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ABSTRACT 

Strain-energy functions (SEFs) are used to model the hyperelastic behavior of rubber-like materials. In tension, 

the stress-strain response of these materials often exhibits three characteristics: i) a decreasing modulus at low strains 

(below 20%); ii) a constant modulus at intermediate strains; and iii) an increasing modulus at high strains (above 200%). 

Fitting an SEF that works in each regime is challenging when multiple or nonhomogeneous deformation modes are 

considered. The difficulty increases with highly filled elastomers because the small strain non-linearity increases, and 

finite-extensibility occurs at lower strains. One can compromise by fitting an SEF to a limited range of strain, but this 

is not always appropriate. For example, rubber seals in oilfield packers can exhibit low global strains but high localized 

strains. The Davies-De-Thomas (DDT) SEF is a good candidate for modeling such materials. Additional improvements 

will be shown by combining concepts from the DDT and Yeoh SEFs to construct a more versatile SEF. The SEF is 

implemented with user-defined material subroutines in Abaqus/Standard (UHYPER) and Abaqus/Explicit (VUMAT) 

for a 3D general strain problem, and an approach to overcome a mathematically indeterminate stress condition in the 

unstrained state is derived. The complete UHYPER and VUMAT subroutines are also presented. 

INTRODUCTION 

Rubbery materials undergoing large deformations exhibit geometric and material non-

linearities. Geometric non-linearities arise from differences between the initial and deformed 

material configurations and can be addressed with non-linear solid mechanics.1 Material non-

linearities are evident in rubber’s purely elastic (time-independent) stress-strain response which is 

poorly modeled by Hooke’s law. Non-linearities also arise in rubber’s viscoelastic responses. In 
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this work, only an ideal, fully-reversible hyperelastic response is considered because it is important 

in many applications such as setting of oilfield packer seals in wellbores. 

Even with ideal hyperelasticity, the stress-strain responses of rubbery materials are loading 

mode dependent. For instance, Figure 1a shows uniaxial tension (UT) and equibiaxial tension (ET) 

data for unfilled natural rubber (NR) as tabulated by Simulia2 using Treloar’s data.3 The stress-

stretch response in ET is stiffer than that in UT, but the qualitative trends are similar. There is an 

initial reduction in stiffness followed by a linear range, and finally an upward inflection that can be 

attributed to some combination of finite-extensibility of the polymer chains and strain-induced 

crystallization.4 Figure 1a also shows equivalent uniaxial compression (UC) which, assuming 

incompressibility, can be computed from ET data as: 

𝜆uc = 𝜆et
−2                       𝜎uc = −𝜆et

3 𝜎et                                        (1) 

where 𝜆’s are stretches, 𝜎’s are nominal stresses, and subscripts indicate loading modes. Whereas 

the ET response shows an initial reduction in stiffness, the UC response shows a monotonic 

increase. This behavior is not an artefact of theoretical inaccuracies in Eq. 1 and has been reported 

by researchers who directly measured UC response.5,6 

The importance of considering high strain non-linearities usually increases as filler content 

increases. For instance, Figure 1b compares Yeoh’s data for NR filled with 70 phr of carbon black 

(CB)7 to Treloar’s data. The filled rubber is stiffer and its upward inflection occurs at lower stretch. 

Yeoh’s data also shows a monotonic increase in stiffness during compression. 

Low strain non-linearities are more prominent in filled elastomers due to the Payne effect.8 It 

causes a rapid reduction in stiffness at low strains due to breakdown of the filler network and results 

in more pronounced curvatures in UT stress-strain plots. In some cases, the effect is sufficient to 

cause an inflection in the UC stress-strain response and can be seen, for instance, in the data of 

Amin et al. for high damping rubber (HDR) in Figure 2.9 
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In some applications, it is important to accurately model both low and high strain non-

linearities with inhomogeneous deformations. To illustrate, consider the oilfield packer seal in 

Figure 3a. It consists of three axisymmetric rubber sealing components (dark gray) and two metal 

anti-extrusion rings (light gray) installed around a tubular component. During setting, the seals and 

anti-extrusion devices are compressed between two rings. This causes the outer diameter of the 

seals to contact a sealing surface (Figure 3b) until the seals are fully packed off (Figure 3c). In this 

example, global nominal strains in the rubber are limited to ~30%, but local strains exceed 100% 

near the ends of the anti-extrusion rings. When simulating the setting process, it is critical to 

accurately model both global and local strains. The former ensure components move as desired and 

the latter determine if rubber will fracture during the setting process. 

Figure 4 shows UT and UC stress-stretch data for a typical packer seal rubber made from a 

filled hydrogenated nitrile butadiene rubber (HNBR) compound. The Payne effect is apparent in 

the low strain inflection of the UC data, and the UT data exhibits finite extensibility beginning at a 

stretch of 1.4. The shear modulus, approximated as 𝐺 = 𝐸/3 where 𝐸 is Young’s modulus, is 13 

MPa. To emphasize this magnitude, Yeoh’s filled NR data7 and Fujikawa et al.’s styrene butadiene 

rubber (SBR) data with 20% volume CB10 are also shown. Packer seal materials have a high 

modulus to facilitate deployment of anti-extrusion devices, resist extrusion during pressure 

application11, and mitigate elastic instabilities related to rapid gas decompression.12  

Considering the strains in Figure 3 and the material response in Figure 4, modeling packer 

seals requires accurate simulation of both low and high strain non-linearities. To this end, some 

existing models for the hyperelastic response of filled elastomers are discussed. Concepts from 

these are used to propose a simple phenomenological hyperelastic model that accurately models 

both low and high strain non-linearities. Curve fitting by inspection is also demonstrated. Finite 

elasticity theory necessary for numerical implementation in Abaqus/Explicit is introduced, and 

UHYPER and VUMAT material subroutines are shown. 
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STRAIN-ENERGY FUNCTIONS 

The hyperelastic response of an isotropic rubbery material is often modeled with a strain-

energy function (SEF).4 An SEF describes how energy is stored in a material as it deforms and 

encodes the stress-strain response in different loading modes. Dozens of SEFs have been proposed 

and extensively reviewed for unfilled rubbers. For instance, a total of forty-three are reviewed by 

Steinmann et al.13 and Dal et al.14 However, there are no reviews as comprehensive as these for 

filled rubbers, though studies of limited scope are available.7,10,15 Even considering typical studies 

on filled rubbers, the shear moduli of some oilfield sealing materials are exceptionally high and 

warrant separate attention. 

When constructing SEFs, it is generally necessary to consider energy contributions due to both 

distortional (volume-preserving, isochoric) and volumetric (shape-preserving) deformations. 

Because the bulk modulus (𝜅) of rubber is much greater than its shear modulus, rubber is often 

modeled as incompressible and volumetric contributions are neglected.4 This assumption is adopted 

initially but is not accurate for highly constrained rubber seals.16 

Using arguments based on the micromechanics of the polymer network of rubber, Treloar gave 

the simplest, widely-accepted SEF for rubbery materials:17 

𝑊 =
1

2
𝑁𝒌𝑇(𝜆1

2 + 𝜆2
2 + 𝜆3

2 − 3)                                                 (2) 

where 𝑁 is the number of polymer chains per unit volume, 𝒌 is Boltzmann’s constant, 𝑇 is absolute 

temperature, and 𝜆i’s are principal stretch ratios in principal directions. By adapting Hooke’s law 

for finite deformations, Rivlin derived a modified form of Eq. 2 with 𝐺 = 𝑁𝒌𝑇.18 The SEFs are 

often called the (statistical) Gaussian model and Neo-Hookean model, respectively. Adopting 

Rivlin’s form, letting 𝜆1 = 𝜆, and using the incompressibility condition (𝜆1𝜆2𝜆3 = 1) to substitute 

𝜆2 = 𝜆3 = 1/√𝜆 into Eq. 2, uniaxial stresses are computed as: 

