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Abstract

We present a micromechanical analysis of flow-induced peeling of a layered
2D material suspended in a liquid, for the first time accounting for realistic
hydrodynamic loads. In our model, fluid forces trigger a fracture of the inter-
layer interface by lifting a flexible “flap” of nanomaterial from the surface
of a suspended microparticle. We show that the so far ignored dependence
of the hydrodynamic load on the wedge angle produces a transition in the
curve relating the critical fluid shear rate for peeling to the non-dimensional
adhesion energy. For intermediate values of the non-dimensional adhesion
energy, the critical shear rate saturates, yielding critical shear rate values that
are drastically smaller than those predicted by a constant load assumption.
Our results highlight the importance of accounting for realistic hydrodynamic
loads in fracture mechanics models of liquid-phase exfoliation.
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1. INTRODUCTION

Atomically thin, two-dimensional materials such as graphene, boron ni-
tride, or MoS2 have attracted enormous interest recently [1]. As a conse-
quence the nanomechanics of 2D nanomaterials has emerged as an impor-
tant direction in the solid mechanics literature. Much of the work on the
mechanics of 2D nanomaterials has focused on solid mechanics and tribo-
logical aspects, such as adhesion [2], tearing [3], scrolling [4, 5], buckling
[6, 7], wrinkling [8, 9] and friction [10]. Of interest is typically the defor-
mation of the solid structure. However, the effect of the medium in which
the solid structure is immersed is often not considered, particularly when the
medium is a fluid. Many wet processes involving 2D materials and mechan-
ical tests of 2D materials are carried out in liquids or in contact with liquids
[11, 12, 13, 14, 15]. When liquids are present, not only the interfacial ther-
modynamics changes [16, 17]. One has also to consider the possible coupling
to flow.

Several techniques have been developed to produce 2D nanomaterials:
bottom-up methods such as chemical vapour deposition [18] and epitaxial
growth [19] are used to build layers of material from its molecular compo-
nents, while in top-down methods the layers of a bulk multilayer particle
are separated through electrochemical exfoliation [20], ball-milling [21] or
liquid-assisted processes like sonication [22] and shear mixing [23]. In the
current paper, we focus on mechanical aspects of liquid-phase exfoliation by
shear mixing, a scalable process to produce 2D nanomaterials on industrial
scales (for a comprehensive review, see [24]). In liquid-phase exfoliation,
plate-like microparticles of layered materials are suspended in a liquid sol-
vent. The liquid is then mixed energetically under turbulent conditions [25].
Each microparticle is formed by stacks of hundreds or thousands of atomic
layers, bound together by relatively weak inter-layer forces of the van der
Waals type. If the solvent is chosen appropriately and the intensity of the
turbulence sufficiently high, the large fluid dynamic forces applied to each
suspended particle can overcome interlayer adhesion, ultimately producing
single- or few-layer nanosheets. Choosing the optimal shear intensity level
is paramount, as too small hydrodynamic forces will not induce exfoliation
while too large forces will damage each sheet. An understanding of how the
exfoliation process occurs at the microscopic level is currently lacking.

A recent exfoliation model based on a sliding deformation has been pro-
posed by Paton et al. [23], as an extension of a previous work by Chen et
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al. [13]. In this model, the force for sliding is calculated by considering the
change in adhesion energy (accounting for changes in liquid-solid, solid-solid
and liquid-liquid surface areas) as the overlap between two 2D nano-layers
changes. Paton’s model predicts a critical shear rate proportional to the ad-
hesion energy, and inversely proportional to the first power of the platelet
lateral dimension. Because in the model the sheets are considered infinitely
rigid, the results are independent of the mechanical properties of the sheets.
For instance, the bending rigidity of the sheets does not appear in the ex-
pression for the critical shear rate. Since the seminal scotch-tape experiment
of Geim and Novoselov [26], it has become clear that the interplay of solid
deformation and adhesion can play a fundamental role in triggering layer
detachment.

A simple physical model that is sensitive to mechanics is to assume that
the effect of the fluid is to peel off layers of nanomaterial, inducing a fracture
of the van der Waals interface. In addition to being physically plausible,
such model would explain why in liquid-phase exfoliation removal of layers
occurs first at the outer surface of a mother particle [27]. Flow-induced
fracture phenomena have been studied extensively for colloidal aggregates
composed of roughly spherical beads [28, 29]. Models for exfoliation of plate-
like, layered particles due to microscopic peeling have been proposed in the
context of clay-filled polymer nanocomposites [30][31], but have not been
rigorously justified from the point of view of the coupling between flow and
deformation mechanics. For instance, these models rely on strong, often
irrealistic assumptions regarding the hydrodynamic load distribution. For
example, in the model of Ref. [30] the fluid is assumed to exert a constant,
tangential force on the peeled layer at a specified angle. In reality, one
should expect a dependence of the flow-induced forces on the configuration
of the peeled layer and that normal forces will play an important role. The
consequence of such dependence is so far unknown. The forces required to
detach a layer in a peeling problem depend strongly on the peeling angle
[32]. But, in a peeling problem in which the flow produces the load, the
peeling angle cannot be controlled independently, as this quantity depends
on the deformation of the solid structure. In addition, hydrodynamic forces
are distributed over the whole surface of the peeled layer, including the edge.
In fracture problems, different assumptions regarding the load distribution
can result in different predictions even if the total force values at play are
the same [33]. Considering realistic hydrodynamic loads is crucial to develop
exfoliation models that will withstand future experimental tests.
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In our paper, we analyse a “hydrodynamic peeling” model of exfoliation,
not making strong assumptions regarding the magnitude and distribution of
the hydrodynamic load. Rather, we calculate the load from first principles,
using high-resolution simulations of the Stokes equations for a simplified ge-
ometry. The forces computed from these high-fidelity simulations are then
used to calculate the deformation of the solid. Griffith’s theory for crack ini-
tiation is then used to quantify the critical (fluid) shear rate for exfoliation
as a function of the relevant adhesion, mechanical and geometrical parame-
ters of the suspended particle (Fig. 1b). When possible, we derive explicit
formulas for the critical shear rate. This quantity is essential to predict the
kinetics of exfoliation [34] and the operating parameters for “optimal” ex-
foliation. In the model, the flap is approximated as a continuum sheet. A
continuum representation is justified by the good separation of scale between
the length of each nanosheet (typically in the micron range) and the charac-
teristic length of the nanostructural elements (e.g. the period of the crystal
lattice in graphene).

2. PROBLEM DESCRIPTION

Figure 1: (a) A layered 2D material microplate suspended in a turbulent flow. The ambient
flow in the neighbourhood of the particle can be approximated as a simple shear flow.

Consider a microplate of layered 2D material (e.g. a graphite microplate
[35]) suspended in a turbulent flow. In correspondence to one of the layers the
inter-layer interface presents an initial flaw of length a, where the molecular
bonds are already broken. A “flap” of length a forms which is detached from
the mother particle. We are interested in relating the critical fluid shear
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rate for interfacial crack initiation to the bending rigidity of the flap, the
inter-layer adhesion energy, and the flap size.

In our analysis we assume that a > 0. Our results are relevant to the case
in which a debonding of the interface had already occurred in the proximity
of the edge, for instance due to molecular intercalation by the surrounding
liquid. Borse and Kamal made a similar assumption in the context of clay
exfoliation in polymers [30].

If the lateral size of the microplate is smaller than the smallest turbulent
flow scales, the instantaneous ambient flow “seen” by the particle can be
approximated as a locally Stokes flow, characterised by different degrees of
extension, shear and rotation depending on the position and orientation of
the particle [36]. Purely rotational contributions to the ambient flow induce
a rotation of the particle, but no significant net load on the flap. Purely
extensional contributions are important if the shift between the layers is large
(i.e. the layers are not “in registry”), a situation that we do not consider
here. As a consequence, the local ambient flow can be approximated, to
leading order, as a simple shear flow (Fig. 2).

