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Abstract
In recent years, genome-wide association studies (GWAS) have grown both in size and

scope, with sample sizes growing to hundreds of thousands of samples and the focus of
the efforts shifting to the amassing of phenome-wide, population-level data resources.
These studies have brought with them an unprecedented amount of associations between
genomic regions and phenotypic traits. Recently, the FinnGen project was started to create
a population-level, phenome-wide GWAS recource of the Finnish population. The large
amount of result data created by the FinnGen project creates a need for an automatic
process of extracting significant results from the result data.

This thesis describes the automatic reporting tool, which was created for the needs of the
FinnGen project. The tool extracts and annotates significant results from GWAS summary
statistics and compares them to previously identified associations. The tool’s motivation
and function is described. A data analysis pipeline was created for the tool, and it was
tested using a set of GWAS summary statistics. The results come in the form of identified
signals per phenotype, as well as information about the novelty of the signals.The results
of the experiment show the tool scales to the sizes necessary for the FinnGen project.
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FinnGen, summary statistic
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Tiivistelmä
Viimeaikaiset edistysaskeleet geenitutkimuksessa ovat mahdollistaneet genominlaa-

juisten assosiaatiotutkimusten (eng. genome-wide association study, GWAS) kasvamisen
niin koossa kuin laajuudessa. Tutkimusten otoskoot ovat kasvaneet satoihin tuhansiin
ja tutkimusten pääpaino on siirtynyt kohti koko fenotyyppikirjon sisältäviä, populaatio-
kohtaisia aineistoja. Näiden aineistojen ja niistä tehtyjen tutkimusten ansiosta genomin
ja fyysisten ominaisuuksien välisten assosiaatioiden määrä on räjähtänyt. Vuonna 2017
alkanut FinnGen-projekti tähtää Suomen populaation kattavaan, koko suomalaisen tau-
tikirjon sisältävään aineistoon. Valtavan datamäärän käsittelemiseksi työkalulle, joka
erottelisi merkittävät tulokset projektin tuloksista, on syntynyt tarve.

Tämä diplomityö esittelee genominlaajuisten assosiaatiotutkimusten automaattisen
raportointityökalun, joka luotiin FinnGen-projektin tarpeisiin. Raportointityökalu eristää
merkittävät variantit GWAS-tiivistelmätilastoista, lisää niihin tunnetut geeniannotaatiot
ja vertaa niitä jo löydettyihin assosiaatioihin. Diplomityössä kuvataan sekä työkalun
tarkoitus että sen toiminta. Työkalun käyttämiseksi FinnGen-projektissa sille luotiin
WDL-kieleen pohjautuva työnkulkuspesifikaatio, jota testattiin suorittamalla työkalun
työnkulku joukolle GWAS-tiivistelmätilastoja. Työkalu tuottaa lopputuloksenaan joukon
assosiaatiosignaaleja jokaiselle tiivistelmätilastolle. Näihin signaaleihin on lisätty tieto
siitä, mitkä niistä on assosioitu aikaisemmin, ja mitkä ovat uusia assosiaatioita. Työkalun
testauksen tulokset osoittavat, että työkalua voidaan käyttää myös FinnGen-projektin
tarpeisiin.

Avainsanat genominlaajuinen assosiaatioanalyysi, datan suodatus, tiivistelmätilasto,
FinnGen
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1. Introduction

1.1 Problem description

Modern genome-wide association studies (GWASs) produce summary statistics for many

hundreds of phenotypes. At the sametime, the amount of measured variants can exceed one

million. Recognizing novel phenome-genome associations from already identified associa-

tions is important for many applications, such as finding new cellular mechanisms behind

the phenotype. Gathering the relevant associations from the statistics and comparing them

to existing results manually is time-consuming. Therefore, there is a need to automate this

process.

1.2 Approach

We propose to solve this problem by developing a tool that automatically selects the relevant

associations in a GWAS summary statistic and compares these results to earlier studies,

available in either online databases or specific summary statistics from chosen key studies.

1.3 Research scope and goals

The purpose of this master’s thesis is to develop a tool for the needs of the FinnGen project.

Specifically, the purpose of this thesis is to produce a tool for automatically filtering GWAS

summary data, identifying significant variants from this data, as well as labelling these

variants for further use. In order to test the suitability of this tool, an experiment will be

performed to measure both its performance in identifying the significant results, as well as

its runtime performance.
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2. Background

2.1 Human Genome

2.1.1 Variation in the human genome

Research in human genetics has progressed tremendously during the last few decades. The

Human Genome Project, starting in 1990 and ending in 2003, first determined the complete

genetic sequence of humans[2][3]. Following that, multiple consortia have been established

for quantifying the amount and types of variation in the human genome. Examples of these

are the 1000 Genomes Project and the International HapMap Project[4][5]. Both of these

projects span across multiple human populations, with the 1000 genomes project consisting

of samples from 14 populations[4].

There are different types of structural variation in genomes, but they can be roughly

divided into single nucleotide polymorphisms (SNPs) and structural variations[6]. The

group of structural variation can be further divided into indels (insertions and deletions),

block substitutions, inversion variants and copy number variants[6].

There is a large amount of variation in the human genome. The 1000 genomes project

identified 38 million SNPs, 1.4 million indels with two alleles and 14 000 large deletions[4].

A subsequent analysis of structural variants using 2500 human genomes further raised the

number of identified biallelic indels to 42 thousand, and identified more than 6000 biallelic

duplications. Furthermore, they estimate that a median individual has approximately 2800

indels and 20 duplication sites in their genome. The latest development in the study of

human genome variation is the genome aggregation database (gnoMAD), which studied

125 748 whole exome sequences and 15 708 whole genome sequences. Using this data,

they identified 218 141 660 SNPs and 26 814 456 indels, as well as 366 412 structural

variants.[7][8]

Alterations to a genetic sequence alter the function of that sequence. These mutations

can be classified based on the effects that the mutation has on the amino acid sequence it

codes for. A mutation that results in a different amino acid to be coded is called a missense

mutation. A mutation that causes a codon to transform into a stop codon is called a nonsense

mutation. An indel can change the reading frame of the genetic sequence, in which case

the whole sequence after the mutation is altered. These mutations are called frameshift

mutations. A mutation can also be classified based on whether it is located in an intragenic

or intergenic region, with intragenic meaning inside a gene and intergenic between genes.
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A type of mutations called Loss of Function (LoF) mutations are especially interesting in

the context of GWASs, as the mutation causes a partial or complete loss of normal protein

function in the protein it codes for. It should be noted that for the majority of SNPs, an

apparent mutational effect can not be discerned.[9]

2.1.2 Genetics of human disease

The genetic basis for human diseases is a central point in genetic research[10][1].A vast

amount of data implies that many diseases are heritable. Therefore, acquiring more

information about the genetics of disease is crucial in transforming this knowledge into

clinical information and eventually into treatments and medications. Here the genetic basis

of human disease will be briefly introduced.[11]

The genetic basis for disease seems to differ greatly between diseases: Some diseases,

such as cystic fibrosis, are affected by few small deleterious mutations with large effects

in specific parts of the genome [12]. Other diseases, such as type 2 diabetes, have multiple

associations with very weak effects across the genome, with no clear link between the

associated variant and the disease mechanism[1]. This would suggest that the genetic

architectures or the genetic basis of these diseases are different.

Generally speaking, the genetic architecture for traits can be classified into three observed

categories: monogenic, polygenic and omnigenic architectures. In monogenic architectures,

one or few variants affect the trait. In polygenic architectures, multiple or many variants

contribute into the traits variability. In the omnigenic model many "non-core" genes affect

the expression of the "core" genes that are directly responsible for the disease.[1][10]

The results from multiple studies on disease genetics seem to point that the genetic

architecture behind diseases is complex and multifaceted. While there are many monogenic

diseases, such as cystic fibrosis and Huntington’s disease, research suggests that many

complex diseases, such as type 2 diabetes and schizophrenia are highly polygenic and

affected by multiple loci in the genome[12][1][13].

2.2 Genome-Wide Association Studies

In brief, this section describes the experimental design of GWASs, as well as the motivation

behind using them. GWAS data and its analysis is also described.

2.2.1 Motivation

A fundamental question in genetics is how variation in the genome affects variation in the

phenome, i.e. how traits are affected by genotype[12][10]. Historically, there have been

assumptions that even complex traits, such as height or autism, might be determined by a
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small number of genetic variants with relatively high effects.[10] However, growing knowl-

edge of genetic variation and the challenges brought by complex traits have invalidated

these assumptions[10]. In this section the rationale leading to genome-wide association

studies, as well as the motivation behind them will be briefly described.

Some of the early successes in human genetics were identified by using methods such as

linkage analysis. Linkage analysis was successfully used to uncover the genetic mutations

behind rare genetic diseases such as the mutations in the gene CFTR that are responsible

for cystic fibrosis[14]. In linkage analysis, families with the affected trait are genotyped

using a set of genetic markers across the genome, and the way these markers are present in

the families with the disease is examined. While linkage analysis proved to be successful in

the case of rare genetic disorders, such as cystic fibrosis and Huntington disease, it has not

been able to replicate these successes when applied to more complex traits, such as heart

disease. This points to a a different genetic architecture behind these traits. The common

disease/common variant (CD/CV) hypothesis has been more successful in explaining these

traits.[12][15][11]

The CD/CV hypothesis states that diseases that are common in the population are affected

by genetic variation that is also common in the population. This is in contrast to the disease

model related to the aforementioned cystic fibrosis and Huntington disease, where the

disease was largely due to few rare variants. The CD/CV hypothesis leads to two significant

points: First, if diseases are governed by common variants, then the effect size of any one

variant must be small, or else the phenotype would be very much correlated with the variant.

Second, if the effect of any one variant is small, yet the diseases show heritability, then

multiple alleles have to affect the prevalence of the disease. Through GWASs, the CD/CV

hypothesis has been shown to be true for many complex diseases, and common variants do

account for a part of the genetic makeup of common diseases[11]. However, rare variants

with larger effects also make up part of the genetic variance[10].[12]

The small effect sizes in associations of complex traits require large sample sizes, which

have been made possible by advances in chip-based genotyping arrays[12][15]. By reducing

the price of genotyping, these arrays have made large sample sizes possible. The statistical

power required for detecting associations depends on the experimental sample size, variant

frequency, variant effect size and other factors[15][16]. In order to detect rarer variants or

variants with a smaller effect on the trait, the sample size necessary to detect associations

grows larger.

