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Abstract 

Halide perovskites have emerged as promising candidates as the active material in 

photovoltaics and light-emitting diodes. They possess unusual bulk thermal transport 

properties that have been the focus of a number of studies, but there is much less 

understanding of thermal transport in thin films where a diverse range of structures and 

morphologies are accessible. Here, we report on the tuning of in-plane thermal 

conductivity in methylammonium lead iodide thin films by morphological control. 

Using 3-𝜔 measurements, we find that the room temperature thermal conductivity of 

thermally evaporated methylammonium lead iodide perovskite films ranges from 0.31 

to 0.59 W/mK. We measure a discontinuity in thermal conductivity at the 

orthorhombic-tetragonal phase transition and explore this using density functional 

theory, and attributing it to a collapse in the phonon group velocity along the c-axis of 

the tetragonal crystal. Moreover, we have quantified the thermal boundary resistance 

(Kapitza resistance) for thermally evaporated films, allowing us to estimate the Kapitza 

length which is 36 ± 2 nm at room temperature and 15 ± 2 nm at 100 K. Curiously, the 

Kapitza resistance has a strong temperature dependence which we also explore using 

density functional theory, with these results suggesting an important role of 

methylammonium rotational modes in scattering phonons at the crystallite boundaries.  
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Halide perovskites have been recognized as promising photovoltaic (PV) materials,1-3 

due to their large absorption coefficients, high charge carrier mobilities,4 and large 

charge carrier diffusion lengths.5 On top of this they can be grown as single crystals,6 

or deposited as polycrystalline films by a variety of techniques including vapour phase 

deposition,7 and solution methods compatible with large area printing. Despite intense 

research on halide perovskite materials for PVs, and a growing body of research on 

their use in field-effect transistors8, 9 and light-emitting diodes,10-12 there have only been 

a small number of studies on their thermoelectric properties.13, 14 

Efficient thermoelectric materials possess a high figure of merit, 𝑍𝑇 = 𝜎𝑆2𝑇 𝜅⁄ , 

where T is the temperature and σ, S and κ are the electrical conductivity, Seebeck 

coefficient and thermal conductivity respectively. A number of studies have indicated 

that methylammonium lead iodide (MAPbI3) possesses a large Seebeck coefficient14, 15 

and high charge carrier mobility,16 with others highlighting a remarkably low thermal 

conductivity in single crystals,15, 17. These materials, which compositionally can be 

considered as organic-inorganic hybrids, can therefore, in certain terms, be considered 

organic-inorganic hybrids in terms of their thermoelectric properties, i.e. sharing high 

charge mobilities associated with inorganic materials and intrinsically low thermal 

conductivity and solution processability usually associated with organic materials. This 

has fueled speculation that the halide perovskites might be excellent thermoelectric 

materials. Correspondingly, single-crystal caesium tin iodide perovskite nanowires 

have been reported with a promising figure of merit (ZT = 0.11 at 320K) which includes 

a low lattice thermal conductivity (0.38 ± 0.04 W/mK).13 However, to achieve a figure 
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of merit suitable for applications (ZT>1), much more needs to be understood about how 

to simultaneouslteously tune σ, S and κ in these materials. 

Understanding thermal transport in halide perovskites is therefore of critical 

importance for thermoelectrics,18 but also has consequences for heat dissipation in other 

devices such as field effect transistors (FETs), light-emitting diodes (LEDs) and PVs. 

Hata et al.19 found, by means of nonequilibrium molecular dynamics, that rotations of 

methylammonium cations are responsible for phonon transport suppression. Wang et 

al.20 attributed the low thermal conductivity to low phonon group velocities caused by 

low elastic stiffness, in addition to short phonon lifetimes (<100 ps) and mean free paths 

(<10 nm) due to enhanced phonon-phonon scattering.  

Despite the low bulk lattice thermal conductivity already reported for these materials, 

it remains to be seen whether there is much scope to reduce the thermal conductivity 

below bulk values, and understanding of how morphology and grain/domain 

boundaries can be used to tune the thermal conductivity still needs to be developed. In 

this study, we analyse the in-plane thermal conductivity of MAPbI3 thin films as a 

function of temperature (100K – 300K), spanning the orthorhombic and tetragonal 

phases and measuring across the phase transition between the two at 160K. We selected 