The question is: what is the load distribution corresponding to this shear
flow? The hydrodynamic force distribution on a particle suspended in a shear
flow and presenting a flap has not been studied so far (we only found work
on hydrodynamic forces on rigid fences attached to solid walls [37, 38, 39]).
To quantify the hydrodynamic load on the flap, in Section 3.1 we therefore
propose a fluid dynamics analysis based on high-resolution flow simulations of
a simplified flap geometry. In the flow simulations the particle is exposed to
a simple shear flow of strength γ̇. Jeffery’s theory for the rotational dynamics
of for plate-like particles predicts that a particle of aspect ratio Λ rotates in
a shear flow, but spends a time of the order of Λγ̇−1 oriented with the flow
[40]. Microparticles of 2D materials tend to have very large aspect ratios
(Λ ∼ 1000 [35]). Hence, in our fluid dynamics simulations we will assume
that the long axis of the particle is aligned with the undisturbed streamlines
of the shear flow field.

The load extracted from the simulation will be fitted to analytical func-
tions. In Sec. 3.2 such functions are used in a solid mechanics model to
predict the critical shear rate for exfoliation γ̇c, obtained from Griffith’s the-
ory assuming brittle fracture [41].
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3. RESULTS

3.1. Analysis of the hydrodynamic load

X

Y

a
L

2h
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Q
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s

Ω−
Ω+

Figure 2: Simplified geometry used in the flow simulation.

The simplified geometry for the flow simulation is presented in Fig. 2.
In this configuration, the flap is straight and the wedge is parametrised by
the flap length a (also equal to the length of the initial flaw) and the wedge
opening angle θ. We will see that the pressure in the wedge is approxi-
mately constant. So, neglecting the flap curvature in the calculation of the
hydrodynamic load does not induce a large error. The surface of the flap is
composed of three surfaces: the lower surface Ω− in contact with the fluid
in the wedge, the upper surface Ω+ exposed to the outer flow, and the edge
surface Ωe between the corner points P and Q. A coordinate s running from
the edge of the flap (point P) to the point of intersection of the flap with the
horizontal plate will be used to discuss the hydrodynamic stress profiles. A
coordinate se, running from the points P and Q, will be used to discuss the
hydrodynamic stress profile along the edge . The bottom layer and the flap
have the same thickness, h, and length, L. In the flow simulations we kept
L and a fixed and changed h and θ. We sought results that are independent
of h by examining simulations for decreasing values of this parameter.

The simulations were carried out with the commercial software ANSYS
FLUENT. We solved the incompressible Stokes equations (corresponding to
a negligible particle Reynolds number) in a rectangular domain [−XD, XD]×
[−YD, YD] surrounding the particle. Periodic boundary conditions were en-
forced at the boundaries X = −XD and X = XD ( X = 0 corresponding to
the particle centre). At the boundaries Y = −YD and Y = YD, we prescribe
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a tangential velocity u = ±γ̇YD and zero normal velocity. No-slip is assumed
at the particle surface. The computational mesh used is non-uniform. A
triangular mesh is used in the wedge region and a structured quadrilateral
mesh is used in the rest of the domain. To ensure adequate resolution, the
typical mesh size ∆X is much smaller than the thickness h of each layer (we
typically use ∆X ≈ 0.1 h in the flap edge region, and much smaller values
of ∆X around the points P and Q).

In principle, the solution of the fluid mechanics problem is coupled with
the solution of the solid mechanics problem providing the deformation of
the flap. Solving the two-way coupled problem numerically is possible, for
example by using iterations [42]. However, the advantage of the one-way
coupled approach we adopt is that explicit analytical expressions relating the
critical fluid shear rate to the relevant geometric and mechanical variables
can be obtained. The hydrodynamic load for a straight flap and for a curved
flap are expected to be similar. We will see that the fluid pressure within
the wedge is approximately constant. As a result the normal force on the
flap expected to depend primarily on the aperture angle and flap length, and
only marginally on the details of the flap shape.

The general features of the flow around the model particle are illustrated
in Fig. 3a and 3b. For small values of θ, the streamlines run almost par-
allel to the exterior surfaces of the particle. The streamlines need to curve
sharply near the entrance of the wedge. As a consequence, a sequence of
counter-rotating eddies form in the wedge region (Fig. 3b). The character-
istic velocity in these eddies decays very fast as the wedge tip is approached
[43]. Hence, the fluid in the wedge can be consider practically quiescent in
comparison to the fluid regions outside of the wedge (where velocities are of
the order of γ̇aθ). An important consequence of this observation is that the
pressure in the wedge region is approximately uniform. In the region near
the edge, on the other hand, velocity gradients are large and the pressure
variation is considerable.

Figures 4 and 5 show the pressure and shear stress distributions along
the flap for different values of θ. In addition to providing the pressure and
shear stress distribution on the upper and lower surface of the flap, we also
provide the total pressure force per unit area p = p−−p+ and the total shear
stress force per unit area τ = τ+ + τ− acting on the flap (our convention is
that for τ > 0 the tangential force is directed towards the crack tip). The
superscripts “+” and “-” refer to the surfaces Ω+ and Ω−, respectively.

The distribution of pressure and shear stress can be separated in a near-
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Figure 3: (a) Streamlines around the particle. (b) Detail of the recirculating eddies in the
wedge below the flap.

edge region where the hydrodynamic stresses have a large variation over a
region of small O(h) spatial extent, and a region far from the edge where the
pressure and shear stress vary weakly with s. The flow velocities are small
in the wedge region so the pressure is practically constant and the shear rate
is negligible.

Because of the linearity of the Stokes flow, the pressure in the wedge
region is proportional to µγ̇, with a constant of proportionality that increases
with θ. The signs of p− and p+ in the far-edge region are such that the
pressure acts to open the wedge (p > 0). However, for sufficiently small
angles, the pressure p near the edge becomes negative. The shear stress on
the edge τe acts mostly downward for small angles (see velocity field in Fig.
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Figure 4: (a) and (b): Pressure distribution
on the surfaces Ω+ and Ω−, respectively.
The thickness of each layer is h = a/50. (c)
Total pressure p = p− − p+ in the region
0 ≤ s/a ≤ 0.1 near the edge of the flap.
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Figure 5: (a) and (b): Shear stress dis-
tribution on the surfaces Ω+ and Ω−, re-
spectively. The thickness of each layer is
h = a/50. (c) Shear stress along the edge
surface Ωe.
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3a), pushing the flap toward the substrate. Therefore, contrary to intuition,
for small angles (θ < θc ' 7.5◦) both the pressure and the shear stress at
the edge act in the direction of closing the wedge. For angles larger than a
critical angle θc ' 7.5◦, the hydrodynamic stresses lead to wedge opening.

Figure 6: Velocity field near the edge for (a) θ = 0◦ and (b) θ = 12.5◦.

To investigate why the force on the edge acts downwards for small angles,
we compare in Fig. 6 the velocity fields in the neighbourhood of the edge for
θ = 0◦ and θ = 12.5◦. The flow field for the case θ = 0◦ corresponds to a
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simulation with a horizontal flat plate of thickness 2h, and is representative of
angles much smaller than θc. In the absence of the particle, the flow velocity
would be directed from left to right in the region Y > 0, and from right
to left in the region Y < 0. In the presence of the particle, for θ = 0◦ the
flow coming from the left for Y > 0 must however change direction to satisfy
the no-slip condition at the edge. This induces a flow velocity directed in
the negative Y direction that pushes down the flap. When θ > θc, the flow
velocity instead points in the direction of increasing θ, opening the flap (Fig.
7).

The existence of a critical angle is consistent with analytical results for
rigid disks aligned with a shear flow [44]. Such analysis predicts a large
downward force on the edge for a thin disk immersed in a shear flow and
aligned with the streamlines. It is possible that a fully two-way coupling
treatment of the fluid-structure interaction problem may lead to a slightly
different value of θc, but we believe that the existence of a critical angle is a
robust result.

The implication of our results for real particles is that, in a practical
setting, peeling starting from a = 0 would be very difficult, as the distribution
of forces actually acts to close the wedge in this case. For peeling to occur, a
finite edge crack of sufficient extent must exist (a > 0), or the flap needs to
present a spontaneous curvature near the edge. In realistic cases, some of the
assumptions in the model may apply only as an approximation. For example,
one can expect that in instants in which the particle is inclined with respect
to the flow direction a component of the hydrodynamic force would act in
the direction of opening the flap. Furthermore, the edges of a real multilayer
particle may in practice not be perfectly aligned. These situations require
further analysis.

The shear stress assumes large positive values in correspondence to the
corner points P and Q of the flap edge. The divergence of the hydrodynamic
stress is a generic characteristic of flow in the vicinity of geometrically sharp
features [39, 45]. Even for smoother corners, large stresses are expected near
the edges with a cut-off related to the radius of curvature of the corners. In
2D nanomaterials, the curvature of the edges is cut off by a molecular scale.

