaction process, there might be a way to untangle these steps from each other. This
creates a clearer, more modular path for the user.

18

According to Donhue and Shepard (2018) when they were designing the chatbot, they
decided not to go with a visual one-to-one mapping tool as a bot builder as it would
quickly become overwhelming. Rather, they decided to modulate the tool in line with
Zmiro’s (2017) suggestion. Their decision to avert from graphical builder because of
complexity is a noteworthy warning when considering how to implement transaction
process editor. It’s possible that in this case the design complexity and the complexity that
the user would have faced using the product would have decreased the usability of the
product significantly.

Donhue and Shepard (2018) decided to use a very familiar messaging view, similar to
most of direct messaging applications, to help the user to benefit from their already
existing mental models. An important feature in their application was available templates
that the users could engage with and start forming their own ideas on how they would
modify their application. Their hypothesis that templates would encourage people to make
their own bots proved to be right: twice as many bots were made from templates than those
that were made from scratch. They note that “it’s essential to provide some stable, solid,
safe first steps for your customers to take. Otherwise many will just back away and close
the door you convinced them to open.” This is another important lesson to take from
Intercom - the customers need proper guidance and starting points when taking a new tool
into use.

2.7 Synthesis

In the literature review, the problem context around the research question has been
examined from supporting aspects.

Methods of process and information visualization have been examined to create an
understanding of how business processes and data groups are visualized and to find best
practices in doing so. The gathered understanding can be used both while conducting the
user research and while designing the tools, to recognize commonly used components. The
review has confirmed visualization as a useful way to promote common and
comprehensive understanding of processes (Aguilar-Saven, 2002), supporting the
motivation to study how people would prefer to view their processes. The understanding of
different process models that are commonly used may help to recognize the components
used in the user sketches. For the design phase, the literature view has supported the idea
of not taking one-to-one mapping approach (Donhue and Shepard, 2018), but rather taking

19

an approach that supports modulating the design solution to simpler entities (Hevner et al.,
2004, Zmiro, 2017).

To create a better understanding of developer experience and tools commonly used by
developers, the definition of developer experience and aspect influencing it were
examined. Additionally, studies examining the usability of command line interface was
studied to better understand the practices of using command line interface as a tool. The
review gives a firm basis of knowledge for how to design for developers. Bhowmick’s
(2018) studies suggest using tools that are already familiar to developers, and not assuming
that a graphical interface is necessary. Similarly, he encourages to trust in developers
ability to use complex tools in their work. Davis (1989) suggests to that systems that offer
more functionalities are perceived as more useful than systems that offer less functionality.

20

3. Methodology and research context

3.1 Design science research

According to Vaishnavi, Kuechler, and Petter (2004), design science research is a set of
techniques for performing research in the field of information systems. The aim of design
science research is to improve information systems by creating new knowledge or
innovative artifacts and analyzing the use and performance of these artifacts. Fuller (1992)
puts the goal of design science research more simply - the goal is “to solve problems by
introducing into the environment new artifacts”. Artifacts are the products of the design
science research process - things or processes such as user interfaces or system design
guidelines.

Figure 4. Design science research framework (Hevner et al., 2004)

Hevner et al. (2004) present a framework for understanding, executing, and evaluating
design science research in IT. The main components are the business needs that rise the
need for design science research and creation of new artifacts. The research is based on
existing knowledge base that provides material for creation and evaluation of the artifacts.
Hevner et al. offer guidelines to design science research. These are:

21

1. Problem relevance. The addressed problem must be relevant to solve. Often in
business organizations this is related to maximizing profits. The research must
present an artifact that is implementable and demonstrates a clear contribution to
the business environment solving a novel problem.

2. Research rigor. The research must be conducted with rigor, meaning that the
proper theoretical foundations and research methodologies must be used. The
produced artifact must be evaluated in its applicability and generalizability,
determining how well the artifact works.

3. Design as search process . Creating the artifact is a process of discovering an
effective solution to the problem existing in the environment.

4. Design as an artifact. The result of the process, artifact, must be “effectively
represented, enabling implementation and application in an appropriate
environment”.

5. Design evaluation. The efficiency and quality of the artifact must be proven by
validated evaluation methods. The artifact must solve the problem it was created to
solve.

6. Research contributions . The process creates contributions by solving the problem
vi the artifact as well as contributing to the knowledge base.

In this thesis, design science research framework is used for defining a process of user
research, artifact design and analytical design evaluation for designing a tool for
customizing transaction processes. The aim is to create an effective process for designing
tools in this context and to find viable solutions whose performance has been proved. This
will contribute to the research community by proving how the process and artifact are able
to solve this particular business problem in this environment.

3.2 Product and process context

3.2.1 Sharetribe customers

Sharetribe focuses on providing marketplace software for entrepreneurs building their
marketplace business. Marketplace founders are often either solo entrepreneurs or small
startup teams, consisting of two to five people. In this thesis, this person, group or

22

company is referred to as customer. Usually, the customer or a defined person from the
team of the customer works as the marketplace operator - this means as the person leading
the marketplace development and operative decisions. To functionally establish a
Sharetribe Flex marketplace, the customer needs to have development resources. This
means that the customer has to have a developer as a member of the team or hired for the
project.

The technical skills of the marketplace operators vary significantly from novice to
advanced. Operators with novice understanding are able to grasp the technical details when
explained, but not able to produce technical information or content. The users with
moderate technical skills are able to understand and produce technical descriptions, but not
able to create advanced technical modifications. This is important to keep in mind when
the focus is on how to design the tools that are used to customize the marketplace.

Figure 5. Sharetribe Flex users

23

The company: Sharetribe

The product : Sharetribe Flex

Customer : Sharetribe customer who has access to Flex. This can be one person, team, a
startup or a company.

Operator: Sharetribe customer who makes operative decisions about running the
marketplace. In companies without development resources, the agent who hires the
development resources.

Developer: A person developing custom software on top of Sharetribe Flex. A developer
might be working for operator as freelancer or employer. It is also possible that the
marketplace operator is also the developer.

User: A person who interacts with the product or feature. A general term used in
human-centered design as described in ISO 9241-210 (2010). In the context of this thesis
the term is used to refer to operators and developers.

Marketplace user: Any registered user of a marketplace
Buyer: Marketplace user with the intention of buying goods or services.

Provider: Provider is a user that is allowed to post a listing and/or has posted at least one
listing to the marketplace.

Sharetribe Flex consists of four parts: Flex backend, the Console, the APIs, and Flex
Template for Web (FTW).

The console is a user interface for marketplace operators, where operators can build, run
and track their marketplaces. In other words, it is the management tool for the marketplace.
It includes listings of all the users, listings, transactions and reviews and moderator
functionalities for managing these. It also includes a “Build” section with tools for
managing marketplace functionalities. These tools are aimed for developers.

The Flex Template for Web (FTW) is a web template application that is offered by the
company to form the basis of the marketplace user interface. It is backed by the API that
supports authoring and discovering content, managing user accounts, and the purchasing
flow. The API’s include the Marketplace API and Admin API. The marketplace user
interface is hosted by the customer and can be customized as they will.

24

The backend is hosted and maintained by the company. The company offers all the
backend functionalities, including databases, payment handling, authentication and the
application programming interface for these.

Figure 6. Flex components

3.2.2 The transaction process

The transaction process is in the core of the marketplace, handling the interactions between
the end-users - the buyer and the provider. The transaction process starts from an
interaction between a buyer and a provider (usually initiated by the buyer). It includes a
description of the different paths the process can take and actions that have to be executed
along the process. Additionally, notifications such as emails that are tied to the transaction
process are included.

As each marketplace operator have their own preferences on how they make business, the
need for the transaction process to be customizable is crucial. Different kind of
marketplaces have needs specific to their field. For example, for a business that rents
cameras it might be highly important to have a functioning insurance and inspection
process for the gear. If a marketplace is used for renting scooters for tourists, it might be
important to have a possibility to extend the renting period or to store the driving license
information.

25

It's not possible to create a single transaction process that would fit the varying needs of
multiple different marketplaces. It is unclear exactly how variating the needs of different
fields are. As there are plenty of variating marketplace ideas it is understandable that the
need for pet host marketplaces and camera rental marketplaces differentiate, but it
similarly unclear how much they actually do variate.

Businesswise having an incompatible transaction process reduces the quality of the user
experience. The marketplace customers have needs specific for a certain field. Processes
that do not answer these are either cluttered with distracting features and steps or missing
important phases.

At the time of writing this thesis, customizations to transaction process were done by
contacting the company’s customer support and requesting a change. The change is done
manually by the developer on customer support sift and pushed to the customer. The task
of updating a customer’s transaction process includes communication with the customer,
making the changes to the process in question, validating the process, deploying the
changes to production, updating the process alias and communicating the new process
version to the customer. Handling a single request can take up to a day of work.

It is evident that this way of working does not support growth as the company wishes nor
the customers’ wishes of fluent and flexible development work. Therefore, an alternative
way of customizing the process has to be developed. As being able to scale the product and
offering an excellent developer experience are the company goals of 2019, finding an
answer to the arising problem is the subject of this thesis.

The transaction process is defined as a data format called extensible data notation (EDN), a
subset of Clojure, which is used to represent programs and as a data transfer format
(Hickey, 2018). Below is introduced a very short process both in graphical and EDN
form. In this process, a request is preauthorized and accepted automatically, and the
process is marked as complete after the booking period has ended.

Figure 7. Short transaction process example in graphical form

26

Figure 8. Short transaction process example in EDN form

27

Figure 9. Sharetribe Flex default transaction process. (Sharetribe, 2019)

28

The default transaction process for Flex marketplaces is visualized in the graph above. In
this flow, the user can request a booking or send an inquiry to the provider, after which
they can request a booking to start the transaction. The booking request can be either
accepted or declined by the provider, or it can expire automatically after seven days. If the
request is accepted, the customer’s credit card is charged and the payment is held by the
marketplace. When the request has been accepted, it is still possible for the provider to
cancel the booking, in which case the payment is refunded to the customer. The booking
will automatically move to state“delivered” after the booking period has ended, and the
payment is released to the provider. Finally, both the customer and provider can review
each other.

3.2.3 The transaction process terminology and components

Transaction

Transaction is an interaction process between a buyer and a provider where value is
exchanged between them. The purpose of any marketplace is to facilitate transactions
between its users.

Transaction process

A transaction process is a description of the possible events and actions in the marketplace,
and the outcomes the transaction can have. It defines how the different parties at the
marketplace interact to create value. A transaction process consists of a set of transitions
between a set of states and a list of notifications. It is possible to have more than one
transaction processes on a marketplace. By default, Sharetribe offers two transaction
processes to choose from: nightly booking and hourly booking.

Directed acyclic graph

The transaction process is defined as a directed graph. This means that the transaction can
take certain paths and it can only move into one direction appointed by the transitions.

Process version

A new version of a process is made every time changes are made. As the transaction
process is critical to the functionality of the marketplace, it is crucial that there is a
functioning versioning method. This also enables the marketplace to try out multiple
process models as well as covers the marketplace end-users from sudden changes in their
transactions.

29

Process alias

Aliases can be understood as tags pointing to a version to be used in a certain context.
Alias can be appointed to a version and one version can have one, zero or multiple aliases
pointed to it. For example, the version used in production can be tagged with alias
“production” and simultaneously another version of the same process can be tagged with
alias “test” and used for testing purposes.

An example of using alias: a marketplace operator decides to change the transaction
process so that buyers can cancel requests if there is more than 48 hours to the beginning
of the booking, but the change only affects daily bookings. The programmer selects the
daily transaction process and commits the changes. They wish to test the change in
production. The version is tagged with “test” and is used only with the transactions that are
pointed to use version with “test” alias. As the version is tested, the alias is changed to
“production”. The transactions that have already started before the new version is taken
into use will continue with the old transaction process version.

State

A state expresses the state a transaction process can take. All states must be accessible by a
transition, except for the initial state. Delayed transitions are tied to states.

Transition

Transitions define what states can be accessed next from one state, taking the transaction
forward. They define what happens at each step of the process as a list of actions (e.g.
create booking). Transitions can be only made by certain actors defined in the transition.
Actions are tied to transitions.

Delayed transition

Delay transitions are transitions that happen after a certain amount of time has passed after
the transaction has arrived to a certain state. It's possible to express times like "6 days after
'request'", "1 day and 12 hours before the booking start time" or "the earliest of the
booking start time and 3 days after 'request'". In these transitions, actor is always the
system, meaning that the transitions happen automatically. Delay transitions are tied to
transitions.

30

Actions

Each transition defines a set of actions that can take place during that transition. Actions
can, for example, calculate the total price and commission of the transaction,or create a
payment.

Parameters

Actions need specific parameters to function correctly. For example, commission
percentage is needed to calculate the commission, and transaction price is needed to create
Stipe events. Parameters can also be used elsewhere, for example in notifications.

Notifications

Notifications are messages, currently only emails that are sent to defined users in certain
points in the process. Notifications are tied to transitions. They can be sent immediately
after a transition or scheduled to be sent at a certain time of the process, similarly to
delayed transitions.

3.3 Research methodology

ISO 9241-210 (2010) defines the process for user-centered design to include six steps that
happen in an iterative process. These steps are:

1. Plan the human centered design process

2. Understand and specify the context of use

3. Specify the user requirements

4. Produce design solutions to meet user requirements

5. Evaluate designs against requirements

6. Designed solution meets user requirements

In this thesis, section 3.2 concentrates on explaining the context of use. This understanding
is based on information gathered by Sharetribe sales and technical support personnel.

Section four (User research) will concentrate on specifying the user requirements by
conducting user research among Sharetribe customers. The aim of this research is to better
understand the requirements these users have and to further develop an understanding of
the context of use. Additionally, it was needed to know what kind of pre-existing schemes

31

the users had when it came to visualizing their processes. This included gathering an
understanding of how the users visualize their transaction processes, what components
they find important and what styles of visualization they find natural for them.

The chosen methodology for user research was user interviews (introduced in section
3.3.1) and user sketching (introduced in section 3.3.2).

