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a b s t r a c t

This work addresses the tribological reliability of TiAlN-based PVD coatings face to TiN-based CVD
coating in cutting FRP. Wear and linear pin-on-plate tests were conducted on both glass/epoxy and
carbon/epoxy composites for investigating wear progression and apparent friction, respectively. The
TiAlN location shows great role in controlling wear upon PVD coatings. While abrasion was found
dominating the wear mechanisms upon the flank face irrespective to coating type, PVD coatings de-
monstrate better ability to dissipate severe cratering. Although the all coatings showed close behavior
against carbon/epoxy, TiAlN/AlCrO coating revealed great vulnerability against glass/epoxy resulting in
extended AlCrO layer failure. While wear substantially reduces the thermal conductivity, PVD coatings
kept roughly better conductivities than CVD coating as for worn states.

1. Introduction

PVD coating techniques proved their efficiency in enhancing
tool life in several applications [1]. While advances have been well
marked for metals, processing of heterogeneous materials such as
composites still involves very challenging task. Although superior
specific properties of fiber-reinforced polymers (FRP) are pro-
moting for several applications, their machinability still presents
many issues. The fiber abrasiveness is assumed to be the main role
in controlling tool behavior. During cutting, the tool undergoes a
series of low-to-high cyclic loads due to the properties of fiber and
matrix phases. Thermo-mechanical disequilibrium takes place
yielding, hence, poor surface finish, local delamination and fiber-
matrix decohesion. The interface consumption mechanisms re-
sulting in material removal bodies (coating components, fiber
particles, matrix debris, etc.) should locally influence the contact
properties [2]. The evolution of thermo-mechanical properties at
the tool-material interface affects the tool behavior, particularly,
the coating endurance. TiAlN coatings consist of effective solution
since they exhibit unique properties at elevated temperatures.

Especially, they preserve relatively high hardness with good
thermal and chemical stability at high temperature [3–6].

Nowadays, thin hard PVD coatings are available for improving
tool ability i.e. reducing friction and wear, in various manufactur-
ing sets. Physical vapor deposition of TiN had marked the earlier
development in thin coating technologies [7,8]. TiAlN coatings are
among the intensely commercial techniques used for the en-
hancement of tool life. They can be applied as monolayer or as
multilayers in combination with other coating types such as Ti and
TiN [9,10]. They present a novel set of physical vapor depositions
with improved properties (heat resistance, oxidation resistance,
hardness, toughness, etc.) if compared with TiN coatings. In spite
of the advances achieved, the efficiency of PVD coatings in ma-
chining fiber-reinforced composites still remains challenging.

Machining of FRP involves the coated tool to be in aggressive
contact with the abrasive surface of the composite component.
Thus, the coating resistance depends on the coating properties
(coating structure and composition, substrate-to-coating ad-
herence, etc.). The PVD processes feature to enhance both physical
and chemical properties of the overall coating [11,12]. TiN/TiAlN is
expected to be a promising candidate as a hard coating layer
because of excellent properties especially for high temperature
applications.

PalDey et al. [13,14] reported that TiAlN coatings by PVD process
enhance wear, thermal, and oxidation resistance of large tool vari-
ety. In addition to these properties, relatively low thermal con-
ductivity makes these coatings most desirable in dry, abrasive, and
high speed machining. Combination of TiAlN with multicomponent
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coatings of complementary properties should lead, in turn, to a
further refinement of coating structure. The presence of multiple
interfaces between individual coating layers promotes an increase
of hardness and strength of multilayered coatings. Li et al. [15] in-
vestigated multilayer coating structure composed of different TiAlN/
CrAlN bilayer periods for wear protection. Multilayer structure re-
sults typically in an increase in hardness and adhesive strength.
Combination of thermal stability of TiAlN and resistance-to-oxida-
tion of CrAlN ensures an improved behavior in machining, irre-
spective to operating conditions. Mkaddem et al. [16] examined also
the performance of multilayer coating structure in cutting compo-
sites. From observations, the TiAlN layer of TiN/TiAlN coating shows
inefficiency to resist the cratering because of fibers spring-back.
However, the same layer made of finer grains upon TiAlN/AlCrO,
exhibits better ability in dissipating severe abrasion to the detri-
ment of a faster wear due to better adhesion at layers' interface.
Promotion of TiAlN-based multilayered coatings was widely ad-
dressed in open literature [17,18].