GWASs are able to answer to the need of large sample sizes. In recent years, GWASs have

approached a scale of tens of thousands to hundreds of thousands of samples per study[17].

This makes them very useful for the search of common variants associated with common

diseases, as they are highly replicable and have the statistical power to detect common

variant associations [15]. Indeed, during the last 10 years that GWASs have been performed,
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over 10 000 strong associations have been discovered, and association databases such as

GWAS Catalog list over 100 000 genome-wide significant associations[15][18].

2.2.2 GWAS Study Design

GWASs search for associations between a phenotype and variants in a genome. In GWAS,

the association search is performed over most of the genome. This differentiates a GWAS

from other association studies, such as candidate gene association studies. Unlike many

other types of studies, GWAS place no assumptions on the genetic architecture behind a

trait, thus requiring no prior information about the gene function behind a trait .[19]

GWAS depend heavily on the fact that human genome has a strong linkage disequilibrium

(LD) structure. Due to human genomes having a strong haplotype structure, an association

with a SNP can point to one of two possibilities: The SNP in question can be the actual

biological variant affecting the trait, which would make the association a direct association.

Another possibility is that the variant affecting the trait is in high LD with the associated

SNP, and thus the SNP gets associated indirectly, hence it being an indirect association.

This is further demonstrated in figure 2.1. The concept of a region of high LD, or a LD block,

is further explained in 2.2.[12]

a b

Figure 2.1. Direct and indirect association. A region of high linkage disequilibrium (red) is shown in the
genome (light green). A causal mutation (dark blue) is present on the region of high LD, as well as
a marker SNP (dark gray). a) The causal mutation is the marker SNP, and the GWAS therefore
directly measures the causal genotype. b) The marker SNP is not the causal mutation, but due to
the region of high LD, the causal effect of the mutation correlates with the marker SNP, therefore
flagging it.

In GWAS, it is sufficient to sequence a subset of known SNP variants to capture the

majority of the variation[19]. This is due to the LD structure of the human genome, in

which most of the SNPs in a genomic location correlate strongly with their neighbouring

SNPs. In European populations, this can be done by using a subset of 500,000 variants

6



Background

a

Figure 2.2. Pairwise LD matrix for a set of SNPs. Each square on in the matrix shows the squared correlation
between the two SNPs on the SNPs line under the matrix. For example, the square marked with
a shows the correlation between SNPs 1 and 17. A high value of r2 means that the SNPs are
correlated and are therefore in LD with each other. It can be seen from the figure that SNPs around
indexes 37-58 are in high LD with each other, and therefore form an LD block. The LD matrix was
formed by using data from the 1000 Genomes Project[4].

to capture upwards of 80% of variation in the genotype[12][20]. Further experience with

GWASs has shown that using a SNP genotyping panel of half a million to a million SNPs is

practical[12]. This amount of SNPs can further be augmented by imputing missing SNPs

using additional LD information and tools such as IMPUTE2[21].

A GWAS can be performed for either quantitative or case/control traits. Quantitative

traits have improved statistical power to detect effect alleles, in addition to them having

easily understandable outcomes[12]. For example, in the case of height, the effect can be in-

terpreted as unit of change per allele. In contrast, in case/control studies, there is more room

for error in defining the trait and diagnosing it , and the association effects are presented

as odds ratios[12]. While quantitative traits are preferred from a statistical standpoint,

case/control GWASs have been successful in finding many significant associations[12][18].

It is notable that GWASs using quantitative traits are analysed using a different family of

statistical models than studies using case/control traits[12].

In brief, GWASs search for associations between a trait and the whole genome. They

utilise the haplotype structure and high LD present in the genome to efficiently cover the

variation of whole genome with a much smaller subset of variants. GWASs can be used to

find associations for both quantitative and case/control traits.
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2.2.3 Data of GWAS

In this section, genotype and phenotype data used in GWASs will be described, as well

as the procedures and problems related to data. The section will also touch on how the

genotypes can be further imputed, so that a much larger subset of the genotype can be

covered than what would be possible by using only directly genotyped data.

As mentioned in earlier sections, the genetic variation in GWASs is presented as the

measured genotypes at different loci of the genome. These variants are measured using

chip-based deoxyribonucleic acid (DNA) microarrays, in which short DNA sequences are

placed on specific locations on a chip. The measured DNA binds to these locations differently

based on the alleles that the sample has, and the genotype is measured by testing to which

locations the sample DNA has bound to. A typical microarray chip is capable of measuring

up to one million or more SNPs.[12]

Due to the haplotype structure present in the human genome, variation in the human

genome appears as segments of highly correlated variants. This can be exploited to increase

the amount of variants by genotype imputation, in which the LD structure of the genome

and measured genotype information is used to infer genotypes for variants that were not

directly genotyped[22]. This enables GWAS to use a larger set of variants than those that

were measured using a genotyping chip, as well as imputing a common set of variants for

meta-analysis from smaller GWAS that use disjoint sets of variants. IMPUTE2 is a tool

that is commonly used for genotype imputation[21].[12]

As with other aspects of GWASs, great care must be used when measuring genotypes from

samples, as well as in genotype imputation. In DNA chip genotyping, care must be taken in

designing the DNA chip, so that it covers the study population’s genomic variation properly.

For example, differences in coverage for a single DNA microarray between European and

African populations can be more than 20%[20]. Preferably the DNA microarray is designed

based on the LD structure of the study population[19]. In genotype imputation, the LD

information that is used to infer imputed genotypes has a large effect on the imputation

quality. The LD information must be from the same population as the study sample for

the imputation to succeed. LD information from another population can result in lower

genotype imputation quality. The analysis methods used for the GWAS should also take the

probabilistic nature of imputed genotypes into account.[12]

In short, the genotype data used in GWASs consists of measurements of the alleles in

different loci of the genome. In GWASs, the measured genotypes consist of both directly

measured genotypes and imputed genotypes.

The phenotype information used in GWAS can be either quantitative, such as height of

the amount of low-density lipoprotein (LDL) cholesterol in blood, or qualitative, like in

case/control traits. Quantitative traits are often based on physical measurements and are
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therefore reliable to measure. Qualitative traits, such as disease diagnoses like multiple

sclerosis, might not be directly measurable like quantitative traits. Instead, the diagnosis

might be defined by considering the results of multiple physical measurements and by

ruling out alternative diagnoses.

Standardised phenotype criteria are especially important to case/control traits. Especially

if the data comes from multiple different entities, such as different hospitals, standardis-

ation of the phenotype criteria prevents introducing entity-specific effects into the study.

Another possible source of error is in how clinicians determining the phenotype interpret

the phenotype criteria.[12]

Electronic medical records (EMRs) are also a possible source for phenotype information.

Especially in the case of large studies or data resources that make use of national or regional

biobanks, the usage of EMRs is possible.[12] Examples of data resources using EMRs include

the FinnGen project[23] and the UK Biobank[24].

As a real-world example, in the UK Biobank resource, multiple different sources for

phenotype information have been used. Questionnaires were presented to the participants

about their health, lifestyle and social life. Several physical measures, such as blood

pressure, lung capacity and grip strength were measured from all of the 500,000 participants.

In addition to the direct measurements and questionnaires, electronic health records and

follow-up questionnaires have been used to augment the phenotypic data records, to include

updates to the participants’ change in status like death or cancer diagnosis. The data

resource is expected to be extended during the coming years with procedures such as

medical imaging performed using magnetic resonance imaging, X-ray absorptiometry, and

ultrasound imaging.[24]

2.2.4 GWAS statistical analysis

In this section, basic statistical analysis used in analysing single-marker associations will

be explained. Basic analysis methods for quantitative and case-control traits are described.

Modern methods for quantitative and case/control trait analysis are also examined briefly.

The problem of multiple testing and how it is counteracted in GWASs is also explored.

Single marker association analysis

With continuous traits, one of the simplest ways to analyse the association of one variant is

to do linear regression[25]. A simple formulation of the regression model is

yi = b+ xiβ + ϵi, i = 1, 2...n, ϵ ∼ N(0, σ2) (2.1)

where yi is the trait value for sample i, b is the intercept, xi is the genotype for sample i, n is

the sample amount, β is the genotype-specific effect size, and ϵ is an error term, assumed to
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follow a normal distribution[26]. In GWAS statistical analysis, it is common to represent the

genotype as the number of copies of one of the alleles[25]. In the case there were two alleles,

a and A, and some genotypes were aa, aA and AA, the genotype representations would be

0, 1 and 2, respectively. This model takes into account the additive effect the variant may

have, and is therefore called an additive model. While there are multiple ways in which

the genotype can affect the trait, for example an additive, recessive or multiplicative effect,

often only the additive model is explored. This is due to the fact that the additive model has

reasonable statistical power to detect most of the other effects. Some studies use multiple

genetic models and adjust the p-values for multiple testing in order to account for multiple

possible genetic models.[12]

In proper GWAS, other covariates are often added to the model. These include population

structure, age, sex and other clinical covariates. An especially important factor to take into

account is population structure, which is often added to the model in the form of principal

components (PCs). In case the genotypes have been analysed in batches, a batch indicator

can also be added to regress out effects due to batch-specific differences.[12]

For the additive model, the null hypothesis H0 is that the genotype has no effect on

the trait, i.e. that β = 0. The alternate hypothesis H1 is therefore β ̸= 0. The previous

formulation in equation 2.1 can be transformed to the form

yi ∼ N(b+ xiβ, σ
2). (2.2)

If the null hypothesis is in effect, then the test statistic

t =
β̂

s/
√
Σi(xi − x̄)2

(2.3)

follows the t-distribution with n − 2 degrees of freedom, where β̂ is the least-squares

estimator for β, s is the sample standard deviation, and x̄ is the mean of x[26]. As p-value is

defined as the probability of observing data at least as extreme as the observed data given

the null hypothesis, the p-value in this case can be interpreted as the probability mass

outside the observed value of the t statistic. The test is two-sided in this case, because β can

be positive or negative. The interpretation can be seen in figure 2.3.

As with other instances of hypothesis testing, if the p-value is smaller than a pre-defined

significance threshold, the null hypothesis H0 is discarded and the alternate hypothesis H1

is deemed significant[25]. In the case of association analysis, this means that the variant is

thought of as being associated with the trait[12].