User interviews were conducted to better understand the user needs, and user sketching for
a better understanding of the pre-existing schemes. As secondary research questions define
two main user groups within Sharetribe customers as marketplace operators and
marketplace developers, the user research was conducted within these two user groups.

Table 2. User interviews

Research type Participant type Number of participants

User interview Operator 5

User interview Developer 4

For the user interviews, five marketplace operators and four Sharetribe developers were
chosen. The interviews were semi-structured, with a set of predefined questions and a
possibility for open questions and clarifications (see appendix A and B).

The questions presented for the operators concentrated on creating an understanding of
their team and how their development process works. When it came to the transaction
process, the goal was to understand how familiar they are with the transaction process,
what are their needs considering customizing it, and if they have done any customizations
to it.

The questions presented for the developers concentrated on what they think about the
development process and communication with the marketplace operators, how familiar
they are with the transaction process, if they have done any customizations to it and how
they felt about the customization process. The main goal was to understand the developers’
needs and requirements for fluent customization of the transaction process.

32

Out of these nine interviews, user needs and requirements for the transaction process
customization tool would be drafted. For categorizing the needs and requirements, a
framework called Jobs to Be Done would be used. It is introduced in section 3.3.2.

Table 3. User sketching

Research type Participant type Number of participants

User sketching Operator 1

User sketching Operator with developing
experience

1

User sketching Developer 2

For user sketching, four users were selected. Out of these users, one was a developer and
three were marketplace operators, out of which one also worked as a developer. For this
interview, the users were asked to explain how their transaction process works at the
moment, and after this given 10 minutes to draw the process on a blank sheet of paper (see
appendix C). The goal of this sketching interview was to better understand how the users
depict the process in their minds and what components they use in the drawing. These
results would be used in the design phase.

3.3.1 User interviews

In his book Observing the user experience: a practitioner's guide to user research (2003),
Kuniavsky notes that “to really know the user’s experience, you have to ask him or her
about it.” User interviews are part of almost every user research. User interview is a
formal, standardized interview that seeks to reveal the user’s experience and remove the
perspective of the interviewer (Kuniavsky, 2003). Interviews are used in qualitative
research in which facts, user insights, opinions, experiences, attitudes, and behavior are
collected (Rowley, 2012).

In this thesis, semi-structured interviews were used for interviewing the users. The goal of
semi-structured interviews, according to Wilson (2013), is to “gather systematic
information about a set of central topics, while also allowing some exploration when new

33

issues or topics emerge”. Wilson further introduces semi-structured interviews to include
predefined questions and also space for open-ended exploration similar to unstructured
interviews.

Wilson (2013) recommends using semi-structured interviews when there is already an
understanding of the topics to be interviewed, but further details are still needed. The
interview follows an interview guide that includes a list of topics and questions as well as
probes and prompts, and can take from several minutes to a few hours.

The basic structure for most user interviews includes an introduction to the subject, asking
questions about the structured topics, having time for general questions and open dialogue,
and finally wrapping up the interview (Wilson, 2013).

3.3.2 Sketching and mental models

Sketching is a method often used in design work. User sketching is a design method in
which the user is asked to draw on paper, other surface or in a drawing application a sketch
of the idea, process or design they have. The sketches give the designer a more concrete
understanding of what the user has in mind and a point of reference for further questions.

Tohidi, Buxton, Baecker, and Sellen (2006) suggest that giving the user a possibility to
make sketches of their idea generates reflective user feedback, opposed to reactive user
feedback that most usability testing methods offer. According to them, enabling users to
sketch their ideas and thoughts facilitates reflection on the task at hand and provides a rich
medium for communicating ideas. Tohidi et al. suggest user sketching as a complementary
method to more traditional user testing methods to provide rich information in a time and
cost effective way. The traditional way of user testing is that the user explores ready made
sketches by thinking aloud or answering questions orally. This is most likely to cause
reactive critic rather than reflective suggestions for improvement. In their study, Tohidi et
al. found out that when the users are asked what they would change about designs, the
common reaction is an inability to come up with suggestions. However, when the users
were asked to sketch solutions, they were able to find out several motifs and patterns.

Analyzing user sketches offers a possibility to more in-depth analysis in shorter time.
Analyzing sketches allows the researcher to find answer questions that were not even
recognized in an interview setting, but were revealed in users’ sketches. (Tohidi, Buxton,
Baecker & Sellen, 2006.)

34

Sian Townsend describes in her article Understand your users’ mental model ” (2016) how
she used sketching in her work with Intercom. The research showed that not only the
employees had confusion on using different terminology while talking about the product,
their mental model of it varied from each other. Sketching helped people to recognize and
verbalize problems they had and differences in their thinking.

Townsend (2016) offers simple guidelines on conducting a sketch research. The first thing
is to decide the goal and focus of the research. After this, the research questions should be
designed to be open ended in order to prompt the participant to start sketching. Ask
directive or clarifying questions while the sketch is processing in order to help the users
think and come up with new directions for their sketches.

Michelle Fitzpatrick introduces in her article How users understand new products (2017)
how matching system and user models help users to take the system into use. Her primary
thesis is that if a user’s mental model matches the system model, the users find the user
interface more intuitive. To understand users’ mental models, Fitzpatrick suggests user
interviews and asking users to sketch how they believe the system works. After this, one
can look for commonalities. Another aspect to take into consideration is the language
people are using when they talk about their sketches. For example, if a person talks about
sending a message, the same word should be reflected in the user interface. The nouns that
they use are components they expect to be in the interface.

3.3.3 Jobs-to-Be-Done (JTBD)

Jobs-to-be-Done (JTBD) is a theoretical framework and tool used to describe users’ needs
and thriving factors when buying products. It is mainly in the fields of marketing and
innovation. Even as the tool is used on product management, academic research that
applies JTBD on product development is rare.

There is no unified opinion on the exact definition of JTBD, but the theories are rather
similar. Christensen, Anthony, and Roth (2016) introduce JTBD as based on the theory
that when a user buys a product, they “hire” it to do a specific job for them. Ulwick’s
(2016) view on the subject is rather similar, as he sees that “people buy products and
services to get a job done”. Klement (2016) has a slightly different viewpoint, defining
JTBD as a process that people go through when they use a product to make their life
better. In this thesis, we take the approach that Christensen et al and Ulwick offer.

35

An example of a situation for using the JTBD framework could be a customer buying
coffee in the morning. Applying JTBD theory, the coffee is filling a need they have - in
this case, most often, a way to feel more awake. Therefore, the same JTBD could be
solved by a cold shower or a bright light lamp. However, if someone would just observe
people buying drinks in the morning, they might make the mistake to try to sell them
flavored water or cacao, not answering the actual need (or job) they have.

Christensen et al (2016) argue that understanding the jobs that customers want the product
to solve, developing new products is more successful than using user segmentation. The
user jobs concentrate on the needs users have instead of situational or demographic factors.
With this focus, it is possible to find underlying needs that are common over the
demographic factors.

However, jobs to be done alone might offer insufficient data for making design decisions.
For example, the technical skill level of the user must be taken into account while
designing technical products. The job can be similar to many groups of people, but their
ability to use the product that solves a particular job may vary. Even if demographic
knowledge does not reveal customers’ needs, it reveals their ability to use the products
offered. The need for understanding users’ competence and their ability to use products are
considered essential in human-centered design. Therefore it is important to remember that
JTBD is a tool amongst others and suitable for addressing certain problems.

To define the JTBD for a certain product one must gather knowledge on customers’ needs.
Ulwick (2016) proposes that this can be done by using any of the traditional interviewing
methods used in user research. These include personal interviews and ethnographic
methods such as observation. What Ulwick considers important is to consider different
types of job executors such as the end user, the purchase decision maker, and the product
support team. For this thesis, the main job executors are operators, developers and
Sharteribe’s support team.

To further define the users’ needs, Paul Adams introduces Jobs Stories, a tool invented
within Intercom to turn JTBD into usable format, in his essay Abandoning personas: the
story behind Job Stories, published in book Intercom on Jobs-to-be-Done (2017) by
Intercom. Intercom had considered using user stories but found them too engineering
driven instead of customer driven and not based on research. Therefore, they created a
process of their own concentrating on situations, motivations, and outcomes.

[When _____][I want to ______][so I can ______]

36

The first part of the formula focuses on the situation, the second part on the motivation and
the last part on the expected outcome. The formula leads the users to thinks about the
situation when the problems are encountered, what is the user’s motivation for solving it
and what they achieve by solving it (Intercom, 2017). It offers a way for the designers to
evaluate if the goal is achieved without restricting how the problem itself is solved.

Alan Klement further describes how to define Job Stories (Intercom, 2017; Klement,
2013). He suggests starting with a high level job and then identifying smaller jobs which
help to resolve the higher level job. He suggests examining how people solve the problem
currently to define the current job story. After this, it is possible to create the job stories
and then the solution based on the stories.

One way to translate the job stories to solutions within the field of software development is
to consider the way they translate to user interface components or views. The user needs
can also be answered and supported by using support guides, offering customer service or
changing the company business process.

Even as job stories are created to scrutinize customers’ needs, it is possible to approach
them with solutions in mind. This causes the job story to be biased towards the direction of
the solution.

Consider the following job story: “When I’m customizing my marketplace, I want to
choose the transaction process, so I can better meet my customers’ needs.” The verb after
“I want to” defines the customer’s needs and also gives an implication on how they want
to approach the subject. Choose means that they want pick from existing processes. If the
verb would be “customize”, it would mean that the customer wants to create or modify a
process matching their needs. The job story already includes an inclination to the solution
and can, therefore, guide the design work to predefined direction. It needs close scrutiny
and wording to make the stories match actual user needs and not already existing ideas of
the solution. Creating specific customer stories based on user research guides us to better
outcomes.

The job stories function well when analyzing the design process and possible solutions. If
the proposed solutions do not match the user needs, it is easy to find them unsuitable. If a
proposed solution does answer the user’s needs, at least one step of the process has been
validated.

37

3.4 Design evaluation

The evaluation of the created artifact is part of the design science research framework.
Hevner et al. (2001) write about design evaluation, stating that the purpose of it is to prove
the efficiency and quality of the product by using validated methods. According to them,
the goal is to validate that the artifact solves the problem it was created to solve, and the
business environment defines the requirements upon which the evaluation is based.
Similarly, the fifth point of iterative user-centered design point according to ISO 9241-210
(2010) is to “evaluate designs against requirements”.

In this thesis, the artifact is evaluated by using analytical evaluation. Analytical research
refers to research that involves critical thinking and evaluation of facts and information
already available and analyzing this information to make a critical evaluation of the
material (Kothari, 2004). In this thesis, quantitative and mixed-methods are used to
support analytical evaluation (Onwuegbuzie & Combs, 2011).

Quantitative analysis deals with data in the form of numbers, which can be examined by
mathematical operations (Walliman, 2017). The primary purposes of quantitative analysis
are to measure and test hypothesis (Walliman, 2017). The quantitative analysis process
consists of determining the questions to be answered, determining the sample, selecting the
methods needed to answer the questions, selecting the analysis tool and interpreting the
results. (Holton & Burnett, 2005)

Qualitative data analysis is based on data expressed in forms of words rather than numbers.
In qualitative analysis, a theory can be evaluated by collecting qualitative data and analyze
it by using selected tools. In qualitative analysis, coding can be used to organize the data
under labels or tags. Coding is an analytical process that includes recognizing what the
data is about and categorizing it under a describing label. (Walliman, 2007)

Quantizing is a method of translating, transforming, or converting qualitative data into
numerical (Sandelowski, 2009).

The scope of this thesis includes background and user research, designing the tool and
evaluating the designs. The scope does not include the actual development and user
testing. Therefore, the designs were evaluated by using analytical evaluation rather than
empirical evaluation.

In the user research phase, two distinct areas were found: informing the users about their
transaction process and customizing the transaction process. The designed solutions were
evaluated separately.

38

The designed solutions were successful if the users’ needs in both categories were
fulfilled. In the first category, this meant that the users were able to access needed
information by themselves, without reaching to Sharetribe support. If this was true, the
number of support tickets should decrease and their quality increase. In the second
category, successfulness meant that the customers were able to add those process
functionalities that they wished to be able to add to their process. This was evaluated by
inspecting if the customer built processes could also have been built with the designed
solutions.

The evaluate how well the users are informed about their transaction process, the quantity
and quality of transaction process related tickets was evaluated. The hypothesis was that
the quantity of the tickets would decrease while the quality would increase. If these
requirements would proof true, the solutions could be considered successful.

The first question to evaluate was how the amount of transaction process related support
tickets has changed. The data set used is transaction related technical support tickets from
January 2019 to July 2019 and it was evaluated by quantitative methods. The tickets were
categorized by using coding methods, and the amount of tickets was calculated on a
monthly basis. These tickets were categorized to general tickets and tickets considering
the transaction process, and the transaction process related were categorized further to
better reflect the problems they were related to. One of these categories was “tickets
requesting for information”. It was observed how these types of tickets were affected by
the release of the designed solutions. Finally, it was evaluated how the amount of tickets
had changed during the inspection period.

The second question to evaluate was how the quality of transaction process related support
tickets requesting for information had changed during the inspection period. The same set
of tickets was evaluated by qualitative methods and tickets were coded by categorizing
them according to their quality. These categories were quantized by giving each ticket a
numerical value corresponding to the quality. In this way, the monthly average quality was
examined and it was evaluated how the designs had affected the ticket quality during the
inspection period.

The second evaluation category concentrated on the customer’s ability to customize their
processes. As the command line tool is able to satisfy all user needs within the possibilities
of the technology, the initial process selection tool was evaluated.

As developing the designed tools for this was out of the scope of this thesis, the evaluation
was done by evaluating how the designed tools would have answered to the need of the
marketplaces built during the last six months. The evaluated question was how many of the
features that customers had built in their transaction processes during the last six months

39

could have been built with the initial transaction process selection tool. The hypothesis is
that it is possible to find similarities in the customers’ requirements considering their
transaction process. The tool would be successful, if it could satisfy half of these needs.