MAPbI3 as the system to study in part because its bulk thermal conductivity has already 

been the focus of computational study by several groups,17, 20 including by us,21 

enabling us to test the assumptions of those models. The tin halide perovskites yield 

higher thermoelectric performance and higher conductivity (>200 Scm-122) which 

would enable study of competing effects on electrical and thermal conductivity at 
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interfaces, which is important in the study of thermoelectric properties, but these 

materials are not stable in air for more than a few minutes. On the other hand, extrinsic 

doping of the more stable lead halide materials has been studied recently but so far 

yields conductivities orders of magnitude lower than the tin halide perovskites.23, 24 For 

this reason we focus this study on the lattice thermal properties in (non-conductive) 

MAPbI3 thin films to enable us to unambiguously elucidate the impact of nanostructure 

on thermal conductivity within the stability window of the materials. Since grains in 

MAPbI3 typically span the full film thickness, but with finite lateral size, our in-plane 

measurements are particularly sensitive to grain boundaries. By tuning the crystallite 

size of thermally evaporated thin films, thermal conductivity ranging from ~0.3 to ~0.6 

W/mK was measured. We quantify the thermal boundary resistance (Kapitza 

resistance) in polycrystalline films for the first time and discover that it is temperature 

dependent. We explore the nanoscopic origins of this effect by means of density 

functional theory (DFT). We investigate further morphologies in the form of aerosol-

assisted chemical vapour deposited (AACVD) films finding even lower thermal 

conductivities (~0.12 W/mK at 300 K) and observing a discontinuity in thermal 

conductivity at the orthorhombic-tetragonal phase transition, which we explain by a 

collapse in the phonon group velocity along the b-axis of the crystal.   

 

RESULTS AND DISCUSSION 

MAPbI3 thin films were deposited by co-evaporation of lead chloride and 

methylammonium iodide. As shown in Figure 1, X-ray diffraction (XRD) data of 
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MAPbI3 films of three different thicknesses (65 ± 3 nm, 80 ± 5nm and 100 ± 12nm), 

all show peaks at 14.0 and 28.1 (2θ) corresponding to (110) and (220) planes of the 

tetragonal MAPbI3 crystal structure, respectively3, 25, 26. The MAPbI3 (330) peak at 

43.2 is also visible in the thicker films, whilst none of the samples show the 

characteristic peak of MAPbCl3 at 15.7.27 On the other hand, the (001) peak of PbI2 at 

12.4 is clearly visible in the thinnest films, which is a sign of an incomplete surface 

reaction, for which PbI2 is an intermediate product often observed in thin films 

deposited by this method.7 The PbI2 content decreases as the film thickness (and hence 

reaction time) increases. Scanning electron microscopy reveals the typical 

polycrystalline morphology of our vapour-deposited MAPbI3 thin films (Figure 1c-e), 

indicating a grain size which increases with film thickness. 

The thermal conductivity of these MAPbI3 thin films (Figure 2b) at room 

temperature is 0.31 ± 0.03 W/mK, 0.44 ± 0.03 W/mK or 0.59 ± 0.04 W/mK for film 

thicknesses of 65 ± 3 nm, 80 ± 5 nm and 100 ± 12 nm respectively. These values are 

broadly in line with those reported by Pisoni et al.28 (0.5 W/mK in single crystals and 

0.3 W/mK in polycrystalline pellets) and Mettan et al.14 (0.5 ± 0.1 W/mK in single 

crystals). We note that the thermal conductivity of PbI2 (~ 2 W/mK for single crystals 

and in the out-of-plane direction in thin films29, 30) is much higher than our measured 

values, so we can infer that increased phonon scattering at grains and domain 

boundaries in the thinner films is the dominant effect over the higher thermal 

conductivity contribution of PbI2 inclusions. To verify this, we measured the the 

thermal conductivity of a 135 ± 5 nm thermally evaporated polycrystalline PbI2 thin 
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film, finding a room temperature thermal conductivity of 0.51 ± 0.02 W/mK, that is 

significantly below the intrinsic value.  