Currently, TiAlN coatings are assumed to be the second series in
commercial hard following TiN coatings [7,19]. Ding et al. [19]
measured the thermal conductivity of a series of TiAlN coatings
with different Al/Ti atomic ratio deposited on AISI304 stainless
steel substrate. They outlined a significant decrease in thermal
conductivity with increasing Al/Ti atomic ratio. A minimum ther-
mal conductivity of about 4.63 W/mK was obtained at the Al/Ti
atomic ratio of around 0.72. Srinivasan et al. [20] also studied the
variation of thermal properties of TiAlN thin films on silicon sub-
strate versus di-nitrogen (N2) flow rate. They stated an increase in
thermal conductivity with increasing N2 flow rate. The measured
values were found significantly lower than those obtained with
the TiAlN bulk materials.

Alternating contact between the tool-tip and composite phases
consists of actual difficulty in machining. The new coating sets
based on multilayer systems meet all the success in machining
advanced composites [2,16,21]. Wear mechanisms on TiAlN/TiN
coated tool have been particularly addressed by Isbilir et al. [22]
when drilling carbon fiber-reinforced plastics. While abrasive wear
operates on both relief and flank tool faces, no sign of degradation
by chipping or plastic deformation were detected upon the drill
surfaces. As both carbon and glass fibers significantly enhance the
composite strength, the tool resistance is sensitively affected as a
consequence [23].

In this paper, the behavior of two TiAlN-based coatings while

cutting glass- and carbon fiber-reinforced polymers was in-
vestigated. Flank wear progression, friction and thermal con-
ductivity were measured and discussed relatively to the perfor-
mance of an available commercial CVD multilayered coating.

2. Experimental procedures

2.1. Composite specimens

The composite panels were firstly prepared at room tempera-
ture in ×400 400 mm mold using hand lay-up technique. The cure
cycle [24,25] for each used composite was adjusted so as to ensure
the best technical solution avoiding deflection of the panels during
cooling stage (Fig. 1a). Then, the panels were introduced in a press
molding machine to undergo the required cure cycle (Fig. 1b).

The prepregs were supplied by COMPOSITES DISTRIBUTION
GROUP (France). Table 1 summarizes the specifications of each
phase of both CFRP and GFRP studied materials. After cooling, the
panels were pre-trimmed using a diamond wheel to obtain the
testing specimen of × ×100 50 4 mm in dimensions. Clockwise
sense was considered to specify the fiber orientation with respect
of tool trajectory. Both wear and friction tests use the same spe-
cimen type.

2.2. Wear tests

A shaper machine (Model GSP-EL 136) of 5222 W maximum
power, 650 mm maximum stroke, and 100 mmin�1 maximum
speed was used for conducting wear tests. The capability of two
PVD TiAlN-based coatings was investigated and compared to a
referred CVD coating. All inserts, supplied by Sandvik Coromant
Group, have unique cutting geometry with rake and clearance
angles of 0° and 7°, respectively. The insert is lock-pinned on a
tool-holder of model STFCR 2525M 16-4 (ISO). Table 2 summarizes
the specifications of the three selected coatings. Wear tests were
however limited to the specimen of 45° fiber orientation since
cutting mechanisms in that configuration combines the most wear
modes encountered. That configuration is also assumed re-
presentative of the most severe conditions at tool-material inter-
face. The feed ( )f , depth of cut ( )ap , and cutting speed ( )Vc were
fixed to 0.3 mm, 4 mm, and 50 m min�1, respectively. Dry cutting
was ensured through consecutive edge trimming of the top side of

Fig. 1. (a) Press-molding machine, and (b) typical cure cycles used for the fabrication of the considered composites.
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the specimen up to a maximum cutting length ( )lc of 100 m, at
which dominating wear process becomes substantially invariable.
The feed is coordinately adjusted to the target value at each
trimming sequence of 0.12 s. A new insert is used to perform the
test series of each considered composites. The optical microscope
is employed to examine the worn tool surface at different stage of
cutting period.