𝜎u =
d𝑊

d𝜆
= 𝐺(𝜆 − 𝜆−2)                                                       (3) 
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where 𝜎u is nominal stress and 𝜆 is principal stretch in the direction of the applied load. When fit 

to the initial modulus of the HNBR seal material, Eq. 3 grossly overpredicts stress magnitudes 

(Figure 5a). The overall fit can be improved by reducing the shear modulus, but the Payne effect 

and finite-extensibility are not captured. Table I shows errors from the Neo-Hookean models using 

the following equation: 

Error = √ 1

Np
∑ [(

𝜎i,SEF−𝜎i,data

𝜎i,data
)

2

]i                                                  (4) 

where Np is the total number of measurement points, 𝜎i,data are stress data points, and 𝜎i,SEF are 

stresses predicted by the SEF. The low and high strain limitations of the Neo-Hookean SEF are 

well-known. The latter, in particular, has received thorough attention, and the majority of SEFs that 

have been proposed can simulate finite-extensibility.19,20  

To arrive at an SEF that can accurately simulate a strong Payne effect, first consider the general 

polynomial expansion given by Rivlin:21  

𝑊 = ∑ 𝐶ijk(𝐼1 − 3)i(𝐼2 − 3)jn
i,j,k=0 (𝐼3 − 1)k                                     (5) 

where 𝐶ijk are fitting parameters, 𝐶000 = 0, n is the model order, and (i, j, k) are positive integers. 

𝐼1, 𝐼2, and 𝐼3 are called invariants and may be computed from principal stretches as: 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2               𝐼2 = 𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
3 + 𝜆1

2𝜆3
2                𝐼3 = 𝜆1

2𝜆2
2𝜆3

2                (6) 

For an incompressible material, 𝐼3 = 1 and Eq. 5 simplifies to: 

𝑊 = ∑ 𝐶ij(𝐼1 − 3)i(𝐼2 − 3)jn
i,j=0                                                (7) 

The Neo-Hookean SEF is recovered as the simplest particular form of Eq. 7, and researchers have 

proposed different polynomial expansions22. Invariant-based SEFs need not follow the series 

expansion form of Eq. 7,23 but regardless of what form is chosen, several authors highlight the 

importance of retaining both 𝐼1 and 𝐼2 when constructing SEFs.24 Some researchers have shown 

that in strain regimes of practical interest (up to ~100%), expansions strictly in terms of 𝐼1 can be 
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accurate.25 For instance, Yeoh proposed the following SEF and corresponding uniaxial stress for 

filled elastomers:7 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼1 − 3)2 + 𝐶30(𝐼1 − 3)3                               (8) 

𝜎u =
d𝑊

d𝜆
=

𝜕𝑊

𝜕𝐼1

𝜕𝐼1

𝜕𝜆
= 2(𝜆 − 𝜆−2)[𝐶10 + 2𝐶20(𝐼1 − 3) + 3𝐶30(𝐼1 − 3)2]               (9) 

When fitting the SEF, parameters are usually ordered with 𝐶10 > |𝐶20| > 𝐶30 and only 𝐶20 is 

negative. Following these conventions, Figure 5b shows two Yeoh SEF fits to the HNBR data. 

Both fits are better than the Neo-Hookean SEF (Table I), but neither accurately captures the Payne 

effect. Best fit parameters were determined using the Levenberg-Marquardt (LM) algorithm in 

Fortran as given by Press et al.,26 and its extrapolated response is overly stiff. Recalling the strain 

contours of Figure 3, this is of little consequence for global strains in packer seals, but the strains 

(and hence energies) are in gross error locally. To mitigate this, the parameters were adjusted by 

inspection, but at the expense of low strain accuracy. There is not enough flexibility in the Yeoh 

SEF to get an accurate fit to the HNBR data at both low and high strains. 

To better address the low strain non-linearity in filled rubbers, Amin, Alam, & Okui (AAO) 

proposed an SEF of the form:9 

𝑊 = 𝐾1(𝐼1 − 3) + 𝐾2(𝐼1 − 3)𝑝 + 𝐾3(𝐼1 − 3)𝑞                                (10) 

where 𝐾i’s replace 𝐶ij’s to avoid the convention of Eq. 7 in which subscripts correspond to integer 

exponents, and (𝑝, 𝑞) are real exponents with constraints 1 ≤ 𝑝 ≤ 2 and 𝑞 ≥ 2. Yamashita & 

Kawabata had already proposed the first and third terms.27 Amin added the second term and the 

constraint on 𝑝 to better model the Payne effect. Figure 6a shows one of Amin’s fits to the HDR 

material of Figure 2. Stresses have been computed following the same logic as Eq. 9: 

𝜎u = 2(𝜆 − 𝜆−2)[𝐾1 + 𝑝𝐾2(𝐼1 − 3)𝑝−1 + 𝑞𝐾3(𝐼1 − 3)𝑞−1]                        (11) 

The AAO SEF has limited ability to simulate low strain inflections in UC data. Figure 6b 

illustrates this by plotting the same model as Figure 6a, but with the bounding limits of 𝑝 (gray 
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trendlines) replacing 𝑝 = 1.25 (black trendline). No choice of 𝑝 accurately reproduces the behavior 

at the lowest strains. 

A drastic improvement in simulating the Payne effect was given by Davies, De, & Thomas 

(DDT).25 They proposed an SEF and uniaxial stresses given by: 

𝑊 = 𝐾1(𝐼1 − 3 + 𝐷2)𝑚 + 𝐾3(𝐼1 − 3)2                                       (12) 

𝜎u = 2(𝜆 − 𝜆−2)[𝑚𝐾1(𝐼1 − 3 + 𝐷2)𝑚−1  + 2𝐾3(𝐼1 − 3)]                       (13) 

where 0 < 𝑚 ≤ 1 acts on the leading term of the SEF and 0 ≤ 𝐷 ≪ 1 is introduced for a reason 

that will be explained later. For the moment, let 𝐷 = 0. The strength of the DDT SEF lies in its 

first term. When 𝑚 < 1, stresses at the lowest strains are amplified and a strong Payne effect can 

be accurately modeled (Figure 7a).  

Combining concepts from the Yeoh, AAO, and DDT SEFs, the following SEF and 

corresponding stresses are proposed: 

𝑊 = 𝐾1(𝐼1 − 3)𝑚 + 𝐾2(𝐼1 − 3)𝑝 + 𝐾3(𝐼1 − 3)𝑞                                   (14) 

𝜎u = 2(𝜆 − 𝜆−2)[𝑚𝐾1(𝐼1 − 3)𝑚−1 + 𝑝𝐾2(𝐼1 − 3)𝑝−1 + 𝑞𝐾3(𝐼1 − 3)𝑞−1]             (15) 

The model will be called the generalized Yeoh (gen-Yeoh) SEF.28 It is conceptually similar to the 

invariant expansions given by Swanson29 and Lopez-Pamies.30  When fitting the SEF to highly 

filled materials like the HNBR sealing material, the following constraints on parameters are useful: 

𝐾1 > 0 ; 𝐾2 ≤ 0 ; 𝐾3 ≥ 0 ; 𝐾1 > |𝐾2| > 𝐾3 ; 0.7 ≤ 𝑚 < 1 ; 𝑚 < 𝑝 < 𝑞. Figure 7b shows the 

model’s slight improvement over the DDT SEF in the stretch range of 0.7-0.92. Table II shows 

composite errors when fitting the AAO, DDT, and gen-Yeoh SEFs to Amin’s data. 

