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Abstract— The downlink communications are vulnerable to1

intelligent unmanned aerial vehicle (UAV) jamming attack. In this2

paper, we propose a novel anti-intelligent UAV jamming strategy,3

in which the ground users can learn the optimal trajectory to4

elude such jamming. The problem is formulated as a stackelberg5

dynamic game, where the UAV jammer acts as a leader and6

the ground users act as followers. First, as the UAV jammer is7

only aware of the incomplete channel state information (CSI)8

of the ground users, for the first attempt, we model such9

leader sub-game as a partially observable Markov decision10

process (POMDP). Then, we obtain the optimal jamming tra-11

jectory via the developed deep recurrent Q-networks (DRQN)12

in the three-dimension space. Next, for the followers sub-game,13

we use the Markov decision process (MDP) to model it. Then we14

obtain the optimal communication trajectory via the developed15

deep Q-networks (DQN) in the two-dimension space. We prove16

the existence of the stackelberg equilibrium and derive the closed-17

form expression for the stackelberg equilibrium in a special case.18

Moreover, some insightful remarks are obtained and the time19

complexity of the proposed defense strategy is analyzed. The20

simulations show that the proposed defense strategy outperforms21

the benchmark strategies.22

Index Terms— UAV, jamming, Markov decision process, deep23

Q-networks.24

I. INTRODUCTION25

W ITH the urgent demands of high-speed data transmis-26

sion in wireless communications, various technolo-27

gies have been explored to improve the network capacity,28

i.e., massive multiple-input multiple-output (massive-MIMO)29
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and millimeter wave (mmWave) communication. Recently, 30

the unmanned aerial vehicle (UAV) has been adopted to 31

improve the network capacity. For example, compared to 32

the ground communications, UAV can provide strong line-of- 33

sight (LoS) links and small path-loss exponent to the ground 34

users when it is used as the base station. Therefore, by optimiz- 35

ing the UAV trajectory and transmission strategies, the UAVs 36

can be used to boost the network capacity [1]–[4]. 37

When considering the security issues in wireless commu- 38

nication systems, UAVs can be exploited as different com- 39

ponents [5]–[13]. As security components, UAVs can be 40

used by the legitimate users. For example, since the friendly 41

jammer can protect the confidential messages by transmitting 42

the artificial noise [14], [15], UAV has been utilized as a 43

friendly jammer to protect the ground users away from the 44

eavesdropper. Specifically, with the assist of an air-to-ground- 45

friendly UAV jammer, the system security can be improved 46

when the location of the eavesdropper is unknown [6]. Then, 47

UAVs can work as relays to forward the message to improve 48

the communication quality [10]. In [11], a reinforcement 49

learning based UAV relay has been studied to against the smart 50

jamming in vehicular ad hoc networks. Additionally, some 51

work has attempted to combine UAV relay and UAV friendly 52

jammer to enhance communication security. For example, 53

a dual-UAV enabled secure communication system has been 54

investigated in [7], in which one UAV can work as a relay to 55

communicate with multiple ground users and another UAV can 56

work as a friendly jammer to jam the ground eavesdropper. 57

As malicious components, UAVs can be exploited by the 58

illegitimate users [12], [13]. The authors in [8] have shown 59

that malicious UAVs equipped with cameras and multi-spectral 60

sensors can eavesdrop the privacy of legitimate users. Due to 61

the LoS links and small path-loss exponent, UAV jamming 62

can significantly block the data transmission and degrade 63

communication quality of service (QoS), which is more serious 64

than ground jamming. Therefore, anti-UAV jamming problem 65

is worth investigating. 66

Some meaningful work has been developed to address 67

the malicious UAV jamming problem [16]–[19]. Particularly, 68

a zero-sum pursuit-evasion game has been formulated to 69

compute optimal strategies, which aims to evade the attack 70

of an UAV jammer [16]. A smart UAV attacker, who can 71

specify the attack type, such as jamming, eavesdropping, and 72

spoofing, has been considered in [17] and the reinforcement 73

learning based power allocation strategies have been proposed 74

0090-6778 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7067-1211
https://orcid.org/0000-0002-8507-3975
https://orcid.org/0000-0002-4593-1656
https://orcid.org/0000-0003-0271-6021