The results above suggest that the essential features of the hydrodynamic
load distribution are: i) an angle-dependent distributed load Qhd on the flap,
due to the effect of fluid pressure; ii) an angle-dependent edge load F hd, due
to a combination of viscous shear stress and pressure. There is a further
contribution due to viscous shear stress on the top surface of the flap (which
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Figure 7: Schematic view of the hydrodynamic load distribution on the flap for angles
larger and smaller then the critical angle θc ' 7.5◦.

also scales like µγ̇). This stress may in principle lead to buckling, but in
our situation the deformation due to the transverse load is dominant with
respect to collapse due to an axial load. We will show (Figs. 18 and 19)
that the inclusion of a constant tangential force τ ' µγ̇ on the flap changes
the average curvature of the flap only marginally. Hence, the inclusion of a
tangential load does not change the main conclusions of our paper.

To quantify contribution i), we show in Fig. 8a the dependence of p,
evaluated at the midpoint of the flap s = a/2, on the wedge angle θ. For
small angles, the linear fit p(a/2)/(µγ̇) = q0 + q1θ, with q0 = 0.1 and q1 =
5.37, provides a good approximation of the simulation data. A leading order
closure for the distributed hydrodynamic load is thus

Qhd = µγ̇q ' µγ̇(q0 + q1θ). (1)

In contrast to the pressure load, the average shear stress (also plotted in
Fig. 8) is almost constant when plotted against θ. In Fig. 8b the pressure
and shear stress are plotted against the thickness. As h/a → 0, p(s = a/2)
and τav become independent of the thickness. In the calculations presented in
the current paper, we have chosen the stresses for a/h = 50 as representative
of the thin flap limit.

To quantify contribution ii), we show in the inset of Fig. 8a the depen-
dence on θ of F hd =

∫
ΩF

(−p+ τ ·n)nd`, where τ is the viscous stress tensor
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Figure 8: Total pressure force per unit area p = p− − p+ at the midpoint s = a/2 and
length-averaged shear stress, τav as a function of (a) wedge angle for a/h = 50 and (b)
ratio a/h for θ = 10◦. Inset of a): Edge force F hd/(µγ̇a) vs. θ. Inset of b): Edge force
F hd/(µγ̇a) vs. h/a (log-log). The dashed line in the inset corresponds to a power-law
exponent of ∼ 0.62.

and ΩF includes the surface Ωe and the portions of the surfaces Ω+ and Ω−

within a distance h from the corner points P and Q. Because in Stokes flow
both p and τ are proportional to µγ̇, we can also write F hd = µγ̇aF̃ , where
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F̃ is independent of the fluid viscosity and shear rate. The dependence of
F̃ on θ shows more marked deviations from linearity than in the case of
contribution i). However for small θ a linear fit,

F hd = µγ̇aF̃ ' µγ̇a(f0 + f1θ), (2)

with f0 = −0.03 and f1 = 0.43 is a reasonable approximation. Equations (1)
and (2) provide a linear model for the hydrodynamic load acting on the flap
as a function of the configuration parameters θ and a, the fluid viscosity µ
and the shear rate γ̇. Following Ref. [42], in our analysis we have neglected
the effect of the hydrodynamic moment on the edge, as this contribution is
negligible for very thin structures. On the flap edge the hydrodynamic stress
at a sharp corner diverges, but the singularity is integrable [46]. As shown
in the inset of Fig. 8b, in our finite-mesh calculations the edge force goes
to zero as h/a → 0 with an effective power-law exponent close to 0.62 for
small values of h/a. This exponent is consistent with the range of near-corner
power-law stress singularity exponents reported in the literature [47]. In the
current paper, we choose a reference value of a/h = 50 to illustrate the effect
of a finite edge force on the shape of the sheet, as we are interest in plausible,
non-zero values of h/a.

In the fluid mechanics simulation the flap is straight. Therefore, for a
given value of a, the configuration is parametrised by a unique value of θ. But
how do we relate the opening angle in the solid mechanics calculation to the
one in the fluid mechanics calculation? The angle θ has to be approximated
as a function of the flap shape. Among the possible approximations, one
could use the angle at the tip of the flap, θ ' dw1/dx|x=0, the local angle
θ ' dw1/dx, or the secant angle made by the secant line (connecting the
flap tip to the crack tip) with the horizontal, θ ' w1(0)/a. For θ � 1,
w1(0)/a ' dw1/dx|x=0, and the difference between using the local angle
or the secant angle is small. We choose the secant angle approximation
θ = w1(0)/a in the small displacement model, since it is typically used when
the opening angle varies slowly [48] and gives particularly simple analytical
solutions. The effect of using different approximations for θ will be analysed
in the context of the large displacement model.

3.2. Solid mechanics model

The solid mechanics model uses the closures for the loads F hd and Qhd ob-
tained in the previous section to calculate the elastic deformation of the flap.
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Figure 9: Schematic of the solid mechanics model.

In the model, we neglect tangential loads. We will show later that tangential
loads make only a negligible contribution to the deformation of the flap. We
consider both a small displacement model (which we solve analytically) and
a large displacement model. As shown in Fig. 9, the deformable layer is
divided in two regions: the region B1 on which the hydrodynamic load is
applied, and the bonded region B2 in which the hydrodynamic load is zero.
The out-of-plane displacements corresponding to B1 and B2 are indicated by
w1(x) and w2(x), respectively.

We initially consider both a small-displacement model, valid for |∇w1| � 1.
Later, we compare against a large-displacement model. In the small displace-
ment model, the inter-layer interface is modelled as an elastic foundation la
Winkler [49], characterized by a foundation modulus ke. For |∇w1| � 1,
w1 satisfies

D
d4w1

dx4
= Qhd (3)

where x ranges from the coordinate corresponding to edge of the flap (x = 0)
to the crack tip (x = a), and D is the bending stiffness. The equation for w2

is

D
d4w2

dx4
+ kew2 = 0. (4)

The boundary condition at x = 0 requires Dd3w1/dx
3|x=0 = F hd and

Dd2w1/dx
2|x=0 = Mhd where F hd and Mhd are the hydrodynamic force

and moment acting on the edge, respectively. Assuming that L � a, the
boundary conditions at infinity satisfy w2(x→∞) = 0 and dw2/dx|x→∞ = 0.
The solutions for B1 and B2 are matched by enforcing continuity of the out-
of-plane displacement and its derivatives at x = a up to the third order (see
Eqs. (A.1f)-(A.1i) in Appendix A).
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The consideration of a soft foundation in the small-displacement model
adds to the generality of the results. Furthermore, the interlayer interface in
2D nanomaterials does not necessarily correspond to an infinitely stiff foun-
dation, because the range of the interlayer force and the size of the cohesive
zone is nanometric but so can be relevant displacements. For instance, the
analysis of the case with the elastic foundation could be useful to interpret
molecular dynamics results, where the range of maximum flap deflection and
crack length (a few nanometres) is not necessarily orders of magnitude larger

than the size of the cohesive zone ( (Dd2
0/Γ)

1/4 ∼ 1 nm, using typical pa-
rameters for single-layer graphene). Molecular dynamics results of peeling in
liquids are now appearing which could benefit from our analysis [50, 51, 52].
We are carrying out similar molecular dynamic investigations in our group
as well.

In the large-displacement model, we solve a non-linear equation for the
curvature of the region B1 of the deformable layer. The equations of equilib-
rium of forces and moments for an inextensible elastica with a purely normal
follower load Qhd are

d2M

ds2
− κN −Qhd = 0 (5)

and

κ
dM

ds
+

dN

ds
= 0, (6)

respectively [53]. Here, s is the curvilinear coordinate along the flap, φ is
the tangent angle to the flap, κ = −dφ/ds is the curvature, M = Dκ is the
bending moment and N is the axial (internal) force. Integration of Eq. (6)
gives Dκ2/2 + N = c, where c is a constant. Evaluating this constant at
s = 0 (the flap edge) gives N(s) = Nhd + (Mhd)2/(2D) −Dκ2/2, where we
have used the boundary conditions Mhd = Dκ(0) and Nhd is an axial force
applied to the free end. Substituting into Eq. (5) yields

D
d2κ

ds2
−
(
Nhd +

(
Mhd

)2

2D

)
κ+

D

2
κ3 −Qhd = 0. (7)

In the analysis for large displacements we neglected the effect the axial load
Nhd and the hydrodynamic moment on the edge Mhd. The equation govern-
ing the flap shape reduces to

D
d2κ

ds2
+
D

2
κ3 −Qhd = 0. (8)
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To limit the number of cases, in the large-displacement analysis, we did
not include the Winkler’s foundation and assumed that the flap is clamped
at s = a, corresponding to the boundary condition φ(a) = 0. We also
neglected the normal load F hd applied on the edge, imposing instead free
end boundary conditions κ(0) = 0 and dκ/ds|s=0 = 0. The shape of the flap
was calculated from x = a+

∫ s
a

cosφ(s)ds = a−
∫ a

0
cosφ(s)ds+

∫ s
0

cosφ(s)ds
and y =

∫ s
a

sinφ(s)ds = −
∫ a

0
sinφ(s)ds+

∫ s
0

sinφ(s)ds.