Here the analyzed data set was 27 transaction processes build during the last six months.
The structure of these transaction processes was analyzed by recognizing what kind of
functionalities that differed from the Sharetribe default transaction process the process had,
and these functionalities were categorized under labels. Finally, it was evaluated how
many of these functionalities would have been possible to build with the designed tools.

40

4. User research

4.1 Target user group

The current target group for Sharetribe Flex is operators (entrepreneurs, startups or
companies) with developing resources. This means that the customer should have or they
should be able to frequently, if not at all times, have access to a developer or developers
who are able to do modifications to the code base. With this target group, people without
continuing access to development resources are not considered in the designs.

This division was done as Flex as a product is directed to entrepreneurs, startups and
companies that are preferably past their early stage and have already tested their
marketplace idea or are otherwise ready to commit to the project. Building a marketplace
with a headless approach means committing to a software project and therefore also into
having a developer or a development partner in the project.

This leads to some expectations on how work is distributed between various parties within
the company. The operators are expected to run the daily business and operate the
marketplace functions through Console. The Console is a place for managing the
marketplace and sharing information about the marketplace and its functions. The operator
can do slight modifications to their marketplace, for example, change the email contents or
search rules for their marketplace. Any changes to the UI and functionality will require
development experience.

The developers are expected to have certain competency when it comes to tools commonly
in use in the occupation. This means familiarity with tools such as command line interface,
software such as GitHub or similar, and development environments. It is expected that the
developers have existing ways of working and tooling in their development practice.

The customization of the product is done within the developer’s own development
environment and not in Console. No extensive modifications can be done through Console,
but it is rather a place for retrieving information and doing minor modifications. This also
prevents possible mistakes that are caused by modifications done by people with
insufficient understanding of the requirements. With this division, it is not possible, for
example, add new email templates within Console, as they should be tied in the Flex
backend in ways that require development skills.

41

At the current moment, the targeted customer group is strictly limited to those who have
access to developers. It is possible that this limits the customer group extensively, as
development resources require money and time. This is especially the case when all
changes require a developer. Out of the 20 first customers that launched their marketplace
in 2019, 11 had developing resources in their team from the beginning. This means that
having access to developing resources constantly raises the likelihood of successful
onboarding and launch of a marketplace. Sharetribe seeks to connect customers without
development resources to development partner with expertise of building on top of
Sharetribe products.

Currently, the user is able, for example, edit the email contents without a developer as they
have access to email templates in Console. This, however, will not be possible with
transaction processes or transaction process notifications. The transaction process is the
engine that runs the marketplace. Changes to this process should be made with care, as
they affect the core functionality of the marketplace. However, it is somewhat unlikely that
frequent changes are needed after the initial launch of the marketplace.

4.2 Defining user needs

To answer the research questions on users’ needs, user interviews were conducted. The
aim of these interviews was to get a proper understanding of our customers and their
teams, and to acquire information on what kind of needs they had considering customizing
transaction process.

4.2.1 Operators

Five people from marketplace operating teams were interviewed to gain an understanding
of the level of technical understanding and requirements of use for the transaction process
tool. The roles of these people varied from marketplace managers to product managers. At
the time of the interviews, Flex was still in an early stage as a business with only a few
customers.

In addition to the interviewed people, a further understanding of the customer base was
gathered by following customer sales calls, which provided a more extensive cut of the
customer base. Based on this material, the technical understanding of the customer varies
from rudimentary to proficient. For many understanding complex technical language
caused difficulties. Often these people were considered less probable to establish a

42

successful marketplace, and were recommended a development partner. This points to the
fact that our current customer base is adept with technical notation, but in order for the
company to grow from the current status, it might be necessary to provide more
understandable instructions and ways to hire a developer for the team.

The team size of the interviewees varied from one to seven people. Only one out of five
customers had a dedicated developer with a permanent contract, as the others had hired
either freelance developers or hired developers from consultancies. The design and product
decisions were done in house, either by the marketplace operator or within the team. In all
of the cases, developers and other team members were not co-located. Communication was
mostly text-based and done either via email, online communication platforms such as
Slack, or by calls.

During the interviews with the operators similar issues and needs around transaction
process editing arose. The findings are gathered into sections below.

Finding 1: It is unclear what is meant by the transaction process and what can be
solved by modifying it.

The term “transaction process” is not understood in a unified way. The users were asked
what they think the marketplace transaction process included. Two out of five interviewees
connected the term only as related to payment process and it did not rise an image of the
transaction flow as a whole. When an operator was asked what do they think the term
transaction process means, one interviewee answered “Do you mean the payment
process?” This indicates that the user connected the term only to the payment process, and
not to the whole flow.

The three users that had worked longer with Sharetribe, were able to connect the term to
the booking flow as a whole. When asked, one operator described their process step by
step starting from search all the way to returning the goods, including transaction process
related steps such as notifications. However, they also included steps that were not
included in the transaction process, such as the search. This means that even though the
operator was able to connect the term to the whole process, it was not completely clear
what was included in the process and what was not.

It was similarly unclear to interviewees what is related to the transaction process and what
does it affect, hence also what kind of possibilities modifying it offers. It was common to
all of the interviewees that they were not able to connect the problem they faced to being
connected to the transaction process. Consequently, it also did not occur to them that the

43

problems could be solved by modifying the transaction process. For example, one
marketplace operator wanted that the marketplace customer is sent an email that reminds
them about their booking, which could be done by modifying the transaction process
notifications, but the operator didn’t recognize this possibility. Another operator wished
that they would be able to add a customer identification to a customer’s profile. This could
be done through extended data added to a transition in the transaction process, but the user
was not aware that they could request this from the Sharetribe team.

As the transaction process includes not only the different states of the process and different
actions the actors can make, but also the technical actions (e.g. releasing the money to
provider), notifications and delayed transitions (e.g. expiring requests) it is understandable
the not all of the various functionalities are connected to the same process description in
users’ minds. This restricts the users’ understanding of how they could approach their
problems and how they could take advantage of the full potential of their marketplace
transaction process

Finding 2: It is difficult to comprehend the transaction as a whole, and therefore it is
difficult to communicate.

Closely related to the first finding, users had difficulties in comprehending the transaction
process as a whole and thus also communicating their problems or needs relating to the
process. This was common to all of the interviewees, and previous examples apply also to
this finding.

The difficulty in understanding the process as a whole was partly due to insufficient
documentation and communication from the company’s side. At the time of writing this
thesis, the transaction process documentation included only a graphical description of the
default process and few paragraphs explaining the basic functionality, though not in detail.
There was no description of how the process works or what it includes.

When one of the operators was asked how familiar they are with their transaction process,
they answered that they “don’t understand what is going on in the black box”. The
operator felt that the transaction process was a “black box” that somehow handled all
considering marketplace’s transaction without them actually knowing how. This
underlines how difficult it felt to understand it for the customer.

As in creating service blueprints or customer journeys, it is common to think only about
one successful route and the end-user’s actions as a single line of actions. When asked, all
of the users described only one successful booking flow. However, it must be noted that

44

the users were describing the process vocally, and therefore might not to concentrate on
details, but rather describe the process as simply as they can.

Only two out of five interviewees had had any changes done to their transaction process.
In these cases, the requests considering modifications to the transaction process were
communicated in text to the Sharetribe team. It both cases for the provider and Sharetribe
developer to reach a mutual understanding of the requested changes, multiple
conversations and corrections were needed. Two of the interviewees suggested that having
access to a graphical description of the transaction process would help them to better
communicate their needs.

Finding 3: The needs for modification were similar, but details varied.

The needs and requests the interviewees had considering the transaction process related
changes were similar. Common requests were canceling opportunity for buyers (3/5),
having user ID stored (3/5) and possibility for rescheduling (2/4) and deposit (2/4). All of
the interviewees expressed a desire and need to be able to change the transaction process
related emails.

However, smaller details such as parameters used in notifications, exact delays of
transitions, and collected extended data varied. Also, one of the customers had made
significant changes to their transaction process that made the process radically different
from the original and from others’ processes. These changes presented various ways of
answering to the same problems users had. Also, how the user wanted their problems to be
solved varied. For example, users had varying ideas when and where the ID could be
stored.

None of the users had regular need to make changes to the transaction process, but rather
the need arose when the interviewees had had their marketplace running for some time and
they were able to learn what was needed. All of the interviewees agreed that it was
probable that the transaction should be modified according to needs when the marketplace
was built, and there shouldn’t be much need to change it afterward. As an exception,
changes to commission percent was thought to be more regular.

This would suggest that even though some of the changes required were similar, many of
the details varied significantly. It would seem that even though many of the marketplaces
require small changes or additions, some are interested in modifying the process further to
meet complex needs that differentiate profoundly from the original process.

45

Finding 4: A change in transaction process inevitably causes changes to the
marketplace user interface.

As the transaction process defines what happens on the backend, it has to have
corresponding elements in the user interface. For example, if a possibility to cancel a
request is added, there will also have to be a way for the user to trigger the action. Another
example would be storing information in the user’s extended data - to store that
information, there must be some way to provide it through the marketplace customer
facing part. It is rarely possible to do changes to the transaction process without it
requiring user interface changes.

It is unlikely that any changes to the transaction process would be done without a
developer. Additionally, there are many parts of the process that are interlinked in ways
that require developing skills.

Summary :

The operators’ needs concentrate on understanding how transaction processes work and
how they can best use them to their advantage. The operators’ needs for transaction
processes vary, and all the details cannot be predicted. As the changes affect the user
interface and data structure, it is clear that the transaction process changes always need the
help of a developer.

4.2.2 Developers

For this research, four people from Sharteribe’s development team were interviewed. At
the time of writing this thesis, there was no possibility for people outside Sharetribe team
to modify the transaction process. All the modifications were made by contacting
Sharetribe’s support and requesting a change. Making the requested changes was the
responsibility of the person who was having the technical support sift. The changes were
done manually and no proper tooling existed, but rather only some commands to push and
pull correct files. There was no proper validation, but the validation was on the
responsibility of the maker.

Even though Sharetribe development team makes the changes to the transaction processes,
the consequenting needs for user interface changes are on client’s responsibility. When a
Sharetribe team member has updated the transaction process and pointed the suitable alias
to it, they inform the customer on the changes they’ve done, including the required
information for front-end changes.

46

The people interviewed have done varying amount of work with transaction processes.
One of the interviewees had done only one transaction process change and the most
experienced one had been developing the transaction process engine. The common
consensus was that the process was hard to comprehend in the beginning, but got easier
over time. As most transaction processes are similar to each other, learning to know the
default process helps understanding the modified versions and thus decreases the time
needed for familiarizing oneself with them. Still, the current EDN does not support fast
learning or easy comprehension.

All agreed that making changes to the processes was tiresome. This was mostly due to
inadequate tooling and the insufficient validation. There is a risk of semantic mistakes as
well as logical errors. The current validation is only partial and doesn’t validate e.g. action
parameters. Also, logical errors such as transitions to unexisting states are not validated. It
takes time and careful scrutiny to notice errors that relate to the graph’s rightful
construction.

Finding 1: It is difficult to comprehend the transaction process description

It was commonly agreed that even though the EDN offers an exact description of the
process and is not difficult to read in itself, it fails to offer an easy way to comprehend the
process in its entity. Especially the relations between different states and transitions are
difficult to follow.

One developer said that “it still requires a lot to understand, what can be included in the
process description”. They continued by saying that “if the process is very mysterious and
has to be examined more thoroughly, I have to draw it”. Another developer put it more
directly: “It is hard to get a comprehensive picture.”

The transitions and states are described apart from each other in the EDN description. To
follow the information flow from one to another, the developer has to move in the text file
from state descriptions to directed (asymmetric) graph description to find out the possible
following transitions and from there to transition description. This is found to be time
consuming and making the process unnecessarily difficult. One developer mentioned that
“the states and transitions are located in different places in the EDN, so it is hard to find
which is related to which.”

47

There was a frequent request to visualize the relations between states and transitions, as
this helps with both comprehending the process and the possibilities it offers. It was
though that it is easier to notice the relations between various states and transitions as well
as the possibilities for adding states or transitions.

One developer felt that having a graphical description would help them to understand the
process description more quickly and would help to understand what changes they could
make. Another developer wished that they could have the EDN and graphical description
next to each other. They both suggested that having a graphical description would lessen
the possibility for mistakes, as it would be easier to notice if e.g. a transition would not
lead to a state.

Finding 2: Editing transaction processes is prone to errors

As the transaction process defines the process of booking or buying a listing, it is in the
core of marketplace functionalities. A mistake in the transaction process description can
cause the transaction to fail. This means disrupting the core functionality of the
marketplace and can break down the whole process. Therefore editing the transaction
process must be done with utmost carefulness. Two of the four interviewees described
editing transaction process as “scary” due to this need for flawless execution. One
developer said that “making changes is scary, as you cannot be sure if you are doing the
right things.”

There were two common problem areas: semantic mistakes such as typos, and logical
mistakes such as adding a transition without proceeding state. The validation in the current
editing process is existent, but inadequate to catch all possible mistakes. It does inform on
most syntax errors, but not for all. For example, action parameters are not validated.

There are also many possibilities to make logical errors, which aren’t validated at all.
These include making transitions where they cannot be done, adding states without having
transition that leads to them or making actions that need parameters from other actions but
which have no access to them. On interviewee offered the following example:

A developer makes transition AB from state a to b which includes action book_slot for
booking a particular time slot. After this, they make transition BC from state b to c where
they include action calculate_booking_cost that calculates the cost of this booking. After
this, in transition CD from state c to d, they make an action stripe_create_charge that
makes a payment with a payment provider called Stripe, which needs the result of action
calculate_booking_cost to function. Later, they add transition BD from state b to d that

48

skips the state c and therefore transition BC, which includes action for calculating the
booking cost. Therefore, the action for creating a Stripe charge cannot function.