IEE
E P

ro
of

2 IEEE TRANSACTIONS ON COMMUNICATIONS

to defend against such attack. However, the aforementioned75

anti-UAV jamming work are based on some ideal assumptions,76

i.e., the perfect observation. More recent work has considered77

imperfect observation in anti-ground jamming but few in78

anti-UAV jamming [18]–[24]. For example, with consider-79

ing the co-channel mutual interference and the incomplete80

information, i.e., incomplete channel state information (CSI),81

the competition between UAV users and jammers have been82

investigated by using a Bayesian stackelberg game [18]. The83

authors in [19] have designed a secure communication system84

to deal with the joint impact of UAV smart attack and imper-85

fect channel estimation. The authors in [20] has formulated86

the jamming game with incomplete information, i.e., the other87

user’s identities, as a Bayesian game and discussed the perfor-88

mance of this game. The prospect theoretic analysis has been89

used to model anti-jamming communications [21]. Moreover,90

a Bayesian stackelberg game with incomplete information has91

been formulated to analyze the jammer in [22], [23]. Likewise,92

the impact of observation error of a smart jammer has been93

evaluated in a stackelberg anti-jamming game and the Nash94

equilibrium has been derived [24]. As aforementioned, only95

[18], [19] have considered imperfect observations in anti-UAV96

jamming problem. Meanwhile, only [19] has considered an97

intelligent UAV attacker with imperfect observations. In other98

words, limited work has considered intelligent UAV jamming,99

which can easily learn the optimal attack strategy in complex100

communication environments, even with imperfect observa-101

tion, i.e., incomplete CSI.102

With the rapid development of artificial intelligence (AI)103

in communications [25], [26], such an intelligent UAV jam-104

ming becomes more reality and more harmful than we have105

ever considered. One powerful tool is reinforcement learning,106

by which the intelligent agent can choose jamming action107

based on the environments and maximize the reward. This108

reward is called long-term cumulative reward, which is decided109

by a series of time events. The Q-learning is a model-free110

reinforcement learning method, which can learn the optimal111

strategy based on the long-term cumulative reward with an112

end-to-end approach. Then, to address the curse of high113

dimensionality in Q-learning, the Deep Q-network (DQN)114

has been developed by Google DeepMind, which combines115

Q-learning with convolutional neural network (CNN). It can116

be used to learn the optimal strategy in a large state space [27].117

Whereas, the DQN cannot perform well with the imperfect118

observations. Then, to learn the optimal strategy with the119

imperfect observation, the deep recurrent Q-network (DRQN)120

has been introduced, which is a combination of a long short121

term memory (LSTM) and a DQN [28]. With AI, some incred-122

ible jamming attacks have been realizing, i.e., [17], [29], which123

makes the anti-UAV jamming problem more challenging.124

In this paper, we consider the scenario that both the UAV125

jammer and the ground users are intelligent agents. On the126

one hand, the UAV jammer can learn the optimal jamming127

trajectory via the imperfect observation. On the other hand,128

the ground users can learn the optimal communication trajec-129

tory to elude the UAV jamming. To the best of our knowledge,130

“How do ground users defend against intelligent UAV jamming131

attack using AI?” is still an open problem. The specific 132

contributions of our work are summarized as follows: 133

• For the first time, we consider the scenario that both the 134

UAV jammer and the ground users are intelligent agents, 135

in which an UAV jammer can block the data transmission 136

of the ground users and the ground users are capable 137

of defending against the intelligent UAV jamming to the 138

greatest extent. 139

• For the ground users, we propose a novel anti-intelligent 140

UAV jamming strategy, in which the optimal trajectory 141

of each ground user is obtained. Specifically, the anti- 142

intelligent UAV jamming problem is formulated as a 143

stackelberg dynamic game. The incomplete CSI is consid- 144

ered in the game and the optimal trajectories are learned 145

via DRQN and DQN, respectively. 146

• Some insightful remarks are obtained from the theory and 147

the simulations: i) we prove that the optimal trajectory of 148

each ground user exists; ii) we prove the existence of 149

the stackelberg equilibrium in the game; iii) to maximize 150

long-term cumulative reward, the action choices of UAV 151

jammer is different from that of maximizing the imme- 152

diate reward. 153

The rest of the paper is organized as follows. In Section II, 154

we present the system model and the problem formulation. 155

In Section III, we propose the anti-intelligent UAV jam- 156

ming strategy and the corresponding discussions. Simulations 157

are presented in Section IV and conclusions are given 158

in Section V. 159

II. SYSTEM MODEL AND PROBLEM FORMULATION 160

In this section, we first give the system model, then, 161

we formulate the optimization problem. For ease of reference, 162

important symbols are summarized in Table I. 163

A. System Model 164

We consider the downlink transmissions between a base sta- 165

tion and ground users under the threat of a UAV jammer, which 166

is shown in Fig. 1. In the following, if no confusions occur, 167

the users refer to the ground users. Denote J as the UAV 168

jammer, B as the base station and i ∈ {1, · · · , U} as user i. 169

We assume that the location of the base station is fixed with 170

height HB, while the users and the UAV jammer are mobile at 171

constant velocities in each time slot. Considering the resource- 172

limited devices, all of them are equipped with single antenna 173

and communicate with the base station by adopting frequency 174

division multiple access (FDMA). The total bandwidth is B 175

Hz, and we consider the worst case that the UAV performs 176

barrage jamming, which can jam the full bandwidth of the 177

network [30]. The UAV jammer and the users are considered 178

as intelligent agents, who can learn the optimal actions to 179

maximize their long-term cumulative rewards, i.e., signal-to- 180

interference-plus-noise ratio (SINR) [31], respectively. The 181

locations of base station B, an arbitrary user i, and the 182

UAV jammer J are denoted as (0, 0, HB), (xi, yi, 0), and 183



IEE
E P

ro
of

GAO et al.: ANTI-INTELLIGENT UAV JAMMING STRATEGY VIA DEEP Q-NETWORKS 3

TABLE I

SUMMARY OF SYMBOLS

Fig. 1. Schematic diagram. The network includes one base station, U ground
users and a UAV jammer, then the network is transformed into a solid
figure. The UAV jammer can fly in a three-dimension space, the ground
users can move in a two-dimension space, moreover, the base station is in a
three-dimension space and deployed at the center of the “x0y” plane.

(xJ , yJ , zJ ), respectively. Denote the mapping of UAV jam-184

mer action space as185

AJ = {(0, 0, 0), (0, 0, 1), (0, 0,−1), (−1, 0, 0), (1, 0, 0),186

(0, 1, 0), (0,−1, 0)},187

which represents moving directions including stay, up, down, 188

left, right, forward, backword. Likewise, we map the user 189

action space as 190

Ai = {(0, 0, 0), (−1, 0, 0), (1, 0, 0), (0, 1, 0), (0,−1, 0)}, 191

which represents flight directions including stay, left, right, 192

forward, backword. In time slot t, the UAV jammer J chooses 193

an action at
J ∈ AJ to determine the flight direction, and user 194

i chooses an action at
i ∈ Ai to determine its moving direction. 195

The channel coefficient from base station B to user i is 196

denoted as hBi =
√

d−η
Bi h̃Bi, where dBi represents the distance 197

between base station B and user i, η is the path loss exponent 198

and h̃Bi is the small-scale fading, which follows zero-mean 199

complex Gaussian distribution with unit variance. In addition, 200

the communication channel between UAV jammer and user i 201

is modeled as an air-to-ground channel, which contains three 202

parts, including strong LoS, reflected nonline-of-sight (NLoS), 203

and small-scale fading. In general, the influence of small-scale 204

fading is smaller than LoS and NLoS, therefore, the small- 205

scale fading is neglected [32], [33]. The path loss of the 206

air-to-ground channel between UAV jammer and user i is 207

denoted as [34] 208

PL(J , i) =

{
βLoS|dJ i|−α, for LoS link,

βNLoS|dJ i|−α, for NLoS link,
(1) 209

where dJ i =
√

(xi − xJ )2 + (yi − yJ )2 + z2
J is the distance 210

between UAV jammer J and user i, α is the path-loss 211

exponent for the air-to-ground channel, and βLoS and βNLoS 212

are additional attenuation factors for LoS link and NLoS 213

link, respectively. The probability of LoS connection, PLoS, 214

depends on the elevation angle θi between user i and UAV, 215

the communication environment, the surrounding buildings 216

density, and the height of the UAV jammer, HJ , which can 217

be represented as 218

PLoS =
1

1 + Φ exp(−Ψ[θi − Φ])
. (2) 219

In particular, Φ and Ψ are S-curve parameters, which depend 220

on communication environment, i.e., Φ = 150 and Ψ = 15 221

are the common settings for urban areas, the angle is 222

θi =
180
π

arcsin(
zJ
dJ i

) 223

and the probability of NLoS is PNLoS = 1 − PLoS. Hence, 224

the expectation of the jamming power received at the user i 225

is given by [32] 226

IJ i = pJ PLoSβLoS|dJ i|−α + pJ PNLoSβNLoS|dJ i|−α, (3) 227

where pJ is the power budget of the UAV jammer. Then, 228

the received SINR at user i can be denoted as 229

Γi =
pBd−η

Bi |h̃Bi|2
IJ i + σ2

, (4) 230

where pB is the power budget of the base station and σ2 is 231

the noise variance. 232
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B. Problem Formulation233