3.2.1. Analysis of flap shape and critical shear rate

In the small-displacement analysis, we derive analytical solutions to (3)
and (4), and compare against numerical solutions. The numerical solutions
were obtained with a finite difference scheme, approximating the derivatives
at interior points using second-order, central differences and using skew op-
erators at the boundaries [54]; the resulting discrete system was solved by
matrix inversion. In the large displacement analysis, we only discuss finite-
difference solutions of Eq. (8), seen as an equation for φ. The non-linear
system was solved by a Newton-Raphson method.

The critical fluid shear rate to initiate fracture of the inter-layer inter-
face is calculated using Griffith’s energy balance, assuming brittle fracture.
Denoting by Γ the total solid-solid adhesion energy per unit area (i.e. twice
the solid-solid surface energy), the condition for crack initiation according to
Griffith’s theory is

G = Γ (9)

where G =
∂U

∂a
is the strain energy release rate ([41]) and U is the bending

energy per unit length:

U =
D

2

∫ L

0

κ2ds ' D

2

∫ a

0

(
d2w1

dx2

)2

ds+
D

2

∫ L

a

(
d2w2

dx2

)2

ds. (10)

Recasting the equilibrium equation for the flap and Griffith’s balance into
non-dimensional variables, using a and D to scale the other variables (see
Appendix A for the small displacement formulation), makes it evident that
the initiation of the crack is controlled by three non-dimensional parameters:

̂̇γ =
µ γ̇ a3

D
Γ̂ =

Γa2

D
χ4 =

ke a
4

4D
(11)

The first parameter, the non-dimensional shear rate, is the ratio of hydrody-
namic forces and bending forces. The second parameter, the non-dimensional
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adhesion energy, is the ratio of adhesion and bending forces. The parameter
χ represents the ratio between the crack length a and the cohesion length
λ = (4D/ke)

1/4. An infinitely stiff interlayer interface corresponds to χ→∞.

For a brittle-like law ke = 2 Γ/d2
0, χ can be rewritten as χ4 = Γ̂/2(a/d0) 2,

where d0 is a molecular scale characterising the range of the adhesion forces
(d0 ' 1 nm).

In our analysis we consider relatively small wedge angles. In the fluid
mechanics simulations we consider at most a θ ≈ 15◦. In the solid mechanics
simulations we extrapolate the results to larger angles, but still assuming that
θ is significantly smaller than π/2. Based on our numerical experiments, this
condition on the angle roughly corresponds to µ γ̇ a3/D < 1. For these values
of the non-dimensional shear rate the flap does not buckle, and maintains a
qualitative shape similar to that in Fig. 2.

Typical values for the surface energy Γ/2 of graphene in vacuum or inert
gases are around 0.1 N/m (0.115 N/m [11], 0.085 N/m [13], 0.070 N/m [22],
0.047 N/m[55]). In a very controlled adhesion experiment using a modified
force balance apparatus, Engers et al. ([11]) recently reported, in the case of
single-layer graphene, 0.115±0.004 N/m for dry nitrogen, 0.083±0.007 N/m
for water, and 0.029 ± 0.006 N/m for sodium cholate, a surfactant recom-
mended for liquid-phase exfoliation processes. N-methylpyrrolidone (NMP)
is considered an optimal solvent for graphene exfoliation. Molecular dynam-
ics studies [56] suggest that NMP reduces the specific interaction energy
between graphene nanosheets as compared to water by a factor of about 2
(from ≈ 250 kJmol−1nm−2 for water to ≈ 110−120 kJmol−1nm−2 for NMP).
Although more research is needed to clarify the effect of solvent on adhesion
during crack initiation in 2D nanomaterials, it seems from the data above
that good solvents can reduce the adhesion energy significantly, but this
reduction is probably not by several orders of magnitude. Values between
Γ = 0.1 N/m and Γ = 0.01 N/m are probably realistic.

We discuss the small-displacement results for two cases :

• Case 1: distributed load only (Qhd 6= 0;F hd = 0);

• Case 2: distributed load plus edge load (Qhd 6= 0;F hd 6= 0).

The analytical derivations are conceptually simple, but rather cumbersome.
The quadratic dependence of the bending energy on the displacement gives
rise to many coupling terms, and going through the derivation step by step
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may obscure their physical meaning. Here we report the main results, par-
ticularly focusing on the structure of the solution. The complete derivations
are reported in Appendix A and Appendix A.1.

Case 1, angle-independent load, infinitely stiff foundation. The solution
is the classical solution for a cantilever beam subject to a constant load:

w1(x) =
̂̇γq0

24a3
(x− a)2(x2 + 2ax+ 3a2). (12)

The corresponding non-dimensional bending energy is

Û =
q2

0
̂̇γ 2

40
, (13)

and the critical shear rate (from Eq. (9)) is

̂̇γc =
2
√

2

q0

Γ̂
1
2 . (14)

Because the load is constant, the bending energy is quadratic in ̂̇γ. As a
consequence, the non-dimensional critical shear rate depends on the square
root of the non-dimensional adhesion parameter.

Case 2, angle-independent load, infinitely stiff foundation. The displace-
ment is

w1(x) =
̂̇γ

24a3
(x− a)2

(
q0(x2 + 2ax+ 3a2) + 4af0(x+ a)

)
, (15)

the dimensionless bending energy is

Û =
̂̇γ 2

120
(20f 2

0 + 15f0q0 + 3q2
0), (16)

and the critical shear rate is

̂̇γc =
2
√

2

q0

1√
1 + 5f0/q0 + 20/3(f0/q0)2

Γ̂
1
2 . (17)

Because we are here considering edge and distributed loads that are indepen-
dent of the wedge angle, we again recover a power-law with an exponent 1/2.
The critical shear rate decreases as the hydrodynamic coefficient q0 increases,
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by an amount that depends on the edge load coefficient f0. In particular,
the critical shear rate decreases as f0 increases. In our case f0 is negative,
so the required shear rate is slightly larger than if only the distributed load
was included (see Fig. 12).

Case 1 & 2, angle-independent load, “soft foundation”. If χ has a finite
value, the displacements in the free and adhered portions of the flap are
coupled. This brings about a dependence of the solution on χ, which in turn
depends on Γ̂ for a fixed d0/a. The critical shear rate in case 1 is

̂̇γc =
2
√

2

q0

Γ̂
1
2

(
χ

1 + χ

)3/2

. (18)

A similar expression holds for case 2, with a numerical prefactor now de-
pending on f0 (see Appendix A.1, Eq. (A.21)).
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Figure 10: Non-dimensional shear rate ̂̇γc as a function of the non-dimensional adhesion

energy Γ̂ for different values of the parameter d0/a. An increase in the stiffness of the
foundation (smaller d0) corresponds to larger values of the critical shear rate

While the load is constant, owing to the coupling of the flap deformation
to the mechanics in the adhered portion of the flap, the relation between shear
rate and adhesion energy is not a power law. We typically expect χ � 1,
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so deviations from a power law behaviour are small. By plotting the critical
shear rate in log-log scale, the data can be fitted to an effective power-law
exponent, whose value depends on the specific value of d0/a. Fig. 10 showŝ̇γc as a function of Γ̂ for different values of a and d0 = 0.3 nm. Since the
exponent for soft foundations is larger than for rigid foundations, the critical
shear rate decreases as the foundation becomes less stiff. From Eq. (18) we

can see that ̂̇γc ∝ Γ̂7/8 for χ → 0 and ̂̇γc ∝ Γ̂1/2 and χ → ∞. The effective
power-law exponent is therefore bounded between 1/2 and 7/8, with higher
shear rates corresponding to stiffer foundations. The boundary condition at
the crack tip can be assumed to be clamped provided that χ� 1. For χ = 1
the cohesion length λ ∼ (Dd2

0/Γ)1/4 is of the same order of the crack length.
For typical parameters, the cohesion length is of the order of 1 nm for single-
layer graphene, and up to a few nanometres for few-layer graphene. The soft
foundation case examined here can therefore be useful to interpret molecular
dynamics results, where due to computational constraints the crack length
is typically at most 10− 20 nm [52].