It is interesting that Amin imposed the constraint 1 ≤ 𝑝 ≤ 2 since allowing 𝑝 < 1 better 

simulates the Payne effect. It is likely that he required 𝑝 ≥ 1 to avoid a mathematically 

indeterminate stress condition in the unstrained state. To illustrate, consider Eq. 15 with 

(𝐾1, 𝐾2, 𝐾3) = (1, 0, 0), (𝑚, 𝑝, 𝑞) = (0.9, 2, 3), 𝜆 = 1, and 𝐼1 = 3: 

 𝜎u = 2(1 − 1−2)[0.9(3 − 3)−0.1] =
(2)(0)(0.9)

(3−3)0.1
=

0

0
                             (16) 
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Despite this indeterminate form, the stress must be zero in the unstrained state because of the 

physics being modeled. Nevertheless, the indeterminacy must be addressed for numerical 

implementation of the gen-Yeoh SEF. Refer to Appendices A and C for details on handling this 

issue with UHYPER and VUMAT subroutines. The DDT SEF circumvents the problem with 

parameter 𝐷 > 0 because it guarantees a finite denominator in the stress equation.31 An added 

benefit of 𝐷 is that it allows precise tuning of stress at the very lowest strains, typically in a range 

not discernable on a linear stress-stretch plot. However, 𝐷 > 0 introduces finite energy in the rest 

state, so a modeler must ensure its contribution to the total system energy remains small. 

CURVE FITTING THE DDT AND GEN-YEOH STRAIN-ENERGY FUNCTIONS 

Due to simple mathematical structure, the parameters of the DDT and gen-Yeoh SEFs can be 

determined to a good degree of accuracy by inspection. To illustrate, consider Figure 8a which 

plots data from the HNBR sealing material on log axes. The 𝑥-axis is expressed in terms of the first 

invariant, and the 𝑦-axis uses a measure of stiffness called reduced stress which for uniaxial 

deformation is given by: 

𝜎̂ =
𝜎u

𝜆−𝜆−2
                                                                (17) 

For reference, the figure includes stretch values, 𝜆ut, that correspond to log (𝐼1 − 3). The UT and 

UC data follow similar trends which indicate they are well conditioned for fitting with 𝐼1-based 

SEFs.25 This condition does not always occur, so it is ideal to have data from more than one loading 

mode to confirm the approach.  

To fit the gen-Yeoh SEF to the data, first adjust vertical position with 𝐾1 and set the slope of 

the linear region with 𝑚 (Figure 8b). Next assign a guess value 𝑞 = 2 and adjust 𝐾3 to capture 

finite-extensibility. Tune 𝐾1, 𝑚, and 𝑞 as necessary to improve the fit (Figure 8c). Finally, adjust 

𝐾2 and 𝑝 to better tune the overall fit and adjust other parameters as necessary (Figure 8d). This 

last step is the most difficult because best fit parameters are not unique in non-linear regression. As 

parameters are tuned, it is helpful to monitor an error metric (for instance Eq. 4) and ensure 
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parameter adjustments reduce the error. The data points less than log(𝐼1 − 3) = −2.5 are subject 

to large measurement error, so they are not considered in the error equation during the fitting 

process. 

In Figure 8d, the double-log plot amplifies errors at the lowest strains making them appear 

deceptively large. Figure 9a shows the SEF fits well at the lowest strains when linear axes are used. 

Figure 9b shows a gen-Yeoh fit using the LM algorithm which is almost identical to the fit 

determined by inspection. Figure 9b also shows that stress predictions using the fitted coefficients 

in planar and equibiaxial loading modes behave reasonably even though data in those modes was 

not considered. 

Finally, Figure 10 shows curve fits with the gen-Yeoh and DDT SEFs on a double-log plot. 

All parameters were determined with the LM algorithm except 𝐷 which was manually added to 

correct the lowest strains in the DDT SEF. Errors for the different fits are in Table I. 

FINITE ELASTICITY THEORY FOR A HYPERELASTIC VUMAT 

Finite elasticity theory necessary for numerical implementation of the gen-Yeoh SEF in 

Abaqus/Explicit is explored. A more detailed account of the subject is given by Holzapfel.1 

The configuration of a body can be described by position vectors that locate every material 

point in the body with respect to a fixed coordinate system. Upon deformation, a material point, 𝑃, 

in a body with position vector 𝐗 in a reference (undeformed) configuration moves to a deformed 

position, 𝐱 (Figure 11). The strain at the material point can be approximated by determining how a 

differential line element d𝐒 deforms to d𝐬. The differential vectors are related by: 

d𝐬 =
∂𝐱

∂𝐗
d𝐒 = 𝐅 d𝐒                                                         (18) 

where 𝐅 ≡ ∂𝐱/ ∂𝐗 is a second-order tensor called the deformation gradient. The collection of all 

material points in a body and their local deformation describes the kinematics of the entire body. 

The deformation gradient encodes all information regarding strains and rigid body rotations. 

However, it does not account for rigid body translations because the vectors d𝐒 and d𝐬 always have 
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the same magnitude and direction for any rigid translation. In solid mechanics, one is often most 

concerned with strains because only they contribute to stresses. Therefore, it is helpful to separate 

rigid body rotations from strains in the deformation gradient. This is achieved through the polar 

decomposition of 𝐅: 

𝐅 = 𝐑𝐔                                                              (19) 

where 𝐑 is the orthogonal rotation tensor and 𝐔 is the right stretch tensor. The stretch tensor is 

symmetric and provides a direct measure of strains. It has principal values that can be computed 

from the tensor invariants of 𝐔: 

𝑖1 = 𝜆1 + 𝜆2 + 𝜆3                   𝑖2 = 𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆1𝜆3                   𝑖3 = 𝜆1𝜆2𝜆3              (20) 

where 𝜆i’s are principal stretches.32  𝑖3 captures volume changes during deformation and is called 

the volume ratio, Jacobian, or Jacobian determinant. It may be expressed as: 

𝐽 = det 𝐅 = 𝜆1𝜆2𝜆3                                                       (21) 

where ‘det’ is the determinant operator. In addition to the stretch tensor, other strain tensors may 

be defined for mathematical convenience. For instance, the left Cauchy-Green strain tensor will be 

useful: 

𝐁 = 𝐅𝐅T = 𝐑𝐔𝟐𝐑T                                                      (22) 

where ‘T’is the transpose operator. The second equality follows from properties (𝐑𝐔)T = 𝐔T𝐑T 

and 𝐔T = 𝐔 due to symmetry. This strain tensor is simply a rotation of the square of the stretch 

tensor. The eigenvalues of 𝐁 are squares of the principal stretches from 𝐔 and its invariants are 

identical to those in Eq. 6: 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2                   𝐼2 = 𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆1

2𝜆3
2                    𝐼3 = 𝜆1

2𝜆2
2𝜆3

2               (23) 

For compressible hyperelasticity, it is often convenient to split an SEF into isochoric and 

volumetric contributions: 

𝑊 = 𝑊iso(𝐁̅) + 𝑊vol(𝐽)                                                    (24) 



11 
 

where 𝐁̅ is the modified left Cauchy-Green strain tensor. It excludes any volumetric energy 

contributions and is computed from 𝐁 as: 

𝐁̅ = 𝐽−2/3𝐁                                                              (25) 

Invariants of this modified strain tensor may be expressed compactly as: 

𝐼1̅ = tr(𝐁̅)                 𝐼2̅ =
1

2
[(tr(𝐁̅))

2
− tr(𝐁̅2)]                 𝐼3̅ = det(𝐁̅) = 1       (26) 

where ‘tr’ is the trace operator. These equations can be expanded to the same form as Eq. 23 with 

modified principal stretches 𝜆̅i’s replacing 𝜆i’s. Another useful definition is the modified stretch 

tensor: 

𝐔̅ = 𝐽−1/3𝐔                                                              (27) 

Implementing the expressions above, Bergström derives the following stress equation:33 

𝛔 =
2

𝐽
(

𝜕𝑊

𝜕𝐼1̅
) (𝐁̅ −

1

3
tr(𝐁̅)𝐈) +

𝜕𝑊

𝜕𝐽
𝐈                                            (28) 

where 𝛔 is the Cauchy (true) stress tensor and 𝐈 is the identity tensor. Eq. 28 expresses stresses with 

respect to coordinates in the deformed configuration. In Abaqus/Explicit, VUMAT subroutines 

require stresses to be expressed in the reference configuration. This is achieved by using the rotation 

tensor to convert the stress equation to its corotational form:33 

𝛔co = 𝐑T𝛔𝐑                                                             (29) 

Combining Eqs. 22, 25, 27, 28, and 29 and applying the properties 𝐑T𝐑 = 𝐑𝐑T = 𝐈 and 

tr(𝐑𝐔̅2𝐑T) = tr(𝐔̅2), corotational stresses may be expressed as: 

𝛔co =
2

𝐽
(

𝜕𝑊

𝜕𝐼1̅
) (𝐔̅2 −

1

3
tr(𝐔̅2)𝐈) +

𝜕𝑊

𝜕𝐽
𝐈                                       (30) 

The forms of Eq. 28 and Eq. 30 are identical, but it is important to recognize that 𝐁̅ ≠ 𝐔̅2; each 

tensor returns stress in different configurations.  