In the case of case/control traits, the formulation of the regression model is somewhat

different. A logistic regression model can be used to determine whether there is an associ-

ation. In a logistic regression model, the dependent variable yi is given a value of 1 or 0,
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Figure 2.3. Visualization of the p-value. The t-test statistic distribution under the null hypothesis is plotted,
and a sampled value of t is indicated using two vertical lines. Large positive or negative values of
β make the observed t fall far from the center of the probability distribution. The grey area is the
probability of observing a t-statistic at least this extreme under the null (i.e. the p-value). A large
absolute value of the t-statistic implies that it is unlikely that this data was observed under the
null.

depending on whether the patient is considered a case or a control. The logistic regression

model is defined as

P (yi = 1) = E(yi) = pi =
eb+xiβ

1 + eb+xiβ
, (2.4)

which can be linearized as

ln(
pi

1− pi
) = b+ xiβ. (2.5)

As with the simple linear regression, hypothesis testing can be performed with logistic

regression models as well. In the case of logistic regression, common tests for significance

are Wald’s test and the likelihood ratio test.[26][27]

Modern GWA analysis

While these basic regression models are sufficient for analysing associations between

phenotypes and variants, they are susceptible to bias from a variety of sources, such as

sample relatedness & case/control imbalance in the case of case/control studies[28]. Multiple

tools for association analysis have been created to mitigate these problems, as well as to

improve the efficiency of association analysis. During the last 10 years, sample size in

GWASs has grown from thousands of samples to tens and hundreds of thousands of samples,
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which has resulted in a need for more efficient computation[29][17].

While some of this need can be alleviated by the use of parallel computing and larger and

larger computing clusters, more efficient and precise techniques make even more detailed

analysis possible. For example, let us consider three algorithms of different complexities:

an algorithm linear with respect to the sample amount, such as Scalable and Accurate

Implementation of Generalized mixed model (SAIGE), an algorithm that is quadratic in

computational complexity with respect to the amount of samples, such as Genome-wide

Efficient Mixed Model Association (GEMMA), and an algorithm that is cubic with respect

to the amount of samples, such as Efficient Mixed-Model Association (EMMA). In case it

takes one hour to complete a task with n samples for each of these programs, a task with

10n samples would take 10 hours, 100 hours and 1000 hours for each of these algorithms,

respectively. Considering that an increase of two magnitudes has already been observed

in GWASs sample sizes, these algorithmic improvements are not only beneficial, they are

necessary for the advancement of GWASs.[28][30][31]

By changing the model assumptions, modern techniques for genome-wide association

(GWA) analysis can improve computational efficiency and reduce computational complexity

significantly. For example, approaches such as BOLT-LMM and SAIGE can reduce the

computational cost from quadratic (O(MN2), where M is the number of variants and N is

the number of samples) to linear (O(MN)), and simultaneously account for case/control

imbalance, improving statistical power.[32][28]

Multiple testing in GWA analysis

In single locus association analysis, the same test for significance is performed for each

measured locus in the samples’ genotypes[16][12]. In case no corrections for multiple testing

are made, this would result in a large amount of false positives. For example, when using

a significance threshold of 0.05, assuming the null hypothesis holds, with one test, the

probability of the result being marked as significant is 5%. If there are 1,000,000 tests,

the expected amount of tests that would be marked significant is 5% of that, or 50,000.

Therefore, actions to reduce the burden of multiple testing are especially important in

GWASs, where the amount of testable variants can grow to millions[16].

There are multiple methods for reducing false positives. One of the simplest methods for

this is the Bonferroni correction, where the significance level is adjusted by the number

of tests performed. Given an initial significance threshold α and n independent tests,

the adjusted significance threshold would be αa = α/n. This correction ensures that the

probability of having at least one false positive result is α. This probability is also called the

family-wise error rate (FWER)[33]. In case of genome-wide association (GWA) analysis, the

correlated nature of SNPs violates the assumption of independent tests, and therefore the

correction is considered highly conservative.[34]
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Other methods for adjusting for multiple testing include determining the false discovery

rate (FDR), such as the Benjamini-Hochberg procedure, or permutation testing. A somewhat

different method of determining a significance threshold for GWAS is to estimate a genome-

wide significance threshold. Since the LD blocks in the genome result in an "effective

number of independent genomic regions"[12], this sets an upper limit to the amount of

statistic tests that are performed during GWA analysis. This threshold differs between

populations, and is estimated to be approximately 5× 10−8 for European populations[34].

5×10−8 has been widely accepted as the genome-wide significant (GWS) threshold for strong

associations[15].[16][12]

2.2.5 GWAS Results and Their Interpretation

In this section, the nature of results that are acquired from GWASs is described, as well as

some ways to use them. Finemapping will also be briefly explained, as well as how it can be

used to find causal variants.

The main analysis method of GWASs, the single-locus association test, produces results

for each of the tested variants with respect to the phenotype in question[12]. In the case

of quantitative traits, these results consist of effect sizes and standard errors for each of

the variants[35]. In the case of case/control traits, the effect size is replaced with odds

ratio[35]. These measures can then be used to calculate p-values for each of the variants.

These results, in which every variant is given a p-value/association test score and effect size,

are usually compiled into a table and called summary association statistics, or summary

statistics[35]. These results are often presented using Manhattan plots[13][36], which

summarizes the whole dataset into a single, easily understandable format. Figure 2.4 shows

an example of a Manhattan plot. It should be noted that GWAS associations should not

be interpreted as the variant having a direct effect on the trait. Due to the fact that the

variants are often chosen because they correlate with adjacent SNPs, they don’t directly

show a link between a trait and a genomic position[37]. In that case the causal variant

has to be determined otherwise, e.g. by searching for possible missense or loss-of-function

mutations near the marker SNP, or by finemapping. It is also common for the associations

to reside in intergenic regions, which makes inferring the mechanism behind the observed

effect difficult. What’s more, often the desired end result is not a set of associations but a

set of gene candidates that might give more information about the pathomechanisms of

diseases, or act as drug targets.

Summary statistics are a result on their own, in that they can be understood as a list

of the SNPs with the p-value assigned to each of the SNP portraying the significance of

that association as well as the effect size showing the strength of the effect of that variant.

However, they can be used in additional ways. For example, polygenic risk scores (PRSs)

can be built from summary statistics when used in conjunction with LD information. The
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LD information can be acquired by using the genotype-level data used to calculate the

summary statistics, or by using a reference LD panel produced from the same population

as the study sample has been drawn[35]. Other use cases for summary statistics include

finding causal variants from the summary statistics by statistical finemapping and using

summary statistics in conjunction with gene expression data to infer whether the same

causal variants affect the GWAS and gene expression data signals[35].

In the context of GWASs, finemapping refers to the process of finding variants responsible

for the phenotype[37]. Because the association scores of variants can get inflated due to LD

between variants, a signal in GWASs often presents itself as a group of variants, out of which

only some physically affect the trait. Since the amount of causal variants is generally not

known, finemapping is usually done to identify a set or sets of variants, that with some pre-

defined probability contain one or all of the causal variants. Several different finemapping

strategies exist, for example Bayesian methods or heuristic methods[37].FINEMAP is one

example of a widely used finemapping method[38].
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Figure 2.4. A Manhattan plot. Variants are plotted on the x-axis, and negative logarithm of the p-values on
y-axis. The dashed line shows the genome-wide significance threshold, in this case 5e−8. Adjacent
chromosomes are coloured differently for easy visual separation. The data for this Manhattan plot
was acquired from GWAS Catalog[18], and comes from [39]. Only variants with p-value smaller
than 0.005 have been plotted.
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2.3 Existing solutions

Bioinformatics toolkits

A wide variety of tools have been developed to analyse genome-wide association data. These

include toolkits that cover a wide variety of analysis needs, such as PLINK[40], as well

as tools with one particular focus, such as FINEMAP[38], tabix[41] and bgzip[42]. For

example, PLINK provides extensive tools for everything related to analysing GWA data,

providing options for e.g. association analysis, data wrangling, and for calculating linkage

disequilibrium between variants[40].

Association Databases

Multiple association databases have been created for storing GWAS result associations.

Some examples of these include the GWAS Catalog[18] and GWAS Central[43]. These

curated results can then be compared to find out if the findings of a study are novel. GWAS

Catalog also includes an API for programmatic access, which makes it possible to check for

associations programmatically. Some of these databases, such as GWAS Catalog, harmonize

the data to a certain reference genome, which makes comparing results substantially

easier.[44] As a SNP can have a different position coordinate in different reference genomes,

comparison without pre-harmonized results is not possible.

2.4 FinnGen study

2.4.1 The Finnish Genomic Landscape

The Finnish population is known to have gone through multiple bottlenecks that affect

the Finnish gene pool today[45][46]. Due to the bottlenecks, the Finnish population shows

evidence of a strong founder effect: There is less extremely rare variation (singletons, 1

in 3000 samples) in Finnish samples than in non-Finnish Europeans (NFEs)[46]. A low

amount of variation in the Y chromosome has also been observed[47]. Finnish people also

have much less variation in rare (minor allele frequency (MAF) < 0.5%) variants than the

British population. However, the Finnish population shows a much higher proportion of

low-frequency variants (2% < MAF < 5%)[45][46]. Therefore, while many variants did not

get through the bottleneck event, those that did grew in frequency[46]. After the bottleneck

effect, the Finnish population has grown significantly, with most of the growth happening

during the last 1000 years. Under the last 250 years, the population grew from 0.5 million

to over 5 million in size [45].

Variants with negative effects are under a negative selective pressure, as they reduce the
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reproductive fitness of their carrier[45]. This causes variants with large negative effects to

get weeded out from a population as the population grows older[45]. In relatively young

populations, such as the Finnish population, these variants with large negative effects occur

in with larger frequencies than in older populations, as there has not been enough time to

drive the allele frequency down to the levels before the bottleneck effect[45].

From the point of view of genetic research, the Finnish population presents an interesting

opportunity. The enriched rare variants add significantly to the statistical power needed to

detect these variants, in some cases halving or even reducing the needed sample size to 10

% of the required sample size for detection compared to the British population[45]. Another

advantage of this is that some variants that could not be studied in older populations due to

too low allele frequency can have a high enough allele frequency to be studied when using a

Finnish population.