Case 1 & 2, angle dependent load, infinitely stiff foundation. The consid-
eration of a dependence on θ now introduces a non-linear dependence of w1

on ̂̇γ. This dependence is particularly simple to analyse when θ is approxi-
mated as the secant angle. In this case, the flap displacement and bending
energy expressions, for case 1, are given by

w1(x) =
̂̇γq0

3a3(8− ̂̇γq1)
(x− a)2(x2 + 2ax+ 3a2). (19)

and

Û =
8q2

0
̂̇γ 2

5(8− q1
̂̇γ)2

, (20)

respectively. The requirement w1 ≥ 0 means that these equations are valid
for ̂̇γ ≤ 8/q1 ' 1.49; the requirement of a positive solution is consistent with
our initial assumption ̂̇γ < 1.

There is an interesting difference with respect to the angle-independent
case. Expression (19) displays the same dependence on the variable x as the
corresponding solution for an angle independent load, Eq. (12). However
the prefactor diverges as ̂̇γ approaches a finite value 8/q1. The correspond-
ing bending energy expression, displays, expectedly, the same divergence. As
we will see in the analysis of the large displacement case, this divergence is
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a robust feature (although different approximations to θ give somewhat dif-
ferent values of ̂̇γ for which the flap curvature diverges). This divergence is
important as it will completely change the dependence of the critical shear
rate on the non-dimensional adhesion energy. Case 2 also displays a diver-
gence at a slightly different value of the shear rate. The presence of an edge
load gives

w1(x) =
̂̇γ(x− a)2(̂̇γ (f1q0 − f0q1) (2x2 + ax)− 6q0(x2 + 2ax+ 3a2)− 24af0(x+ 2a))

6a3(̂̇γ(8f1 + 3q1)− 24)
.

(21)
A term (f1q0 − f0q1) coupling the edge and distributed load coefficients
appears at denominator, and the solution shows a divergent behaviour for̂̇γ = 24/(8f1 +3q1). The bending energy profiles for cases 1 and 2 are plotted
as a function of ̂̇γ in Fig. 11. Because 24/(8f1 + 3q1) < 8/q1, the presence of
the edge load reduces the critical value of ̂̇γ. The divergence appears slightly
more sharp in case 2 than in case 1.
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case 1, numerical
case 1, analytical
case 2, numerical
case 2, analytical

Figure 11: Non-dimensional bending energy as a function of the non dimensional shear
rate. The markers represent the results from finite difference simulations. The red lines
represent the analytical solutions.
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Figure 12: Non-dimensional shear rate as a function of the non-dimensional adhesion
energy for different loads. The blue lines show the power-law trends for small values of Γ̂
(continuous line) and large values of Γ̂ (dashed line).

How is the critical shear rate related to the non-dimensional adhesion
energy when the load depends on the wedge angle? In case 1, the relationship
between ̂̇γ and Γ̂ is

8

5
q2

0
̂̇γ 2 q1

̂̇γ + 40

(8− q1
̂̇γ)3

= Γ̂. (22)

One could develop approximate solutions of this implicit equation to calculatê̇γ as a function of Γ̂, but it instead more convenient to plot Γ̂ as a function of̂̇γ and then switch the axis. The result is shown in Fig. 12, where the angle-
dependent load cases are compared to the angle-independent ones (including
both cases 1 and 2).

In the angle-dependent cases, a horizontal plateau in the critical shear
rate emerges as Γ̂ → 1. The plateau is particularly evident in case 2 in the
range Γ̂ = 10−3 − 1. In this range, the critical shear rate does not follow
a power-law. However, if we insist on fitting a power-law to the data near
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Γ̂ = 1, we obtain an exponent of 0.05, much smaller than the exponent 1/2

obtained for Γ̂� 1. The solution thus changes behaviour, and a regime where
the critical shear rate starts becoming only weakly dependent on Γ̂ emerges.
This observation has important practical implications for the optimisation of
liquid-exfoliation processes, as discussed in the conclusions section.
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Figure 13: Out-of-plane displacement of the flap from simulations (markers) and analytical
solutions (red lines) for three values of a, angle dependent load in case 2 (edge load plus
distributed load) and µγ̇/D = 1. The results are in units of (D/(µγ̇))1/3 .

Figure 13 illustrates the deformation of the flap for three different values
of a (i.e. three different values of ̂̇γ). Both the edge and the distributed
loads are considered, as well as the dependence on θ. The red lines indicate
analytical solutions, while the markers indicate numerical results. For small
values of a (the smallest value of a considered is a = 0.8), the edge load
is negative and bends the tip of the flap slightly downwards. When a in-
creases (or, equivalently, ̂̇γ increases) this effect becomes less evident as the
distributed load becomes dominant.

The action of the edge load opposing the opening of the wedge determines
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a smaller deformation of the flap if compared with the deformation without
edge load. For relatively small values of Γ̂, the larger curvature of the flap in
case 1 causes ̂̇γ to be smaller than in case 2 (compare continuous black line

and dashed black line in Fig. 12). This difference decreases as Γ̂ increases
and ̂̇γ approaches the asymptotic value 8/q1 − 24/(8f1 + 3q1). We therefore

conclude that the edge load is quantitatively relevant for small values of Γ̂ or,
equivalently, of a (i.e. at the initial stages of the peeling). The inclusion of
the edge load in the model requires higher values of ̂̇γ to sustain the peeling
mechanism and avoid the closure of the wedge. For larger values of the Γ̂ or
a, i.e. larger deformations, the edge load can be neglected.

Large displacement model. We now discuss numerical predictions based
on the large-displacement model. Given that the divergence in the bending
energy that gives rise to the plateau seen in Fig. 12 is due to large curvatures,
it is natural to enquire whether the results hold if non-linear terms in the
equation governing the flap shape are retained. We focus on the case that
includes only the distributed load, as we have shown that the effect of the
edge load is important only for small values of a.

Figure 14 compares numerical results for the flap shape obtained using
Eq. (8) with those obtained with Eq. (3). Appreciable deviations due to
non-linearity occur for a ' 2.30 (in units of (D/(µγ̇))1/3 ), corresponding tô̇γ ' 1.217. This value is quite close to the value ̂̇γ = 8/q1 ' 1.49 for which
the bending energy diverges in the linear formulation. The largest deviations
are more evident near the edge of the flap. However, the high curvature
in the region near the crack tip is well captured by the small displacement
theory even for a = 2.4, corresponding to ̂̇γ ' 1.382.

Because the flap is practically straight far from the crack tip, the value
of the bending energy is dominated by the curvature near the crack tip, for
which the linear formulation appears to give reasonably accurate results. As
a consequence we expect the critical shear rate predicted by the linear and
non-linear theories to display comparable trends.

In Fig. 15 the critical shear rate is plotted in log-log scale against the
non-dimensional adhesion energy. In addition to comparing linear and non-
linear deformation theories, we also show results for different approximation
of the wedge angle. The non-linear theory using the secant angle follows
closely the corresponding linear one, giving only slightly larger values. For
example, for Γ̂ = 2 the value of ̂̇γc given by the non-linear theory (in the
secant angle approximation) is only about 2% larger than the corresponding
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Figure 14: Flap shape comparing the linear (small displacement) and the non-linear (large
displacement) formulation. The flap is plotted for different values of a and µγ̇/D = 0.1.
The quantities in the plot are in (D/(µγ̇))1/3 units).

value in the linear theory.
As shown in Fig. 16, different approximations to the wedge angle es-

sentially change the value for which the bending energy diverges. Corre-
spondingly, the curves Γ̂− ̂̇γ are shifted upwards or downwards depending on
the specific approximation for the wedge angle adopted (recall that a vertical

asymptote in the Û− ̂̇γ curve corresponds to a horizontal plateau in the ̂̇γ− Γ̂
curve). From Fig. 16, we can see that the effect of including non-linear terms
is essentially to make the divergence less sharp. This result is confirmed by
the inset in Fig. 16 showing the non-divergence of the derivative of Û .