Finding 3: Customer’s awareness of their processes varies

As operators make requests for transaction process changes, their awareness of the process
and its implications vary. In some cases, operators are not aware that the problem they are
encountering is related to transaction process. Rather, they contact support with a problem
in mind and the technical support person connects this to be related to transaction process.

This kind of requests take time for two reasons - they require communication with the
customer to make sure that the problem has been defined correctly and they also require
work to discover what solutions are possible. At the other end of the spectrum are
customers that are familiar with the EDN description and request exact changes to the
transaction process. This communication work takes approximately half of the time needed
for a change, excluding the time that it takes from the customer to answer inquiries.

One developer described that most problems in communication were due to the fact that
“the customers do not know their own process too well” and “they do not know how
changes affect”. They suggested that visualizing the process could help the users to
understand their process better. They noted that some of the customers had been provided
with process descriptions previously, and these customers were able to talk with exact
terms.

Finding 4: Developers need to know what parameters are required to user interface
changes

After a new transaction process has been released to production, the front end developers
need to know the required parameters and transitions to make UI changes. Having access
to this information is crucial for the front end developers to correctly build their user
interface. To be aware of the possible changes, the developers also require information on
what version of the transaction process they have in use.

One developer complained that “the actions and their parameters have not been
documented too well”, even though they are required in almost every change.

49

Summary:

The developers’ needs concentrate on understanding and learning how the transaction
process works, learning how to best use it, finding ways to effectively communicate with
the operators and being aware of the changes and how they affect the front-end.

4.3 User sketches

As one of the goals was to make the transaction process more understandable and
discussable, it is of utmost importance that it is understood how users comprehend the
process. To gain further understanding on how the users model the process or how they
think about changes in it, four customers were asked to draw their own process to us.

The users consisted of two programmers, one marketplace operator and one marketplace
product owner. The task was kept simple. First, it was explained to the users what is meant
by the term “transaction process” and what is included in it. After this, they were asked to
draw down their own marketplace transaction process. Three of the interviews were
conducted locally and one by using video call. The user who was interviewed by using a
video call was given the task and had prepared the sketches beforehand.

Figure 10. User 1: Marketplace operator.

50

Figure 11. User 2: Developer.

51

Figure 12. User 3: Marketplace product owner and developer

Figure 13. User 4: Marketplace company’s CTO.

52

There are certain similarities in all of the sketches.

1. Timeline is on the vertical axis

In three out of four cases, the timeline is depicted to be vertical. The events are listed from
up to down in chronological order. Sometimes there are multiple lines for different actors,
but the basic timeline composition stays the same.

2. The users’ actions are central

The users’ actions are depicted central in all of the drawings. In all of the cases, the actions
are depicted as text describing the action shortly in natural language. The descriptions
varied from one to ten words. The mode was two words and medium three. In three of four
cases, the actions were depicted as nodes to which and from which the arrows connected.

3. The actions are connected by arrows

The actions were connected by arrows or lines in all of the cases. The arrows depicted the
flow of the actions and were always directed to one direction. In one case of the four, the
user actions were connected to the arrows instead of nodes.

4. Technical details are not included

In none of the cases, any technical details were mentioned. The closest mentions were
mentions about filling online forms or the money being transferred. even though many of
the actions revolved around technical components such as authentication and user interface
components to execute actions, they were not mentioned. Everything happened “on the
background”.

Other observations

Two of the users referred to different user types with icons positioned to the top, and
stacked actions to lanes beneath the icons depicting the actor. In the two other cases, the
actors were not unequivocally mentioned, but could be deducted from the context or had
mentions in the text used in drawings.

In all but one of the cases the sketch included only “the best” route. This means that the
drawer had chosen to depict the ideal route for their marketplace and not to include other
options, e.g. routes where the seller or provider would not answer the buyer.

As one of the interviews was done on video call, the user had had a possibility to prepare
by drawing the sketch beforehand. This particular sketch (Figure 10) includes all of the

53

possible routes instead of only “the best” route. Therefore, it can be speculated that the
amount of detail was connected to the amount of time and preparation the users had had.

The technical implementation was referred to, but no technical details are mentioned. The
technical aspects are seen through actions conducted on user interface components
(“Accept”; “Answers the message”; “Confirm booking”). There is only one actual referral
to how the actions are executed (“answers with email”) and in this particular case, the
components used were not related to the marketplace’s user interface. The users seem to
expect that information on how the actions are executed or what happens in the
background is not needed in the sketch. This might be again due to the limited time or to
the fact that the users did not think of the transaction process from technical perspective
but rather as “customer journey”.

The most noted interactions are the messages the marketplace users send and changing the
transactions status. There are no notions on notifications considering these changes but
rather their existence is implied (e.g. “wait for confirmation”; “reminder to answer”). The
notifications are expected to be related to actions and not in need of separate mentions.

There are only few mentions of automated events such as “money is transferred” and
“reminder to answer” or “reminder to report”. This is probably related to the previous
three observations. The users did not include how actions happen but expected everything
to work out somehow and concentrated only on the customer journey.

As a final observation, none of the sketches was very complex, but they were all relatively
simple, including only three elements: The action, the direction of the action flow and the
actor.

The users spend approximately ten minutes on the draft, excluding the user who had done
the task beforehand. Three of the users did the sketches by hand and one on computer by
Power Point. Drawing the sketches in a short time by hand affects level of detail and
absence of illustrations. The task that the users were given was to “draw your transaction
process”. The transaction process was described as “all that happens between the seller and
the buyer, including but not only booking, conversations, and money transfers. This has
definitely affected what has been selected to be put on the sketches and the level of details
in them.

54

4.4 Existing user data

Within Console there is an existing view for editing email templates. This view consists of
a listing of the existing templates, a preview function and an HTML editor for editing the
templates. The usage of this view has been studied by using Hotjar, a user tracking
software that offers heatmaps, visitor recordings and more (Hotjar, 2019).

In the email template editor the user can edit the existing emails by editing their HTML.
The company offers an HTML editor in console with basic validation. However, by
following the visitor records, it was discovered that most users did not use the HTML
editor as expected, but opened the editor and copy-pasted the HTML from somewhere
outside the view and only saved it in the editor. The common way to use the editor was to
copy some information, e.g. context variables or content text, from the existing templates
and pasted this to a file somewhere else. After this, the users pasted the text to email
template editor, replacing the previous text.

From this behavior it can be deducted the users were more comfortable in using their own
HTML editors and using the template editor only as a tool for submitting the changes. It
can be assumed that as professionals, the developers have existing ways of working and
are used to work with their own tools.

55

5. Design

5.1 Job stories for design

Based on the user interviews and interviews within Sharetribe’s team, the following job
stories were identified. The job stories are in order of importance.

1. When I am developing my marketplace purchase flow, I want to be aware of
what transaction processes I have in use, so I can manage changes in my
marketplace.

This story is bringing forth the basic need of informing the marketplace operator and
developers on what transaction processes and versions they have in use. As there is the
possibility of having multiple transaction processes, the user should also be aware of what
transaction process version and aliases they are using. This helps them to understand
possible changes in their marketplace and development processes.

2. When I’m planning on customizing the transaction process of my
marketplace, I want to understand how my transaction process works, so I
can understand what happens between marketplace users.

This story is focused on the need to inform the user how their transaction process works at
the moment, what is included in the transaction process, and how it works. This should
give the Sharetribe team, operators and developer a common ground on talking about the
transaction process in use and help them to understand each other. Having the transaction
process description available also helps the operators and developer check if changes have
been done correctly.

3. When I'm designing my transaction process, I want to understand my options
and best practices, so I can get an idea of what's possible and what would
work for my marketplace.

This story aims to bring out the problem that marketplace operators and developers are not
completely aware of their possibilities when it comes to making changes to their
transaction process. As customers are not aware of the different functionalities and
possibilities that transaction process engine offers, they might not be aware that
customizing the transaction process might solve their problems. Answering this story gives
the operators and developers an understanding of how the transaction process can be edited
and how to do it.

56

4. When I'm implementing a client app, I want to know the parameters of the
API call to initiate a transition, so I can make the correct API call from the
client.

This story aims to bring out the more technical need of informing developers on the
technical information they need to make changes correctly in the marketplace user
interface.

5. When I want to change the content or appearance of emails sent as part of the
transaction process, I want to make edits and see the results immediately, so I
can control the quality, outlook, and accuracy of the emails sent.

This story brings out the need for being able to modify and control the emails that are
related to the transaction process.

6. When I’m developing my marketplace, I want to customize my transaction
process, so I can answer to my user needs better.

This job story is a high level story aimed to answer the need for customizability.

6a. When I’m customizing my transaction process, I want to add all the
interaction possibilities and functionalities I’ve planned, so I can better answer
to my users’ needs.

This story describes how the users have varying needs on how they wish their marketplace
to function. These needs concentrate on their wish to create interaction possibilities to the
marketplace customers and providers. The functionalities again include actions such as
storing information about the transaction.

6b. When I’m customizing my transaction process, I want to be sure that my
process is error-free, so I won’t break anything when deploying the changes.

This story describes the user’s needs to make sure that the changes they make do not break
anything in the existing marketplace.

57

5.2 Versions for iterative building

5.2.1 Listing processes, versions, and aliases

Figure 14. Transaction process listing

The minimum valuable product that would bring additional value to the customers would
be one that satisfies their immediate needs. As there is an existing process on updating the
transaction processes, the product should concentrate on the problems that are not related
to editing the process itself. As the users receive customized transaction processes, they
still have to do the front-end customizations by themselves. For successfully managing
their marketplace customization and process changes, the users have to be aware of what
transaction process they have in use and how to use them. This design seeks to answer the
job story 1.

58

To answer the users’ need for information considering their transaction processes and how
to use them, a documentation collection was made and published under
Sharetribe.com/docs. This documentation consists of a background article and series of
how-to guides. The background article sheds light on what is transaction process, what
components it includes, and how to best take advantage of it.

A view including transaction process listing with aliases and versions was added to
Console. The goal of this design is to give the user the possibility to browse through their
processes and their versions. The user is able to see the process name, version and possible
aliases with one look. The process date, notes, and process transaction are additional
information that give the user a better understanding of when and why the process is taken
into use, and how many transactions have been started with this process version.

The information needed to make a distinction between transaction processes are version
numbers and aliases. It is common to have one to two different transaction processes, each
containing multiple versions. At the time of making this thesis, the number of existing
versions was between one to ten, but as the marketplace gains age, it is probable that the
number might be in tens or hundreds. For customers, it is important to recognize which
versions they have currently in use - in other words, which versions are pointed by an
alias. Additionally, it is important to know if the latest version is been pointed to, as this is
usually the version that is wanted to be taken into use. The versions are distinguishable
from each other by the version number and creation date.

5.2.2 Graphical representation

Motivation and goals for the design

Most of both operators’ and developers’ needs regarded being informed about the
transaction process of their marketplace. These needs were related to understanding how
their transaction process works or understanding how the transaction processes work in
general. This includes how the transaction process defines what is happening between the
marketplace users as well as what actions are taken at each step of the process (Job story
2). Similarly, the users were in need of understanding what is possible to achieve by
modifying the transaction process, and what are the best ways to achieve the changes they
need (Job story 3).

These problems were approached with two different solutions. One is to offer the users
general information of the transaction process and its functions in a written form. The

59

second one is to offer the users a graphical representation of the transaction processes they
have in use.

The background documentation was added to Sharetribe Flex documentation and includes
information on the transaction process, its components and how to change it. Additionally,
how-to guides were added to give examples of how to use the processes. These include
complete examples on how to use the transaction process and, e.g., guides on how to
change transaction process setup, how to change the transaction process type, and how to
add functionalities (such as custom prizing).

The graphical descriptions were added to Console and they are accessible through the
transaction process listing. The view includes a visualization of the selected transaction
process version and an information container offering additional information about the
selected transition. The graph is designed to inform the users how their transaction process
works and from what kind of components it consists of. The information container
includes information about the actors, notifications, delay transitions, actions, and
parameters. This will offer the user additional information on how their process works and
also information needed in API calls (Job story 4).

Additionally, the design helps Sharetribe’s support and sales. The support has easy access
to see how the client’s transaction process looks like and how it works, which offers
valuable information useful in support tasks. The sales team has the possibility to show the
client or a possible client how the transaction process looks like and use the visual
representation to explain the components used in the process. This helps the sales team to
communicate the value of composable transaction flow.

The drop-down navigation enables the users to quickly navigate between different process
versions, both customers and Sharetribe’s support are able to see differences between the
graphs. This makes it easier to recognize changes in the process, which helps on
discovering possible errors or helps support to track possible changes in the process.

Design

The graph is designed to convey information at a glance. It emphasizes the connections
between the different states and relations between states and transitions, something that the
EDN description clearly lacks in communication. As the relations are clearly stated,
following the graph and flow of actions doesn’t need any particular skills or knowledge.

As EDN is more technical oriented description, the graph is meant also for more business
and process oriented viewer. However, the graph corresponds to the data model to avoid
confusion in the development process. The terminology and graph elements are in line

60

with the EDN, even though other terminology might have had more natural feel to it, and
could have helped faster recognition for people who are not familiar with process
modeling. This helps the developer and operator to reach common terminology and mental
model of how the process works. It will also help the Sharetribe’s support to recognize
possible changes and errors in the customer’s processes.

The graph is designed to decrease the time that is used to comprehend the current process
structure. The user can easily see what actions the marketplace user can take in each state
and what are the overall possibilities for a transaction to take. This helps with discussions
and planning the process as the users do not have to keep in mind the process steps, but
can use their cognitive capacity on creating new. It is easier for a developer experienced
with transaction process descriptions to see possible modifications as they affect the graph
form

Being able to visually try out possibilities also decreases the possibility of mistakes. From
a graphical description, it is easy to recognize if a transition doesn’t have a following state
and therefore an arrow ends in empty space. It is also simple to notice if there is no arrow
leading to a state. This will help in the development phase to plan the process and to notice
mistakes.

