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Abstract

Summary: We define a disease module as a partition of a molecular network whose components are
jointly associated with one or several diseases or risk factors thereof. Identification of such modules,
across different types of networks, has great potential for elucidating disease mechanisms and establishing
new powerful bio-markers. To this end, we launched the "Disease Module Identification (DMI) DREAM
Challenge", a community effort to build and evaluate unsupervised molecular network modularisation
algorithms (Choobdar, 2019). Here we present MONET, a toolbox providing easy and unified access to
the three top-performing methods from the DMI DREAM Challenge for the bioinformatics community.
Availability and Implementation: MONET is a command line tool for Linux, based on Docker and
Singularity containers; the core algorithms were written in R, Python, Ada and C++. It is freely available
for download at https://github.com/BergmannLab/MONET.git
Contact: mattia.tomasoni@unil.ch (MT); sven.bergmann@unil.ch (SB)

1 Introduction
Gene networks, such as protein interaction, signalling, gene co-expression
and homology networks, provide scaffolds of linked genes. Sub-networks,
or modules, include genes normally acting in concert but whose joint
function may be disrupted, if any of its members is missing, or dis-
regulated. For Disease Modules this disruption can lead to a disease
phenotype. The identification of such modules is therefore useful for
elucidating disease mechanisms and establishing new bio-markers and
potential therapeutic targets. Yet, which methods work best to extract
such modules from different types of networks is not well understood.
This prompted us to initiate the "Disease Module Identification (DMI)
DREAM Challenge" (Choobdar, 2019), providing an unbiased and critical
assessment of 75 contributed module identification methods. Our method
evaluation used summary statistics from more than 200 disease relevant
Genome-wide Association Studies (GWAS) in conjunction with our Pascal

tool (Lamparter et al., 2016), avoiding the bias of using annotated
molecular pathways.

The top-performing methods implemented novel algorithms that
advanced the state of the art, clearly outperforming off-the-shelf tools.
We therefore decided to make the top three methods available for the
bioinformatics community in a single user-friendly package: MONET
is a command line tool based on Docker and Singularity virtualization
technologies, automatically installing the tool with all its dependencies
inside a container, avoiding time-consuming and error-prone manual
installations of computing environments and libraries. All computations
then take place in this sandbox environment and once the output is ready,
all resources can be fully released bringing the user’s machine back to its
original state.
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Fig. 1. Comparison of the MONET methods (K1, M1 and R1) against a baseline (Louvain)
on simulated graphs with planted community structure. On the left: clustering performance
(NMI) as a function of the fraction of inter-module edges (mixing parameter). Right:
memory requirements as a function of network size. Each point represents an average
of the results obtained performing a grid search over the following parameter space (at least
two repetitions for each combination of parameters): number of nodes: 5k, 7k, 8k, 10k;
average node degree: 15, 20, 25; exponent of the distribution of community sizes: 1, 2;
exponent of the distribution of node degrees: 2, 3.

2 Methods and implementation
While our challenge was able to establish Kernel Clustering Optimization
using the “Diffusion State Distance” metric by Cao et al. (2014) (hereafter
K1) as the overall winner, there were several strong competitors using
entirely different approaches for the network modularisation. Importantly,
we observed that no single method was superior on all network types
and that Disease Modules identified by different methods were often
complementary (Choobdar, 2019).

2.1 K1: Top method using kernel clustering

K1 is based on the “Diffusion State Distance” (DSD), a novel graph metric
which is built on the premise that paths through low-degree nodes are
stronger indications of functional similarity than paths that traverse high-
degree nodes by Cao et al. (2014). The DSD metric is used to define a
pairwise distance matrix between all nodes, on which a spectral clustering
algorithm is applied. In parallel, dense bipartite sub-graphs are identified
using standard graph techniques. Finally, results are merged into a single
set of non-overlapping clusters.
BLOG: https://www.synapse.org/#!Synapse:syn7349492/wiki/407359

2.2 M1: Top method using modularity optimization

M1 employs an original technique named Multiresolution introduced
by (Arenas et al., 2008) to explore all topological scales at which modules
may be found. The novelty of this approach relies on the introduction of a
parameter, called resistance, which controls the aversion of nodes to form
modules. Modularity (Newman and Girvan, 2004; Arenas et al., 2007) is
optimized using an ensemble of algorithms: Extremal optimization (Duch
and Arenas, 2005), Spectral optimization (Newman, 2006), Fast algorithm
(Newman, 2004), Tabu search (Arenas et al., 2008), and fine-tuning by
iterative repositioning of individual nodes in adjacent modules.
BLOG: https://www.synapse.org/#!Synapse:syn7352969/wiki/407384

2.3 R1: Top method using random walk

R1 is based on a variant of Markov Cluster Algorithm known as balanced
Multi-layer Regularized Markov Cluster Algorithm (bMLRMCL) (Satuluri
et al., 2010) which scales well to large graphs and minimizes the number of
oversized clusters. First, a pre-processing step is applied so that edges with
low weights are discarded and all remaining edges are scaled to integer
values. Then, bMLRMCL is applied iteratively on modules of size grater
than 100 nodes.
BLOG: https://www.synapse.org/#!Synapse:syn7286597/wiki/406659

3 Performance
Figure 1 illustrates the performance of the MONET algorithms on
simulated graphs with planted community structure, generated using
the class of benchmark graphs proposed by Lancichinetti et al. (2008).
Modularisation performance is measured using Normalized Mutual
Information (NMI). Experiments were carried out on regular desktop
hardware. In accordance with performance evaluations within the DMI
DREAM Challenge, K1, the winner, requires the most computational
resources, with a runtime of about one day and the highest memory
allocation for processing on the Challenge inputs. M1, the second runner-
up, completed the Challenge in a few hours and displayed excellent
performance on the simulated benchmark (even superior to K1, especially
in case of extremely high fraction of inter-module edges and extremely low
memory requirements). R1, the second runner-up, is the only method that
requires parameters to be tuned (nine in total); nevertheless, we believe it
is an excellent addition to our tool, as it performed close to K1/M1 on the
benchmark, it requires only moderate memory and has an extremely low
run time (it completed the Challenge in under an hour).

4 Installation and usage
MONET is extremely simple to install/uninstall and run. The only
requirement is having installed either Docker (Merkel, 2014) or Singularity
(Kurtzer et al., 2017). For detailed instructions and information about
usage and I/O formats, please refer to the README file on the github
repository.

$ git clone https://github.com/BergmannLab/MONET.git

$ cd MONET && ./install.sh

$ monet --help

$ monet --method=M1 --container=docker \

--input=./input/network.txt --output=./output
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