We could not derive explicit analytical expressions for the full non-linear
equation. A linear equation that captures large displacements more accu-
rately than Eq. (3) is obtained from Eq. (8) by setting the term proportional
to κ3 to zero. Using the definition of the curvature κ = −dφ/ds and the local
angle approximation Qhd = µγ̇(q0 + q1φ), we obtain a linear equation in the
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Figure 15: Non-dimensional shear rate as a function of the non-dimensional adhesion
energy in the large displacement theory for different approximations of the wedge angle:
tip angle (continuous blue line), local angle (dashed blue line) and secant angle (black
line). The red line is the analytical solution for small displacements and secant angle
approximation.
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Figure 16: Non-dimensional bending energy vs. non-dimensional shear rate in the large
displacement theory for different approximations of the wedge angle in the forcing term.
The red dashed line correspond to the small-displacement theory, while the other lines are
for the large-displacement theory. The inset shows the derivative of Û with respect to ̂̇γ.
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rotation:

D
d3φ

ds3
+ µγ̇(q0 + q1φ) = 0 (23)

The solution is

φ(s) =
q0

q1

−1 +
e(a−s)/l + 2e(2a+s)/(2l) cos

(√
3s

2l

)
1 + 2e3a/(2l) cos

(√
3a

2l

)
 (24)

where l = D/(µγ̇q1)1/3 is the length scale of the exponential decay of the
curvature from the crack tip. Equation (24) shows a divergence when the
denominator approaches zero (i.e. for ̂̇γ ∼= 1.18 when a = 1). Comparing this
analytical solution against the solution of the full non-linear equation shows
that the divergence is only slightly mitigated by the term depending on the
cube of the curvature.
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Figure 17: Relation between non-dimensional shear rate and non-dimensional adhesion
energy, comparing the linear and non-linear loads.

Effect of non-linear load and tangential stress. In our solutions, we have
considered a load that depends linearly on the wedge angle. A closer ob-
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servation of Fig. 8a shows a slight downward curvature in the plot of the
distributed load. In our range of parameters, considering non-linear varia-
tions of the form q = q0 + q1θ + q2θ

2, where q2 < 0 (a best fit to the flow
simulation data gives q0 = 0.1, q1 = 5.37 and q2 = −0.07), changes the be-
haviour of the solution only very marginally. Because the quadratic term is
negative, the load rises less than linearly with the angle. As a consequence,
the critical shear rate is slightly higher than if the quadratic term is neglected
(Fig. 17). Nevertheless, this downward curvature is an interesting feature,
because we expect that for large angles at some point the hydrodynamic
load will decrease. The small effects that we see in the current section will
therefore be amplified, potentially changing the behaviour of the solution.
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Figure 18: Flap shape in the large displacement limit with tangential load (black line) and

without tangential load τ = 1.05µγ̇ (red dashed line) for different values of ̂̇γ.

In our analysis, we have also neglected the tangential distributed load,
although this is of order ∼ µγ̇ as the normal load, under the assumption that
bending of the flap originates mostly from normal loads for relatively stiff
flaps. We have found that, if this assumption is removed by accounting for
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Figure 19: Non-dimensional shear rate against non-dimensional adhesion energy in the
large displacement limit with tangential load τ = 1.05µγ̇ (black line) and without tangen-
tial load (red dashed line) applied on the flap. The inset shows the same plot on a linear
scale.

a uniform tangential load in the large displacement model (this was done by
modifying Eq. (6) to account for a constant τ ' µγ̇), the flap shape is altered
but not to an extent as to change the main conclusions drawn so far. We
show in Fig. 18 the shape of the flap for two simulations, with and without
the tangential load, and for different values of ̂̇γ. As ̂̇γ increases, the effect of
including the tangential load on the maximum displacement becomes more
marked. However, the curvature near the tip seems to be largely independent
of the presence of the tangential load. As a consequence, the critical shear
rate when the tangential load is accounted for is only slightly smaller than
when only normal loads are used (Fig. 19). In the small displacement model,
the axial deformation does not influence the curvature, hence the tangential
distributed load does not influence the energy balance and the critical shear
rate. In the large displacement model, the normal and tangential components
are coupled but the tangential load does not affect the curvature drastically,
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as we have just seen.
Within the assumptions of our model a straight solution is not an equi-

librium solution, because a finite pressure also acts for θ = 0 (extrapolated
result, see Fig. 8a). Even for nearly straight flaps, the deformation is due
mostly to the transverse load. Axial and transverse loads in our problem
are not independent: increasing the shear stress on the top surface of the
flap also causes an increase in the pressure below the flap. Thus, the trans-
verse deformation due to transverse load occurs before a classical buckling
instability sets in.

Regimes of exfoliation. Our analysis suggests that the dependence of the
load on the flap configuration, a purely hydrodynamic effect, gives rise to
a transition in the relation between the non-dimensional critical shear rate
and the non-dimensional adhesion parameter. When Γ̂ is truly infinitesimal,
Γ̂ � 10−5 − 10−4, the dependence of the load on the configuration is small
(q1θ � q0) and ̂̇γc ∼ Γ̂1/2. However, for larger values of Γ̂ the opening
angle increases (inset of Fig. 15), and the dependence of the load on θ
becomes important (q1θ ∼ q0). In this regime, the flap displacement is not
proportional to the shear rate, and a plateau emerges in which ̂̇γc is at most

a weak function of Γ̂. The transition occurs for quite small opening angles.
Setting q1θ = q0, we get θ ' 0.0186, which corresponds to about 1◦.

In dimensional terms, the order of magnitude of the critical shear rate in
the two regimes is

γ̇c ∼
(ΓD)1/2

µa2
(25)

and

γ̇c ∼
D

µa3
f, (26)

respectively, where f = O(1) is at most a weak function of Γ̂. Mathemati-
cally, the weak dependence on adhesion in the intermediate range of values
of Γ̂ can be understood by looking at Eq. (22). We rewrite this equation as

8q2
0
̂̇γ 2(q1

̂̇γ/5 + 8) = Γ̂[8− q1
̂̇γ]3. An increase in Γ̂ would give an increase in ̂̇γ

if the term in square parenthesis was neglected. But an increase in ̂̇γ corre-
sponds also to a decrease in the factor (8− q1

̂̇γ) in the right hand side of the
equation. The two terms on the right-hand side therefore compensate each
other, leading to the asymptotic behaviour that is only weakly dependent on
Γ̂.

The critical shear rate is predicted to depend on the initial size of the
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crack, but not on the particle size L directly. This results follows from the
assumption that the cohesion zone is smaller than the length of the solid-solid
interface, an assumption that is expected to hold in practice. If the crack
size correlates with the particle size (for example, if a = c1L in a statistical
sense, with c1 � 1), then Eqs. (25) and (26) should be used with L replacing
a and changing the prefactor accordingly.

Our conclusions are valid up to Γ̂ ∼ 1. For larger values of Γ̂, the flap
is almost vertical and our assumptions for the load fail. We expect that for
Γ̂ significantly larger than one the critical shear rate should start growing
again. Large values of Γ̂ correspond to relatively large values of a, so our
conclusions hold for the initial development of the crack.

4. DISCUSSION AND CONCLUSIONS

We have proposed and analysed a model for the exfoliation of layered
2D nanomaterials suspended in a turbulent flow. The model is based on
the idea that exfoliation occurs through an erosion process, whereby layers
of 2D nanomaterials are removed almost ‘layer-by-layer” through a micro-
scopic flow-induced peeling process. The model provides insights into the
dependence of the critical shear rate on the geometric, mechanical and ad-
hesion parameters, for a realistic hydrodynamic load distribution. For this
dependence, we provide explicit analytical formulas when possible.