In the study of common diseases, studying isolated populations has the advantage of

having proportionally more deleterious variants compared to non-isolated populations. As

the Finnish population is enriched in rare variants that may have an effect on the common

diseases and other traits that are of interest, a population-level GWAS of the Finnish

population has the potential of uncovering many associations that have not been shown in

other populations due to lack of statistical power[45].[46]

2.4.2 FinnGen study

FinnGen is a project combining academic and industrial parties in order to add to informa-

tion about the genetical basis behind diseases by analysing the genotypes and phenotypes

of up to 500,000 Finnish individuals[48]. FinnGen was started in 2017, and is projected

to take approximately 10 years[23][49]. The FinnGen study will combine approximately

200,000 existing samples from Finnish biobanks to 300,000 new samples, also collected

by the Finnish biobanks.[23] The final data resource will include almost 10% of the whole

Finnish population.[48]

Most of the large-scale genome-and biobank research projects have concentrated their

efforts on gathering data from people that are of working age[23]. Examples of these projects

include the UK Biobank (UKBB) project[17] and the Million Veterans Program. In contrast,

a large proportion of the samples in FinnGen will come from hospital biobanks, and they

represent a more hospitalised, older slice of the population[23].

The FinnGen project will combine extensive data from Finnish Health registries and the

genetic data from samples from volunteers. The samples are processed using a custom geno-

typing array that in addition to normal GWAS markers combines Finnish enriched markers,

markers specific to the human leukocyte antigen (HLA) region, pharmacogenomic markers

and markers from the industrial partners. In total, the array contains 736,145 probes that

can genotype 655,973 markers. The chip will be manufactured and the genotyping process is
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performed by ThermoFisher. In addition to these directly genotyped variants, whole-genome

sequences from 4000 Finns are used to further impute variants, which enables the study of

16 million variants.[49][23]

The phenotype information used in FinnGen is extracted mostly from national health

registries[23]. These registries are listed in table 2.1. Special clinical expert groups, eight

in total, with over 100 experts, will be involved in planning how to use the registry data

and transform them into phenotypes[49]. With a large amount of phenotype endpoints, the

FinnGen project will create a vast array of data for additional analysis in addition to its

main data resource. This large amount of data creates a need for automated data processing

pipelines.

Registry name
KELA
Statistics Finland
Register of Primary Health Care Visits
Care Register for Health Care
Finnish Cancer Registry
The Finnish Register of Visual Impairment
Population Register Centre
Finnish Registry for Kidney Diseases
Infectious Diseases Register
Medical Birth Register
Register of Social Assistance

Table 2.1. National registries used in FinnGen. Data from [49].

2.5 Challenges in bioinformatics

There are a lot of challenges in the case of analysing results from high-throughput biomedical

research such as GWAS. Thanks to the decreasing price of genotyping, genome-wide studies

have experienced an explosion in sample size. This creates a corresponding explosion in

data amount, with genomic data taking terabytes of disk space or more. This creates

a need for efficient data processing workflows. Simultaneously, GWASs are notoriously

vulnerable for spurious associations due to factors such as batch effects and population

stratification[12]. Controlling for these variables is important to ensure the correctness of

results[12]. Another source for challenges is the fact that study replication is susceptible

for errors due to changes in the data analysis workflow. The data analysis workflow itself

can also act as a source for error, as programming errors and task failures during the data

analysis can affect the end results.

These needs have prompted the creation of automatic workflow tools, which make it

possible to automatically run a data analysis workflow. These include tools such as Toil and

Cromwell[50][51]. These tools execute specifically designed workflow languages, such as
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Workflow Description Language (WDL) and CWL[52][51]. These tools enable the replication

and sharing of data analysis workflows, as well as offer the possibility of performing data

analysis on a wide variety of computing environments, including single computers, machine

clusters and cloud-based solutions[51][50]. This makes running large analyses without

investment in a high-performance computing cluster possible, which reduces the initial cost

of scientific computing significantly and removes the need for maintaining such a cluster,

further reducing costs.
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3. Tool implementation

3.1 Tool Overview

In this section, the tools function will be described.

The automatic reporting tool processes GWAS summary statistic files. The function of the

tool can be divided into three distinct operations:

• Filter and group genome-wide significant variants from given summary statistic

• Annotate variants with gnoMAD and FinnGen variant annotation information

• Compare significant results to known associations

In the first step, a summary statistic file calculated from GWA analysis for one trait is

filtered for GWS variants. These variants can then be grouped into possible signals, using

either locus width or linkage disequilibrium as the grouping logic. The end result for this

step is a list of genome-wide significant variants, grouped into possible signals.

In the second step, the previously filtered data gets annotated using gnoMAD and FinnGen-

specific variant annotations. Information such as minimum allele frequency, allele frequen-

cies of different populations, gene annotations, the most severe consequence of the alleles,

as well as the calculated Finnish enrichment factor, are added to the data[7].

In the third step, the previously filtered and annotated variants are compared to cur-

rent findings, either through using GWAS result databases like GWAS Catalog[18], or by

supplying hand-picked summary statistics to the tool.

The input files are in the form of compressed tab-separated files, and the tool continues

to use this tabular structure during its operation. An example of the input can be seen in

table 3.1.

The tool and its inputs are further detailed in figure 3.1.

3.2 Technical details

The tool was created as a command line program. This decision was made because of

the fact that the tool will be primarily run on a large batch of data. Since the tool is ran

automatically on a large dataset, a command line interface makes it possible to use the tool
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chrom pos ref alt beta pval
1 11759478 A G 0.11 0.45
2 83675651 T C 0.24 1.27E-06
3 15476448 A C -0.45 8.00E-08
4 1005345 C G 0.1 0.0025
5 987149 G A -0.12 0.00065
6 35954329 G T 0.61 5.00E-120

Table 3.1. Tool data input. The input to the tool consists of a gzipped tab-separated table, in which the
variants and their association analysis information are listed. The input has to contain at least the
chromosome, position, reference and alternate alleles of the variant, as well as the p-value. Other
columns can be present in the data, as long as they are not named with the same names as the
aforementioned columns. While the effect size (beta) is listed in the input, it is not used in the tool.
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Figure 3.1. The automatic reporting tool. The data (presented as an uncolored manhattan plot) traverses
through the tool. The tool consists of three distinct parts, each with its own function: In the first
part, the variants are filtered and grouped into separate groups. In the second part, the variants
are annotated using gnoMAD and FinnGen annotations. In the third and last part, the variants
are compared against an outside source of associations, for example the online database GWAS
Catalog. The output of the tool is the filtered and annotated variants. This is presented as a
coloured manhattan plot, where colour separates the different signals. An additional novelty report
is also outputted by the script, in which for each group their previous associations are enumerated.
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in a variety of ways: On a single workstation, on larger computing clusters, or on cloud

computing services by using data analysis pipelining tools. A WDL pipeline was developed

in addition to the tool, to be run on on cloud computing services.

The tool is written using Python 3[53]. The data analysis package Pandas is used heavily

throughout the script for operating on the variant data[54]. Multiple bioinformatics tools

are used throughout the tool. These tools are Plink 1.9, tabix and LDstore[55][56][41].

The tool manipulates GWAS summary statistics, supplied to the tool as gzip-compressed

tab-separated value files. The end result of the tool is set of tab-separated files, containing

the filtered and grouped variants, the same variants annotated and with matching associa-

tions added, as well as a report containing the variant groups and all of the traits associated

with those groups.

As the tool is implemented as a command-line program, its function is controlled with

parameters supplied as command-line arguments. Using these parameters, it is possible to

change key parameters of the tool, such as the used significance threshold for p-values, the

type of grouping algorithm, or the database used for downloading known associations. A

complete list of these parameters can be seen in table 1.1.

3.3 Variant filtering & grouping

In the first part of the tool, a summary statistics file is filtered down to include only genome-

wide significant results, and the results are optionally grouped together. The grouping can

be performed by using one of two algorithms: By ordering the variants by p-value, and

adding a specified region, e.g. 1 megabase around the most significant variants into that

variant’s group, or by using LD information to determine which variants belong into which

groups. The filtering and grouping concept is demonstrated in figure 3.2.

The variants are filtered according to their p-value, so that variants with a p-value lower

than an user-set threshold are filtered in by the tool, and other variants are discarded.

After the variants are filtered, they are grouped. Due to LD between variants, the signal

from a causal variant can be observed in the variants that are in high LD with the causal

variant. Grouping variants with low p-values that are in high LD with each other and/or in

close proximity to each other can therefore help in limiting the signals shown in the data to

the plausible ones. A group of variants is indicated by the variants’ group ID, called locus

ID in the tool. The group IDs are given based on the most significant variant in the group.

In location-based grouping, the significant variants are ordered based on their p-value.

Then, starting from the variant with the lowest p-value, all variants in a region around that

variant, for example 1 megabase up-and downstream of the variant, are included into that

variant’s group. The variants that are part of a group can not form groups. This is repeated

until there are no variants left to form groups. This algorithm is described in pseudocode in
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Figure 3.2. Filtering and grouping. The variants are represented as dots in the mock Manhattan plot. The

variants are filtered by their p-value, such that only variants with p-value larger than a threshold
(the dotted line) are filtered in. These filtered variants are then grouped (the blue circles around
variants). Rest of the variants are discarded (greyed out dots).

listing A.1

In LD-based grouping, the groups are formed similarly, but the grouping algorithm takes

into account the LD structure of the sample population. The variants are ordered based on

their p-value, and all variants that 1) are in LD with the lead variant, 2) are closer to the

lead variant than a set distance, and 3) are not yet in a group are added to that variant’s

group. This is continued until there are no variants left to form groups. This algorithm has

been implemented in the software package PLINK[40]. The grouping method is called LD

clumping. The tool itself does not implement this algorithm, and instead it calls PLINK

using Python 3’s subprocess library [53]. The thresholds for LD, p-value, and position range

are configurable.

Additionally, in both of these grouping methods, the groups can be set to overlap, i.e. a

variant can belong to more than one group. However, a variant already belonging to a group

can not become a group’s lead variant.
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3.4 Variant Annotation

After the variants have been filtered and grouped, they are annotated using additional

information from FinnGen variant annotation files and gnoMAD. These annotations serve

as additional information that is relevant to the variants, such as allele frequencies in

different populations, imputation quality scores, and the most severe consequence of the

variant.