Since the UAV jammer is a malicious user, the UAV jammer234

cannot obtain the complete observation information of the235

users, i.e., CSI. The partially observable information that236

the UAV jammer known is the location of the users, which237

represents as the distances from the users to the base station,238

giving by239

dBi =
√

x2
i + y2

i + H2
B, i ∈ {1, · · · , U}.240

Meanwhile, the information observed by the users con-241

tinuously is the jamming power received from the UAV.1242

Considering the hierarchical interactions among UAV jam-243

mer and the users, we utilize a stackelberg dynamic game244

G〈{J , i}, {dJ , di}, {rJ , ri}〉 to formulate the anti-UAV jam-245

ming problem, namely, anti-jamming elude game. In the246

formulated game, we model the foresighted UAV jammer J247

as a leader and the myopic users i ∈ {1, · · · , U} as followers.248

The UAV jammer first chooses its action aJ ∈ AJ , then each249

user chooses its corresponding action ai ∈ Ai. We assume250

that the location of the user i is (xi, yi, 0) in the previous251

time slot and (x′
i, y

′
i, 0) in the current time slot with action252

ai, i.e., (x′
i, y

′
i, 0) = (xi, yi, 0) + ai. The location of the253

UAV jammer J is (xJ , yJ , zJ ) in the previous time slot254

and (x′
J , y′

J , z′J ) in the current time slot with action aJ ,255

i.e., (x′
J , y′

J , z′J ) = (xJ , yJ , zJ ) + aJ .256

In this case, the immediate reward of user i can be given as257

ri[T (aJ ), L (ai)] =
pBd−η

Bi |h̃Bi|2
IJ i + σ2

− CUdi, (5)258

where T (aJ ) = (x′
J , y′

J , z′J ) denotes the current trajectory259

of the jammer with action aJ , L (ai) = (x′
i, y

′
i, 0) denotes260

the current trajectory of user i with action ai, CU is the unit261

energy cost of the user, i.e., mobility cost per unit distance.262

The distance between UAV jammer J and user i is263

dJ i =
√

(x′
J − x′

i)2 + (y′
J − y′

i)2 + z′2J ,264

the distance from the base station to user i is265

dBi =
√

x′2
i + y′2

i + H2
B266

and the moving distance per time slot is267

di =
√

(x′
i − xi)2 + (y′

i − yi)2.268

The UAV jammer’s immediate reward in the current time slot269

can be given by270

rJ [T (aJ ), L (ai)] =
U∑

i=1

IJ i

pBd−η
Bi |h̃Bi|2 + σ2

− CJ dJ , (6)271

where CJ is the unit energy cost of the UAV jammer,272

i.e., flight cost per unit distance, and the flight distance per273

time slot can be denoted as274

dJ =
√

(x′
J − xJ )2 + (y′

J − yJ )2 + (z′J − zJ )2.275

1This is a reasonable assumption since that the jamming is continuous and
the users can estimate it in each inter frame gap.

The goal of the formulated optimization problem is to 276

maximize the long-term cumulative rewards of UAV jammer 277

and users, respectively. To maximize jammer’s long-term 278

cumulative reward RJ , we need to find the optimal jamming 279

trajectory for the UAV jammer and then to maximize each 280

user’s long-term cumulative reward Ri, we need to find the 281

optimal communication trajectory for each user, with the 282

constraints of flight distance and moving distance per time 283

slot. The formulated optimization problem can be given as 284

max
aJ ,ai

RJ [T (aJ ), L (ai)], 285

Ri[T ∗(aJ ), L (ai)], 286

s.t. |aJ | ≤ 1, (7) 287

|ai| ≤ 1, i ∈ {1, · · · , U}, (8) 288

where RJ =
∑∞

k=0 γkrJ (k) and Ri =
∑∞

k=0 γkri(k) denote 289

k steps long-term cumulative rewards of each time slot with 290

discount factor γ, (7) represents the flight distance of UAV 291

jammer per time slot, (8) represents the moving distance of 292

user i per time slot. Due to the mobility of the network, 293

the communication environment is dynamic and complex. 294

The formulated optimization problem faces several challenges, 295

including the need to obtain the complete CSI, the need to 296

obtain the channel state transition probability, as well as the 297

difficulty to obtain the convexity of the problem. Therefore, 298

to solve the formulated optimal problem, we propose the 299

following strategies. 300

III. DEEP LEARNING BASED OPTIMAL STRATEGY 301

In this section, we propose a novel anti-intelligent UAV 302

jamming strategy to defend against UAV jammer. Particularly, 303

we analyze the optimal jamming trajectory and the optimal 304

communication trajectory. 305

A. The Optimal Jamming Trajectory 306

Since the wireless channel environment is dynamic and 307

complex, we quantize the channel hBi into a finite channel 308

state space S = {h1
Bi, · · · , hK

Bi}, i ∈ {1, · · · , U}, and model it 309

as a Markov chain with finite states [35]. Then, by partitioning 310

the flight space of the UAV jammer J into a finite number of 311

states, i.e., L states, the flight state space of the UAV jammer 312

J can be denoted as 313

SJ = {(xJ ,1, yJ ,1, zJ ,1), · · · , (xJ ,L, yJ ,L, zJ ,L)}. 314

Again, we quantize the motion state space of the users into 315

M states, which is denoted as 316

Si = {(xi,1, yi,1, 0), · · · , (xi,M , yi,M , 0)}, i ∈ {1, · · · , U}. 317

To simplify the case, we model a virtual user, V , as a target 318

user, which is a virtual point that related to the users in 319

the network. The initial location of the virtual user can be 320

decided by 321

(xV , yV , 0) =

(∑U
i=1 wixi∑U
i=1 wi

,

∑U
i=1 wiyi∑U
i=1 wi

, 0

)
, (9) 322
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where wi is the initial location weight of user i. Then,323