Before implementing the theory above, the gen-Yeoh SEF of Eq. 14 must be cast into a 

compressible form:  

𝑊 = 𝐾1(𝐼1̅ − 3)𝑚 + 𝐾2(𝐼1̅ − 3)𝑝 + 𝐾3(𝐼1̅ − 3)𝑞 +
1

𝐷1
(𝐽 − 1)2                   (31) 
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where 𝐷1 = 2/𝜅 has been defined to follow an Abaqus convention. The following steps will 

execute a hyperelastic VUMAT with the gen-Yeoh SEF in Abaqus: 

1. Compute the strain tensor, 𝐁∗ = 𝐔2. 

2. Compute the volume ratio, 𝐽 = det 𝐔. 

3. Compute the modified strain tensor, 𝐁̅∗ = 𝐽−2/3𝐁∗. 

4. Compute derivatives of the strain-energy function, 
∂𝑊

∂𝐼1̅
 and 

∂𝑊

∂𝐽
. 

5. Compute corotational stresses, 𝛔co =
2

𝐽
(

𝜕𝑊

𝜕𝐼1̅
) (𝐁̅∗ −

1

3
tr(𝐁̅∗)𝐈) +

𝜕𝑊

𝜕𝐽
𝐈. 

6. Compute the internal energy density, for instance with direct application of the SEF. 

As a mathematical shortcut, the strain tensor 𝐁∗ has been defined to remove rotations from the left 

Cauchy-Green strain tensor of Eq. 22, and a slightly altered version of Eq. 30 is used. The 

corotational stresses computed in the fifth step are identical to those from Eq. 30. 

VALIDATION OF THE GEN-YEOH UHYPER AND VUMAT SUBROUTINES 

Details on UHYPER and VUMAT subroutines and their implementation are given in 

appendices A through D. This section summarizes results. The UHYPER subroutine for the gen-

Yeoh SEF was initially tested with the best fit Yeoh parameters from Figure 5b and compared to 

Abaqus’ built-in Yeoh model. A Poisson’s ratio (𝜈) of 0.495 was assumed, and it was converted 

to compressibility parameter 𝐷1:34 

𝐷1 =
3(1−2𝜈)

𝐺(1+𝜈)
= 2.78707 ∗ 10−3 MPa−1                                         (32) 

where 𝐺 = 2𝐶10 in the Yeoh model and 𝐺 = 2𝐾1 in the gen-Yeoh model. 

Homogeneous modes of deformation, including simple shear, were tested on a unit cube with 

one linear, hybrid, reduced integration brick element (C3D8RH in Abaqus nomenclature). With 

only one exception, stresses, strains, energy density, and volume matched to 9 decimal places, the 

maximum precision in Abaqus’ visualization module. In the pure deformation modes (for instance 

equibiaxial tension), finite stresses were computed in the principal direction in which no load was 
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applied, and these differed in the 8th decimal place. These stresses are an artefact of the numerical 

solution and only amounted to 0.001% of the stress values in the directions of applied deformation. 

These artificial stresses also arose with a fully incompressible element, so the issue does not arise 

solely from compressibility in the material model. 

To test inhomogeneous deformations, a unit cube (1 mm3) was meshed with 203 elements. 

The cube was fixed on its bottom surface and twisted through 60° on its top surface. Figure 12 

shows maximum principal nominal strains in the cube. All maximum and minimum principal 

stresses and strains matched to 9 decimal places. Element volumes and energy densities also 

matched to 9 decimal places. 

The gen-Yeoh model was run without issue using the best fit parameters in Figure 9b and 

𝐷1 = 1.86495 ∗ 10−3 MPa−1. Simulation times with the built-in Yeoh model, UHYPER Yeoh 

model, and UHYPER gen-Yeoh model were 161 s, 163 s, and 165 s, respectively, using full nodal 

precision and 8 processors on a 12 core Intel Xeon E5-2620 CPU. 

A density of 1 g/cm3 was used for simulations in Abaqus/Explicit. Mass scaling was required 

to prevent the stable time increment from becoming too small for the computer’s numerical 

precision. Scaling factors up to 107 affected stress, strain, volume, and strain-energy density less 

than 1%. A factor of 103 was used for final validation of the VUMAT subroutine. 

When comparing the built-in and VUMAT Yeoh models in homogeneous modes of 

deformation, artificial stresses again occurred in the directions in which no loads were applied. 

However, they were two orders of magnitude lower than their Abaqus/Standard counterparts. 

Consequently, some small but negligible differences between the built-in and VUMAT solutions 

were found with homogeneous deformations. 

Small discrepancies were found in the twisted cube solutions when using the built-in and 

VUMAT Yeoh models. These discrepancies are negligible in terms of practical engineering design. 
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Table III summarizes the percent differences for some selected field outputs with the different 

material solution techniques. 

Discrepancies were expected when testing inhomogeneous deformations because 

Abaqus/Explicit uses the Jaumann objective stress rate with built-in material models and the Green-

Naghdi objective stress rate with VUMAT models. These have differences when finite rotations 

and shear occur simultaneously.35 Furthermore, Vorel & Bažant argue that both of these stress rates 

are not generally accurate in numerical simulations. They recommend converting to the Truesdell 

stress rate, but this has not been pursued here.36 Nevertheless, it is a topic worth further exploration 

as it may reconcile the discrepancies between the solutions of the built-in and VUMAT Yeoh 

models. This could become particularly important for problems with larger shear and rotation. 

The gen-Yeoh model ran without issue using the VUMAT and the same material parameters 

as the gen-Yeoh UHYPER subroutine. Using double precision with eight solution domains, 

simulation times with the built-in Yeoh, VUMAT Yeoh, and VUMAT gen-Yeoh models were 

33.15 min, 31.35 min, and 39.32 min, respectively. The VUMAT Yeoh model ran faster than the 

built-in Yeoh model. This result was repeatable and indicates that the VUMAT code may be 

simpler than the built-in routine, perhaps because the VUMAT is written specifically for the 3D 

case. The gen-Yeoh model takes significantly longer because computations are more complex with 

its non-integer exponents. 

CONCLUSIONS 

Building on concepts from the Yeoh, AAO, and DDT SEFs, the gen-Yeoh SEF has been 

introduced. It is well-suited to capture both low and high strain non-linearities in highly filled 

elastomeric materials such as those in oilfield packer seals. In particular, the SEF accurately models 

materials that have a strong Payne effect. Curve fitting by inspection and with the Levenberg-

Marquardt algorithm has shown that both techniques yield good fits even though model parameters 

are not unique. Finite elasticity theory that is necessary to implement a compressible hyperelastic 
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VUMAT has been given, and a procedure for efficient numerical execution has been described. 