Information that is acquired from gnoMAD annotations includes allele frequencies for

different populations, such as Finnish, Swedish and Estonian populations, as well as allele

frequency enrichment in the Finnish population compared to the European population. The

complete annotation list can be seen in tables 3.2 and 3.3. These annotations are used for

interpreting significant associations. For example, if a variant is enriched in Finland, it

can help explain why that variant was significant in FinnGen but not in other studies with

similar sample sizes. The association might have been detected because the higher allele

frequency in Finland gives more statistical power to detect it.

In addition to the gnoMAD annotations, annotations gathered during the FinnGen project

are added to the variants. These annotations include batch-specific information about

the imputation process, such as imputation quality and minor allele frequency. The most

severe gene and most severe consequence are also added to the variants. Here, most severe

consequence is defined as the consequence that is most severe to the functioning to that gene

the variant resides in. For example, a nonsense mutation, where the mutation changes the

codon it is coding to change into a stop codon, is considered more severe than a synonymous

mutation, in which the amino acid the codon is coding to does not change. The most severe

gene is then the gene that the most severe consequence affects.

The annotation information is then appended to the variant data as extra columns.

Annotation name Description
FIN AF Allele frequency of the effect allele in the Finnish population.
NFE AF Allelle frequency of the effect allele in the non-Finnish Euro-

pean population.
EST AF Allele frequency of the effect allele in the Estonian population.
NWE AF Allele frequency of the effect allele in the North-Western Eu-

ropean population.
ONF AF Allele frequency of the effect allele people designated as other

non-Finnish Europeans.
SEU AF Allele frequency of the effect allele in the South-European

population.
FIN enrichment vs NFE The enrichment of the minor allele in the Finnish population

compared to non-Finnish European population
FIN enrichment vs NFE,
excl. EST.

The enrichment of the minor allele in the Finnish popula-
tion compared to non-Finnish European population. Estonian
population is excluded from the enrichment calculation.

Table 3.2. gnoMAD genome annotation information.
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Annotation name Description
FIN AF Allele frequency of the effect allele in the Finnish population.
NFE AF Allele frequency of the effect allele in the North-Western Eu-

ropean population.
EST AF Allele frequency of the effect allele in the Estonian population.
SWE AF Allele frequency of the effect allele in the Swedish population.
NWE AF Allele frequency of the effect allele in the North-Western Eu-

ropean population.
ONF AF Allele frequency of the effect allele people designated as other

non-Finnish Europeans.
SEU AF Allele frequency of the effect allele in the South-European

population.
BGR AF Allele frequency of the effect allele in the Bulgarian popula-

tion.
FIN enrichment vs NFE The enrichment of the minor allele in the Finnish population

compared to non-Finnish European population.
FIN enrichment vs NFE,
excl. EST

The enrichment of the minor allele in the Finnish popula-
tion compared to non-Finnish European population. Estonian
population is excluded from the enrichment calculation.

FIN enrichment vs NFE,
excl. SWE

The enrichment of the minor allele in the Finnish popula-
tion compared to non-Finnish European population. Swedish
population is excluded from the enrichment calculation.

FIN enrichment vs NFE,
excl. EST & SWE

The enrichment of the minor allele in the Finnish population
compared to non-Finnish European population. Estonian &
Swedish populations are excluded from the enrichment calcu-
lation.

Table 3.3. gnoMAD exome annotation information.

3.5 Comparing identified associations to literature

After the variants have been filtered, grouped and annotated, they are compared against

associations that have been established earlier. There are two ways that the associations

can be supplied to the tool: Either the associations can be manually curated beforehand,

and supplied to the tool, or the associations can be searched for from an online database. It

is also possible to use both of these options, using manually gathered association data in

addition to the online association database. How the associations are used and what the

tool produces as its end result will be described in the next paragraphs. Concerns related to

association data preprocessing are also considered.

The automatic reporting tool seeks to automate finding significant associations from

a GWAS, as well as to ascertain if the associations are novel. The comparison part of

the tool seeks to find if the associations are novel. This is done by comparing the found

associations to previous studies. An association is considered novel if a variant with the

same chromosomal position and effect allele has not been identified as associated with the

same trait before. Due to the fact that traits can have overlapping definitions, as well as

pleiotropy due to the underlying genetic architecture, it is not uncommon for an associated

variant to have multiple associations. Therefore it is beneficial to find out not only the

novelty of a variant, but what other traits that variant is associated with, if any.
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As previously mentioned, the associations can be supplied to the tool by either manually

curating them or by using an online database to download them. In the case of a manual

curation, the tool must be provided with a list of both the association files and the associated

traits. The associations have to be reported against the correct reference genome. Only the

human reference genome build 38 is supported by the tool.

When using the online association database, the tool downloads the associations belonging

to the same genomic locations as the filtered and grouped variants. Two databases are

available for use: The GWAS Catalog association database, as well as the GWAS Catalog

summary statistic database. GWAS Catalog is an online database that contains more

than 100,000 associations. The GWAS Catalog summary statistic database on the other

hand contains complete summary statistics of studies, while GWAS Catalog association

database contains reported associations of studies[18]. This means that the summary

statistic database can contain thousands of times more association data per study than the

association database. However, it only contains associations from studies that have released

their complete summary statistics publicly, and therefore contains associations from fewer

studies than the association database. The default option for the tool is the association

database.[44]

Information concerning association chromosome, position, risk allele and trait are down-

loaded from the database. Due to the fact that the risk allele is not reported for all associa-

tions and the reference allele is not reported for any traits in the association database, the

associated variant’s allele information is downloaded from the Ensembl genome Browser,

version 97 REST API[57]. The summary statistic database includes this information.

After the associations have been gathered, the tool compares them to the filtered and

grouped variants. The association and variant have to have matching chromosome, position,

and alleles in order to be considered a match. However, due to the fact that the variant can

be measured from either strand of the DNA, and in the case of a biallelic variant, the risk

allele can be either one of those, matching the alleles is not trivial. Table 3.4 shows all of

the orientations of two different variants. Due to this ambiguity, the tool uses an algorithm

to shift all of the variants into a unified presentation. The algorithm works by changing the

strand of the variant into a strand that has an A allele if necessary, and ordering the alleles

alphabetically. In this case, even variants such as 1) in table 3.4 are matched correctly,

regardless of the orientation or strand they have been presented in.

After the variants have been matched to associations, the associated traits are aggregated

per group of variants, which produces a human-readable table for inspecting, which variant

groups are novel and which have been identified in previous studies. This table can then be

used to quickly get an understanding of which loci are novel, and which have ben associated

to traits before. An example table is shown in table 3.5 .The LD between variants and

previously identified associations is also inspected and reported as variant pairs. The
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Strand Effect allele Alternate allele
1) Alleles A, C
+ A C
+ C A
- T G
- G T
2) Alleles G, C
+ G C
+ C G
- C G
- G C

Table 3.4. Possible allele orientations for two biallelic variants. 1) The alleles A and C in all of the configurations.
An association with these alleles can be present in summary statistics as A/C, C/A, T/G or G/T,
depending on the strand and allele orientation. It is not possible to determine whether a variant
with alleles A/C and a variant with any of the other allele pairs is the same association, or if the
variant is multiallelic. 2) The alleles C and G in all configurations. Because C and G pair with each
other, a variant with C and G as its alleles is always presented with C and G, regardless of the
strand or allele orientation.

rationale behind this is that if a variant identified by FinnGen is in LD with a previously

identified association, then they might have the same causal variant. This process is

clarified in figure 3.3

locus id chrom start end traits other traits
chr1_101_A_C 1 13 2000 AF;T2D
chr3_5034_T_TGA 3 2504 7890 T2D asthma
chrX_2106_G_C X 304 4605

Table 3.5. Variant group table. The variant groups and associated traits are shown in the different columns.
The first column is the group identification code, which is the same as the variant id of the group
lead variant. The second column shows the chromosome the group of variants is in, and third and
fourth columns show the group position range. the ’traits’ and ’other traits’-columns show the traits
associated with the group’s variants. The difference between the columns is that ’traits’-column
contains those traits that were specifically supplied to the tool as traits of interest. In case those
columns are empty, the variant group did not have any matching associations, and therefore it might
be novel. chrX_2106_G_C is an example of a possibly novel variant group.

3.6 Pipeline

In this section, the rationale for developing a data-analysis pipeline for the automatic

reporting tool, as well as technical implementation details, will be described. Parallel

processing of the tasks is also mentioned.

In order to process hundreds to thousands of GWASs, a WDL pipeline was written for the

tool. The pipeline makes it possible to automatically process an arbitrary amount of GWAS

summary statistics on a wide variety of computing hardware. Perhaps the most important

advantage of the pipeline is that it makes it possible to run the tool on cloud computing

resources, which makes it possible to scale the amount of hardware much more flexibly than

what would be possible using traditional computing clusters.

In the case of this tool, the WDL pipeline is run on Google Cloud using Cromwell, a WDL

pipelining server[51]. Cromwell executes pipelines by dividing the tasks defined in the WDL

26



Tool implementation

1 2 3 4 5 6
1 

2 
3 

4 
5 

6 1 2 3 4 5 6
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a)

b)
1 ~ 5
2 ~ 4
2 ~ 5
2 ~ 6
3 ~ 4
3 ~ 6

Figure 3.3. Association by LD. a) Consider a situation where variants 1, 2 and 3 have been identified as
significant variants and grouped together. in addition to them, associations 4, 5 and 6 are located
near their position on the genome, but they do not exactly match. The LD between variants and
associations is drawn in a). LD between variants or LD between associations is not used. b) From
a), we could see that variant 1 was in high LD with association 5, variant 2 was in high LD with
associations 4,5, and 6, and variant 3 was in high LD with associations 4 and 6. The tool outputs
these LD pairs as a separate output.

pipeline to virtual machines, each of which can be provided with appropriate resources to

complete its task. Many of these virtual machines can be run at the same time, meaning

that the real time required to complete a set of computationally demanding tasks can be as

low as the time one task needs to be completed.