the quantized motion state space of the virtual user can be324

denoted as325

SV = {(xV,1, yV,1, 0), · · · , (xV,M , yV,M , 0)}.326

Remark 1: Since the communication fairness among users,327

the base station will allocate more bandwidth to the user far328

away from it. Thus, the initial value of the location weights329

wi is proportion to the distance between base station and user330

i, i.e., wi ∝ dBi. As UAV flies at very high altitudes, it can331

obtain the location of each user, then it can approximately332

estimate the initial location weights wi based on the distance333

between base station and user i, i.e., wi = dBi�
U
i=1 dBi

. As the334

users moving, the location weight wi will be adjusted with the335

time. Let Aw = b, where336

w = (w1 w2 · · · wU )†,337

A =

⎛
⎝ x1 x2 · · · xU

y1 y2 · · · yU

0 0 · · · 0

⎞
⎠ ,338

B = (A,b) =

⎛
⎝ x1 x2 · · · xU xV

y1 y2 · · · yU yV

0 0 · · · 0 0

⎞
⎠ .339

Excepting the special case ∀i ∈ {1, · · · , U}, xi = yi, xV �=340

yV , we can find that the location of the virtual user can be341

represented by the locations of all the users, linearly. The342

special case means that all users are on the surface diagonal343

of the solid figure and the UAV jammer is not. Since the344

communication environment is complex and the user number is345

large, the special case above is hard to occur in practice. In the346

following analysis, we assume that the location relationship347

between virtual user and users are always linear.348

The UAV jammer’s immediate reward in (6) can be349

transformed to350

rJ [T (aJ ), L (aV )] =
IJV

pBd−η
BV |h̃BV |2 + σ2

− CJ dJ , (10)351

where the distance352

dBV =
√

x′2
V + y′2

V + H2
B.353

Then the optimization problem for the UAV jammer J is354

formulated as choosing action aJ to maximize UAV jammer’s355

long-term cumulative reward under the constraint of moving356

distance per time slot, which can be given by357

max
aJ

RJ [T (aJ ), L (aV )],358

s.t. |aJ | ≤ 1. (11)359

However, the complete CSI of the virtual user is not360

known to the UAV jammer. Considering the dynamic channel361

environments, we model this process as a partially observable362

Markov decision process (POMDP) [28]. Define a POMDP as363

a 6-tuple 〈S,AJ , P, rJ ,O, Ω〉, where364

• S is the channel state space;365

• AJ is the action space;366

• P (·|s, aJ ) is the transition probability of the next state,367

conditioned on action aJ being chosen in state s ∈ S;368

• rJ [s, T (aJ )] is the immediate reward obtained when 369

action aJ is taken in state s, and the symbol 370

rJ [s, T (aJ )] is omitted to rJ ,s if no confusion occurs; 371

• O is the observation state space, which is equal to the 372

motion state space SV ; 373

• Ω(·|s, aJ ) is the probability of the possible observation, 374

conditioned on action aJ being taken to reach state s. 375

According to the observation o, the probability of being in 376

state s is defined by the belief b, which can be updated by 377

b′(s′) =
1
Θ

[
Ω(o′|s′, aJ )

∑
s∈S

P (s′|s, aJ )b(s)

]
, (12) 378

where 379

Θ =
∑
s′∈S

Ω(o′|s′, aJ )
∑
s∈S

P (s′|s, aJ )b(s) 380

is the normalization function of the belief and the belief is 381

initialized at b0 = P0, i.e., P0 = 0.1. Define the action 382

selection policy as π : b → aJ . Then, solving the POMDP 383

is to find the optimal action selection policy π∗ : b∗ → a∗
J , 384

yields the maximum expected reward for each belief. This 385

maximum expected reward can be obtained by the Bellman 386

equation 387

V ∗
b = max

aJ∈AJ

[
rJ ,b + γ

∑
o∈O

Ω(o|b, aJ )V ∗
b′

]
, (13) 388

where 389

rJ ,b =
∑
s∈S

rJ ,sb(s) 390

represents the expected reward over the belief distribution. 391

For any partially observable with known state transition 392

probability P (·|s, aJ ), the problem can be reformulated as 393

a belief-MDP, which uses belief state space M as a new 394

state space instead of the original channel state space S [36]. 395

The near-optimal solution to the belief-MDP can be solved 396

by Q-learning [37]. By storing and updating a Q-value func- 397

tion for each belief in the system, the optimal action a∗
J 398

with respect to the maximum Q-value is obtained. However, 399

in practice, the belief space is large and the state transition 400

probability is unknown, the Q-learning is impossible to store 401

and update the Q-value function. Therefore, we use the model- 402

free approach to learn the trajectory, which directly exploits 403

the sequence of 	 historical observation-action pairs, Ot = 404

{ot−�, at−�
J , · · · , ot−1, at−1

J } to learn the optimal jamming 405

trajectory [28]. The DRQN that combines Q-learning with a 406

recurrent convolutional neural network (CNN), is developed. 407

The framework is shown in Fig. 2. In each Q-network, 408

the neural network consists of two convolutional layers, one 409

long short-term memory (LSTM) layer, and one fully con- 410

nected (FC) layer. The first convolutional layer convolves F1 411

filters of n1 × n1 with stride 1, and the second convolutional 412

layer convolves F2 filters of n2×n2 with stride 1. The LSTM 413

layer consists of C1 rectifier unites and FC layer includes |AJ | 414

rectifier unites. 415

Solving the formulated POMDP problem via the developed 416

DRQN, the Q-values are parameterized by Q(φ, aJ ; θ), where 417
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Fig. 2. The developed DRQN framework, which includes one main Q-
network and one target Q-network. Each Q-network consists of one input
layer, two convolutional layers, one LSTM layer, and one FC layer.

θ is the weight parameter set of the Q-network. In time slot418

t, sequence Ot can be preprocessed to an n0 × n0 matrix419

φt, then input this matrix to the recurrent CNN to calculate420

Q(φt, aJ ; θ). Once θ is learned, the Q-values are determined.421

Then, the UAV jammer’s experience et
J (φt, at

J , rt
J , φt+1) is422

stored in the replay memory DJ = {e1
J , · · · , et

J }. When423

training the DRQN, mini-batches of experience eg
J , 1 ≤ g ≤ t424

from the pool of the reply memory is randomly chosen to425

update the weight parameter set θ via a stochastic gradient426

descent (SGD). The weight parameter set θ is updated via the427

loss function428

L(θ) = Eφ,a,r,φ′
[(

rJ ,φ + γ max
a′
J

Q(φ′, a′
J ; θ−)429

−Q(φ, aJ ; θ)
)2]

, (14)430

where the symbol θ− is only updated with θ every N steps431

from the same Q-network. The gradient of loss function with432

respect to the weight parameter set θ is obtained by433

∇θL(θ) = Eφ,a,r,φ′
[(

rJ ,φ + γ max
a′
J

Q(φ′, a′
J ; θ−)434

−Q(φ, aJ ; θ)
)∇θQ(φ, aJ ; θ)