Codes to implement a compressible form of the gen-Yeoh SEF in Abaqus/Standard and 

Abaqus/Explicit have been provided. Finite-element solutions with the built-in and user-defined 

Yeoh models agree well. Small differences were found in the Abaqus/Explicit solutions for 

inhomogeneous deformations. It is possible that these arise from differences in the objective stress 

rates used with built-in and VUMAT material models. While the discrepancy is of interest, it is of 

little consequence for the problem studied. It could become important to reconcile the discrepancies 

as the magnitude of combined shear and rotation increases. Finally, the UHYPER and VUMAT 

Yeoh model subroutines have execution times similar to Abaqus’ built-in Yeoh models, but the 

gen-Yeoh subroutine in Abaqus/Explicit takes longer to run when non-integer exponents are used. 
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APPENDIX A: IMPLEMENTING THE GEN-YEOH STRAIN-ENERGY 

FUNCTION IN ABAQUS/STANDARD WITH A UHYPER SUBROUTINE 

Implementing the gen-Yeoh SEF with a UHYPER subroutine only requires a user to specify 

Eq. 31 and appropriate derivatives37 which for the gen-Yeoh SEF are: 

∂𝑊

∂𝐼1̅
= 𝑚𝐾1(𝐼1̅ − 3)𝑚−1 + 𝑝𝐾2(𝐼1̅ − 3)𝑝−1 + 𝑞𝐾3(𝐼1̅ − 3)𝑞−1                       (33) 

∂2𝑊

∂𝐼1̅
2 = (𝑚2 − 𝑚)𝐾1(𝐼1̅ − 3)𝑚−2 + (𝑝2 − 𝑝)𝐾2(𝐼1̅ − 3)𝑝−2 + (𝑞2 − 𝑞)𝐾3(𝐼1̅ − 3)𝑞−2     (34) 

𝜕𝑊

𝜕𝐽
=

2

𝐷1
(𝐽 − 1)                                                           (35) 

𝜕2𝑊

𝜕𝐽2
=

2

𝐷1
                                                                 (36) 

The mathematical indeterminacy highlighted in Eq. 16 arises if 𝑚, 𝑝, or 𝑞 are less than one. 

Because the UHYPER subroutine requires the second derivative of the SEF, the numerical issue 

also arises if 𝑚, 𝑝, or 𝑞 are non-integer and less than two. The following logic can address the 

indeterminacy: 

IF (𝐼1̅ = 3 AND (𝑚 < 1  OR  𝑝 < 1  OR  𝑞 < 1)) THEN 

𝜕𝑊

𝜕𝐼1̅

= 1 

ELSE 

𝜕𝑊

𝜕𝐼1̅

= 𝑚𝐾1(𝐼1̅ − 3)𝑚−1 + 𝑝𝐾2(𝐼1̅ − 3)𝑝−1 + 𝑞𝐾3(𝐼1̅ − 3)𝑞−1 

END IF 

IF (𝐼1̅ = 3 AND (𝑚 < 2  OR  𝑝 < 2  OR  𝑞 < 2)) THEN 

𝜕2𝑊

𝜕𝐼1̅
2 = 0 

ELSE 

𝜕2𝑊

𝜕𝐼1̅
2 = (𝑚2 − 𝑚)𝐾1(𝐼1̅ − 3)𝑚−2 + (𝑝2 − 𝑝)𝐾2(𝐼1̅ − 3)𝑝−2 + (𝑞2 − 𝑞)𝐾3(𝐼1̅ − 3)𝑞−2 

END IF 

Even though 𝜕𝑊/𝜕𝐼1̅ → ∞ when, for instance, 𝑚 < 1, the first IF-THEN statement assigns a 

finite value to 𝜕𝑊/𝜕𝐼1̅ because Abaqus will not initialize a solution if 𝜕𝑊/𝜕𝐼1̅ is too close to zero 
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or tends to infinity. The choice of finite value does not appear to affect the solution as long as 

convergence is achieved. Abaqus can initialize a solution with ∂2𝑊/ ∂𝐼1̅
2 = 0, so that has been 

used. The full code for the UHYPER subroutine is in Appendix B. 

APPENDIX B: GEN-YEOH UHYPER SUBROUTINE 

C ********************************************************************** 

C  UHYPER for gen-Yeoh Strain-Energy Function 

C  ------------------------------------------ 

C  Author:   Travis Hohenberger 

C  Date:     2019-07-11 

C  E-mail:   twhohen@gmail.com 

C ********************************************************************** 

C 

C  Strain-energy function: 

C 

C  W = K1*(I1-3)^m + K2*(I1-3)^p + K3*(I1-3)^q + (1/D1)*(J-1)^2 

C 

C  where K1, K2, K3, m, p, q are distortional fitting parameters and D1 

C  is a volumetric fitting parameter. I1 is the first invariant of the 

C  modified stretch tensor. J is the volumetric ratio. 

C 

C ********************************************************************** 

      SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP,NOEL,CMNAME, 

     1                  INCMPFLAG,NUMSTATEV,STATEV,NUMFIELDV, 

     2                  FIELDV,FIELDVINC,NUMPROPS,PROPS) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION U(2),UI1(3),UI2(6),UI3(6),STATEV(*),FIELDV(*), 

     1          FIELDVINC(*),PROPS(*) 

C 

C     PARAMETERS 
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C     ---------- 

      REAL*8     zero,      one,      two,      three 

      PARAMETER( zero=0.d0, one=1.d0, two=2.d0, three=3.d0 ) 

C 

C     LOCAL VARIABLES 

C     --------------- 

      REAL*8 k1, k2, k3, em, pe, qu, d1 

C 

C ********************************************************************** 

C -------------------------- MODEL PARAMETERS -------------------------- 

C ********************************************************************** 

      k1 =  5.38 

      k2 = -2.85 

      k3 =  0.4 

      em =  0.89 

      pe =  1.08 

      qu =  1.85 

      d1 =  0.00186495 

C 

C ********************************************************************** 

C ----------------------- STRAIN-ENERGY FUNCTION ----------------------- 

C ********************************************************************** 

      IF (d1.GT.zero) THEN 

         U(1) =   k1*(BI1-three)**em + 

     $            k2*(BI1-three)**pe + 

     $            k3*(BI1-three)**qu + 

     $            1/d1*(AJ-one)**two 

      ELSE 

         U(1) =   k1*(BI1-three)**em + 

     $            k2*(BI1-three)**pe + 

     $            k3*(BI1-three)**qu 

      END IF 

C 



22 
 

C ********************************************************************** 

C -- IF-THEN statement initializes dU/dI1 to finite value if EM < 1.0 -- 

C ********************************************************************** 

      IF (BI1.EQ.three .AND. em.LT.one) THEN 

        UI1(1) = one 

      ELSE 

        UI1(1) = em*k1*(BI1-three)**(em-one) + 

     $           pe*k2*(BI1-three)**(pe-one) + 

     $           qu*k3*(BI1-three)**(qu-one) 

      END IF 

C 

C ********************************************************************** 

C ---------- IF-THEN statement prevents d2U/dI1 --> Infinity ----------- 

C ********************************************************************** 

      IF (BI1.EQ.three .AND. 