To explore alternative morphologies and larger crystallite sizes, we deposited 

MAPbI3 films by aerosol-assisted chemical vapour deposition (AACVD), detailed in 

the experimental section at the end of the manuscript. In this technique, which we 

reported previously,31 the MAPbI3 precursors (PbI2 and MAI) are delivered to the 

heated substrate sequentially in aerosols of the carrier solvents dimethyl formamide (for 

PbI2) and methanol (for MAI). Initially a PbI2 film is formed on the surface and then 

the MAI is delivered, reacting with PbI2 to form the final film. This is a scalable process 

allowing deposition of thick films (many microns), with large grains (microns in 

diameter) typically spanning the full thickness of the film. XRD indicates that there is 

no residual PbI2 in films produced by this method. The increased mass of material in 

our films improved the sensitivity of our measurements and enabled us to clearly 

observe the orthorhombic to tetragonal phase transition as a discontinuity in the thermal 

conductivity at ~160 K (Figure 2d). This manifests itself as a 5-8 % decrease in the 

thermal conductivity going from the low temperature (orthorhombic) phase to the 

higher temperature (tetragonal) phase. Accompanying the decrease in the absolute 

value of the thermal conductivity is a discontinuity in the gradient, 𝑑𝜅/𝑑𝑇. These 

observations are in line with the literature.14, 29 The low absolute value of thermal 

conductivity of our AACVD films can be understood in terms of morphology, since the 

roughness of these films is comparable to the film thickness. This implies a poor 

connectivity between grains in the in-plane direction (the measurement direction). 
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Grains are only in thermal contact to one another within a thin region close to the 

substrate creating a bottleneck to thermal transport. The thickness of the region of good 

thermal contact between grains in this case is much less than the average thickness used 

in the calculation of thermal conductivity. For thicker AACVD films there is more time 

during film formation for grains to coalesce, and in these cases we observe that the 

thermal conductivity increases towards the values of thermally evaporated films 

(Supporting Information). 

To understand the discontinuity in thermal conductivity at the phase transition we 

performed first-principles calculations to examine the phonon modes in each phase.32-

36 In previous work37 we demonstrated that only the low-frequency phonons belonging 

to the inorganic cage contribute to thermal transport process in MAPbI3. The group 

velocities of modes on the MA cation are effectively zero, but MA modes can still 

interact with the propogating modes by acting as scattering centres. However, our 

previous simulations21 showed that only motions of the entire MA cation couple to the 

cage modes, and not internal motions (i.e. vibrations and torsions) of the MA molecule. 

In that work, we calculated the phonon modes relevant to thermal conductivity in 

MAPbI3 by considering vibrations of the Pb-I cages and rotational modes of the MA 

molecule as whole, but freezing the inner freedoms belonging to the methylammonium 

(MA) molecule. Here we adopt the same method to calculate phonon modes of the 

orthorhombic and tetragonal phases. Figure 3a-d presents the phonon dispersion 

curves of two phases, their phonon density of states (DOS) and the cumulative integral 

of the phonon DOS.  
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We also calculated the group velocities, vg, of the low frequency phonons 

belonging to the Pb-I cages. The group velocities projected on the a, b and c-directions 

of the primitive cells are shown in Figure 4. The b-direction of the orthorhombic phase 

is equivalent to the c-direction of the tetragonal phase. Our data show a collapse in the 

group velocities along this crystal direction when moving from the orthorhombic to 

tetragonal phase, meaning that the phonon transporting ability reduces when the 

structural phase transition occurs. In general, the total phonon thermal conductivity can 

be described as 𝑘 =
1

3
𝐶𝑣𝑔

2
𝜏, where C is heat capacity, 𝑣𝑔 is group velocity and τ is 

phonon lifetime. Indeed our DFT calculations imply a sharp reduction in in vg across 

the orthogonal to tetragonal phase transition (Figure 4a,b). Our modelling presented in 

the Supporting Information shows that heat capacity is continuous across the phase 

transition, so does not contribute to this discontinuity in thermal conductivity. On the 

other hand, the phonon lifetimes in MAPbI3 have previously been measured from 

Raman line widths,38 with the finding that τ decreases sharply at the phase transition 

from orthorhombic to tetragonal for some of the phonon modes. Putting this together, 

there are two mecahnisms identified for the sharp decrease in thermal conductivity 

going from the orthogonal to tetragonal phase, which we do indeed observe in our own 

thermal conductivity measurements. 