]
. (15)435

To balance the exploration and exploitation, we utilize the436

ε-greedy policy πJ to select the action with greedy probability437

P (aJ = a∗
J ) = 1 − ε, where ε ∈ (0, 1) is a small positive438

value, i.e., ε = 0.01. Then, the optimal jamming trajectory at439

time t can be denoted by440

T ∗(at
J )=(xJ 0, yJ 0, zJ0) + a0

J
∗

+ a1
J

∗
+· · · + at

J
∗
, (16)441

where (xJ 0, yJ 0, zJ 0) is the initial location of the UAV442

jammer.443

B. The Optimal Communication Trajectory444

In the follower sub-game, the virtual user V chooses the445

optimal action a∗
V ∈ AV based on the observation of the UAV446

jammer, and obtains the optimal communication trajectory 447

L ∗(aV ) by solving 448

max
aV

RV [T ∗(aJ ), L (aV )], 449

s.t. |aV | ≤ 1. (17) 450

Since the optimal action a∗
V of the virtual user depends on the 451

observation of the UAV jammer, we can derive the insightful 452

property between action aV and action aJ , which is given by 453

the following theorem. 454

Theorem 1: The communication trajectory is decided by 455

the observation-action transition of the UAV jammer, and the 456

action transition probability P (aJ |a′
J ) follows an indepen- 457

dent and identically distribution finite state Markov chain. 458

Proof: Please see Appendix A. 459

From Theorem 1, the optimizing communication trajectory 460

problem can be modeled as solving a MDP problem, in which 461

the communication trajectory of the virtual user is determined 462

by the state SJ with respect to the action of the UAV jammer, 463

i.e., s′J = sJ + a′
J . The MDP can be denoted as a 4-tuple 464

〈SJ ,AV , rV , P (·|sJ , aV )〉, where 465

• SJ is the flight state space, 466

• AV is the action space, 467

• rV [sJ , L (aV )] is the immediate reward obtained when 468

action aV is taken in state sJ , and the symbol 469

rV [sJ , L (aV )] is omitted to rV,sJ if no confusion 470

occurs. 471

• P (·|sJ , aV ) is the transition probability of the next state, 472

conditioned on action aV being chosen in state sJ ∈ SJ . 473

We have 474

P (st+1
J |st

J , aV ) = P (st
J + at+1

J |st
J , aV ) 475

= P (a0
J + · · · + at+1

J |a0
J + · · · + at

J , aV ) 476

= P (at+1
J |at

J , aV ). (18) 477

Then, we apply the Q-learning to derive the optimal communi- 478

cation trajectory of virtual user L ∗(aV ) with the observation 479

of the UAV jammer. 480

Considering the state space SJ is large, we develop the 481

CNN to approximate the Q-value function. Then, we utilize the 482

DQN to estimate the Q-value with the weight parameter ξ [27]. 483

The developed DQN framework is shown in Fig. 3, including 484

the main Q-network and the target Q-network. Specifically, 485

in time slot t, the sequence of 	 historical state-action pairs 486

St = {st−�
J , at−�

V , · · · , st−1
J , at−1

V } is preprocessed to an n×n 487

matrix ϕt as the input to the CNN. The experience of the 488

user et
V (ϕt, at

V , rt
V , ϕt+1) is stored in the replay memory 489

DV = {e1
V , · · · , et

V }. When training the DQN, mini-batches 490

of experience eg
V , 1 ≤ g ≤ t from the pool of the replay 491

memory is randomly chosen to update weight parameter set 492

ξ via a SGD. The weight parameter set ξ is updated via the 493

following loss function 494

L(ξ) = Eϕ,a,r,ϕ′
[(

rV,sJ + γ max
a′

V

Q(ϕ′, a′
V ; ξ−) 495

−Q(ϕ, aV ; ξ)
)2]

, 496

where the symbol ξ− is updated from the same Q-network 497

to minimize the loss function in every N steps. The gradient 498
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Fig. 3. The developed DQN framework, which includes one main Q-network
and one target Q-network. Each Q-network consists of one input layer, two
convolutional layers and two FC layers.

of loss function with respect to the weight parameter set ξ is499

obtained by500

∇ξL(ξ) = Eϕ,a,r,ϕ′
[(

rV,sJ + γ max
a′

V

Q(ϕ′, a′
V ; ξ−)501

−Q(ϕ, aV ; ξ)
)∇ξQ(ϕ, aV ; ξ)