2.3. Friction tests

In this work, friction tests were performed in order to assess
the apparent friction coefficient. The friction test inserts were
chosen to be cutting edge-free to prevent material removal while
the coating type was kept the same. Because of cost and time
consuming, the design of experiments was restricted to CVD
coating and only one PVD coating (Table 3). The coated pins are
cylindrical of 19.1 mm in diameter and 6 mm in effective width.
They are lock- pinned so as to prevent any free rotation of the pin
during sliding against the composite plate.

Sliding contact between the cylindrical insert and the top side
of the specimen results from the relative motion between the fixed
table and the shaper ram. Before each test, the top side of the
specimen was pre-trimmed to ensure the tool-plate interface to be
rectilinear. This ensures a continuous and constant contact pres-
sure during testing step. The fiber orientation ( )θ and applied
contact pressure ( )P are variables. The former was adjusted by
means of Kistler piezoelectric dynamometer (model 9255B) con-
nected to an acquisition device. The sliding speed ( )VS and contact
width ( )wc were adjusted to cutting speed and cutting feed used in
wear tests, respectively (Table 4). The tool-holder and pin-on-plate
system are illustrated in Fig. 2.

3. Results and discussion

3.1. GFRP cutting induced wear

The microscopic inspections performed on worn faces revealed

that flank wear commonly dominates upon the studied inserts
(Fig. 3). However, worn area and wear patterns observed on CVD
coatings were found neatly different from those observed on PVD
coatings. The wear mechanisms induced substantially due to
abrasive fibers, acts differently upon the coating layers because of
various coating properties. The rapid onset of irregular streaks on
the CVD coating reflects a hard abrasion that takes firstly place on
TiCN layer before reaching the cemented carbide substrate. While
the former coating exhibit discontinuous and randomly oriented
wear patterns (Fig. 3a–d), TiAlN–AlCrO PVD coating shows con-
tinuous streaks oriented parallel to the tool trajectory. This im-
plicitly refers to the abrasion mode operating on that PVD coating.
At early cutting stage (lcr50 m), the material removal still re-
mains localized throughout the outer coating layer made of AlCrO
(Fig. 3e–f). Once that layer was fully removed (lcZ50 m), the sharp
edges of cut fibers come into contact with the intermediate layer
made of TiAlN, which forces wear to progress toward the substrate
(Fig. 3g and h). The micrographs make it possible to distinguish
the substrate from the two coating constituents. After 1 min-
working period, the coating set completely fails and the damage
reaches the substrate. Besides, when abrasion develops close to
the tool-tip, erosion mechanisms extends along the frontiers of the
AlCrO layer (see Fig. 3g and h). The observations show fine cra-
tering throughout the worn area, which attributed to the adhesion
level between the two coating layers. It can be outlined that PVD
technique allows, mostly, better adhesion of coating phases to the
substrate, and to each other than CVD one. Following the specifi-
cations of the supplier, TiAlN–AlCrO and TiN–TiAlN PVD coatings
are classified as with 'medium' and 'high' adhesion, respectively. It
appears that adhesion of TiAlN–AlCrO to the substrate is not high
enough to efficiently resist the action of abrasive glass fibers.
However, adhesion between the two coating layers seems to be so
enough so that to reduce wear to a local cratering mechanisms
acting in TiAlN intermediate layer. The relatively good adhesion at
TiAlN/AlCrO interfaces is essentially attributed to the ultra-fine
grains constituting the coating layers as mentioned in the coating
specifications. This grain grade is crucial for reaching a thickness of
2 mm in such a coating. The coating thickness has tendency to
increase with the grain number. An increase in grain number
through the thickness multiplies the interfaces at grain boundaries
which relatively alters adhesion quality and favors, in turn, pre-
mature degradation of the coating. Nevertheless, the deep streaks
observed on the CVD worn land result practically in the relatively
coarse grains forming the coating layers. As obvious, the failure of
grain boundaries is neatly more probable than breaking-up a grain
itself. Unexpectedly, the TiAlN–AlCrO coated insert exhibited good
ability to produce neat GFRP surfaces in spite of its high vulner-
ability to degradation. From observations, it was revealed that the
former has the sharpest cutting edge as compared to the other
considered inserts.

Even if abrasion mode acts also upon the TiN–TiAlN coating, it
exhibits slower progression than the other used coatings. The
good adhesion property of TiN [16] plays a great role in resisting

Table 1
Specifications of material constituents used in specimen preparation.