Thermal transport as a function of crystalline dimensions is important in 

polycrystalline materials because of strong phonon scattering at grain and domain 

boundaries which introduces a thermal resistance between crystallites39-41 known as a 

Kapitza resistance42-44, Rk. This effect can be particularly important in thin 
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polycrystalline films where the overall film thickness provides an upper limit to the 

crystal sizes. There is, therefore, a functional dependence of the thermal conductivity 

on crystallite size, d, which is mediated by the Kapitza resistance:43 

𝜅(𝑇, 𝑑) =
𝜅𝑖(𝑇)

1 +
𝑅𝑘(𝑇)𝜅𝑖(𝑇)

𝑑

  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

The intrinsic thermal conductivity of the material in the absence of crystallite 

boundaries is given by 𝜅𝑖. 𝑅𝑘 and 𝜅𝑖 can therefore be determined by a linear fit of 

the experimental data for 𝜅−1 against 𝑑−1 at each temperature, where the crystallite 

size is estimated by the Scherrer equation (details in Supporting Information). This 

model has been applied in yttria-stabilized zirconia41 (YSZ), bulk Mg3Sb2
45

 and 

polycrystalline SixGe1-x
43 amongst others, and since 𝜅 is a macroscopic measurement 

Rk represents an ensemble average of the boundaries within the matieral. We employed 

this model to calculate the intrinsic thermal conductivity and Kapitza resistance of the 

thermally evaporated MAPbI3 thin films with our results shown in Figure 5 (details of 

calculations in the Supporting Information). From 100 K to 150 K, the values of 𝑅𝑘 

are approximately constant at ~0.8 × 10-8 m2K/W. There is then a steady increase in 

𝑅𝑘 with increasing temperature up to a value of ~4 × 10-8 m2K/W at ~270K (Figure 

5a). In many other semiconductor systems,43, 46-48  𝑅𝑘 has been found to be almost 

temperature independent, but in at least one case, an increase with temperature was 

observed45 and this was attributed to some damage and/or disorder at grain boundaries 

at high temperature. A macroscopic description of the positive temperature correlation 

of  𝑅𝑘 for MAPbI3 thin films may have similar origins either in damage or reversible 
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changes to the thermal contact between crystallites caused by anomalous thermal 

expansion effects, i.e. a thermal expansion expressed in the direction perpendicular to 

the plane of the thin film that causes a decrease in the contact area between crystallites 

in the in-plane direction. However, an alternative atomic-level description comes out 

of our computational model.  

The upper limits of the phonon frequency belonging to the Pb-I cages is ~125cm-1 

(associated temperature ~180K) for the both phases (Figure 3). When the temperature 

is larger than ~180K (in the tetragonal phase), all the phonons belonging to the Pb-I 

cages will be excited. This is reflected in the phonon heat capacity of MAPbI3 

(Supporting Information), which tends to a constant value at this temperature. As the 

temperature is increased above ~180K, the phonon modes of the collective motion 

belonging to the MA+ molecule will be excited, which includes the rotational modes 

and translational modes with frequencies of ~4 THz.37 Although these MA modes do 

not contribute to the thermal transport directly, their anharmonicity will provide 

scattering processes to the propagating phonon modes of Pb-I cages. We note that 

phonons associated with internal motions of the MA cations reside in the range 25 – 

50 THz, and this huge energy gap disables the phonon scattering between the internal 

motions of the MA and the lattice vibrations of the Pb-I cages. In our previous 

research,37 we found that the rotational modes of MA have larger anharmonicity than 

the translational modes and are therefore more likely to scatter phonons. This 

anharmonicity combined with the correlation of the onset of rotational MA modes with 
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the onset of the increase in Rk, strongly indicates a role of MA rotations in the high 

boundary resistance at room temperature.  

Our estimation of intrinsic thermal conductivity at 300K, 𝜅𝑖= 0.68 ± 0.15 W/mK 

is at the high end of previously reported experimental values for bulk crystals (𝜅𝑖,𝑏𝑢𝑙𝑘 

= 0.5 W/mK) 15, 28, 49. This discrepancy can be attributed to larger defect densities in 

bulk crystals, whereas defects can easily be ejected to boundaries in the smaller crystals 

found in thin film samples such as our own. To further quantify the crystallite-size 

dependence of 𝜅 for a given material, the Kapitza length, 𝐿𝑘 = 𝑅𝑘𝜅𝑖, was calculated 

as 36 ± 2 nm at room temperature and 15 ± 2 nm at 100 K. Only for d>>𝐿𝑘, can 𝜅 

approach 𝜅𝑖. Interestingly, our data shows (Figure 5c) that nanostructuring MAPbI3 in 

the range 5 nm – 100 nm can drastically reduce the thermal conductivity , predicting a 

remarkably low thermal conductivity of 0.30 ± 0.04 W/mK at room temperature when 

d = 10 nm, or 0.16 W/mK at room temperature when d = 5 nm. Crystallite size tuning 

to these length scales is achievable in halide perovskites through control of deposition 

conditions50 or by exploiting self-assembly processes using molecular additives.51 This 

result reveals the important role of nanostructure in thermal management strategies for 

halide perovskites devices.  