     $   (em.LT.two .OR. pe.LT.two .OR. qu.LT.two)) THEN 

        UI2(1) = zero 

      ELSE 

        UI2(1) = em*(em-one)*k1*(BI1-three)**(em-two) + 

     $           pe*(pe-one)*k2*(BI1-three)**(pe-two) + 

     $           qu*(qu-one)*k3*(BI1-three)**(qu-two) 

      END IF 

C 

C ********************************************************************** 

C ------------------ DERIVATIVES OF COMPRESSIBLE TERM ------------------ 

C ********************************************************************** 

      IF (d1.GT.zero) THEN 

         UI1(3) = two/d1*(AJ-one) 

         UI2(3) = two/d1 

      ELSE 

         UI1(3) = zero 

         UI2(3) = zero 

      END IF 
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C 

C ********************************************************************** 

C ----------------- SET NON-ESSENTIAL VARIABLES TO ZERO ---------------- 

C ********************************************************************** 

      U(2)   = zero 

      UI1(2) = zero 

      UI2(2) = zero 

      UI2(4) = zero 

      UI2(5) = zero 

      UI2(6) = zero 

      UI3(1) = zero 

      UI3(2) = zero 

      UI3(3) = zero 

      UI3(4) = zero 

      UI3(5) = zero 

      UI3(6) = zero 

C 

      RETURN 

C 

      END SUBROUTINE UHYPER 

APPENDIX C: IMPLEMENTING THE GEN-YEOH STRAIN-ENERGY  

FUNCTION IN ABAQUS/EXPLICIT WITH A VUMAT SUBROUTINE 

VUMATs have been implemented by many researchers, but detailed codes are rarely 

published.38,39 Some Neo-Hookean VUMATs can be found. Bergström provides a partially 

complete but obsolete example,33 and Chester gives a partial code that, while correct, is not 

computationally optimal.40 Simulia also provides some code blocks for the Neo-Hookean SEF in 

training materials in its 3DS Academy.41 However, finding a complete and validated code for a 

hyperelastic VUMAT is not easy. To close this gap, the complete code for 3D implementation of 

the gen-Yeoh VUMAT is provided in Appendix D, and some clarifications to understand the code 

are in this section. 
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Guidelines on writing a VUMAT can be found in Abaqus documentation.37 The Cauchy stress 

tensor, stretch tensor, and strain increment tensor are stored in vectors with six components. For 

instance, Cauchy stress components are: 

𝛔 = [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] = (𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎23, 𝜎13) = (𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6)         (37) 

where the symmetry of 𝜎ij = 𝜎ji has been invoked to reduce storage space.  

When a model uses more than one element, Abaqus may process multiple material points 

during a VUMAT call. These are stored in an Abaqus-defined parameter, nblock, that increases 

the dimension of the stress, stretch, and strain increment vectors. 

Explicit analyses require calculation of a stable time increment to advance the solution. The 

increment is initialized with a linearly elastic approximation for the material during the first call of 

the VUMAT. This is completed by using Abaqus-defined strain increments (𝑑𝜀i), the initial stress 

vector (𝜎i
′), and elastic material parameters (𝐺, 𝜅) to calculate the new stress vector (𝜎i

′′) as shown 

in the following logic: 

IF (totalTime = 0) THEN 

DO k = 1, nblock 

𝜎k,1
′′ = 𝜎k,1

′ + 2𝐺(𝑑𝜀k,1) + (𝜅 −
2

3
𝐺) (𝜀k,1 + 𝜀k,2 + 𝜀k,3) 

𝜎k,2
′′ = 𝜎k,2

′ + 2𝐺(𝑑𝜀k,2) + (𝜅 −
2

3
𝐺) (𝜀k,1 + 𝜀k,2 + 𝜀k,3) 

𝜎k,3
′′ = 𝜎k,3

′ + 2𝐺(𝑑𝜀k,3) + (𝜅 −
2

3
𝐺) (𝜀k,1 + 𝜀k,2 + 𝜀k,3) 

𝜎k,4
′′ = 𝜎k,4

′ + 2𝐺(𝑑𝜀k,4) 

𝜎k,5
′′ = 𝜎k,5

′ + 2𝐺(𝑑𝜀k,5) 

𝜎k,6
′′ = 𝜎k,6

′ + 2𝐺(𝑑𝜀k,6)  

END DO 

RETURN 

END IF 
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Next, the hyperelastic block of the code executes with the steps at the end of the section on 

finite elasticity. In some cases, the linear elastic step does not sufficiently deform elements and 

stress indeterminacy occurs in the hyperelastic coding block due to numerical precision or 

truncation. To avoid this, the following logic can be applied: 

IF ((𝐼1̅ − 3) < 10−12) THEN 

∂𝑊

∂𝐼1̅
= 0 

ELSE 

∂𝑊

∂𝐼1̅

= 𝑚𝐾1(𝐼1̅ − 3)𝑚−1 + 𝑝𝐾2(𝐼1̅ − 3)𝑝−1 + 𝑞𝐾3(𝐼1̅ − 3)𝑞−1 

END IF 

The user must set the threshold at which ∂𝑊/ ∂𝐼1̅ = 0. Larger values help convergence but 

introduce larger rounding error. Smaller values do the opposite. 

Parameters for the hyperelastic material model can be directly specified in the subroutine, read 

from the input file, or read from Abaqus’ .cae file. If this latter option is preferred, the material 

properties must be specified as shown in Figure 13. 

The material properties are then read with the following statements: 

C     MATERIAL PROPERTIES 

C     ------------------- 

      k1 = props(1) 

      k2 = props(2) 

      k3 = props(3) 

      em = props(4) 

      pe = props(5) 

      qu = props(6) 

      d1 = props(7) 

When updating the internal energy density, the strain-energy function can be directly applied. 

Alternatively, the following equation adopted from Abaqus documentation correctly increments 

the energy: 
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𝑊 =
1

2
{(𝜎k,1

′ + 𝜎𝑘,1
′′ )𝑑𝜀k,1 + (𝜎k,2

′ + 𝜎k,2
′′ )𝑑𝜀k,2 + (𝜎k,3

′ + 𝜎𝑘,3
′′ )𝑑𝜀𝑘,3 + 2[(𝜎k,4

′ + 𝜎𝑘,4
′′ )𝑑𝜀𝑘,4 + (𝜎𝑘,5

′ + 𝜎𝑘,5
′′ )𝑑𝜀𝑘,5 + (𝜎𝑘,6

′ + 𝜎𝑘,6
′′ )𝑑𝜀𝑘,6]} 

Finally, plane strain and axisymmetric versions of the code can be built by removing any 

references to the 5th and 6th elements of the stress, stretch, and strain increment vectors. 

Alternatively, one can follow Bergström’s example and implement logic to handle 2D and 3D cases 

with a single subroutine.33 A plane stress subroutine requires additional modification to account for 

out-of-plane strains. 

APPENDIX D: GEN-YEOH VUMAT SUBROUTINE 

C ********************************************************************** 

C  VUMAT for gen-Yeoh Strain-Energy Function 

C  ----------------------------------------- 

C  Authors:  Travis Hohenberger & Richard Windslow 

C  Date:     2019-07-11 

C  E-mail:   twhohen@gmail.com 

C ********************************************************************** 

C 

C  Strain-energy function: 

C 

C  W = K1*(I1-3)^m + K2*(I1-3)^p + K3*(I1-3)^q + (1/D1)*(J-1)^2 

C 

C  where K1, K2, K3, m, p, q are distortional fitting parameters and D1 

C  is a volumetric fitting parameter. I1 is the first invariant of the 

C  modified stretch tensor. J is the volumetric ratio. 

C 

C ********************************************************************** 

      SUBROUTINE VUMAT( 

     1     nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 

     2     stepTime, totalTime, dt, cmname, coordMp, charLength, 

     3     props, density, strainInc, relSpinInc, 

     4     tempOld, stretchOld, defgradOld, fieldOld, 

     5     stressOld, stateOld, enerInternOld, enerInelasOld, 

     6     tempNew, stretchNew, defgradNew, fieldNew, 
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     7     stressNew, stateNew, enerInternNew, enerInelasNew ) 

C 

      INCLUDE 'vaba_param.inc' 

C 

      DIMENSION props(nprops), density(nblock), coordMp(nblock,*), 

     1          charLength(nblock), strainInc(nblock,ndir+nshr), 

     2          relSpinInc(nblock,nshr), tempOld(nblock), 

     3          stretchOld(nblock,ndir+nshr), 

     4          defgradOld(nblock,ndir+nshr), 

     5          fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 

     6          stateOld(nblock,nstatev), enerInternOld(nblock), 

     7          enerInelasOld(nblock), tempNew(nblock), 

     8          stretchNew(nblock,ndir+nshr), 

     9          defgradNew(nblock,ndir+nshr), 

     1          fieldNew(nblock,nfieldv), 

     2          stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 

     3          enerInternNew(nblock), enerInelasNew(nblock) 