Propriety GFRP CFRP

Prepreg Mass nominal 1418 g m�2 923 m�2

Pressure 0.3–3 bar 0.3–5 bar
Ply thickness 0.742 mm 0.6 mm

Matrix Type Epoxy BE M10 Epoxy M9.6G
Glass transition temperature (Tg) 120 °C 120 °C
Density 1.2 g cm�3 1.2 cm�3

Volume fraction 29.5% 35%
Fiber Type Glass E 2400 Carbon Panex 35

Density 2.6 g cm�3 1.81 g cm�3

Nominal mass 1000 g m�2 600 g m�2

Table 2
Design of experiments for wear analysis, and thermal conductivity measurements.

Nuances used Designation Substrate Coating Mode Composition
Type Thickness

TCMT16T308 UF4215 WC-Co 14.5–17.5 mm CVD TiCN–Al2O3–TiN
TCMT16T308 GC1115 WC-Co 2 mm PVD TiAlN–AlCrO
TCMT16T308 GC2030 WC-Co 2 mm PVD TiN–TiAlN
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wear development. From the micrographs of Fig. 3i–l, the TiN
intermediate layer shows relatively narrow worn area while the
top TiAlN layer undergoes early material removal owing to severe
abrasion. Contrary to the two other inserts, the TiAlN layer suc-
ceeds at preventing wear to penetrate into the following coating
to the detriment of wide superficial worn area, up to cutting
length approximating 25 m (micrograph of Fig. 3i). This patently
proves the ability of TiAlN to delocalize wear when operating in
aggressive contact conditions as governed by sharp glass fibers.
The intermediate layer i.e. TiN, however, demonstrates ability to
localize material removal at the maximum until advanced cutting
stage (Fig. 3l). By inspecting the TiN worn area, it was noticed
that material removal doesn't evolve perfectly linearly versus
cutting period since the TiN worn area fraction ( Af ) increases
faster within 25–50 m than out of this domain. Nevertheless, it is
virtually certain that abrasion regime on the coating set fluc-
tuates from severe regular to severe irregular upon the two ex-
treme constituents i.e. the substrate and the top layer. However,

hard regular abrasion regime should describe quite better the
intermediate layer behavior.

3.2. CFRP cutting induced wear

As for CFRP cutting, abrasion still remains dominating the flank
wear upon all the used coatings. The examination of CVD coating
reveals more vulnerability of TiN layer against CFRP than against
GFRP. The top layer is released so early so as to transfer rapidly
wear to the intermediate layer made of Al2O3. The former under-
goes hard abrasion resulting in regular and pronounced wear
patterns that appear as soon as cutting starts (Fig. 4a). The ex-
amination of worn CVD inserts reveals that CFRP cutting induces
flank wear values of approximately 1.5 to 1.8 times higher than
GFRP cutting while lc ranges in 25–100 m.

However, the abrasion mode acting particularly on alumina
phase switches from discontinuous irregular (Fig. 3a–d) to con-
tinuous regular (Fig. 4a–d), when the cut structure changes from
GFRP to CFRP, respectively. When operating with CVD coating
against CFRP, the substrate stands out because of the failure of
fully coating set, at approximately 60 s cutting period.

While TiAlN–AlCrO (PVD) and TiCN–Al2O3–TiN (CVD) inserts
show comparable worn area, the PVD coating constituents' seem to
remove faster. The substrate emerges at early cutting stage (Fig. 4e).
The TiAlN intermediate layer emerges also early through the top
layer. This was mainly attributed to local cratering owing to fibers

Table 3
Design of experiments considered for friction analysis.

Nuances Designation Substrate Coating Mode Composition
Type Thickness

TCMT16T308 UF4215 WC-Co 14.5–17.5 mm CVD TiCN–Al2O3–TiN
TCMT16T308 GC1115 WC-Co 2 mm PVD TiAlN–AlCrO

Table 4
Experimental parameters considered for friction tests.