 

CONCLUSION 

Our work has shown that the thermal conductivity of lead halide perovskites thin films 

can be reduced below the already low bulk values by fine tuning of the morphology. 

The morphologies we studied using thermal evaporation and aerosol-assisted chemical 
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vapour deposition span two orders of magnitude in crystallite size and film thickness. 

We have observed a discontinuity in the thermal conductivity at the orthorhombic to 

tetragonal phase transition which can be explained by a collapse in the phonon group 

velocity along one of the crystal axes. A peculiar increase in the Kapitza resistance that 

coincides with the thermal excitation of MA rotational modes, suggests an important 

role of these modes in determining the room temperature Kapitza resistance. Our 

measurements of Kapitza resistance point to a strategy to achieve ultralow thermal 

conductivity (< 0.2 W/mK) by tuning crystallite size to ~5 nm, which could be useful 

in the optimisation of halide perovskites as thermoelectric materials.  

This work has therefore presented a potentially useful route to improving 

thermoelectric performance in halide perovskite materials, which is already predicted 

to achieve ZT~1-2 in bulk crystals.52 However, interfaces will only boost the 

thermoelectric figure of merit, ZT, if they decrease thermal conductivity without 

significantly degrading the electrical conductivity. The choice of a non-conductive 

halide perovskite in this work enabled a detailed study of the effects of morphology on 

lattice thermal conductivity on a reasonably stable halide perovskite material. Electrical 

conductivity can exceed 200 Scm-1 in tin halide perovskites,22 but these materials are 

unstable in air. Strategies to electrically dope more stable halide perovskite systems are 

underdeveloped, and questions about whether nanostructuring can boost ZT will 

probably remain speculative until stable conductive systems have been synthesized.  

 

METHODS 
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Vapur deposition of thin films. MAPbI3 films were produced by the co-

evaporation of lead chloride and methyl ammonium iodide at 10-7 mbar. PbCl2 and MAI 

are known to react on the sample surface to form MAPbI3 under conditions of excess 

MAI.7  The deposition rate was 5.0 Å/s for methylammonium iodide (MAI, achieved 

with a crucible temperature of ~120 C) and 1 Å/s for PbCl2 (achieved with a crucible 

temperature of ~320 C). All chemicals purchased from commercial company without 

purification. The vacuum thermal evaporator opens directly into the glovebox enabling 

transfer without contact with air to where they were stored until measurement. Transfer 

of the samples to the Linseis Thin Film Analyzer was done with less than 2 minutes 

contact with air before pumping down of the test chamber to vacuum (~10-7 mbar). 

Aerosol-assisted chemical vapour deposition of micron-thick films. PbI2 (99%) 

was dissolved in the carrier solvent dimethyl formamide (>>99%) at 0.1 g/mL. Methyl 

ammonium iodide (MAI, Solaronix) was dissolved in methanol (anhydrous, 99.8%) at 

0.033 g/mL. The precursor mists were created using an ultrasonic humidifier. The 

DMF:PbI2 mist was delivered to the reaction chamber with nitrogen gas at a flow rate 

of 0.75 L min−1 where the substrate was heated to 75°C. The methanol:MAI mist was 

delivered to the reaction chamber with a nitrogen gas flow rate of 0.3 L min−1 with the 

substrate heated to 220 °C. The perovskite films were removed from the reaction 

chamber after deposition and transferred immediately to a nitrogen glove box, where 

they were stored before further analysis. Further details of this technique have been 

reported previously.31  
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Morphology characterization and crystallography. SEM images were recorded 

by an FEI Inspect-F scanning electron microscopy. X-ray diffraction was performed by 

Siemens D5000 X-Ray Powder diffraction using a Cu Kα source (λ = 1.54 Å).  

Thermal conductivity measurement. The MAPbI3 thin films were deposited 

directly onto a pre-patterned test chip. The test chip (Linseis Messgeräte GmbH) 

comprises of a silicon substrate incorporating a suspended Si3N4 membrane with 

integrated thin-film heater for in-plane measurement of the thermal conductivity by the 

3-ω method in the Völklein geometry53-55. The surface termination of the test chip is a 

30 nm thick layer of aluminium oxide. The measurement geometry is detailed in 

Supporting information. All the samples were prepared in a thermal evaporator housed 

in a nitrogen glovebox. The vacuum in the thermal evaporator was ~10-7 mbar prior to 

deposition, and the oxygen and water levels in the glovebox <0.1ppm. After deposition, 

the samples were rapidly transferred from the glovebox to the characterisation 

instrument, during which time they were exposed to air for a maximum of 1 minute. 