]
. (19)502

The optimal action in ε-greedy policy πV with greedy proba-503

bility P (aV = a∗
V ) = 1 − ε is given by504

a∗
V = arg max

aJ∈AJ
Q(ϕ, aV ; ξ). (20)505

The optimal communication trajectory of virtual user L ∗(aV )506

in time slot t is given by507

L ∗(at
V ) = (xV 0, yV 0, 0) + a0

V
∗

+ a1
V
∗

+ · · · + at
V
∗
, (21)508

where (xV 0, yV 0, 0) is the initial location of the virtual user.509

However, the optimal communication trajectory of virtual510

user is an equivalent solution, as described in (9). Actually,511

we have to prove the existence of the optimal communication512

trajectory for each user after using the DQN, thus, we derive513

the following lemma and theorem.514

Lemma 1: For any multivariate function f(c1, · · · , cU ) =515

f1(c1) + · · · + fU (cU ), if516

∂2 fi(ci)
∂2ci

� 0, ∀i ∈ 1, · · · , U (22)517

then, the optimal solution that satisfies f∗(c1, · · · , cU ) =518

f∗
1 (c1) + · · · + f∗

U (cU ).519

Proof: Please see Appendix B.520

Theorem 2: For the optimal communication trajectory of521

virtual user in each time slot, denoted as L ∗
V , the optimal522

communication trajectory L ∗
i , i ∈ 1, · · · , U that maximizes523

the long-term cumulative reward for each user is existent.524

Proof: Please see Appendix C.525

Remark 2: The relationship between optimal communica-526

tion trajectory of virtual user and optimal communication527

trajectories of users are linear. In addition, we can further528

derive that if the optimal communication trajectory of virtual529

user exists, then the optimal communication trajectory of each 530

user is existent but not unique, which can be proved as follow: 531

Based on the non-homogeneous linear equations, we can 532

rewrite (33) as (A∗w)† = b∗†, where 533

A∗ =

⎛
⎝ a∗

1

a∗
2

a∗
3

⎞
⎠ =

⎛
⎝ x∗

1 x∗
2 · · · x∗

U

y∗
1 y∗

2 · · · y∗
U

0 0 · · · 0

⎞
⎠ , 534

w = (w1 w2 · · · wU )†, 535

b∗ = (b1, b2, b3)† = (x∗
V y∗

V 0)†. 536

Let (a∗
jw)† = bj ,pj = (w†, bj), j ∈ {1, 2, 3}, then for given 537

w and ∀ j ∈ {1, 2, 3}, we have Rank(w†) = Rank(pj) = 538

1 < U , the solutions of x∗
i , y

∗
i , i ∈ {1, · · · , U} are existent 539

but not unique. 540

As per Theorem 2, the optimal communication trajectory of 541

each user in time slot t is given by 542

L ∗(at
i)=(xi0, yi0, 0) + a0

i
∗

+ a1
i
∗

+ · · · + at
i
∗
, i ∈ 1, · · · , U 543

(23) 544

where (xi0, yi0, 0) is the initial location of user i. 545

C. Discussions 546

Here, we prove the existence of stackelberg equilibrium in 547

the game, and then we analyze the time complexity of the 548

proposed defense strategy. 549

1) Stackelberg Equilibrium: 550

Definition 1: Given a two-player stackelberg game, where 551

player 1 as a leader wants to maximize a reward function 552

r1(a1, a2) and player 2 as a follower wants to maximize a 553

reward function r2(a1, a2) by choosing a1, a2 from action 554

space A1 and A2, respectively. Then the pair (a∗
1, a

∗
2) is called 555

a stackelberg equilibrium if for any a1 belonging to A1 and 556

a2 belonging to A2, satisfies 557

r1(a∗
1, a2) ≥ r1(a1, a2) 558

r2(a∗
1, a

∗
2) ≥ r2(a∗

1, a2(a∗
1)), (24) 559

where the reward r2(a∗
1, a

∗
2) = maxa2 r2(a∗

1, a2(a∗
1)) [38]. 560

Remark 3: We note that the stackelberg equilibrium with 561

the UAV jammer as a leader is the optimal solution for it if the 562

UAV jammer chooses its action a∗
J first, and if the goal of the 563

virtual user is to maximize RV , while that of the UAV jammer 564

is to maximize RJ . If the leader chooses any other action 565

aJ , then the follower will choose an action ã∗
V to maximize 566

RV . In this case, the reward of the UAV jammer will be less 567

than that when the stackelberg equilibrium with UAV jammer 568

is used. 569

Theorem 3: In the proposed game with one UAV jammer 570

J and one virtual user V , the DQN based optimal trajectory 571

pairs [T ∗(aJ ), L ∗(aV )] is a stackelberg equilibrium. 572

Proof: Please see Appendix B. 573

Remark 4: Theoretically, a stackelberg equilibrium can be 574

achieved with probability one, if the DQN is well trained. 575

To balance the exploration and exploitation with respect to 576

a large state-action space, it has a probability 2ε− ε2 that the 577

system cannot obtain the optimal communication trajectory 578

with respect to a stackelberg equilibrium in DQN training. 579



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON COMMUNICATIONS

TABLE II

THE TIME COMPLEX OF THE PROPOSED DEFENSE STRATEGY

Since ε ∈ {0, 1} is a small positive value, the probability event580

2ε−ε2 is extremely small, i.e., ε = 0.05, 2ε−ε2 = 0.0975. Such581

occasional small probability event can help to fully explored582

and exploited the large state-action space and help to obtain583

the global optimal solution, then, the DQN can be well trained.584

Corollary 1: If the initial location of the UAV jammer and585

the virtual user satisfies xJ 0 = yJ 0 and xV 0 = yV 0, and586

the channel is quasi-static block fading, then the anti-jamming587

elude game has a stackelberg equilibrium [T ∗(aJ ), L ∗(aV )],588

which is given by589

T ∗(aJ ) = (
xJ 0 − xV 0+xV 0zJ 0

zJ 0
,
yJ 0 − yV 0+yV 0zJ 0

zJ0
, 1),590

L ∗(aV ) = (1, 1, 0).591

Proof: Please see Appendix E.592

Remark 5: In the above case, we note that the stakelberg593

equilibrium of the system is independent of the initial flight594

height zJ 0, and the optimal flight height z∗J is a constant. The595

optimal communication trajectory of the virtual user satisfies596

{(x∗
V , y∗

V , 0)|(x∗
V , y∗

V , 0) ∈ Si, x
∗
V = y∗

V }. In particular,597

L ∗(aV ) = (0, 0, 0) has no physical meaning in practice, and598

L ∗(aV ) = (1, 1, 0) is a special case.599

2) Time Complexity Analysis: The total time complexity of600

anti-intelligent UAV jamming strategy mainly depends on the601

all convolutional layers, which can be defined as [39]602

O

( 2∑
m=1

Fm−1n
2
mFmμ2

m

)
, (25)603

where m is the index of convolutional layer, the symbol Fm−1604

is the number input channels of the m-th layer, i.e., F0 = 1,605

the symbol μm is the spatial size of the output feature map of606

the m-th convolutional layer.607

In our developed CNN, the number of the convolutional608

layer m = 2. Thus, with regard to the first convolutional layer,609

each filter has size n1 × n1 with stride 1, it inputs a n × n610

matrix, then outputs a feature map with size (n−n1+1). With611

each filter size n2 ×n2 and stride 1, the second convolutional612

layer inputs a (n− n1 + 1) matrix and outputs a feature map613

with size (n−n1−n2 +2). The total testing time complexity614

of the proposed strategy can be obtained via (25). Meanwhile,615

since the CNN training includes one forward propagation616

and two backward propagation, the training time complexity617

is roughly three times of the testing time complexity [39].618

Therefore, the time complex of the proposed defense strategy619

is given in table II.620

IV. SIMULATION RESULTS621

In this section, we evaluate the performance of the anti-622

jamming elude game via simulations. In the simulations,623

the transmit power of the base station is pB = 100 mW,624

the jamming power of the UAV is pJ = 30 mW, the noise625

Fig. 4. The ergodic immediate reward of the virtual user at different location.
The UAV is at (−10 m, 20 m, 50 m) and state changes 1000 times.

power is σ2 = 1 mW, the unit energy cost of the UAV jammer 626

is Cj = 0.9 dB ≈ 1.23 mW and the unit energy cost of the 627

virtual user is CU = 0.5 dB ≈ 1.12 mW. From [32], we set the 628

path-loss exponents for air-to-ground channel α = 3, ground- 629

to-ground channel η = 2, and the additional attenuation factors 630

βLoS = 1 dB, βNLoS = 20 dB, respectively. The location of the 631

base station is (0, 0, 0) and the initial location of the virtual 632

user is calculated by (9). The virtual user can move in a square 633

area with size X × Y × 1, and the UAV jammer can move in 634

a cube area with size X ×Y ×Z , where X ∈ [−30 m, 30 m], 635

Y ∈ [−30 m, 30 m], and Z ∈ [0 m, 30 m]. To simplify 636

simulation, the CSI is set to be real number, which changes in 637

each time slot, and the size of state S is set to be 50. Likewise, 638

the size of state SJ is also set to be 50. The neural network 639

consists of 2 hidden layers with the discount factor γ = 0.95, 640

and greedy rate ε = 0.1. 641

As the channel environment is dynamic, it is difficult to 642

directly analyze the immediate reward. Thus, we analyze the 643

immediate reward based on the ergodic immediate reward. 644

Fig. 4. shows the tangent plane of ergodic immediate reward of 645

virtual user in different location, corresponding to the location 646

of the UAV is (−10 m, 20 m, 50 m). Some interesting insights 647

are obtained. For instance, with the distance between virtual 648

user and base station decreases, the immediate reward received 649

by the virtual user increases. In particular, such increasing 650

trend is non-linear and the ergodic immediate reward of the 651

virtual user is maximum at (0 m, 0 m, 0 m). For example, when 652

coordinate x = 0 m is fixed, the coordinate y changes from 653

−10 m to −7.5 m which increases 0.25 dB ergodic immediate 654

reward, and from −7.5 m to −5 m which increases 0.65 dB 655

ergodic immediate reward. 656
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Fig. 5. The ergodic immediate reward of the UAV jammer at different
location. The virtual user is at (5 m, −5 m) and the state changes 1000 times.