A key result of our analysis is that the dependence of the hydrodynamic
load on the opening of the flap can dramatically change the magnitude of the
critical shear rate (see Fig. 20). We have identified a transition that occurs

for values of Γ̂ in the range 10−5− 10−4. For Γ̂ much smaller than this range
of values, the constant load assumption holds and γ̇c follows a power-law with
an exponent 1/2. For larger values of Γ̂, γ̇c follows Eq. (26), which displays a
weak dependence on adhesion. In this regime the critical shear rate γ̇c is much
smaller than what predicted by a constant load assumption. This prediction
is the manifestation of a self-reinforcing hydrodynamic effect: as the crack
propagates, the total pressure force on the flap increases both because the
length of the crack increases and because θ increases; the combination of these
two effects increases the total force on the flap to a larger extent than if the
pressure was considered independent of the wedge opening angle, producing
large changes in flap curvature. Interestingly, Fig. 20 shows that our theory
can predict relatively low values of the critical shear rate of the order of
∼ 105s−1, close to those observed experimentally [23], even without assuming
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Figure 20: Dimensional critical shear rate as a function of the size of the flap, for three
different values of adhesion energy and two values of thickness (dashed lines for 1 layer,
continuous lines for 10 layers). The value of the bending energy has been calculated as
D = D0N

3 where N is the number of layers and D0 = 20 eV [3]. The value of the fluid
viscosity is µ = 10−3 Pa s.

reductions in the adhesion energy by several orders of magnitude when using
specialised solvents (as instead assumed in the model of Ref. [23]).

Unless the value of Γ̂ is truly infinitesimal, the error one would incur in by
ignoring the transition we have discovered can be large. For example, from
Fig. 15 we can see that ̂̇γc/(8/q1) is in the range 0.6 − 0.8 when Γ̂ = 0.1.
The constant load solution would give a critical shear rate for exfoliation
one order of magnitude larger (̂̇γc ∼= 8.94 from Eq. (14)). In a practical
liquid-exfoliation process, this difference would translate in drastically differ-
ent processing conditions. In a rotating mixer for liquid-phase exfoliation,
the average shear rate can be related to the mixer power P and the liquid
volume V through γ̇ '

√
P/(V µ) [25]. Because of the scaling P ∝ γ̇2, as-

suming Γ̂ = 0.1 the constant load prediction would thus overestimate the
mixing power by a factor of approximately 100.
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Expressions (25) and (26) suggest that to reduce the critical shear rate
for exfoliation ( thus mitigating the possibility of fragmenting or causing
mechanical damage to the exfoliated sheets) one has to simultaneously reduce
Γ and increase a. The adhesion energy can be reduced by changing the
solvent. However, it has been reported that the dominant effect of adopting
a good solvent is mostly to prevent reaggregation after exfoliation has taken
place [24], so it is not clear that good solvents can be designed that can change
the critical shear rate by orders of magnitude. Given the strong dependence
on a suggested by expressions (25) and (26), increasing a artificially could
be a good strategy to reduce the critical shear rate. This might be achieved
by triggering a chemical reaction inside the layers to enlarge pre-existing
cracks [57]), exploiting electrostatic charge [58] or electrochemical effects [59].
Increasing µ also reduces the critical shear rate, but the overall stress level to
which each particle is subject depends on the product µγ̇. Thus an increase
in µ for a fixed γ̇ may not be a solution if one wants to achieve a “gentler”
exfoliation (using large viscosity fluids may still be beneficial because the
reaggregation kinetics is slowed down [60]).

We have assumed that an initial flaw is present. The fluid dynamics anal-
ysis reveal that, for a particle aligned with the streamline and for perfectly
aligned edge layers (no shift between the layers), the direction of the load is
such that, in the idealised situation, initiation of peeling starting from a = 0
would be impossible. The direction of the load we find in our simulation is
consistent with the result of Singh et al. for a disk aligned in a shear flow
[44]. In a practical setting, a small finite opening force would be present even
in the case a = 0, in instants in which the particle is inclined with respect to
the flow direction or the edges of the particle are not perfectly aligned.

In the current work, we have focused on the range of moderately stiff
flaps for which the wedge angle is smaller than π/2. Future work will ex-
plore larger values of the wedge angle. In this case, two aspects should be
considered. First, for θ > π/2 the pressure on the flap will start decreasing
with increasing angle. Second, as the flap starts aligning with the long axis
of the microparticle tangential forces due to viscous shear stress will become
dominant over pressure. These hydrodynamic features will yield new regimes
of exfoliation, possibly extending the curve of Fig. 15 to larger values of the
non-dimensional adhesion energy. The analysis of these regimes will produce
a more complete picture of the micromechanics of the exfoliation process.
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Appendix A. Mathematical model for small displacements

Denoting non-dimensional variables with a “hat” symbol (using a and
D as repeating variables) the coupled equations for the small-displacement
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model are

d5ŵ1

dx̂5
= 0 0 ≤ x̂ ≤ 1 (A.1a)

d4ŵ2

dx̂4
+ 4χ4 ŵ2 = 0 1 ≤ x̂ (A.1b)

d4ŵ1

dx̂4
(0)− q1 ŵ1(0) ̂̇γ = q0

̂̇γ (A.1c)

d3ŵ1

dx̂3
(0)− f1 ŵ1(0) ̂̇γ = f0

̂̇γ (A.1d)

d2ŵ1

dx̂2
(0) = 0 (A.1e)

ŵ1(1) = ŵ2(1) (A.1f)

dŵ1

dx̂
(1) =

dŵ2

dx̂
(1) (A.1g)

d2ŵ1

dx̂2
(1) =

d2ŵ2

dx̂2
(1) (A.1h)

d3ŵ1

dx̂3
(1) =

d3ŵ2

dx̂3
(1) (A.1i)

In non-dimensional units, Griffith’s energy balance is given by

Ĝ = Γ̂ (A.2)

with

Ĝ = 3
∂Û

∂̂̇γ ̂̇γ +
∂Û

∂χ
χ− Û (A.3)

and

Û =
1

2

∫ 1

0

(ŵ′′1)
2

dx̂+
1

2

∫ ∞
1

(ŵ′′2)
2

dx̂ (A.4)
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The small-displacement solutions for ŵ1(x̂) and ŵ2(x̂) are

ŵ1 =
̂̇γ

6̂̇γχ(χ3(8f1 + 3q1) + 12χ2(2f1 + q1) + 6χ(4f1 + 3q1) + 12(f1 + q1)
)
− 144χ4

×

×
[̂̇γx̂(f1q0 − f0q1)

(
χ4(2x̂3 − 3x̂2 + 1) + 6χ3(x̂3 − 2x̂2 + 1) + 3χ2(2x̂3 − 6x̂2 + 5)

+ 3χ(x̂3 − 4x̂2 + 8) + 18
)
− 6χ

(
χ3(q0x̂

4 + 4f0x̂
3 − 4(q0 + 3f0)x̂+ 3q0 + 8f0)

+ 12χ2(q0 + 2f0)(1− x̂) + 6χ(3q0 + 4f0 − 2(q0 + f0)x̂) + 12(q0 + f0)
)]

(A.5)

ŵ2 =
̂̇γeχ−χx̂

2̂̇γχ2
(
χ3(8f1 + 3q1) + 12χ2(2f1 + q1) + 6χ(4f1 + 3q1) + 12(f1 + q1)

)
− 48χ5

×

×
[̂̇γ(f1q0 − f0q1)

(
sin(χ− χx̂)(χ3 − 6χ− 6) + cos(χ− χx̂)(χ3 + 5χ2 + 6χ)

)
− 12χ3(2f0 + q0)

(
sin(χ− χx̂) + cos(χ− χx̂)

)
− 24χ2 cos(χ− χx̂)(f0 + q0)

]
(A.6)

The strain energy release rate is a rational function of polynomial functions
in χ and ̂̇γ

Ĝ =
NĜ(χ, ̂̇γ)

DĜ(χ, ̂̇γ)
(A.7)

which becomes
NĜ(χ, ̂̇γ) = DĜ(χ, ̂̇γ) Γ̂ (A.8)

This function is a quintic polynomial in ̂̇γ
c5
̂̇γ5

+ c4
̂̇γ4

+ c3
̂̇γ3

+ c2
̂̇γ 2 + c1

̂̇γ + c0 = 0 (A.9)

with coefficients
c0 = 552960 Γ̂χ10 (A.10)

c1 = −69120 Γ̂χ7
[
4f1(3 + 6χ+ 6χ2 + 2χ3) + 3q1(4 + 6χ+ 4χ2 +χ3)

]
(A.11)
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c2 =2880χ4
[
Γ̂
(

4f1(3 + 6χ+ 6χ2 + 2χ3) + 3q1(4 + 6χ+ 4χ2 + χ3)
)2

− 24χ3
(
f 2

0 (1 + 6χ+ 12χ2) + f0q0(2 + 9χ+ 12χ2) + q2
0(1 + 3χ+ 3χ2)