Functionality

To help the user to acquire additional information about the process, the user is able to
click transitions, causing information to appear to the right side container. In this way, the
user is able to discover relevant information about that exact transition in compact form.
This information includes the actor for the transition, the actions, required and optional
parameters, notifications, and delay transitions. This information (apart from actors) is not
included to the graph itself for the sake of clarity, but it is important for the user to be able
to understand the functionality of the process. The data in the right side container is
divided under subtitles. This reduces the cognitive work as it is easier to memorize where
certain parameters can be found and reduces the need to look for needed information.

The data presented on the right side is also essential information for implementing possible
UI modifications correctly. As the relevant information for a single transaction is put into
one place, the developer no longer has to scroll through the whole EDN to find the
relations between transitions and states or corresponding action parameters. This makes
working with the EDN faster and also less wearing. Showing the transition details in the
container supports discovery, insights, and creation especially when the graph is used
while making changes to the EDN. The EDN groups different factors in the transaction
process description according to type - by status, transition or notification. However, when
planning the process, is more natural to think about the process according to its flow. In

61

this case, the user plans the next transition and what actions happen at this transition. For
example, when the user plans that the next step will be canceling the transaction, they also
decide what notifications are needed at this state and what actions must happen so that the
cancellation is complete. In the same way, verifying that all is as it should is easier when
the information is collected according to transition, not the type.

Figure 15. Transaction process graph and details

The graph

The transaction process is described as a directed graph in the data model. This means that
there are certain limitations on how customers can build their transaction process.
However, it is technically possible that the graph is of any width and length the customer
has build the process to be. It is more likely that the graph gains more length (more steps in
the process) than width (more alternative options in the process) as for complex
alternatives it might make more sense to create another transaction process. The page has
been created so that it can continue freely vertically but is divided into three columns
horizontally. The graph itself can be panned and zoomed in to. By default, the graph is
fitted to the reserved space.

62

As the user research showed, most of the customers were comfortable with “boxes and
arrows” kind of description when it comes to process visualization. However, the current
visual process description was described as intimidating. Therefore it is possible that in
this case, the experience of being intimidating is due to the style, not the elements. The
user research revealed that the important factors in the visualization are.

1. Timeline is on vertical axis

2. The users’ actions are central

3. The actions are connected by arrows

4. Technical details aren’t included

It is plain that the visualization should not include excess elements but only those needed
to clarify the process. Therefore, the graph is designed so that the most important
information is pushed to the front and emphasized. This information includes the
transitions, clearly stated user actions and the flow of actions. To prevent information
overload and to keep the visualization uncluttered, the technical information is presented
only in the right side container

Apart from the user research, another motivation for using a graph as a visualization is the
easiness of implementation. The graph is easily made from the EDN description and
corresponds it completely. In the directed graph notation, transitions are depicted as
arrows - mathematically called as edges - between states. This is how most libraries used
for rendering directed graphs function. The natural way for people to think user actions in
not to think for them as arrows, but as points where arrows leave from. This causes a
conflict between two models of thinking.

During the design process, it was also considered if the statuses should be removed. This
would have been technically very difficult, as most libraries that are used to render graphs
are tied to nodes and edges and changing this would require a great amount of work. As
there was no clear preference between the interviewed customers between the models with
statuses and model without statuses, it was decided to include both states and transitions
(nodes and edges) to the visualization.

The details are situated on the right side of the graph on the same level. In this way, the
user can see the details at the same time with the graph. The container is sticking to the top
so it is visible even when the page is scrolled down.

Help on the view is offered on the right side. This includes information about the graph
and its legend. There are links to background information about transaction processes and

63

Transaction API references. This help will be covered by transition information container
when a transition is selected. The transaction information container includes help texts for
actions, parameters and delay transitions. These helps are accessible by hovering over the
help icons next to labels.

5.2.3 Editing the EDN in command line interface

Motivation for the solution

At the starting time of writing this thesis, all modifications to transaction processes were
done by Sharetribe Support team. If a customer wanted to change something in their
transaction process, they contacted Sharetribe Support, requested a change and waited
delivery. To offer the users a possibility to edit the transaction process, two options were
considered: a visual editor and offering the developers the possibility edit the EDN
directly.

In section Existing user data we considered the data that was acquired from previous
development phases. In this research, it was noticed that even though the company offered
an editor for editing email templates, the users preferred to use their own tooling and the
editor remained mostly unused. This was most likely due to the fact that developers have
their own tooling that they are accustomed to use and prefer to use for development
purposes. Usually these editors include a set of features specific for development work,
and building those tools to Console would not make sense. From this observation it was
deducted that offering an editor for EDN in Console would meet a similar destiny.

The decision to let the users use their own tooling for editing the EDN was backed up with
the notably lower amount of resources that would be used compared to creating an editor
with graphical WIMP interface. As Sharetribe is, as a company, in a state in which the
amount of features is highly important for the functionality of the product, opting for the
fast and easily made solution is a sensible choice. Directly editing the EDN is the least
restricting solution for enabling process changes, giving the users freedom to make
changes as they wish.

In user interviews, the developers expressed needs related to learning how the transaction
process works and communicating with the operators about the desired changes. When
editing the transaction process was in question, the most pressing problems were the lack
of validation process and lack of information that prevented them to get started or made
starting feel difficult. The editing itself was not considered difficult, but rather making sure
that the editing process was done correctly.

64

Keeping the editing process separate from the Console also prevents the possibility of
people without required understanding trying to make modifications. As making changes
to the transaction process always goes hand in hand with the need for doing changes to the
UI, development resources are needed almost in all cases when making changes. This
supports the decision of limiting editing to developers only.

The interviewed operators agreed that they would rarely have the need to make changes to
the transaction process after the process had been modified for the marketplace’s needs.
This also supports the decision that the marketplace operators don’t have to have a way to
modify the transaction process without the help of a developer.

The solution background

Editing the transaction process in a local command line tool offers a solution to the job
stories 5 and 6, the need for customizability of the transaction process and its notifications.
The job story 5 includes customer’s need to be able to modify and test transaction related
notifications. The job story 6 identifies the customer’s need to modify the transaction
process of their marketplace to meet their customer’s needs. This includes being able to
add functionalities and interactions to meet the needs, and being able to implement them
correctly.

The process should also support stories 2, 3 and 4, the needs for information sharing and
learning to work efficiently. The job stories 2, 3 and 4 identify the needs for understanding
how the transaction process works and how it defines the action possibilities in the
marketplace. These jobs concentrate on the user’s ability to understand the process and its
components, and understanding the possibilities it offers.

The targeted customers are either professional developers or teams including professional
developers. In creating a solution for these users, the main concern is to use tools that they
feel comfortable to use in this context. Developers have various working habits commonly
used within to the field. There are tools, ways of receiving and distributing information,
and ways of learning that are generally adapted within the profession. To create a tool
useful and adaptable for these users, it should resemble the existing working habits.

Solution description

Developing Flex happens on local environment. The developer is free to use any
development tool or editor they wish. The templates and updates are pulled to their local
development environment and the changes made are pushed back to Flex backend. Using a
command line tool for editing transaction processes naturally fits this sequence of actions
while the user is able to use their own development tools. The command line tool adds a

65

supportive element to the use flow. It is common for developers to run programs they use
or have built and execute commands directly from command line.

Not only does a command line tool resemble the existing working habits, it offers a highly
effective and flexible way of working. The command line is an effective tool, enabling the
user to run programs, do modifications and navigate using only short text commands. The
developers are able to use their own tools and methods of working with the assistance of
the tool. It brings no limitations or boundaries to what one is able to do. This is highly
important when it comes to the value proposition of Flex as a product: flexibility is the
core of the product. Almost any graphical tool would come into its way or become highly
complex in trying to offer flexibility.

The editing flow will resemble the editing flow that the company technical support uses at
the moment. The editing process in command line tool will include a verification process
to prevent and expose errors. Even though the EDN was not felt to be too difficult to
understand, a plan was made to make it simpler to better suit the skills of an junior level
developers. This included changes to the process description itself and better
documentation.

Design principles

The goal of developing the command line tool for editing transaction processes is efficient,
flexible and error-free customization of the processes. To reach these, in this thesis the
same usability principles as Nielsen (1993) defines in his book Usability Engineering are
used . These usability principles are learnability, efficiency, memorability, low error rate
and user satisfaction.

The learning experience in enhanced by providing the users examples of transaction
processes that can be viewed both in EDN and graphical form, offering help in the “help”
section as well as in documentation, and supporting learning by doing. Learning by doing
is supported by giving instant feedback in the form of graphical process descriptions,
rendered notification templates, and process simulations.

The defining feature of command line tools are their efficiency. This tool offers vast
flexibility to the developers by giving them free hands on customizing the process (within
the scope of used technology). The users are free to modify the processes, their aliases and
push and pull them freely. As there is no graphical interface, the commands are in text
form, and even complex tasks are possible in just a few rows.

The memorability aspect is addressed by using commands close to natural language and
having the helper function readily available. The process simulation, graphs and ability to

66

compare processes to each other help lowering the error rate. This is furthermore
supported by process validation command, that validates the process.

Altogether these aspects offer the users efficient, flexible and error-free process
customization experience that will result in user satisfaction.

Solution functionality

The CLI tool is installed by using npm package manager. The tool allows the user to pull a
remote process to a local disk and push process from local disk to remote. Additionally, it
gives tools for listing and examining existing processes, modifying them and creating new
ones. Also creating, updating and handling aliases is possible. While modifying the
processes, the user is able to explore them by comparing one process to another, to print a
process graph, simulate transitions and transactions and validate processes. The use flow
can be divided into four different phases: Learn, explore, modify and validate. Ideally the
first time user goes through all the phases, and a recurring user can start directly from the
part they need to.

In the learning phase the user is given the opportunity to learn how the transaction process
is constructed and how it functions. This is done first and foremost by informing the user
about their possibilities by offering the information and examples. The command line tool
is supported by extensive documentation, including an architectural decisions document,
how-to-guides, examples on how to customize the transaction processes and examples of
different types of transaction processes the user can compare and try out.

The motivation for offering a selection of ready made templates for transaction process is
to give the user an understanding of the possibilities that the process offers and also show
them the best ways to implement these functionalities. The user can open a selection of
transaction process templates, view them in EDN and graphical form, and this way
discover insights on how to built and implement transaction processes. By using these
examples as a basis for their own work, the user can be more confident about the quality
and lack of errors in the process they make, as the example templates have been created
and tested by the Sharetribe team.

The command line tool itself offers the user the opportunity to dive into the selected
transaction process and get further information on the transitions, notifications, and actions
it includes. The tool offers the user a listing of the process transitions, states, and
notifications. By selecting a specific transition, state or notification the user is able to view
more information on it. From transitions, the tool lists the previous and following states,
notifications, delay notifications, required parameters, optional parameters, and actions.

67

Notifications open to a new window and the user is able to see the HTML code or render
the email contents.

In the exploration phase the user can dive further in the transaction process and experiment
with it. This phase includes the possibility to make changes to the transaction process and
see how they affect the process functionality and outcomes. The user can open, view,
change and simulate any transaction process they have in use or any of the examples. In
case they wish to make changes to their own, they can choose to base the changes on the
templates given. This way user can safely get feedback on the changes they have made and
see how they affect the transaction. The user can also open the transaction graph to another
window, which will be automatically updated when changes are run.

The transaction process simulation can be used for evaluating the outcomes and changes of
the customized transaction process. The user can select any process to make changes to it,
and see how they affect the process outcome. As there are several paths the process can
take, the user must select the transitions they wish to be included into the simulation. The
simulation runs through the code and prints the process outcome. This includes the
transitions run, money transfers, commission and sent notifications and their delays. For
example, if the user wants to see how will a certain email, e.g. receipt, look like, they can
simulate the transaction until this specific transaction has been completed. Without
simulation, it would be difficult to generate a receipt with correct information in it.

To see a visual representation of the process, the user is able to open the transaction graph
to a new window. The process looks and functions similarly to the one shown in Console.
The graph will automatically update to correspond the code anytime the code is changed.
Being able to see the transaction graph helps to spot disconnected nodes (states) and to
comprehend the transaction process as a whole.

The modification and validation phases work parallel. In the modification phase the user
will make the desired changes to the transaction process. In validation phase the changes
are tested for any syntax or logical errors. Part of this is done automatically and part of it
lies on the user’s responsibility.

Any syntax errors are validated automatically. The CLI tool offers tools for inspecting the
changes that have been made and their validity. These include seeing the transaction graph
that is generated from the code as well as being able to compare the transaction process to
the previous version. Being able to compare the transaction process to its previous version
gives the possibility to quickly see the changes that were made. Also simulating the
transaction process outcomes is a way to offer feedback and aid learning.

68

Simulating the process is a way to check if all the parameters come through correctly or if
the process is using parameters that were not given on the route. For example, a state can
be accessed through more than one transition, it is possible that some actions might try to
use parameters that were given in one of the leading transition but not in the other. This
also helps to see if the notifications come on right time, if the delays are in place and if
there are any other logical mistakes.

Notifications related to transaction processes can also be edited by using the command line
tool. The wanted notification file is pulled to the local environment, edited and reviewed.
The user can view the changes locally and render the email. The user can also simulate the
transaction leading to sending the notification. This shows the users if correct parameters
have been passed.

5.2.4 Choosing the initial transaction process

Figure 16. Adding functionalities to the transaction process

69

The user requirements for different marketplaces vary, but it can be estimated that along
time certain patterns in these requirements will appear. Customers who want to rent sports
gear, bikes or cameras might have similar needs when it comes to checking the gear
condition. The customers who want to book beauty services or photoshoots might have
similar needs when it comes to customer cancellation. These similar needs will emerge
over time and amongst them it is possible to find patterns that can be used when modifying
the transaction process. The emerging of similar marketplace requirements was already
visible in the user interviews, where the customer’s wishes resembled each other.

The hypothesis behind this design solution is that a significant portion of the marketplace
requirements can be satisfied by offering readily made options or configurable “building
blocks” to the initial transaction process.