3.6.1 Parallel Processing

By its nature, much of bioinformatics is "embarrassingly parallel", i.e. a workload is easily

separated into separate tasks that can be run relatively or completely independent of each

other. Examples of this include processing RNA data or performing GWA analysis on

multiple phenotypes, in which a single phenotype does not depend on any of the other

phenotypes[50]. The workload can therefore be run on parallel on e.g. a cluster of multiple

machines, which massively decreases the real time required to process the workload. In

the context of this thesis, the workload of processing GWASs summary statistics with the

tool can be trivially divided into independent tasks by considering each separate GWAS

summary statistic as one task. Since these tasks do not depend on each other, they can be

processed on different computers, e.g. on a dedicated cluster of computers, virtual machines,

27



Tool implementation

or containers.

WDL implements parallel computing by its scatter call, which enables it to spin up a

separate task for every input of a single call. In the case of Cromwell, these tasks are then

assigned on Docker containers containing the environment necessary for that task.

Cromwell, the server implementing WDL, processes workflows by creating and setting

up containers for individual tasks in that workflow, running them and copying the outputs

to an output directory, which can be object storage in the cloud, a file system on a server

etc. In the case of this tool, Cromwell is run on Google Cloud Platform, meaning that it will

provision the containers on virtual machines provided by Google. This makes it possible to

perform tasks of a wide range of scales, from small to massive, and to save up on workflow

costs due to not needing to maintain computing hardware.

The computation performed by this tool is relatively fast, but the amount of data is quite

large, on the order of tens of gigabytes. Because copying data from the data storage to

containers takes time, it is beneficial to only partially separate the different phenotypes

into separate tasks. That is implemented by dividing the list of phenotypes into a list of

lists of phenotypes. A task is then started for each of those lists. Assuming that the time

taken by a worker consists completely of worker intialization and task computation, the

total compute time can be approximated using the formula

tTotal = tPhenotype ∗NPhenotype + tInitialization ∗ ceil(NPhenotype/NTasks), (3.1)

where tTotal is the total compute time, tPhenotype is the time to process one phenotype,

NPhenotype is the number of phenotypes, tInitialization is the time to initialize a worker, and

NTasks is the amount of tasks assigned to a single worker. The total real time can be

calculated using the formula

tReal = tInitialization +NTasks ∗ tPhenotype, (3.2)

where tReal is the total real time. This has been further demonstrated in figure 3.4. The

number of tasks per worker can be decided based on what the initialization and processing

times are. For example, from figure 3.4 we can see that the decrease in compute time when

switching from 3 to 4 tasks per worker is only approximately 4% of the maximum compute

time. After that, the gain in decreased compute times keeps decreasing. Therefore, in a

situation where the initialization time is roughly equal to the time taken processing one

task, a worker should probably only have at most 2 or 3 tasks.

28



Tool implementation

1

2

3

4
5

6 7 8 9 10

60%

70%

80%

90%

100%

1 2 3 4 5
Real time, multiples of real time for one task per worker

C
om

pu
te

 ti
m

e,
 %

 o
f m

ax
im

um

Tasks per worker numbered
Estimated real and compute times for tasks

Figure 3.4. Compute & real time required when processing multiple tasks on a single worker. The x-axis shows
the required real time as multiples of the time taken if only one task was assigned per worker. The
initialization time and processing time of one task are assumed to be the same.
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4. Methods and materials

An experiment was performed to confirm the tool works and to measure its performance.

4.1 Data

The experiment was performed using GWAS summary statistics from the Lee lab for

Statistical Genetics and Genomics, which is part of the Department of Biostatistics at

the University of Michigan. The GWAS was performed on the UK Biobank dataset using

SAIGE[28]. The resulting summary statistics are openly available on the group’s webpage.

The summary statistics, being in human reference genome build 37, were lifted to build 38

using the liftOver tool by the FinnGen project data analysis team[58]. The total dataset

consists of 22 GWAS summary statistics, corresponding to 22 different traits. The complete

trait information is shown in table 4.3.[59]

To calculate LD between variants in the analysis, a reference genotype panel was used.

The panel consisted of the NFE populations (CEU, TSI, GBR, IBS) in the 1000 Genomes

Project[8]. In total, 195 samples were included in the genotype panel. The original panel

data was acquired from the 1000 Genomes Project, and is openly available in [60]. The

original data was converted into PLINK .bed-format and lifted to human genome build 38

using liftOver by the FinnGen project analysis team. The panel was then restricted to only

the european populations using PLINK.

4.2 Experiment

The summary statistics were processed using the automatic reporting tool. To run the

tool, a WDL pipeline was run with Cromwell in a Google Cloud computing environment.

The resources given to individual machines on which the tool ran can be seen in table 4.1.

The tool was used to filter the significant variants from the summary statistics, group the

variants using the LD clumping option in PLINK, and compare the variants to the GWAS

Catalog. The variants were not further annotated, as no British annotation resources were

obtained. The complete parameter list for the pipeline can be seen in table 4.2.
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Property value Description

Container Image Ubuntu 18.04 The operating system of the container. Additional
software, i.e. PLINK 1.9, tabix, LDStore and the
autoreporting tool were installed onto the container
image.

CPUs 4 Number of logical CPUs.
Memory 16 GB Amount of RAM the worker had access to.
Disk space 300 GB The amount of disk space given to the workers.

Table 4.1. Worker specification.

Parameter description Value

# of phenotypes assigned per worker 3
significance threshold 5× 108

alternate significance threshold for grouping 1× 105

Grouping locus width 1500
LD clumping r2 threshold 0.1
PLINK memory amount 13500 MB
GWAS Catalog significance threshold 5× 108

# of logical CPUs 4
# of threads for the GWAS Catalog 8
Toggle grouping variants on or off On
Are groups allowed to overlap False
The method of grouping: LD clumping or position-based grouping LD clumping
Online catalog to use for variant matching GWAS Catalog

Table 4.2. Chosen parameters for the experiment.
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Phenotype Description Phenotype Cate-
gory

Cases Controls

153.2 Colon cancer neoplasms 3051 382756
165.1 Cancer of bronchus; lung neoplasms 2101 406226
172 Skin cancer neoplasms 13752 395071
174.11 Malignant neoplasm of female

breast
neoplasms 11874 388549

185 Cancer of Prostate neoplasms 6743 169185
250.1 Type 1 diabetes endocrine/

metabolic
2660 388756

250.2 Type 2 diabetes endocrine/
metabolic

18945 388756

290.11 Alzheimer’s disease mental disorders 404 402383
332 Parkinson disease neurological 1127 395209
335 Multiple sclerosis neurological 1356 395209
362.2 Degeneration of macula and poste-

rior pole of retina
sense organs 2191 396859

365.11 Primary open angle glaucoma sense organs 1037 397761
366.2 Senile cataract sense organs 8369 388609
411.2 Myocardial infarction circulatory sys-

tem
11703 377103

427.2 Atrial fibrillation and flutter circulatory sys-
tem

14820 380919

495 Asthma respiratory 26332 375505
496 Chronic airway obstruction respiratory 10502 375505
555 Inflammatory bowel disease and

other gastroenteritis and colitis
digestive 4528 334783

696.4 Psoriasis dermatologic 2237 398199
714.1 Rheumatoid arthritis musculoskeletal 4412 365085
715.2 Ankylosing spondylitis musculoskeletal 620 365085
939 Atopic/contact dermatitis due to

other or unspecified
dermatologic 2110 404817

Table 4.3. Phenotypes for the pipeline.
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5. Results

The tool took 2 hours 14 minutes to process all of the 22 traits of the dataset. The work

was divided into 8 tasks, with 3 phenotypes to process for each worker. The processing took

25 minutes of real time to complete. The average time for each worker to complete was

17 minutes. The complete timing information can be seen in table 5.1. Pipeline function-

specific timing information can be seen in table 5.2, as well as in figure 5.1. No workers

were pre-empted during the pipeline.

Based on Google pricing for custom pre-emptible machines with 4 virtual CPUs and 16

GB of RAM, the whole pipeline cost was approximately 0.11 USD or approximately 0.10

EUR [61][62]. This extrapolates to approximately 0.45 EUR /100 phenotypes. The complete

pricing calculation can be seen in table 5.3.

Worker # of phenotypes Start End Duration
1 3 13:37:38.101 13:55:32.962 17:54.86
2 3 13:37:38.101 13:53:47.962 16:09.86
3 3 13:37:38.101 13:52:35.973 14:57.87
4 3 13:37:38.101 13:56:50.963 19:12.86
5 3 13:37:38.101 13:52:14.972 14:36.87
6 3 13:37:38.101 13:56:35.972 18:57.87
7 3 13:37:38.101 14:02:05.972 24:27.87
8 1 13:37:38.101 13:45:17.971 07:39.87

Table 5.1. The timing data for the pipeline. The time taken for processing is similar for the workers, except for
the last worker. This can be explained by the fact that the worker only had 1 phenotype to process.

24%

14%62%

Pipeline part
Computation
Initialization
Other

Pipeline computation time per function

Figure 5.1. Time taken per different functions of the pipeline. ’Computation’ refers to the actual computation
of the automatic reporting tool, ’Initialization’ refers to the downloading of the data files to each
worker, and ’Other’ is all of the other time spent on the pipeline not belonging to either of those
categories.

A list of the amounts of identified variants as well as the amount of groups with and with-

out association hits is available in table 5.4. In total, 21 phenotypes contained significant
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Worker # Phenos Total Init Comp Comp/Pheno Other

0 3 17:54.86 02:23.96 10:01.47 03:20.49 05:29.44
1 3 16:09.86 02:52.62 11:16.75 03:45.58 02:00.49
2 3 14:57.87 02:24.46 09:08.01 03:02.67 03:25.40
3 3 19:12.86 02:27.83 10:21.99 03:27.33 06:23.04
4 3 14:36.87 02:34.99 09:29.10 03:09.70 02:32.78
5 3 18:57.87 02:33.96 13:15.48 04:25.16 03:08.43
6 3 24:27.87 02:07.19 17:24.89 05:48.30 04:55.80
7 1 07:39.87 02:04.66 02:02.86 02:02.86 03:32.35

Table 5.2. Pipeline timing data, separated by function. We can see that the while the computation time taken
by the different workers differs between workers, the initialization time stays somewhat constant.
The time taken by miscellaneous actions, shown in the ’Other’ column, varies greatly between
workers. From the table it can be seen that the average computation time per phenotype is quite
small, ranging from 2 minutes to slightly less than 6 minutes.