The thermoelectric characterisation equipment was pumped down to 10-7 mbar 

immediately after loading samples. 

Density functional theory (DFT) method. The phonon modes of MAPbI3 were 

calculated via the finite displacement difference method implemented in the 

PHONOPY package32. We calculated the phonon dispersion based on density 

functional theory using VASP code package. The Perdew-Burke-Ernzerhof 

parametrization of the generalized gradient approximation (GGA)33 was applied for the 

exchange-correlated functional, and the projector-augmented wave (PAW)34, 35 method 
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was used to model the core electrons (for Pb the 5d orbitals are included). The energy-

cutoff of plane wave was set as 700 eV. For the parameter of the partial occupancies 

we adopted the Gaussian smearing and the width of the smearing was 0.01 eV. The van 

der Waals (vdW) interactions were also considered here as non-bonded terms36. When 

we calculated the low-frequency phonon dispersion of the orthorhombic and tetragonal 

phases, we considered the whole MA molecule as a rigid object, meaning that we froze 

its inner freedoms. The unit cell of the orthorhombic and tetragonal phases contains 48 

atoms. We adopted 2 × 2 × 2 supercell for the both phases and used 6 × 6 × 6 

Monkhorst-Pack grids as k-point sampling. The phonon group velocities (v𝑔) can be 

obtained by 𝑣𝑔 =
𝑑𝜔

𝑑𝑘
, where ω is the phonon frequency and 𝑘 is the momentum 

vector of phonons in 𝑘 space. Simultaneously, we obtain the partial density of states 

(PDOS)  and the free energy, the inner energy, the entropy and the phonon heat 

capacity with PHONOPY package32. 
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MAPbI3 
a b 
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Figure 1. Perovskite thin film morphology and structure. (a) Crystal structure of MAPbI3. 

Species are coloured MA: green, Pb: blue, I: brown. (b) XRD patterns of perovskites thin 

films of 65nm (black), 80nm (red) and 100nm (blue) thickness. Stars, circles and squares 

represent the (110), (220) and (330) planes of the perovskite crystal structure, respectively. 

(c) – (e) Scanning electron microscopy (SEM) images of 65nm, 80nm and 100nm thick 

perovskite thin films. The scale bars are 500nm. 

e d 

t = 65 nm t = 80nm t = 100nm 
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a b 

Figure 2. Thermal conductivity of MAPbI3 thin films. (a) (Top) Optical image of a 

measurement chip including a thin film. (Bottom) SEM image of the measurement area 

(scalebar is 200 μm). The red dashed squares are the measurement areas (membranes). In 

the middle of membrane is the heating stripe. The larger membrane is used for the primary 

measurement, whilst the smaller membrane is used for the heat loss correction due to 

radiation. (b) Temperature dependence of thermal conductivity of vapour deposited thin 

films from 100 K to 300 K. 65nm, 80nm and 100nm thick films corresponded to black, red 

and blue dots, respectively. (c) SEM images of perovskite films deposited by AACVD 

method. (d) Temperature-dependent thermal conductivity values from 100 K to 300 K of 

perovskite films deposited by AACVD method. The red and blue lines are fits to the data 

for orthorhombic and tetragonal phases respectively to enable visualisation of the 

discontinuity, Δκ, at the phase transition. 

c d 
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Figure 3. Phonon dispersions (top) and phonon density of states (bottom) of  

orthorhombic (a, b) and tetragonal (c, d) phases of MAPbI3. The insets show the crystal 

structure in each phase. 



  

20 

 

  

Figure 4. Group velocity of phonons plotted against wavenumber for each crystal axis of 

the orthorhombic (left) and tetragonal (right) phases of MAPbI3. 
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Figure 5. Thermal boundary resistance. (a) Kapitza resistance and (b) intrinsic thermal 

conductivity derived from the measured thermal conductivity. (c) Predictions for the 

effect of the crystallite size on the normalized thermal conductivity of perovskites 

polycrystalline thin films at 100 K (blue) and 300 K (orange). 
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Supporting Information. 

Supporting Information is availabe from the ACS Publication website at DOI:XXX. 

The file contains further morphological characterization and crystallography; details of 

thermal conductivity measurement; and density functional theory (DFT) method.  
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