Fig. 6. The long-term cumulative rewards of the UAV jammer in DRQN,
greedy, random and Q-learning strategy in 300 time slots.

When the location of the virtual user is (5 m, −5 m, 0 m),657

making state s change 1000 times, the ergodic immediate658

reward of the UAV jammer is shown in Fig. 5. We find that659

the tangent plane of the ergodic immediate reward can be660

approximated to a hemisphere. It shows that the closer the dis-661

tance between virtual user and UAV jammer is, the higher the662

ergodic immediate reward will be. In addition, we observe that663

the ergodic immediate reward decreases with the increasing664

flight height zJ and it decreases rapidly when the coordinate665

y is greater than 2 m. The reason is that the gradient of the666

edge is large, which leads to the immediate reward decreases667

rapidly. The result suggests that if the attacker only launches668

jamming in one time slot, the UAV jammer should stay close669

to the virtual user as soon as possible to obtain a high ergodic670

immediate reward. Furthermore, one interesting observation is671

that the ergodic immediate reward is symmetric about x = 5672

under the parameters setting above.673

The long-term cumulative rewards of the UAV jammer674

in 300 time slots is presented in Fig. 6. We leverage the675

greedy strategy, random strategy and Q-learning strategy as676

Fig. 7. The long-term cumulative rewards of the virtual user in DQN, greedy,
random and Q-learning strategy in 300 time slots.

benchmark methods and compare them with the proposed 677

DRQN based intelligent jamming strategy. Since the greedy 678

strategy and the random strategy do not consider a series of 679

time events, for these two strategies, the long-term cumulative 680

rewards are equal to immediate rewards. We find that the long- 681

term cumulative reward via DRQN can converge to 21.2 dB 682

after 200 time slots. However, due to the state spaces are large, 683

the Q-learning strategy cannot update the Q-table effectively. 684

Thus, the convergence speed of Q-learning is slower than 685

DRQN based strategy. And, even after 300 time slots, the 686

Q-learning based strategy cannot converge to a fixed value. 687

The performance of the proposed strategy is already superior 688

to the greedy strategy and the random strategy after 25 time 689

slots. For example, the proposed strategy can achieve 75% 690

higher long-term cumulative reward than the greedy reward in 691

the 200-th time slot. In benchmark methods, we also find that 692

the greedy strategy can achieve a better performance than the 693

random strategy, and the Q-learning based strategy is the best 694

of the three. 695

We obtain the long-term cumulative rewards of the vir- 696

tual user in Fig. 7. The result suggests that the long-term 697

cumulative reward via DQN can converge to 22.3 dB after 698

100 time slots. After 10 time slots, the DQN based strategy 699

has already get a higher long-term cumulative reward than 700

random and greedy strategies. Then, after 20 time slots, 701

the proposed strategy is better than the Q-learning base strat- 702

egy. In summary, these two figures show that both the UAV 703

jammer and the virtual user can obtain the highest long-term 704

cumulative rewards via the proposed strategy, respectively. 705

That is, the stackelberg equilibrium exists after the long-term 706

cumulative reward converges. 707

Fig. 8. presents the optimal jamming trajectory of the UAV 708

and the optimal communication trajectory of the virtual user in 709

one episode. We observe that the communication location of 710

the virtual user starts at (−2 m, 1 m, 0 m) and ends at (15 m, 711

18 m, 0 m) and the jamming location of the UAV starts at 712

(0 m, 0 m, 10 m) and ends at (15 m, 15 m, 0 m). To obtain 713

the maximum long-term cumulative reward, the UAV jammer 714



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON COMMUNICATIONS

Fig. 8. The optimal trajectories via learning in one episode, the UAV jammer
via DRQN vs. the virtual user via DQN.

will not prefer to stay close to the virtual user in each time715

slot as analyzed in Fig. 5. The reason is that the CSI is time716

varying in each time slot, the UAV jammer will consider the717

CSI transition probability to maximize long-term cumulative718

reward rather than considering the instantaneous CSI only.719

V. CONCLUSIONS720

In this paper, we have proposed the anti-intelligent UAV721

jamming strategy via deep Q-networks. Specifically, we have722

formulated the anti-UAV jamming problem as a stackelberg723

dynamic game, in which the UAV jammer acts as a leader and724

the users act as followers. We have modeled the leader sub-725

game as a partially observable Markov decision process and726

have learned the optimal jamming trajectory via deep recurrent727

Q-networks in the three-dimension space. Then, we have mod-728

eled the follower sub-game as a Markov decision process. The729

optimal communication trajectory has been learned via deep730

Q-networks in the two-dimension space. The time complexity731

of the defense strategy has been analyzed via theory and732

the performance of the proposed defense strategy has been733

evaluated by simulations. Some insightful remarks have been734

obtained: 1) If the optimal trajectory of virtual user exists,735

the optimal communication trajectory of each user is existent736

but is not unique. 2) In quasi-static block fading, the stakelberg737

equilibrium of the system is independent of the initial flight738

height, and the optimal flight height is a constant. 3) To739

maximize long-term cumulative reward, the action choices740

of UAV jammer is different from that of maximizing the741

immediate reward.742

APPENDIX A743

PROOF OF THEOREM 1744

The action transition probability of UAV jammer can be745

divided into two cases based on ε-greedy policy πJ .746

Case 1: If the UAV jammer chooses the optimal action a′
J

∗
747

in the next time slot, then748

P (a′
J

∗|aJ ) = P (o′, a′
J

∗|o, aJ )749

= P (a′
J

∗)P (o′|o, aJ )750

= (1 − ε)P (o′|o, aJ ). (26)751

Case 2: If the UAV jammer chooses the non-optimal action 752

ã′
J

∗
in the next time slot, then 753

P (ã′
J

∗|aJ ) = P (o′, ã′
J

∗|o, aJ ) 754

= P (ã′
J

∗
)P (o′|o, aJ ) 755

= εP (o′|o, aJ ), (27) 756

where the action aJ ∈ {a∗
J , ãJ ∗}. As per (26) (27), we have 757

the action transition probability P (a′
J |aJ ) = P (o′|o, aJ ). 758

Given current action aJ , we note that the next action a′
J 759

is independent of the previous action, which has a Markov 760

property. Then proof is completed. 761

APPENDIX B 762

PROOF OF LEMMA 1 763

Taking the second derivative of function f(c1, · · · , cU ), 764

we can get the Hessian matrix 765

∂2 f(c1, · · · , cU )
∂2c1, · · · , cU

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂c2
1

∂2f

∂c1∂c2
· · · ∂2f

∂c1∂cU

∂2f

∂c2∂c1

∂2f

∂c2
2

· · · ∂2f

∂c2∂cU
...