Attribute Price/h (pre-emptible) Amount Price

Virtual CPU 0.00768 USD 4 0.0686 USD
Memory, 1 GB 0.00103 USD 16 0.0368 USD
Total 0.0472 USD - 0.105 USD

Table 5.3. Price calculations for the pipeline. The price takes into account the duration of the computation.

results. An example of the tool’s output after filtering and grouping the GWS variants in

phenotype 366.2 can be seen in table 5.5. An example of the tool’s final outputs, the complete

variant report and the group report, for phenotype 366.2 can be seen in tables 5.6 and 5.7,

respectively.

As we can see, The amount of groups and significant associations differs by a great margin

between phenotypes. For example, in the case of phenotype 366.2, Senile cataract, the

variants are grouped into separate groups, with the exception of two variants, which contain

no other variants in their groups. This can be seen in figure 5.2. The amount of groups

and the amount of associations is relatively small. In some other phenotypes, such as 335,

multiple sclerosis, there is a large amount of large groups in chromosome 6, which makes

interpreting this region difficult. The amount of groups and associations is relatively large.

In addition, some variants did not group with other variants. This can be seen in figure 5.3.
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Phenotype Description Variants # gr. # Novel gr. # Assoc. gr.

153.2 Colon cancer 59 3 1 2
165.1 Cancer of bronchus; lung 313 5 3 2
172 Skin cancer 6491 194 129 65
174.11 Malignant neoplasm of female

breast
857 32 15 17

185 Cancer of Prostate 923 171 149 22
250.1 Type 1 diabetes 11680 528 466 62
250.2 Type 2 diabetes 6914 281 207 74
290.11 Alzheimer’s disease 306 6 0 6
332 Parkinson disease 0 0 0 0
335 Multiple sclerosis 6619 370 337 33
362.2 Degeneration of macula and

posterior pole of retina
249 4 2 2

365.11 Primary open angle glaucoma 152 5 2 3
366.2 Senile cataract 273 9 5 4
411.2 Myocardial infarction 2615 37 13 24
427.2 Atrial fibrillation and flutter 4497 118 63 55
495 Asthma 12036 465 371 94
496 Chronic airway obstruction 971 10 5 5
555 Inflammatory bowel disease

and other gastroenteritis and
colitis

2426 82 57 25

696.4 Psoriasis 11162 353 303 50
714.1 Rheumatoid arthritis 7653 471 423 48
715.2 Ankylosing spondylitis 6078 216 183 33
939 Atopic/contact dermatitis due

to other or unspecified
14 3 2 1

Table 5.4. Reporting tool result summary. The tool found significant results in 21 of the 22 phenotypes, with no
significant results found in phenotype 332, Parkinson’s disease. All of the results were grouped. In
some phenotypes, such as 250.1, Type 1 diabetes, there is a large amount of single variants that
were not grouped with any other variants. This is due to LD information not being available for
them, for example because the variant is not biallelic, or because of inconsistencies between the LD
panel and the summary statistic used.
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#chrom pos ref alt beta sebeta pval #variant locus_id pos_rmax pos_rmin
11 69140554 G A 0.209 0.0345 1.29E-09 chr11_69140554_G_A chr11_69172840_G_C 69200682 69140554
11 69141754 T C 0.21 0.0345 1.19E-09 chr11_69141754_T_C chr11_69172840_G_C 69200682 69140554
11 69141980 A C 0.21 0.0345 1.08E-09 chr11_69141980_A_C chr11_69172840_G_C 69200682 69140554
11 69146940 C T 0.209 0.0345 1.41E-09 chr11_69146940_C_T chr11_69172840_G_C 69200682 69140554
11 69147244 C T 0.209 0.0345 1.26E-09 chr11_69147244_C_T chr11_69172840_G_C 69200682 69140554
11 69148063 C T 0.208 0.0345 1.52E-09 chr11_69148063_C_T chr11_69172840_G_C 69200682 69140554
11 69148200 A G 0.208 0.0345 1.51E-09 chr11_69148200_A_G chr11_69172840_G_C 69200682 69140554
11 69148203 C T 0.209 0.0345 1.41E-09 chr11_69148203_C_T chr11_69172840_G_C 69200682 69140554
11 69148569 C T 0.208 0.0345 1.52E-09 chr11_69148569_C_T chr11_69172840_G_C 69200682 69140554
11 69148979 A G 0.208 0.0345 1.52E-09 chr11_69148979_A_G chr11_69172840_G_C 69200682 69140554
11 69149111 T C 0.208 0.0345 1.51E-09 chr11_69149111_T_C chr11_69172840_G_C 69200682 69140554
11 69149614 A G 0.208 0.0345 1.64E-09 chr11_69149614_A_G chr11_69172840_G_C 69200682 69140554
11 69149883 T C 0.208 0.0344 1.62E-09 chr11_69149883_T_C chr11_69172840_G_C 69200682 69140554
11 69150704 T C 0.208 0.0344 1.64E-09 chr11_69150704_T_C chr11_69172840_G_C 69200682 69140554
11 69151517 A C 0.206 0.0344 2.22E-09 chr11_69151517_A_C chr11_69172840_G_C 69200682 69140554
11 69151839 T C 0.208 0.0344 1.56E-09 chr11_69151839_T_C chr11_69172840_G_C 69200682 69140554
11 69152181 A G 0.208 0.0344 1.51E-09 chr11_69152181_A_G chr11_69172840_G_C 69200682 69140554
11 69153920 A G 0.209 0.0345 1.27E-09 chr11_69153920_A_G chr11_69172840_G_C 69200682 69140554
11 69154651 G A 0.211 0.0345 9.32E-10 chr11_69154651_G_A chr11_69172840_G_C 69200682 69140554
11 69155266 C T 0.21 0.0345 1.05E-09 chr11_69155266_C_T chr11_69172840_G_C 69200682 69140554
11 69155745 C T 0.21 0.0345 1.11E-09 chr11_69155745_C_T chr11_69172840_G_C 69200682 69140554
11 69158599 C T 0.186 0.0328 1.42E-08 chr11_69158599_C_T chr11_69172840_G_C 69200682 69140554
11 69159890 A G 0.197 0.0267 1.67E-13 chr11_69159890_A_G chr11_69172840_G_C 69200682 69140554
11 69171308 G A 0.216 0.0276 4.7E-15 chr11_69171308_G_A chr11_69172840_G_C 69200682 69140554
11 69171980 A G 0.19 0.0267 9.87E-13 chr11_69171980_A_G chr11_69172840_G_C 69200682 69140554
11 69172840 G C 0.221 0.0279 2.85E-15 chr11_69172840_G_C chr11_69172840_G_C 69200682 69140554
11 69173724 T G 0.22 0.028 3.49E-15 chr11_69173724_T_G chr11_69172840_G_C 69200682 69140554
11 69174306 T C 0.22 0.028 3.27E-15 chr11_69174306_T_C chr11_69172840_G_C 69200682 69140554
11 69174319 G A 0.221 0.028 2.91E-15 chr11_69174319_G_A chr11_69172840_G_C 69200682 69140554

Table 5.5. Some variants from the filtering & grouping output of the tool for phenotype 366.2, Senile cataract.
The tool has filtered the variants into GWS variants and grouped them based on their LD struc-
ture.The variants shown belong to 5 distinct groups, The group lead variant is shown in the locus_id
column. The pos_rmax and pos_rmin columns show the position coordinates of the last and first
variant in the group.
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Figure 5.2. A Manhattan plot of the phenotype 366.2, Senile cataract, significant results, as well as closer
views of the separate groups in chromosomes 11 and 20. In chromosome 11, all of the significant
variants are neatly grouped into one group. In chromosome 20, the variants are grouped into
two overlapping groups that would be difficult if not impossible to separate without the LD-based
grouping. Note that variants with p-values larger than the significance threshold have been
included into the groups, due to the LD between the group lead variant and those variants.
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Results

locus_id chr start end enrichment lead_pval matching_pheno_gwas_catalog_hits other_gwas_hits
chr11_69172840_G_C 11 69140554 69200682 2.85E-15 body height
chr17_83094678_G_A 17 83094678 83094678 3.97E-08
chr17_83100564_T_C 17 83100564 83100564 2.53E-08
chr17_83104098_A_G 17 83104098 83112886 1.81E-08 colorectal cancer; colorectal

adenoma
chr20_19476624_A_G 20 19474559 19634107 1.64E-20 migraine disorder; pulse

pressure measurement;
diastolic blood pressure;
FEV/FEC ratio

chr20_19557472_A_G 20 19548023 19592951 1.78E-08
chr4_173978109_G_A 4 173978109 173978109 4.38E-08
chr7_46174655_A_G 7 46083961 46174655 3.81E-14
chr9_22206988_C_T 9 22206988 22373458 9.41E-10 chronic lymphocytic

leukemia

Table 5.7. The group report for phenotype 366.2, Senile cataract. The associations from GWAS Catalog can be
seen in the other_gwas_hits column.
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Figure 5.3. A Manhattan plot of the phenotype 335, Multiple sclerosis, significant results, as well as closer
views of the chromosomes 2 and 6. A very large majority of the significant results are located in
chromosome 6, around the HLA region. The LD structure around the HLA region seems to be quite
complex, with many overlapping groups of variants. In addition to them, there is a large amount of
variants that did not group with other variants. This is again most likely due to inconsistencies
between the LD panel and summary statistic.
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6. Discussion

The tool processed all of the phenotypes in a relatively small amount of time and with

relatively small computational and monetary expenses. The processing of the phenotypes

can be easily scaled up to handle hundreds or thousands of phenotypes. Considering the

costs of 0.10 EUR per 22 phenotypes, processing 1000 phenotypes could perhaps be processed

with less than 10 EUR in computing costs.

An interesting question that arises from the results is how big are the computation time

savings acquired from giving multiple tasks for a single worker vs giving only one task per

worker.Based on the timing information in 5.2, we can estimate the overhead per worker

and computation time per phenotype. The calculations are presented in table 6.1, and

the estimated savings based on the experiment timing data can be seen in figure 6.1. The

different plots in figure 6.1 show the proportional differences in compute times with different

assumed worker overheads.

Figure 6.1 shows that the estimated savings in computing time are significant, being either

approximately 40% or 25% in the case of 3 tasks per worker, depending on assumptions.

If all time other than computation was assumed to be worker-specific overhead, then the

time savings were larger than if the worker-specific overhead was assumed to only consist

of initialization (data transfer).