Offering an easy way to customize the transaction process, even if not to great extent but
only by enabling or disabling few basic functionalities, would help those customers who
have limited access to development resources or do not have a full-stack developer. As the
transaction process can feel difficult to approach and understand as a whole, offering an
easy starting point can inspire operators and developers to make changes that they
otherwise would not consider due to the workload.

Offering a way to configure the transaction process functionalities would help these
customers to get started with their marketplace and learn what are the exact changes they
would need to have their transaction process. Learning the exact needs of one’s customers
is a process that needs time. Therefore, it’s more likely that the more advanced and
detailed changes would happen later in the marketplace’s lifecycle, rather than at the very
beginning while establishing the business. This tool would also help the developers in the
initial phase of building the marketplace to add features quickly without worrying about
making mistakes in the process.

Solution
This design seeks to answer job story 6 about enabling the users to customize their
transaction process.

In this design, the user is offered add-on features to their transaction process. These
additional features and functionalities have been noticed to be commonly requested
amongst customers. These additional features are adding an instant booking option,
bargaining option, adding customer cancellation possibility, adding a refund possibility,
and adding condition check for the product. These are requests that have commonly risen
in customer interviews and sales calls. In the future, Sharetribe continues to collect user’s

70

wishes about the transaction process functionalities, and new additional features can be
added according to this data.

All users have a transaction process that their marketplace uses and the process is visible in
the transaction process listing in Console. Below this, the user is offered the possibility to
“Add new” transaction process.

The user is directed to a view with a graph of the Sharetribe initial transaction process. The
page includes a right side feature listing, a graph in centre and on left side information
about actions and parameters and a help section.

From the right side help section the user is directed to documentation with a collection of
transaction process templates and descriptions on how they work and in what kind of
projects they are useful. This documentation helps the user to understand the full potential
of the transaction processes and how to use them.

From the lefts side user can choose the features they wish to add to their transaction
process. Every feature includes configurations for time delays, notifications, and actions. It
is noteworthy, that all of these configurations are created by Sharetribe team beforehand,
and the user is only offered a limited amount of customizability in them. In this way, a new
branch will be added to the transaction tree. Examples of modifiable configurations are the
length of the time delay and commission percentage

This functionality is only used in the beginning of marketplace creation, and is not used
after the initial transaction process model has been modified. The main motivation is to
serve customers in starting their marketplace by offering them a low-cost way to customize
their marketplace’s transaction process and to develop their marketplace in the lean way.

Most of transaction process changes need some elements to be added in the UI to function
properly. This means that even though the transaction process is changed in the Console
and can be done without development skills, changing the UI still requires development
work. However, this tool will shorten the development time and remove the need for a
developer with a more advanced skill set. Later on when the customer wants to continue
developing their marketplace and they have better understood their user’s needs, they can
hire a development partner to make more exact changes to their transaction tree.

71

6. Evaluation
The evaluation will be done by reflecting on how well the offered solutions will solve the
research question:

What kind of tool for customizing transaction process offers additional value to operators?

The additional value is defined through the needs of the users - in this case, the operators
and developers. Their needs were researched and put into the form of job stories. Solving
these job stories and answering to the users’ needs in an effective way will bring additional
value to the operators. Based on these job stories and to the understanding of the users
gained through user stories, incremental solutions to their needs were introduced in this
thesis. This evaluation will reflect on how well the designed solutions will be able to
satisfy the users’ needs and bring the desired additional value.

Out of the designed solutions, listing of the transaction processes and aliases, and graphical
presentation of transaction processes were finished at the time of writing this evaluation.
These solutions answered to the job stories 1 to 4, and were focused on informing the user
on how the transaction processes work and how their own transaction processes work or
could work. These solutions are evaluated by reflecting how the offered solutions have
affected users behavior during the last seven months.

The job stories 5 and 6 concentrated on being able to customize the transaction process
notifications and the transaction process itself. The proposed solutions for these stories -
editing the EDN in command line interface, customizing transaction process notifications
and adding functionalities to the transaction process - were not finished at the time of
writing this evaluation. Therefore, in this evaluation, it is reflected how successfully the
transaction processes that users have built during the last seven months could have been
built with these tools. This evaluation gives as an indication of how well these solutions
could answer the users needs.

6.1 Informing customers about their transaction
processes

In this evaluation, the focus is to understand if the changes made have helped the users to
understand what processes they have in use, how their transaction process works, how
transaction processes work in general, and what parameters are needed for API calls.

72

All the job stories are related to gathering information about the transaction process. They
focus on the customers’ needs to gain information about the process. Before the
implementation of transaction process listing and graph, the only way user could get
information about their transaction process was through Sharetribe customer support or the
technical documentation accessible in GitHub, which only contained a limited amount of
information.

Evaluating if the customers’ need to understand the process has now been better addressed
by the solution proposed in this thesis, the quantity and quality of support questions related
to transaction process was observed. The premise is that the implemented solution will
affect the amount of transaction process related questions and their quality.

The Sharetribe support works exclusively through a ticketing system, which collects
emails and instant messages into topics. These topics can be sorted by date, counted and
their contents evaluated. It is possible that the implemented solution will decrease the
amount of support questions related to transaction processes as the new features will
inform the users better. Another opportunity is that they will increase, but the content will
change in quality. While people become more aware of the transaction process and the
possibilities it offers, they will also get inspired on changing it and acquiring more
knowledge. Therefore, it is not only enough to study the quantity of the questions, but also
the quality.

The new features seek to answer the basic questions considering transaction process (such
as “what transaction process I have in use”, “where does this alias point to” or questions
relating to the possibility to implement functionalities such as booking cancellation).
Therefore, it can be assumed that after they have been published, the content of the support
questions shifts to more precise or more personal questions.

Hypothesis : The amount of customer support tickets requesting for information related to
transactions process will decrease, and the quality will sift from basic questions to more
precise and development oriented questions.

Other aspect that affects the quality and quantity of the tickets is the amount of new
customer Sharetribe gains and new features published. The amount of new customers
grows, and as the customer base is rather small, the amount of work that one new customer
causes has a significant impact on the overall amount of work and tickets. Also, some new
features require transaction process changes to work, which might cause an increasing
amount of transaction process related tickets.

73

Table 4. Updates with an effect on transaction processes published during the
observation period. The solutions designed in this these are bolded.

Date Feature

February 11th Transaction process listing and
transaction process documentation

March 21st Custom prizing engine

March 26th Transaction process visualizer

April 17th Time-based availability management

July 3rd Strong customer authentication

Table 5. Total amount of tickets and transaction process related tickets

Month Tickets* Technical Flex
tickets**
(change from
previous
month %)

Transaction
process related
tickets***
(change from
previous month
%)

Transaction
process tickets
from technical
tickets

January 1,944 56 32 57,1%

February 1,879 63 (12,5%) 17 (-46,87%) 27,0%

March 2,298 56 (-11,11%) 36 (111,76%) 64,3%

April 2,035 85 (51,79%) 22 (-38,89%) 25,9%

May 1,950 87 (2,35%) 26 (18,18%) 41,1%

June 1,556 99 (13,79%) 32 (23,08%) 32,3%

July 1,802 112 (13,13%) 39 (21,88%) 34,8%

*All tickets include Go-related tickets
**All tickets that have been appointed to Flex technical support
*** Tickets that are related to transaction process, either requesting for information or
modifications related to transaction processes

74

Table 6. Transaction process support tickets and amount of customers

Month Transaction
process
related
tickets

Live
customers

Users in
development
phase

All active
customers*

January 32 10 16 26

February 17 12 17 29

March 36 14 17 31

April 22 19 23 42

May 36 23 25 48

June 32 27 32 59

July 39 28 37 65

* Active customers means all customers that have had development activity during the last
two weeks or have live sites

Figure 17. Flex technical support tickets and Flex customers

75

The Figure 17 shows that during the first seven months of 2019, the number of Flex
customers and Flex technical support tickets have increased steadily in correlation with
each other. It can be expected that the amount of work continues to rise with the amount of
customers. However, The Table 7. shows that the amount of technical support tickets per
active customer dropped steadily from 1,2 to 0,6 technical support tickets per customer.
This means that customers start less conversations with the support team.

Table 5 shows that the number of technical support tickets have doubled since the
beginning of 2019, while the number of transaction process related tickets has not changed
significantly during this period. The transaction process related tickets include requests for
information about the transaction process or any requests that require changes in
transaction processes. This might be because people are requesting less for changes, they
are requesting less for information or they have more precise requests. The latter two
might mean that the customers are better informed about how they can change their
process and are able to offer more precise information in, e.g. graphical form.

The amount of process change requests fluctuates month to month, being higher every
other month. This probably follows the natural rhythm of customers making changes and
has evened out during the second quarter of the year, likely due to growing number of
customers

Table 7. Amount of individual customers asking for support

 Transaction
process
related
tickets

All active
customers

Transaction
process
tickets per
all
customers

Individual
customers
asking for
support

Transaction
process
tickets per
individual
customers

January 32 26 1,2 15* 2,1

February 17 29 0,6 16 1,1

March 36 31 1,2 12 3,0

April 22 42 0,5 15 1,5

May 36 48 0,8 16 2,3

June 32 59 0,5 18 1,8

July 39 65 0,6 24 1,6

* The amount of individual customers is greater than amount of active customers as these
exceeding customers were not considered active as they didn’t have API activity

76

Table 7 shows that the amount of technical tickets per developing customer has decreased
while the amount of transaction process related tickets per developing customer has stayed
relatively the same. While the amount of active customers has increased steadily per
month, the amount of individual customers asking for support per month has only slightly
increased.

This is most probably due to the fact that transaction process changes are something that
are executed during the development phase and not regularly customized. The data shows
that most of the individual customers request transaction process changes during a period
of one to two months and the stop. Therefore the customer group requesting changes
renews periodically.

However, the amount of individual customers asking for transaction process changes
should still increase in relation with the amount of active customers. Even though there is a
slight increase, it could be assumed that the amount should be higher. These results lead as
to the same possible scenarios as previously. It might be possible that new customers don’t
request transaction process changes, or they do not request for help from support. The
former is supported by later findings that show that several new customers don’t make
changes to their transaction process. To verify these hypothesis, the support tickets per
request type are examined.

Table 8. Flex transaction process requests by type

Ticket type January February March April May June July

Requesting for
information

16 12 11 5 8 3 15

Commission %
change

0 3 2 1 4 0 1

Email template
change

1 1 2 7 4 9 7

Add protected
data

6 1 1 5 3 2 1

Change process
model

3 4 3 1 3 3 3

Add a feature to
the process

0 2 1 5 3 1 8

Edit process 7 13 11 6 8 8 10

77

Figure 18. Flex transaction process requests by type

Table 8 and Figure 18 show that the amount of tickets asking for information about
transaction process has decreased notably. This gives strong support on that the work done
on informing customers on transaction processes has worked. This is the likely reason for
why the amount of transaction process related tickets has not increased as the amount of
technical support tickets has. The transaction process and version listing was published in
early February, and the graphical representation was published in late March. In the graph
it is possible to see a decline of tickets requesting for information from January until April,
where there is a small increase and again decrease in ticket numbers. There is a spike in
information and feature updates in July. This is because the strong customer authentication
was taken into use, causing mandatory process changes for many European customers.

In Figure 18 is visible that the requests concerning process type changes, commission
changes and updates on protected data have stayed low and steady during the research
period. Request for changing transaction process notifications have increased. This might
be due to the fact that customizing the notifications according to branding is a basic change
that many wish to do. The process change requests have peaked in February to March and
then decreased slightly, slightly increasing from April forward. This indicates that either
the new customers have not asked for process changes or their request are more exact and
better informed.

78

To be able to find out if the customers have asked better informed questions, the
qualitative data from the support tickets is examined. The customer tickets considering
transaction process changes send during the period January to July. The evaluation was
done monthly, and the tickets were evaluated against the following question: “How well
the user is aware of the basic functionalities of the transaction process?” The results were
divided into three categories: Poor (equivalent of value 1), satisfactory (equivalent of 2),
excellent (equivalent of 3).

Tickets that were evaluated as “poor” showed the lack of using correct terms when
speaking about the transaction process. The question showed that the user wasn’t properly
aware how transaction processes works and how their request could be achieved.

Tickets that were evaluated as “satisfactory” showed basic understanding of the terms and
functionality of the transaction process. The customers had a basic understanding of what
they were wanting to achieve and how, even though they couldn't give technical details.

Tickets that were evaluated as “excellent” showed that the customer had a good
understanding of how the transaction process works and what is possible with it. The
customer used correct terms and visual aids in their communication, and requests were
precise.

Table 9. Evaluation of users’ understanding of transaction processes

Month Average result Characteristics

January 1,6 Asking for aliases, parameters and what is
possible

February 1,5 Basic questions are “how can I do this?”

March 2,2 Customers start to use correct terms.

April 2,5 Many people use graphs and correct terms in
their communication.

May 2,5 Most people use graphs and correct terms in
their communication.

June 2,7 Most people use graphs and correct terms in
their communication.

July 2,9 All but simple process change requests were
communicated with a graph. Many problem
shooting tickets appeared, were users asked
for help with bugs they’ve found.

79

Examples of questions from January 2019:

“How do we setup a new transaction process?”

“What’s the alias for the default behaviour?”

“It's possible to build new transaction processes from the console?”

Examples of questions from June 2019:

“Is it possible to remove transition "review-1-by-provider" from the process
“test-process-1?”

“Could you add action that allows sending protected data in transitions "instant-booking"
and "booking-request" to transaction process on "marketplace-site-test" for me

“Please update the transaction process for us using below diagram. Let me know if you
have any questions on that.”

During the first period support requests varied from simple questions searching for
information to questions inquiring if certain changes were possible, and if so, how they
could be done. The questions showed that the user lacked basic information on their
transaction processes - what processes they have in use, what aliases they have and how
they function. The requests made were often ambiguous, as the users were not able to use
exact names for e.g. transitions.

During the second quarter support most requests included clearly defined questions that
showed that the customer had an clear understanding of how their transaction process
works and what they want to change. User regularly used graphical or EDN descriptions of
their process to communicate their change requests. Most user were able to provide exact
names for transaction process elements such as transitions. The customers were ready to
discuss workarounds and approached the team with detailed process descriptions. The
conversation has clearly sifted from inquiring if something is possible to directly
requesting changes.