C 

      CHARACTER*80 cmname 

C 

C     PARAMETERS 

C     ---------- 

      REAL*8    oneThrd, half, twoThrd, one, two, three, thresh 

      PARAMETER(oneThrd=1.d0/3.d0, half=0.5d0, twoThrd=2.d0/3.d0, 

     $          one=1.d0, two=2.d0, three=3.d0, thresh=10.d0**-12.d0) 

C 

C     LOCAL VARIABLES 

C     --------------- 

      REAL*8 g0      , k0     , twoG   , lmda   , trace  , d1      , 

     $       k1      , k2     , k3     , em     , pe     , qu      , 

     $       Bxx     , Byy    , Bzz    , Bxy    , Bxz    , Byz     , 

     $       BbarXX  , BbarYY , BbarZZ , BbarXY , BbarXZ , BbarYZ  , 

     $       dBbarXX , dBbarYY, dBbarZZ, dBbarXY, dBbarXZ, dBbarYZ , 
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     $       J       , J23    , duDi1  , duDi3  , I1     , g1      , 

     $       p0      , j1     , u1 

C 

      k1 = props(1) 

      k2 = props(2) 

      k3 = props(3) 

      em = props(4) 

      pe = props(5) 

      qu = props(6) 

      d1 = props(7) 

C 

      g0 = two * k1 

      k0 = two / d1 

C 

C     ****************************************************************** 

C     ------------ INITIALIZE MATERIAL AS LINEARLY ELASTIC ------------- 

C     ****************************************************************** 

C 

      twoG = two * g0 

      lmda = k0 - twoG * oneThrd 

C 

      IF (totalTime.EQ.0.0) THEN 

C 

         DO k = 1,nblock 

            trace = strainInc(k,1) + strainInc(k,2) + strainInc(k,3) 

            stressNew(k,1) = stressOld(k,1) + twoG*strainInc(k,1) + 

     $                       lmda*trace 

            stressNew(k,2) = stressOld(k,2) + twoG*strainInc(k,2) + 

     $                       lmda*trace 

            stressNew(k,3) = stressOld(k,3) + twoG*strainInc(k,3) + 

     $                       lmda*trace 

            stressNew(k,4) = stressOld(k,4) + twoG*strainInc(k,4) 

            stressNew(k,5) = stressOld(k,5) + twoG*strainInc(k,5) 
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            stressNew(k,6) = stressOld(k,6) + twoG*strainInc(k,6) 

         END DO 

C 

         RETURN 

C 

      END IF 

C 

C     ****************************************************************** 

C     ----------- START LOOP FOR MATERIAL POINT CALCULATIONS ----------- 

C     ****************************************************************** 

C 

      DO k = 1,nblock 

C 

C        CALCULATE LEFT CAUCHY-GREEN STRAIN TENSOR, B = U*U 

C        -------------------------------------------------- 

         Bxx = stretchNew(k,1) * stretchNew(k,1) + 

     $         stretchNew(k,4) * stretchNew(k,4) + 

     $         stretchNew(k,6) * stretchNew(k,6) 

         Byy = stretchNew(k,2) * stretchNew(k,2) + 

     $         stretchNew(k,4) * stretchNew(k,4) + 

     $         stretchNew(k,5) * stretchNew(k,5) 

         Bzz = stretchNew(k,3) * stretchNew(k,3) + 

     $         stretchNew(k,5) * stretchNew(k,5) + 

     $         stretchNew(k,6) * stretchNew(k,6) 

         Bxy = stretchNew(k,1) * stretchNew(k,4) + 

     $         stretchNew(k,4) * stretchNew(k,2) + 

     $         stretchNew(k,6) * stretchNew(k,5) 

         Bxz = stretchNew(k,1) * stretchNew(k,6) + 

     $         stretchNew(k,4) * stretchNew(k,5) + 

     $         stretchNew(k,6) * stretchNew(k,3) 

         Byz = stretchNew(k,4) * stretchNew(k,6) + 

     $         stretchNew(k,2) * stretchNew(k,5) + 

     $         stretchNew(k,5) * stretchNew(k,3) 
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C 

C        CALCULATE J = |F| = |U| 

C        ----------------------- 

C 

         J =    stretchNew(k,1) * 

     $        ( stretchNew(k,2) * stretchNew(k,3)   - 

     $          stretchNew(k,5) * stretchNew(k,5) ) + 

     $          stretchNew(k,4) * 

     $        ( stretchNew(k,5) * stretchNew(k,6)   - 

     $          stretchNew(k,3) * stretchNew(k,4) ) + 

     $          stretchNew(k,6) * 

     $        ( stretchNew(k,4) * stretchNew(k,5)   - 

     $          stretchNew(k,2) * stretchNew(k,6) ) 

C 

C        CALCULATE MODIFIED STRAIN TENSOR, Bbar = J^(-2/3)*B  

C        --------------------------------------------------- 

         J23 = J**(-twoThrd) 

C 

         BbarXX = J23 * Bxx 

         BbarYY = J23 * Byy 

         BbarZZ = J23 * Bzz 

         BbarXY = J23 * Bxy 

         BbarXZ = J23 * Bxz 

         BbarYZ = J23 * Byz 

C 

C        FIRST INVARIANT OF Bbar = tr(Bbar) 

C        ---------------------------------- 

         I1 = BbarXX + BbarYY + BbarZZ 

C 

C        DEVIATORIC PART OF Bbar 

C        ----------------------- 

         p0 = oneThrd * I1 

C 
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         dBbarXX = BbarXX - p0 

         dBbarYY = BbarYY - p0 

         dBbarZZ = BbarZZ - p0 

         dBbarXY = BbarXY 

         dBbarXZ = BbarXZ 

         dBbarYZ = BbarYZ 

C 

C        DERIVATIVES OF STRAIN-ENERGY FUNCTION 

C        ------------------------------------- 

         j1 = I1 - three 

C 

         IF (j1.LT.thresh) THEN 

            duDi1 = zero 

         ELSE 

            duDi1 = em * k1 * j1**(em-one) + 

     $              pe * k2 * j1**(pe-one) + 

     $              qu * k3 * j1**(qu-one) 

         END IF 

C 

         duDi3 = two/d1 * (J - one) 

C 

C        COROTATIONAL CAUCHY (TRUE) STRESSES 

C        ----------------------------------- 

         g1 = two/J * duDi1 

C 

         stressNew(k,1) = g1 * dBbarXX + duDi3 

         stressNew(k,2) = g1 * dBbarYY + duDi3 

         stressNew(k,3) = g1 * dBbarZZ + duDi3 

         stressNew(k,4) = g1 * dBbarXY 

         stressNew(k,5) = g1 * dBbarYZ 

         stressNew(k,6) = g1 * dBbarXZ 

C 

C        UPDATE SPECIFIC INTERNAL ENERGY 
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C        ------------------------------- 

         u1 = half * ( (stressOld(k,1)+stressNew(k,1))*strainInc(k,1) + 

     $                 (stressOld(k,2)+stressNew(k,2))*strainInc(k,2) + 

     $                 (stressOld(k,3)+stressNew(k,3))*strainInc(k,3) + 

     $                  two * ( (stressOld(k,4) + stressNew(k,4))* 

     $                           strainInc(k,4) + 

     $                          (stressOld(k,5) + stressNew(k,5))* 

     $                           strainInc(k,5) + 

     $                          (stressOld(k,6) + stressNew(k,6))* 

     $                           strainInc(k,6) ) ) 

C 

         enerInternNew(k) = enerInternOld(k) + u1 / density(k) 

C 

      END DO 

C 

      RETURN 

C 

      END SUBROUTINE VUMAT 
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TABLE I 

Errors for different SEFs when fit to HNBR sealing material data (LM = Levenberg-Marquardt) 

Model Fitting Method Comment Error 

Neo-Hookean Inspection 𝐺 = 13 MPa 1.103 
Neo-Hookean Inspection 𝐺 = 5.4 MPa 0.282 
Yeoh Inspection - 0.257 
Yeoh LM algorithm - 0.188 
gen-Yeoh Inspection - 0.043 
DDT LM algorithm 𝐷 = 0 0.042 
DDT LM algorithm then 𝐷 by inspection 𝐷 = 0.05 0.034 
gen-Yeoh LM algorithm - 0.027 
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TABLE II 

Errors for different SEFs when fit to Amin’s HDR data 

Model Fitting Method Error 

AAO Best fit by Amin9 0.312 

DDT LM algorithm 0.051 

gen-Yeoh LM algorithm 0.013 
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TABLE III 

Percent difference in selected field output values using built-in and VUMAT Yeoh models. 