...
. . .

...

∂2f

∂cU∂c1

∂2f

∂cU∂c2
· · · ∂2f

∂c2
U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. 766

(28) 767

According to (22), we can obtain 768

∂2f

∂ci∂cj
= 0, i, j ∈ {1, · · ·U}, i �= j, 769

∂2 f1(c1)
∂2c1

� 0, 770

... 771

∂2 f1(c1)
∂2c1

+ · · · + ∂2 f1(cU )
∂2cU

� 0, (29) 772

and deduce that the Hessian matrix is positive definite. 773

The result indicates that f(c1, · · · , cU ) is a convex func- 774

tion, therefore, there is an optimal solution that satisfies 775

f∗(c1, · · · , cU ) = f∗
1 (c1) + · · · + f∗

U (cU ), and the proof is 776

completed. 777

APPENDIX C 778

PROOF OF THEOREM 2 779

Substituting wi into (9), we can obtain the linear represen- 780

tation among users, which are 781

(xV , yV , 0) = (w1x1 + · · · + wUxU , w1y1 + · · · + wUyU , 0) 782

= w1(x1, y1, 0) + · · · + wU (xU , yU , 0). (30) 783

Since the Q-values with respect to the locations of the users, 784

we can get 785

Q(ϕ, aV ; ξ) ∝ Q(ϕ1, ai; ξ1) + · · · + Q(ϕU , aU ; ξU ), (31) 786
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where ϕi, ξi,∈ {1, · · · , U} is the DQN parameter of each user.787

According to Lemma 1, we have788

Q∗(ϕ, aV ; ξ)∝Q∗(ϕ1, ai; ξ1) + · · · + Q∗(ϕU , aU ; ξU ). (32)789

Then, we can get790

(xV , yV , 0)∗=w1(x1, y1, 0)∗+· · ·+ wU (xU , yU , 0)∗, (33)791

which shows that all users have effectively learned the opti-792

mal communication trajectory to maximum its long-term793

cumulative reward, if and only if the virtual user obtains794

the optimal communication trajectory L ∗
V . Then proof is795

completed.796

APPENDIX D797

PROOF OF THEOREM 3798

As the leader, the UAV jammer first chooses the action799

at
J ∈ AJ to maximize its long-term cumulative reward in800

each time slot t. For any a−J ∈ A−J , we have the following801

RJ [T ∗(at
J ), L (at−1

V )] ≥ RJ [T (at
−J ), L (at−1

V )],802

where A−J is the action space except the action aJ . Then,803

as the follower, the virtual user observes the action of the804

leader and chooses the action at
V ∈ AV to maximize its805

long-term cumulative reward RV [T ∗(at
J ), L ∗(at

V )]. For any806

a−V ∈ A−V , we have the following807

RV [T ∗(at
J ), L ∗(at

V )] ≥ RV [T ∗(at
J ), L (at

−V )],808

where A−V is the action space except the action aV . For any809

a−J ∈ A−J and a−V ∈ A−V , we can obtain810

RJ [T ∗(at
J ), L ∗(at

V )] ≥ RJ [T (at
−J ), L (at

V )],811

RV [T ∗(at
J ), L ∗(at

V )] ≥ RV [T (at
J ), L (at

−V )]. (34)812

Based on (24), the proof is completed.813

APPENDIX E814

PROOF OF COROLLARY 1815

Substituting (3) into (10) and defining K + J = pJ PLoS816

βLoS + pJ PNLoSβNLoS, we can get immediate reward in (35),817

which is shown at the bottom of this page.818

According to Lagrange multiplier 819

F (xJ , yJ , zJ , λJ )=rJ [T (aJ ), L (aV )] + λJ (|aJ | − 1) 820

(35) 821

and sufficient Karush-Kuhn-Tucker (KKT) conditions, 822

∂F (xJ , yJ , zJ , λJ )
∂xJ

= 0 823

∂F (xJ , yJ , zJ , λJ )
∂yJ

= 0 824

∂F (xJ , yJ , zJ , λJ )
∂zJ

= 0 (36) 825

λJ (|aJ | − 1) = 0 826

λJ ≥ 0, 827

we obtain 828

T ∗(aJ )=(
xJ 0 − xV 0+xV 0zJ 0

zJ0
,
yJ 0 − yV 0 + yV 0zJ 0

zJ 0
, 1). 829

Defining 830

(x∗
J , y∗

J , z∗J ) 831

= (
xJ 0 − xV 0 + xV 0zJ 0

zJ 0
,
yJ 0 − yV 0 + yV 0zJ 0

zJ 0
, 1) 832

(37) 833

and substituting (3) into (5), we can get immediate reward 834

in (39), which is presented at the bottom of this page. 835

Similarly, if the initial location of the UAV jammer and 836

the virtual user satisfies xJ 0 = yJ 0 and xV 0 = yV 0, using 837

Lagrange multiplier and KKT conditions, 838

F (xV , yV , 0, λV ) = rV [T ∗(aJ ), L (aV )] + λV (|aV | − 1) 839

(40) 840

∂F (xV , yV , 0, λV )
∂xV

= 0 841

∂F (xV , yV , 0, λV )
∂yV

= 0 (41) 842

λV (|aV | − 1) = 0 843

λV ≥ 0, 844

we have x∗
V = y∗

V . Then, we derive that L ∗(aV ) = (1, 1, 0) 845

is one of the optimal solution for the virtual user in this special 846

case. 847

rJ [T (aJ ), L (aV )] =
(K + J )

(√
(xJ − xV 0)2 + (yJ − yV 0)2 + z2

J

)−α

pb

((√
x2

V 0 + y2
V 0 + H2

B
)−η|h̃BV |2 + σ2

)
−CJ

√
(xJ − xJ 0)2 + (yJ − yJ 0)2 + (zJ − zJ 0)2 (35)

rV [T ∗(aJ ), L (aV )] =
pB

(√
x2

V + y2
V + H2

B

)−η

|h̃BV |2

(K + J )
(√

(xV − x∗
J )2 + (yV − y∗

J )2 + z∗2J

)−α − CV

√
(xV − xV 0)2 + (yV − yV 0)2 (39)
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