The Table 9. shows a steady increase in the quality of support tickets. The results show
that the implemented ways to offer users more information worked. Users have better
understanding of their marketplace processes, their details and how they work. The users
were able to find answers to basic questions on how the transaction process works and how
it can be used for their advantage.

80

From this it is possible to deduct that publishing information on the users transaction
process versions and aliases along the transaction process documentation helped to reduce
the support ticket load. Publishing the transaction process visualization helped customers
to actively develop their marketplace and to plan their transaction processes, giving them
tools to communicate the changes better.

Furthermore, the transaction process visualization is in active use when communicating
with the customers. Over half of the users used either the graphical description or the EDN
description to communicate change requests.

6.2 Enabling users to customize their transaction
process

This chapter seeks to compare what kind of transaction process changes do customers
request and how well do our solutions answer to these needs. This section evaluates how
well do the command-line interface tool and tool for adding functionalities answer to
customer needs, and if it is possible to find similarity in the users’ requirements for their
transaction processes.

Table 10. Amount of transaction process related tickets by type

Ticket type Total amount of transaction
process related tickets January
to July

 % of all

Modify transaction
process

77 33,0

Asking for information 56 23,9

Email template change 31 13,2

Change transaction
process model

20 8,5

Add a published feature
to transaction process

20 8,5

Add protected data 19 8,1

Commission % change 11 4,7

Total 234 100

81

The Table 10 shows that transaction process modification requests make up one third of all
transaction process related support tickets. These requests are unique change requests that
change the structure or functionality of the transaction process and don’t otherwise fall in
to other the categories. Examples of this kind of changes are adding an instant booking
option or a process for evaluating the product conditions.

The second most common change request is editing the transaction related notifications.
Editing these emails to correspond the marketplace branding is commonly sought out.

Changing the transaction process type or adding functionalities or protected data are
equally popular. These changes include adding readily made features and functionalities
into transaction process, for example strong customer authentication. Changing the
transaction process type means changing it to another type supported by Sharetribe, for
example from day-based bookings to time-based bookings. Adding protected data again
allows the customer to store information within transaction process.

In the Table 11 table is listed the transaction processes modifications made for customers -
these correspond to the transaction process change requests.

Table 11. Customer’s transaction processes and process modifications in order of
launch

Customer Processes Process modifications Changes to actions

A 1 No changes -

B 1 Cancellation with refund.
Cancellation without refund.

Custom pricing
Commission changes

C 1 Customer cancellation Commission changes

D 1 Simplified review process.

E 1 Instant booking.
Customer and provider condition
reports.
Customer drop-off report.
Customer and provider cancellation.

F 2 Price negotiation.
Cancellation with refund.
Cancellation without refund.

Commission changes

G 1 No changes

82

H 1 No changes. Commission changes

I 2 Price negotiation.
Disputation.

Commission 0 process

J 1 No changes. (Protected data
updates)

update-protected-data

K 3 Cancellation with refund.
Cancellation without refund.
Disputation.
Pick-up and pick-off.
(Complex processes)

update-protected-data

L 2 Instant booking.

M 1 No changes (Custom pricing
actions)

N 2 No changes Commission change

O 1 No changes. (Commission changed)

P 2 Price negotiation. update-protected-data

Q 2 Price negotiation.
Disputation.
Customer cancellation.

update-protected-data

R 1 No changes.

S 1 No changes

T 1 No changes

U 1 No changes

V 1 Instant booking.
Customer cancellation.
Pick-up and pick-off.
Disputation.
(Complex process)

W 1 No changes

X 1 No changes

Y 1 No changes

Z 1 No changes custom-pricing

AA 1 Instant booking. update-protected-data

83

Table 12. Frequency of transaction process changes made

Change For how many of 27 customers

No changes to transaction process structure 15 (55,6%)

Disputation 5 (18,5%)

Instant booking 4 (14,8%)

Refund 4

Price negotiation 4

Pick-up and/or pick-off 3

Customer cancellation 3

Review process simplified 1

Table 11 shows changes done to the process structure. This means it does not include
changes to to parameters (such as the commission percent), actions or to notifications.

The table 12 shows that 55,6% of the customers, a bit more than half, make no
modification to the transaction process structure. This means that the results indicate that
most customers do not have the need or will to change their transaction process in the early
stages of their marketplace career. This would indicate that the need for low cost, quick
changes is not significant, or that customers have not understood or willing to work for
understanding how process change could benefit them, as this would need resources from
a technical person. However, it is noteworthy that this number does not include changes in
mail templates or actions, which also require transaction process changes.

From table 11 it is possible to see that the customers that have launched later have more
seldomly made changes to their transaction processes. This means that the hypothesis that
the amount of transaction process related tickets has not increased is partly due to the fact
that new customers do not request as much customizations to their transaction processes. It
is likely, though, that when the operators gain experience on operating their business, they
realize that they have the need to change the transaction process.

Customizations such as disputation, instant booking and refund are done by 14,8% of all
the customers considered. Ifonly those who have made changes to their transaction process
(12 customers) are considered, then 33,3% of the customers have made these changes.

84

This is a considerable amount that gives us strong evidence on the similarity of customers’
needs

There are patterns on what are wanted changes, and some changes clearly arise above
others. In some cases the customers have had different ways to implement these features,
but the basic functionality has stayed relatively same. In other cases, like in instant
booking, the function has implemented in a completely same way.

The results show that a tool for choosing and adding certain features to their initial
transaction process could benefit customers, as it is possible to find similarities in the
processes that customers wish to have. The designed solution suggested that the customer
could add features such as instant booking, bargaining option, customer cancellation,
refund and condition check for the product in Console. Additionally, the user could decide
their commission percent and other configurations. These additional features would have
corresponded to 16 out of 24 (66,7%) structural changes customers have made in their
processes. However, it is noteworthy that this doesn’t include email template changes,
changes in actions or later changes in commission. If these changes are considered, the
actual number is lower.

This means that out of the initial changes, 66,7% could be answered by a tool for adding
additional features to the initial transaction process, while the other 33,3% of the processes
should have been edited with the command line tool.

85

7. Analysis and discussion
In the evaluation it was found that after transaction process listing, graphs and
documentation were published, fewer customers supports requests considering transaction
process related information were received. This implies that the customers were now able
to find the information they needed without contacting support.

The qualitative analysis showed that the customers were able to ask more informed and
more precise questions about transaction processes and were more informed on how
transaction processes could be used to solve their problems. Customers were also able to
use the right terms when referring to the transaction process and its functionalities. This is
likely due to the transaction process graph that shows the user their transaction process
details including transitions, actions and parameters. With this help, the customers were
able to discuss their transaction processes in detail with the support.

Even though the job stories noted customizing transaction process emails as one
significant user need, only 13,2% of the transaction process related support tickets
considered transaction process notification changes. In the design phase implementing a
tool for customizing transaction process emails in Console was considered, but the actual
implementation was found to to be complex and lacking the ability to answer customer
needs. As transaction process emails use parameters defined earlier in the transaction
process, validating the emails would not have been possible as it would not have been
possible to simulate the right process structure. The error margin in this implementation
would have decrease the usability of the solution and might even lead to increasing amount
of support requests. Also, as any changes to new these notifications requires creating a
new transaction process version, any change would have required updating the aliases to
point to the new version. Considering these aspects and the financial strain that
implementing this tool would cause, it was decided to not to build such tool.

Adding functionalities to the transaction process was found to satisfy one third of all the
customer needs that had been implemented during the observation period. It was possible
to identify a clear set of transaction process features that were frequently requested.

The design suggested five functionalities that the customers could add to their initial
transaction process. When compared to the processes customers had built during the
observation period from January to July 2019, these five functionalities were able to cover
66,6% of all the functionality needs. However, it has to be considered that this number
doesn’t include commission changes, changes in action or changes in notifications. It is
also likely that not all customers are satisfied with the ready made functionalities, but wish

86

to modify them to exactly to their needs. This means that it is unlikely that the solution
would answer two thirds of all the needs in reality.

The results show that 55,6% of customers make no changes to their transaction process,
except possible changes in the notifications and actions. The tool for adding functionalities
to the initial transaction process could help the users to understand the possibilities of the
transaction process, and how they could best use it to their advantage. It’s an easy start for
new customers, and might inspire those who otherwise would not make changes to their
transaction process. The tool brings additional value also by giving customers autonomy
over their transaction process and enables modifying the transaction process also for those
with less resources.

As more customers build their transaction process, it is possible to collect more data on the
functionalities that are popular and develop the offering of readily made transaction
process functionalities even further.

The command line interface for editing the transaction process EDN enables full
customizability for all customers. The command line tool is especially useful for
development partners who build transaction processes regularly. Together with the tool for
adding functionalities, these enable a wide range of customizability for users with different
resources and skills.

The users interviewed for the user research were early stage customers and therefore early
adopters of the new product. These people have in common strong background in business
or technology and often a competent technological lead in the team. It is unclear how well
the needs of this group will correspond the larger customer base. It is likely that some or
even most customers will not have as competent skill base.

The thesis evaluates how well the customers needs are and would be met by the solutions
presented. The actual realization of the customization tools were not in the scope of this
thesis and therefore no user evaluation was done

From resource point of view, implementing these changes at the moment of writing this
thesis or in the near future might not make sense, as the workload on these changes is
significant, but the actual improvement from customer’s point of view is limited. However,
when it comes to user experience, these changes could give the operator a sense of
autonomy, especially for those without development resources.

All in all the process of collecting user needs through interviews and user sketches to
categorize them into job stories and designing solutions based on this information has
proved to be accurate process for designing efficient solutions to complex problems.

87

In section 2.1 Designing complexity, Hevner (2004) suggested addressing difficult design
problems by dividing the problem into smaller subproblems and solving these iteratively.
This was leading theme in the process presented in this thesis. Job stories were chosen as
the tool to divide the user needs into smaller substories, and the final design was built in
four iterative phases.

This approach allowed us to chunk the problem into more approachable pieces, and it was
possible to find out two almost completely distinct problems areas: informing the
customers about transaction processes and enabling them to customize their own process.
This is in line with what Zmiro (2017) suggested in section 2.6 Case study: Intercom Chat
Bot.

Visualizing the transaction process was one of the main challenges in the process. In
section 2.1 Fitzpatrick (2016) noted that when users mental models match how the actual
system model works, people find the user interface intuitive. This was basis on doing the
interview with user sketching presented in User research section. These sketches provided
us with information on users mental models and helped understanding the best practices
when visualizing the process.

The user sketches revealed that three out of four users used flowcharts and one user used
role action diagram - both introduced by Aguilar-Saven (2002) in section 2.3 Process
modelling. It seemed clear that the users used process models that they had encountered
most in their own area of work. The user using role action diagram was from operating
position, and two of the three users using flowchart were from technical background.

The main takeaways from the section 2.2 Information visualization were from Keim et al
(2018). These suggested that only relevant data should be represented and it should be
grouped so that it creates meaningful entities and the information should only relate to the
task at hand. As the transaction process EDN only shows information by type, the graph
was to show information by state - as most tasks were related to understanding how
specific transition works. This provided a natural way of grouping and showing the
information.

In section 2.4 Developer experience Bohwmick (2018) advices to use tools that are already
familiar to developers and warns from assuming that a graphical interface is necessary.
This, together with his notion developers “can handle more complexity in their products
than other users we might be used to designing for”, were strong indicators that using
command line interface could be a suitable design solution. The user interviews reassured
that the developers are familiar with command line use, and felt more need for visual
explanation of the process than for visual components for the actual tooling.

88

In the section 2.6 Donhue and Shepard (2018) explained that they decided to go against
WIMP tool as it would become overwhelming. Similarly, in section 2.5 Mathieson and
Keil (1998) suggested that the tool should also match the complexity of the task. These
notions led to using CLI as a primary tool for transaction process customization, as it
would fit the complexity of the task and would offer the users the desired flexibility.
Additionally the visual interface for choosing the initial transaction process was supported
by Davis (1997) finding that users were most comfortable with the interface style they
were familiar with. In this way, both developers and operators needs were met.

89

8. Conclusions
The research question and the sub questions were defined as follows:

What kind of tool for customizing transaction process offers additional value to operators?

1.1 What kind of needs do marketplace operators have considering customizing
their marketplace’s transaction process?

1.2 What kind of needs do developers have considering the tool for customizing
transaction process?

Operator and developer needs were translated into job stories. Answering to these job
stories in an efficient, usable and scalable way will bring additional value to marketplace
operators. These job stories were divided into two groups: those considering information
sharing and retrieval, and those considering transaction process customization. Incremental
solutions were designed to answer these needs. It was discovered that the tool consisted of
several incremental solutions that all brought additional value to the customers.

From these solutions, creating a listing of transaction processes and their aliases, and a
graphical description of the customer’s transaction processes were implemented. The
designed solutions for modifying transaction process notifications and transaction
processes were designed but not implemented during the time of writing this theses, but
they were evaluated against the customers’ implemented transaction processes.

Job stories 1 to 4: Information sharing

The job stories one to four reflect the customer's’ need for information. The needs
concentrate on the need to know what kind of processes the customer has in use, how they
work and what are the best practises for customization. The solution designed to answer
these needs consists of three parts: transaction process and version listing in Console,
graphical presentation of customer’s transaction processes with technical information on it,
and an information package at sharetribe.com/docs including information on what is
transaction process, how it works, how to take advantage of it etc.

The results show that the amount of tickets requesting for basic information declined over
the observation period. Also, the amount of question asked per customer has been in
decline. After the designed solutions were published in early February and late March, the

90

amount of tickets requesting for transaction process related information has declined
steadily. This indicates that the users have been better informed.

The qualitative analysis of customer support tickets showed that customers were able to
ask more informed and more precise support questions after the transaction process listings
and graphs were published. The analysis showed that customers were more aware of the
transaction process functionalities and terms, and were able to recognize their possibilities
and problems better.