Field Output Built-In Yeoh VUMAT Yeoh Difference 

Principal stress / MPa 
Max. 8.7532 8.7839 0.35% 

Min. 1.3431 1.3477 0.34% 

Principal strain 
Max. 0.38557 0.38581 0.06% 

Min. −0.018584 −0.018599 0.08% 

Volume / mm3 
Max. 1.2580e-4 1.2582e-4 0.02% 

Min. 1.2458e-4 1.2459e-4 0.01% 

Energy density / 
mJ

mm3
 

Max. 1.3919 1.3913 0.04% 

Min. 5.6965e-3 5.7079e-3 0.20% 
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                                                   (a)                                                                                           (b) 

FIG. 1. – Stress-stretch responses with NR: (a) Treloar’s unfilled rubber3; (b) Yeoh’s filled rubber7 compared to 

Treloar’s unfilled rubber. 
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FIG. 2. – UC stress-stretch data9 showing a low strain inflection for a filled HDR. 
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(a) 

        

                                                               (b)                                                                               (c) 

FIG. 3. – Packer seal assembly (a) prior to setting; (b) initiating contact on its outer diameter; (c) fully packed off. 

Maximum in-plane strain (nominal) is shown for the rubber elements in (b) and (c). 
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FIG. 4. – Stress-stretch data from an HNBR packer seal material, a 20% volume CB-filled SBR10, and a 70 phr CB-

filled NR7. 
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                                                (a)                                                                                             (b) 

FIG. 5. – SEFs fit to data for HNBR seal material; (a) Neo-Hookean; (b) Yeoh: coefficients by inspection, 

 (𝐶10, 𝐶20, 𝐶30) = (2.9, −0.15, 0.025) MPa, and best fit, (𝐶10, 𝐶20, 𝐶30) = (3.6, −0.84, 0.185) MPa. 

  



41 
 

       

                                       (a)                                                                                             (b) 

FIG. 6. – AAO SEF fit to UC data for HDR material: (a) (𝐾1, 𝐾2, 𝐾3) = (2.35, −1.82, 0.37) MPa, (𝑝, 𝑞) = (1.25, 2); 

(b) with best fit 𝑝 = 1.25, upper bound (𝑝 = 2), and lower bound (𝑝 = 1), all other parameters being the same. 
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                                         (a)                                                                                            (b) 

FIG. 7. – AAO SEF fit to Amin’s HDR data and compared to: (a) DDT SEF with (𝐾1, 𝐾3) = (0.81, 0.12) MPa, 

(𝑚, 𝐷) = (0.7, 0); (b) gen-Yeoh SEF with (𝐾1, 𝐾2, 𝐾3) = (2.43, −1.87, 0.35) MPa, (𝑚, 𝑝, 𝑞) = (0.75, 0.8, 1.39). 
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                                                     (a)                                                                                      (b) 

        

                                                    (c)                                                                                         (d) 

FIG. 8. – Fitting the gen-Yeoh SEF by inspection: (a) uniaxial data; (b) setting 𝐾1 and 𝑚; (c) setting 𝐾3 and 𝑞; (d) 

setting 𝐾2 and 𝑝. 
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                                                    (a)                                                                                       (b) 

FIG. 9. – Stress-stretch plots with the gen-Yeoh SEF for HNBR sealing material on linear axes: (a) same parameters as 

Figure 8d; (b) parameters from LM algorithm, (𝐾1, 𝐾2, 𝐾3) = (5.38, −2.85, 0.4) MPa, (𝑚, 𝑝, 𝑞) = (0.89, 1.08, 1.85). 
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FIG. 10. – Final curve fits for DDT and gen-Yeoh SEFs for HNBR sealing material; gen-Yeoh parameters: same as 

Figure 9b; DDT parameters: (𝐾1, 𝐾3) = (2.78, 0.16) MPa, (𝑚, 𝐷) = (0.78,0.05).  
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FIG. 11. – Vectors associated with finite deformation of differential line element d𝐒 at point 𝑃 in a body. 
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FIG. 12. – Maximum principal nominal strain contours in cube when twisted 60°. 
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FIG. 13. – Material parameters read by props(n) variable in a VUMAT. 
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FIG. 1. – Stress-stretch responses with NR: (a) Treloar’s unfilled rubber3; (b) Yeoh’s filled 

rubber7 compared to Treloar’s unfilled rubber. 

FIG. 2. – UC stress-stretch data9 showing a low strain inflection for a filled HDR. 

FIG. 3. – Packer seal assembly (a) prior to setting; (b) initiating contact on its outer diameter; (c) 

fully packed off. Maximum in-plane strain (nominal) is shown for the rubber elements in (b) and 

(c). 

FIG. 4. – Stress-stretch data from an HNBR packer seal material, a 20% volume CB-filled SBR10, 

and a 70 phr CB-filled NR7. 

FIG. 5. – SEFs fit to data for HNBR seal material; (a) Neo-Hookean; (b) Yeoh: coefficients by 

inspection, (𝐶10, 𝐶20, 𝐶30) = (2.9, −0.15, 0.025) MPa, and best fit, (𝐶10, 𝐶20, 𝐶30) =

(3.6, −0.84, 0.185) MPa. 

FIG. 6. – AAO SEF fit to UC data for HDR material: (a) (𝐾1, 𝐾2, 𝐾3) = (2.35, −1.82, 0.37) MPa, 

(𝑝, 𝑞) = (1.25, 2); (b) with best fit 𝑝 = 1.25, upper bound (𝑝 = 2), and lower bound (𝑝 = 1), all 

other parameters being the same. 

FIG. 7. – AAO SEF fit to Amin’s HDR data and compared to: (a) DDT SEF with (𝐾1, 𝐾3) =

(0.81, 0.12) MPa,(𝑚, 𝐷) = (0.7, 0); (b) gen-Yeoh SEF with (𝐾1, 𝐾2, 𝐾3) =

(2.43, −1.87, 0.35) MPa, (𝑚, 𝑝, 𝑞) = (0.75, 0.8, 1.39). 

FIG. 8. – Fitting the gen-Yeoh SEF by inspection: (a) uniaxial data; (b) setting 𝐾1 and 𝑚; (c) 

setting 𝐾3 and 𝑞; (d) setting 𝐾2 and 𝑝. 

FIG. 9. – Stress-stretch plots with the gen-Yeoh SEF for HNBR sealing material on linear axes: 

(a) same parameters as Figure 8d; (b) parameters from LM algorithm, (𝐾1, 𝐾2, 𝐾3) =

(5.38, −2.85, 0.4) MPa, (𝑚, 𝑝, 𝑞) = (0.89, 1.08, 1.85). 

FIG. 10. – Final curve fits for DDT and gen-Yeoh SEFs for HNBR sealing material; gen-Yeoh 

parameters: same as Figure 9b; DDT parameters: (𝐾1, 𝐾3) = (2.78, 0.16) MPa, (𝑚, 𝐷) =

(0.78,0.05).  
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FIG. 11. – Vectors associated with finite deformation of differential line element d𝐒 at point 𝑃 in 

a body. 

FIG. 12. – Maximum principal nominal strain contours in cube when twisted 60°. 

FIG. 13. – Material parameters read by props(n) variable in a VUMAT. 