)]
(A.12)

c3 =40χ
[
− Γ̂

(
4f1(3 + 6χ+ 6χ2 + 2χ3) + 3q1(4 + 6χ+ 4χ2 + χ3)

)3

+ 72χ4(f1q0 − f0q1)
(
f0(−18− 96χ− 35χ2 + 72χ3 + 42χ4)

+ q0(−18− 48χ− 5χ2 + 42χ3 + 21χ4)
)

+ 36χ3
(

2f0q0(4f1(6 + 27χ+ 42χ2 + 10χ3 − 18χ4 − 12χ5)

+ 3q1(8 + 36χ+ 58χ2 + 20χ3 − 9χ4 − 6χ5))

+ q2
0(−8f1(−3− 9χ− 9χ2 + χ3 + 6χ4 + 3χ5)

+ 3q1(8 + 24χ+ 28χ2 + 6χ3 − 6χ4 − 3χ5))

− 4f02(f1(−6− 36χ− 84χ2 − 40χ3 + 24χ4 + 24χ5)

+ 3q1(−2− 12χ− 28χ2 − 13χ3 + 3χ4 + 3χ5))
)]

(A.13)

c4 =− 24χ2
[
2(f1q0 − f0q1)χ(1 + χ)(540 + 1320χ+ 1578χ2 + 1194χ3 + 592χ4 + 173χ5 + 22χ6)

+ 20q0f1(−54− 180χ− 123χ2 + 144χ3 + 273χ4 + 176χ5 + 54χ6 + 6χ7)

+ 15q0q1(−72− 228χ− 140χ2 + 168χ3 + 272χ4 + 147χ5 + 36χ6 + 3χ7)

+ 20f0f1(−54− 324χ− 357χ2 + 126χ3 + 468χ4 + 338χ5 + 108χ6 + 12χ7)

+ 15f0q1(−72− 420χ− 404χ2 + 180χ3 + 476χ4 + 283χ5 + 72χ6 + 6χ7)
]
(f1q0 − f0q1)

(A.14)

c5 =
[
40f1(1 + χ)(6 + 6χ+ 6χ2 + 4χ3 + χ4)(54 + 132χ+ 141χ2 + 84χ3 + 28χ4 + 4χ5)

+ 3q1(4320 + 18120χ+ 36576χ2 + 47796χ3 + 45032χ4 + 31698χ5

+ 16636χ6 + 6341χ7 + 1662χ8 + 268χ9 + 20χ10)
]
(f1q0 − f0q1)2 (A.15)

In the simpler case considered in Section 3.2.1 (distributed load only, inde-
pendent on the angle), the displacements reduces to

ŵ1(x̂) = q0
̂̇γχ3(x̂4 − 4x̂+ 3)− 12χ2(x̂− 1)− 6χ(2x̂− 3) + 12

24χ3
(A.16)
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ŵ2(x̂) = q0
̂̇γeχ(1−x̂) 2 cos(χ(x̂− 1)) + χ cos(χ(x̂− 1)) + χ sin(χ(x̂− 1))

4χ3

(A.17)

from which the relation between ̂̇γ and Γ̂ has been calculated

̂̇γ =
2
√

2

q0

Γ̂
1
2

(
χ

1 + χ

)3/2

(A.18)

If the angle independent edge load F̃ = f0 is applied together with the
distributed load q = q0 the displacements become

ŵ1(x̂) =
q0
̂̇γ

24χ3

(
χ3(x̂4 − 4x̂+ 3)− 12χ2(x̂− 1)− 6χ(2x̂− 3) + 12

)
+
f0
̂̇γ

4χ3

(
χ3(x̂3 − 3x̂+ 2)− 4χ2(x̂− 1)− 3χ(x̂− 2) + 3

)
(A.19)

ŵ2(x̂) =
q0
̂̇γeχ(1−x̂)

4χ3
(2 cos(χ(x̂− 1)) + χ cos(χ(x̂− 1)) + χ sin(χ(x̂− 1)))

f0
̂̇γeχ(1−x̂)

2χ3
(cos(χ(x̂− 1)) + χ cos(χ(x̂− 1)) + χ sin(χ(x̂− 1)))

(A.20)

The relation between ̂̇γ and Γ̂ shows the same dependence on Γ̂ as Eq. (A.18),
with a prefactor that depends also on f0

̂̇γ =
2
√

2

q0

χ3/2

[(1 + χ)3 + f0/q0(1 + χ2)(2 + 5χ) + f 2
0 /(3q

2
0)(3 + 18χ+ 36χ2 + 20χ3)]

1/2
Γ̂

1
2

(A.21)

Appendix A.1. Infinitely stiff foundation: cantilever beam (χ→∞)

If the foundation is considered as infinitely stiff, the beam B1 can be seen
as a clamped beam. The solution for the displacement if both the distributed
load and the edge load are applied is

ŵ1(x̂) =

̂̇γ(1− x̂)2
(̂̇γ(f1q0 − f0q1)(2x̂2 + x̂)− 6q0(x̂2 + 2x̂+ 3)− 24f0(x̂+ 2)

)
6(̂̇γ(8f1 + 3q1)− 24)

(A.22)
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The strain energy obtained from the displacement is

Û =
̂̇γ 2[(144 + f1

̂̇γ(−6 + f1
̂̇γ))q2

0 + 2f0q0(360 + ̂̇γ(3− f1
̂̇γ)q1) + f 2

0 (960 + ̂̇γ 2q2
1)]

10(−24 + 8f1
̂̇γ + 3q1

̂̇γ)2

(A.23)
Again, the Griffith’s energy balance can be written as

c5
̂̇γ5

+ c4
̂̇γ4

+ c3
̂̇γ3

+ c2
̂̇γ 2 + c1

̂̇γ + c0 = 0 (A.24)

with coefficients
c0 = 138240Γ̂ (A.25)

c1 = −17280Γ̂(8f1 + 3q1) (A.26)

c2 = 720
[
Γ̂(8f1 + 3q1)2 − 8(20f 2

0 + 15f0q0 + 3q2
0)
]

(A.27)

c3 = −10Γ̂(8f1 + 3q1)3− 48(160f 2
0 f1 + 120f0f1q0 + 60f 2

0 q1 + 69f0q0q1 + 9q2
0q1)

(A.28)

c4 = −12(f1q0 − f0q1)(30f1q0 − 22f0q1 + 3q0q1) (A.29)

c5 = 5(8f1 + 3q1)(f1q0 − f0q1)2 (A.30)

If the applied load consists in a distributed and an edge load that do not
depend on the angle, the solution simplifies to

ŵ1(x̂) =
̂̇γ
24

(x̂− 1)2
(
q0(x̂2 + 2x̂+ 3) + 4f0(x̂+ 2)

)
. (A.31)

The corresponding solution to the Griffith’s energy balance is

̂̇γ =
2
√

2

q0

1√
1 + 5f0/q0 + 20/3(f0/q0)2

Γ̂
1
2 . (A.32)

If an angle-dependent, distributed load is applied, the equilibrium shape
is

ŵ1(x̂) =
̂̇γq0

3(8− ̂̇γq1)
(x̂− 1)2(x̂2 + 2x̂+ 3) (A.33)
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and the Griffith’s energy balance (A.24) simplifies to a cubic polynomial in̂̇γ
512 Γ̂− 192 Γ̂q1

̂̇γ + 8̂̇γ 2(−8 q2
0 + 3 Γ̂q2

1) + ̂̇γ3
(−8

5
q2

0q1 − Γ̂q3
1) = 0. (A.34)

If the distributed load is independent on the angle, the classic solution
for the cantilever beam under uniform load is recovered

ŵ1(x̂) =
̂̇γq0

24
(x̂− 1)2(x̂2 + 2x̂+ 3) (A.35)

with the Griffith’s energy balance giving

µγ̇a3

D
=

2
√

2

q0

(
Γa2

D

) 1
2

. (A.36)
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of graphene and fluorographene in molecular and ionic liquids. Faraday
discussions, 206:61–75, 2017.

[52] Emilie Bordes, Bishoy Morcos, David Bourgogne, Jean-Michel Andan-
son, Pierre-Olivier Bussiere, Catherine C Santini, Anass Benayad, Mar-
garida Costa Gomes, and Aǵılio AH Pádua. Dispersion and stabilization
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