Considering the results against the evaluation criteria presented in section 3.4 (“the
quantity of the tickets should decrease while the quality should increase”), it is possible to
say that the designs were successful.

Job stories 5 to 6: Transaction process customization

The job stories five and six reflected the users’ need to customize their transaction process
related notifications and the transaction processes itself in a flexible and error-free way.
The solutions designed to answer to these needs consists of a tool for editing transaction
process related emails, a tool for choosing and adding functionalities to user’s initial
transaction process, and a command line tool for freely editing the chosen transaction
process.

The results showed that even though most customers made no changes to their transaction
processes, there were clear regularities in the functionalities customers implemented in
their transaction processes during the observation period. 66,6% of the customers’
implementations could have been accomplished with the tool used in Console. The rest
33,3 could have been created in command line tool.

The tool for editing transaction process related notifications would have answered to only
a small amount of transaction process related requests. However, it would not have worked
too well with these requests and would not have met all the customers’ requirements.
Therefore, the solution could be discarded and the modifications should be done by using
the command line tool.

Considering the results against the evaluation criteria presented in section 3.4 (“The
hypothesis is that it is possible to find similarities in the customers’ requirements
considering their transaction process. The tool would be successful, if it could satisfy half
of these needs.”), it is possible to say that the designs were successful.

91

The user research and categorizing the user needs by using job stories as a framework
proved to be an efficient process for designing effective tools for the selected purpose. The
evaluation proved that the tools were able to answer to the users needs. However, the
evaluation was not able to answer how usable to the tools were, or how the users felt about
using the tools. Also, the actual rate of use and the iterative improvement process were left
out.

In further studies, the use rate between the graphical tool and the command line tool could
be evaluated to better understand users’ preferences. For future studies using similar
process,usability evaluation would be beneficial and offer more in-depth information about
the efficiency of the design process as well as confirm the design applicability.

92

References
Aguilar-Saven, R. S. (2004). Business process modelling: Review and framework.
International Journal of production economics, 90(2), 129-149.

Alsever, J. (2013). The “mega trend” that swallowed Silicon Valley. CNN Money.
Retrieved from
http://tech.fortune.cnn.com/2012/10/03/the-mega-trend-that-swallowed-silicon-valley/

Basselier, R., Langenus, G. and Walravens, L. (2018, September). The rise of the sharing
economy. NBB Economic Review, 57-78

Bhowmick, A. (2018, July 25th). Designing for developers. Retrieved from
https://uxdesign.cc/designing-for-developers-e44280438e27

Bor D, Duncan J, Wiseman RJ & Owen AM. Encoding strategies dissociate prefrontal
activity from working memory demand. Neuron 2003; 37: 361–7

Card, M. (1999). Readings in information visualization: using vision to think. Morgan
Kaufmann.

Christensen, C. M., Anthony, S. D., & Roth, E. A. (2004). Seeing what's next: Using the
theories of innovation to predict industry change. Harvard Business Press .

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS quarterly, 319-340.

Davis, S., & Bostrom, R. (1992). An experimental investigation of the roles of the
computer interface and individual characteristics in the learning of computer systems.
International Journal of Human-Computer Interaction, 4(2), 143-172.

Donhue, B., & Shepard, D. (2018, August 15). Embracing complexity: designing our
Custom Bot builder. Retrieved from:
https://www.intercom.com/blog/embracing-complexity-designing-custom-bot-builder/

Fagerholm, F., & Münch, J. (2012, June). Developer experience: Concept and definition.
In Proceedings of the International Conference on Software and System Process (pp.
73-77). IEEE Press.

Feizi, A., & Wong, C. Y. (2012, June). Usability of user interface styles for learning a
graphical software application. In 2012 International Conference on Computer &
Information Science (ICCIS) (Vol. 2, pp. 1089-1094). IEEE.

http://tech.fortune.cnn.com/2012/10/03/the-mega-trend-that-swallowed-silicon-valley/
https://uxdesign.cc/designing-for-developers-e44280438e27
https://www.intercom.com/blog/embracing-complexity-designing-custom-bot-builder/

93

Fitzpatrick, M. (2016, May 11th). How users understand new products. Retrieved from:
https://www.intercom.com/blog/videos/users-understand-new-products/

Fuller, R. B. (1992). Cosmography: A posthumous scenario for the future of humanity.
The Estate of R. Buckminster Fuller.

Gall, J. (1975). General Systemantics: An Essay on how Systems Work, and Especially
how They Fail, Together with the Very First Annotated Compendium of Basic Systems
Axioms: a Handbook and Ready Reference for Scientists, Engineers, Laboratory Workers,
Administrators, Public Officials, Systems Analysts, Etc., Etc., Etc., and the General Public.
General Systemantics Press.

Hamari, J., Sjöklint, M., & Ukkonen, A. (2016). The sharing economy: Why people
participate in collaborative consumption. Journal of the association for information
science and technology, 67(9), 2047-2059.

Hasan, B., & Ahmed, M. U. (2007). Effects of interface style on user perceptions and
behavioral intention to use computer systems. Computers in Human Behavior , 23(6),
3025-3037.

Heer, J., Van Ham, F., Carpendale, S., Weaver, C., & Isenberg, P. (2008). Creation and
collaboration: Engaging new audiences for information visualization. In Information
Visualization (pp. 92-133). Springer, Berlin, Heidelberg.

Hevner, A. R.; March, S. T.; Park, J. & Ram, S. Design Science in Information Systems
Research. MIS Quarterly, 2004, 28, 75-106.

Hickey, R. 2018. edn. Retrieved from: https://github.com/edn-format/edn

Holton, E. F., & Burnett, M. F. (2005). The basics of quantitative research. Research in
organizations: Foundations and methods of inquiry, 29-44.

Hotjar, 2019. Retrieved from: https://www.hotjar.com/tour

Intercom. (2016). Intercom on Jobs to Be Done. Retrieved from
https://www.intercom.com/books/jobs-to-be-done

ISO 9241-210: 2010. (2010).. Ergonomics of human system interaction-Part 210:
Human-centred design for interactive systems. International Standardization Organization
(ISO). Switzerland.

https://www.intercom.com/blog/videos/users-understand-new-products/
https://github.com/edn-format/edn
https://www.hotjar.com/tour

94

Keim, D., Andrienko, G., Fekete, J. D., Görg, C., Kohlhammer, J., & Melançon, G. (2008).
Visual analytics: Definition, process, and challenges. In Information visualization (pp.
154-175). Springer, Berlin, Heidelberg.

Kerren, A., Stasko, J., Fekete, J. D., & North, C. (Eds.). (2008). Information Visualization:
Human-Centered Issues and Perspectives (Vol. 4950). Springer

Klement, A. (2013). Designing features using Job Stories. Retrieved from
https://blog.intercom.com/using-job-stories-design-features-ui-ux/

Klement, A. (2016). When Coffee & Kale Compete: Become Great at Making Products
People Will Buy. Retrieved from http://www.whencoffeeandkalecompete.com/

Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age
International.

Kraljic, A., Kraljic, T., Poels, G., & Devos, J. (2014). Business process modelling in ERP
implementation literature review. In 8th European Conference on IS Management and
Evaluation (ECIME) (pp. 298-308). Academic Conferences and Publishing International
Limited.

Kuniavsky, M. (2003). Observing the user experience: a practitioner's guide to user
research. Elsevier.

Lakin, R., Capon, N., & Botten, N. (1996). BPR enabling software for the financial
services industry. Management services, 40(3), 18-20.

The Linux Information Project. (2004). GUI Definition . Retrieved from
http://www.linfo.org/gui.htm

Mathieson, K., & Keil, M. (1998). Beyond the interface: Ease of use and task/technology
fit. Information & Management, 34(4), 221-230.

Miller, G.A. (1956), The Magical Number Seven, Plus or Minus Two: Some Limits on our
Capacity for Processing Information. Psychological Review, 63, 81-97.

Neath, I., & Surprenant, A. M. (2003). In Taflinger M. (Ed.), Human memory (2nd ed.).
Canada: Vicki Knight.

Nielsen, J. (1994). Usability engineering. Elsevier.

Nielsen, J., & Levy, J. (1994). Measuring usability: preference vs. performance.
Communications of the ACM, 37(4), 66-76.

http://www.whencoffeeandkalecompete.com/

95

Onwuegbuzie, A. J., & Combs, J. P. (2011). Data analysis in mixed research: A primer.
International Journal of Education, 3(1), 1.

Phalp, K. T. (1998). The CAP framework for business process modelling. Information and
Software Technology, 40(13), 731-744.

Purchase, H. C., Andrienko, N., Jankun-Kelly, T. J., & Ward, M. (2008). Theoretical
foundations of information visualization. In Information Visualization (pp. 46-64).
Springer, Berlin, Heidelberg.

Richter, C., Kraus, S., Brem, A., Durst, S., & Giselbrecht, C. (2017). Digital
entrepreneurship: Innovative business models for the sharing economy. Creativity and
Innovation Management, 26(3), 300-310.

Rittel, H.J., & Webber, M.M. (1984). Planning Problems are Wicked Problems.
Developments in Design Methodology. N. Cross (ed.), John Wiley & Sons, New York.

Rowley, J. (2012). Conducting research interviews. Management research review, 35(3/4),
260-271.

Sandelowski, M., Voils, C. I., & Knafl, G. (2009). On quantitizing. Journal of mixed
methods research, 3(3), 208-222.

Sharetribe. (2019). Transaction process. Retrieved from
https://www.sharetribe.com/docs/background/transaction-process/

Shneiderman, B. (1993). 1.1 direct manipulation: a step beyond programming languages.
Sparks of innovation in human-computer interaction, 17, 1993.

Shneiderman, B & Plaisant, C. (2004) Designing the User Interface, Strategies for
Effective Human–Computer Interaction. Reading, MA: Addison Wesley.

Simon, H. A. (1996). The sciences of the artificial. MIT press.

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation
data. American journal of evaluation, 27(2), 237-246.

Townsend, S. (2016, October 5). Understanding your users’ mental model . Retrieved
from https://www.intercom.com/blog/videos/understanding-your-users-mental-model/

Ulwick, A. (2016). Jobs to be Done: Theory to Practice. Idea Bite Press.

UML. (2003). Resource Center. Retrieved from http://www.rational. com/uml/index.jsp.

https://www.intercom.com/blog/videos/understanding-your-users-mental-model/

96

Vaishnavi, V., Kuechler, W., & Petter, S. (Eds.) (2004/19). “Design Science Research in
Information Systems” January 20, 2004 (created in 2004 and updated until 2015 by
Vaishnavi, V. and Kuechler, W.); last updated (by Vaishnavi, V. and Petter, S.), June 30,
2019. Retrieved from http://www.desrist.org/design-research-in-information-systems/.

Walliman, N. (2017). Research methods: The basics . Routledge.

Wang, C., & Zhang, P. (2012). The evolution of social commerce: The people,
management, technology, and information dimensions. Communications of the Association
for Information Systems, 31(1), 105–127.

Westerman, S. J. (1997). Individual differences in the use of command line and menu
computer interfaces. International Journal of Human-Computer Interaction, 9(2),
183-198.

Wiedenbeck, S., & Davis, S. (1997). The influence of interaction style and experience on
user perceptions of software packages. International Journal of Human-Computer Studies,
46(5), 563-588.

Wilson, C. (2013). Interview techniques for UX practitioners: A user-centered design
method. Newnes.

Zmiro, J. (2017, November 15. The hidden cost of design complexity. Retrieved from
https://www.intercom.com/blog/the-hidden-cost-of-design-complexity/

http://www.desrist.org/design-research-in-information-systems/
https://www.intercom.com/blog/the-hidden-cost-of-design-complexity/

97

Appendix A - Interview template for operators

Interview questions:

Your team

- Would you like to tell something about you marketplace and your team?
- Who are the people in your team and what are their expertises?
- Could you tell more about your developers, where are they from (freelance,

consultant) and skills?

Building your marketplace

- How much time do you spend on your project?
- What kind of budget do you have?
- What are your goals with your marketplace?

Transaction process

- How familiar you are with the transaction processes on your markeplace?
- Would you like to tell me about your marketplace’s transaction process?
- How do you found the Sharetribe’s default process suit for you?
- Is there something you would need to have?
- Is there something you would like to have?

Customization

- Have you customized the process?
- How do you customize the process at the moment?
- Have you added some emails etc.?
- How often do you have the need to do changes?
- What kind of changes?
- Why?

How the customization is done

- Would you like to be able to customize the process more fluently?
- What would help you to do that?
- Would you like to be able to do it yourself or with a help of a programmer?

98

Appendix B - Interview template for developers
Interview questions:
Background

- What is your personal background with web-development?
- Could you tell something about the project you are on?
- What is the budget? How long will you be working on it?

Communication

- How did you come to contact with the marketplace founder?
- How do you communicate with the marketplace founder?
- How do you find the communication? Is it easy to understand what they are after?

Transaction process

- Are you familiar with transaction processes?
- Would you like to tell me about the transaction process in the marketplace you are

building?
- How does Sharetribe’s default process works for you?
- Do you find it difficult or easy to understand? Why?

Customization

- Have you customized the process?
- How do you customize the process at the moment?

- Have you added some emails etc.?
- How often do you have the need to do changes?
- What kind of changes? Why?

How the customization is done

- How do you find the customization process?
- Have you encountered problems in the development? What kind?
- What would help you to work with it?
- Do you have difficulties understanding what is happening in the code?

Communication on what will be done

- How does the communication on what is wanted happen?
- Would you like to be able to have the introductions as text or charts or

visualizations of some kind?

99

Appendix C - Interview template and assignment

for user sketches

Setup:

- 1 hour of time
- One A4 for each participants
- A few pens to choose from

Interview and assignment:

- Could you tell me about the transaction process you have at the moment?
- Now, here are some pens and paper - Could you draw me what your transaction

process looks like at the moment? You have ten minutes.
- Could you explain to me what you have drawn?
- Is there anything you would like to change or add to your process?