One aspect that the timing estimation does not take into account is the possibility of a

worker to be pre-empted. Presumably, a worker taking more time to complete the work

it has been given is under a larger risk of being pre-empted during its work. Therefore

assigning more tasks for a worker might affect the expected computation time and expected

real time taken more that this simple model estimates. Another point that the timing

estimation does not take into account is that the amount of summary statistics moved to the

workers depends on the amount of tasks given to a worker. However, because the summary

statistics are much smaller in size than the other input data that does not depend on task

amount, this effect is small.

Pipeline part Mean

Computation/Pheno 03:37.76
Initialization 02:26.21
Other 03:55.96
Overhead 06:22.17

Table 6.1. Calculated timing information & their means. Overhead is the sum of the times for initialization
and other time taken by the worker.

The tool was also successfully ran on the FinnGen project release 3 data. Due to the
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Figure 6.1. Compute & real time required when processing multiple tasks on a single worker. The x-axis shows
the required real time as multiples of the time taken if only one task was assigned per worker. The
processing time per phenotype and the initialization/overhead time per worker were estimated
from the experiment timing data. Values from table 6.1 were used.

proprietary nature of the results, they cannot be presented here. A summary of the

performance is therefore presented. The processing took approximately 95 hours 53 minutes

of computing time per 1000 phenotypes. Out of that, 3% of total computing time was spent

on pre-empted computation, i.e. the workers were cancelled before completion due to other

users of Google Cloud requesting those resources, and new workers were tasked with the

same computations. The computation cost, based on google VM pricing, was approximately

5.72 USD per 1000 phenotypes. With 4 phenotypes per worker, approximately 46% of the

worker time was spent on actual computation. The time taken for everything else by the

worker, i.e. the processing overhead, was 54%. The differences to the experiment can be

partially explained with the differences in input data. For this analysis, a much larger LD

panel was used, which increases the time taken for initializing each worker. A picture of the

estimated compute & real times for different amounts of phenotypes can be seen in figure

6.2.

While the tool did complete the analysis for all of the phenotypes and the filtering,

comparing and annotation worked well, the grouping of variants did not perform flawlessly

with all variants. With some phenotypes, such as type 1 diabetes, some variants were

grouped into groups with only a lead variant. This cluttered the group report output with

many groups of only one variant and made it more difficult to interpret, diminishing its

value. This can be seen in figures 6.3 and 6.4. One explanation for this problem is the fact

that the grouping algorithm uses LD information acquired from an LD panel, which in the

case of this experiment comes from a different dataset compared to the summary statistic.

Those datasets don’t completely overlap, which means that some of the variants in the
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Figure 6.2. Compute & real time estimates for different amounts of tasks per worker. The x-axis shows the
required real time as multiples of the time taken if only one task was assigned per worker. The
processing time per phenotype and the initialization/overhead time per worker were estimated
from the timing data acquired from running the autoreporting tool for FinnGen release 3 data.

summary statistics were not available in the LD panel. Variants missing LD information

can not be grouped, and therefore they end up as single variant groups. For the intended

purpose of this tool, i.e. processing summary statistics of the FinnGen project, this is not a

problem. This is because the LD panel used for those summary statistics includes all of the

variants in the summary statistics.

A possible improvement, in addition to using summary statistics and LD information that

come from a same source, is not to include the single variants in the group summary report.

These variants would still be in the complete variant list, and they would not clutter the

group report.

The tool is useful, and it does fulfill the need it was created for, but further improvement

can be done. One specific improvement that could be done is extending the association

information in the group-specific report with associations that are in linkage disequilibrium

with the group’s variants. This could be done by e.g. selecting all of the associations in a

certain range from the group, calculating LD between the group and the associations, and

by reporting all of those associations that are in higher LD with the group’s variants than a

set threshold. This procedure would make it possible to identify associations that are not

exact matches with the significant variants, but are in LD with the group of significant

variants. This would be somewhat akin to the LD clumping procedure, in that variants

in LD with the signal would get included to the signal. Another improvement would be

highlighting finemapped variants in the reports. Considering that the finemapped variants

are in a sense more likely to be the true causal signals compared to just looking at high

p-values, this could make it easier to identify interesting signals in the reports.
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Figure 6.3. A Manhattan plot of the phenotype 250.1, Type 1 Diabetes, significant results, as well as closer
views of the chromosomes 1 and 6. A very large majority of the significant results are located in
chromosome 6, around the HLA region. The LD structure around the HLA region seems to be quite
complex, with many overlapping groups of variants.

0

100

200

300

400

0 250 500 750 1000
# of variants in a group

co
un

t

Phenotype: 250.1, Type 1 Diabetes
Histogram of group sizes

Figure 6.4. Histogram of group sizes for phenotype 250.1, Type 1 Diabetes. There is a large amount (>400) of
groups with only a single variant in them.
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7. Conclusion

Genome-wide association studies produce a great amount of data, and recent projects such

as FinnGen and UK Biobank have increased the amount of analysed traits to hundreds

or thousands of different traits, with a GWA analysis done for each trait. The automatic

reporting tool successfully filters and annotates this information, as well as compares it to

the GWAS Catalog, an association database. The resulting information provides researchers

an automatic way of distilling the summary statistics based on their needs. The WDL

pipeline for the tool makes it possible to easily perform the pipeline to data of any size, and

makes it possible to replicate the operation with minimal effort. This keeps the results

comparable and removes a source for error.

Using the tool, 22 GWA analysis summary statistics were filtered and compared against

GWAS Catalog. The tool performed well, and the resource usage data and cost analysis

indicates that the tool scales well for tens or hundreds of times larger amounts of traits,

while still being comparatively inexpensive. The results showed that the tool performed

well, and despite a few problem areas, mainly regarding the LD clumping of variants and a

small amount of incompatibility between the LD panel and the summary statistics, the tool

succeeded in is goals. Some improvements to the tool were identified.
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A. Appendix

A.1 Automatic reporting tool parameter table

Argument Description

–sign-threshold Signifigance threshold for variants. Variants with a p-value

larger than the threshold are filtered out from the results.
–prefix A prefix for all of the output and temporary files. Useful in cases

where there might be confusion between processes running in

the same folder. A dot is inserted after the prefix if it is passed.
–fetch-out Output file path for filtered and/or grouped variants.

–group Supplying this flag results in the variants being grouped into

groups using either grouping by distance from a lead variant or

by LD.
–grouping-method Grouping method used if –group flag is supplied. options are

’simple’, i.e. grouping based on distance from lead variant, or

’ld’, i.e. grouping using PLINK’s LD clumping.
–locus-width-kb Group widths in kilobases. In case of ld clumping, the value is

supplied to plink’s –clump-kb flag.
–alt-sign-threshold Optional alternate signifigance threshold for including less sig-

nificant variants into groups.
–ld-panel-path Path to ld panel. Ld panel must be in plink’s .bed format, as

a single file. Accompanying .bim and .fam files must be in the

same directory.
–ld-r2 Plink clump-r2 argument. Variants that are under –locus-width-

kb distance away from the lead variant, have a lower p-value

than the alternate significance threshold, and have have a

squared correlation coefficient larger than this value with the

lead variant are included in the group.
–plink-memory Plink –memory argument. Defines the PLINK maximum al-

lowed memory amount in megabytes.
–overlap If this flag is supplied, the groups of gws variants are allowed

to overlap, i.e. a single variant can appear multiple times in

different groups. Variants that are already grouped can not

function as lead variants.
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Appendix

Argument Description

–ignore-region The region supplied to this flag is ignored in the tool, i.e. the

variants in this region will not be included in the output.
–gnomad-genome-path Path to gnomad genome annotation file. Must be tabixed. Re-

quired for annotation.
–gnomad-exome-path Path to gnomad exome annotation file. Must be tabixed. Re-

quired for annotation.
–include-batch-freq Include batch frequencies from finngen annotation file

–finngen-path Path to finngen annotation file. Required for annotation.

–annotate-out annotation output file.

–compare-style Whether to use gwascatalog and/or additional summary statis-

tics to compare findings to literature. Use values ’file’, ’gwascat-

alog’ or ’both’.
–summary-fpath path to a file containing external summary statistic file paths.

List one summary file per line.
–endpoint-fpath path to a file containing endpoints for summary statistic files.

List one endpoint per line. The endpoints should be in the same

order as the summary files in –summary-fpath file
–check-for-ld When supplied, gws variants and summary statistics (from file

or gwascatalog) are tested for ld using LDstore.
–report-out Comparison output file.

–ld-report-out Output file containing the LD between GWS variants and asso-

ciations.
–gwascatalog-pval Associations with p-value smaller than this are included in the

GWAS Catalog results.
–gwascatalog-width-kb The region from which associations are downloaded form GWAS

Catalog is incremented up-and downstream with this many

kilobases.
–gwascatalog-threads Number of concurrent queries to gwasgatalog API. Default 4.

Increase to speed up gwascatalog comparison.
–ldstore-threads Number of threads to use with LDstore. At most the number of

logical cores in the processor.
–ld-threshold LD threshold for LDstore. Associations in higher LD with our

variants are included.
–cache-gwas Save GWAScatalog results into a file, so they do not need to be

downloaded again. Useful for testing.
–column-labels One can supply custom input file column names with this

(chrom, pos, ref, alt, pval only)
–top-report-out Filename of top-level report.
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Argument Description

–efo-traits specific traits that you want to concentrate on the top level

locus report. Other found traits will be reported on a separate

column from these. Uses Experimental Factor Oncology codes.
–local-gwascatalog File path to a local copy of GWAS Catalog.

–db Choose which comparison database to use, gwas catalog proper,

gwas catalog’s summary statistic api, or a local copy of gwas cat-

alog. With local copy, you need to supply the –local-gwascatalog

parameter.
gws_path Path to the tabixed and gzipped summary statistic that is going

to be filtered, annotated and compared. Required argument.

Table 1.1. Parameter list to automatic reporting tool.
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A.2 Position grouping pseudocode

l e t Vs = set ( genome−wide s i g n i f i c a n t variants )

l e t Gs = set ( )

while Vs i s not empty :

l e t v = min(Vs )

l e t g = v ’ in Vs where distance ( v ’ , v ) < locus width

Gs = Gs + g + v

Vs = Vs − v − g

return Gs

Listing A.1. Simple grouping of variants. In this context, the minimum is calculated based on p-value.
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