Composite ( )θ ° ( )−P N mm 1 ( )−V m minS
1 ( )w mmc

GFRP, CFRP 0–90 100–600 50 4

Fig. 2. Experimental set-up used for friction study. (a) Main machine parts, and (b) testing configuration.
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spring-back that acts directly on the AlCrO top layer, and capable for
uncovering the TiAlN sub-layer. Unlike to GFRP cutting tests, CFRP
cutting tests lead to approximately same worn area upon the two

PVD coatings (Fig. 4i–l). However, it was found that wear mechan-
isms dominating the coating behavior upon TiN–TiAlN are, from one
hand, (i) more severe, and, from the other hand, (ii) different to those

Fig. 3. Optical micrographs of worn inserts vs. cutting length obtained from GFRP cutting tests θ( = °)45 .
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observed on TiAlN–AlCrO. In fact, material pulls out through the
TiAlN top layer, and the cutter edge rounds-off along the substrate
(Fig. 4k–l). This results, in turn, in relatively neat different worn area
fractions of TiAlN phase in the two PVD inserts.

3.3. Effect of TiAlN "location" in wear progression

The relative good property of TiAlN offers, actually, valuable
solution for dry cutting applications. Cutting of heterogeneous

Fig. 4. Optical micrographs of worn inserts vs. cutting length obtained from CFRP cutting tests θ( = °)45 .
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materials such as unidirectional composite structures is among the
primary beneficiaries. As a summary, Table 5 emphasizes the wear
variation induced upon TiAlN layer due to cutting of both GFRP
and CFRP composites, when it changes location from intermediate
(TiAlN–AlCrO) to top (TiN–TiAlN).

� TiAlN vs. GFRP
When TiAlN layer changes location from intermediate to top,
abrasion mechanisms dominating material removal process
switches from hard to severe, respectively (Table 5). Wear
patterns, besides, transform from regular to irregular, respec-
tively. It is worth noting that hard abrasion at intermediate
location combines with fine cratering. The former refers to a
potential local material removal of the top coating layer because
of resistance of TiAlN/AlCrO interface to progressive failure. As a
top layer, TiAlN suffers from fiber spring-back resulting in
variable streak depth. Although the TiAlN flank wear ( )VB values

developed at the two locations are very close = ≈
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟r 0.93VB

GFRP
VBint

GFRP

VBtop
GFRP

,

the worn area fraction ( )=A t r.f VB calculated at intermediate
location is found, however, about 3 times low-

er = ≈
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r 0.3A

GFRP A

Af

f int
GFRP

f top
GFRP than that obtained at the top location

(Fig. 5a), where t is the composite plate thickness. At top
location, hence, such a layer acts to delay, at maximum, wear to
reaching the intermediate layer as practically observed in TiN–
TiAlN insert. As for intermediate location, it exhibited the
shallowest and closest worn area which reflects its ability to
moderate wear progression (i) firstly, by dissipating abrasion
actions progressing from the top layer, and (ii) secondly, by
delaying, accordingly, the substrate to enter into contact with
the cut fibers.

� TiAlN vs. CFRP
The most significant transformation in wear behavior of TiAlN

was detected during cutting of CFRP. Abrasion mechanisms was

found able to pass from mild to severe regime when TiAlN changes
location from intermediate to top. Additionally, typical material
removal takes place upon that coating layer at top location (Ta-
ble 5). The CFRP cutting tests yield TiAlN wear tendencies opposite
to those obtained in GFRP cutting tests: The worn area fraction
calculated for intermediate location increases from ∼9% to ∼17%
while it decreases from ∼31% to ∼10% for top location while
composite plate changes from GFRP to CFRP (Fig. 5b). Here, TiAlN
flank wear measured at the intermediate location is approximately

twice that measured at the top one, = ≈
⎛
⎝⎜

⎞
⎠⎟r 2V

CFRP V

VB

Bint
CFRP

Btop
CFRP . Unlike to

GFRP cutting case, the ratio between the worn area fractions re-
sulting in CFRP cutting keeps roughly same value

= ≈
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r 1.8A

CFRP A

Af

f int
CFRP

f top
CFRP . It was found that flank wear and worn area

fractions of TiAlN constituent obtained at GFRP cutting can be,
respectively, related to those obtained at CFRP cutting. From ex-
perimental findings, the following relationships were especially
deduced at 100 m cutting length:

= ( )r r
1
2 1V

GFRP
V
CFRP

B B

= ( )
−⎡⎣ ⎤⎦r r

1
2 2A

GFRP
A
CFRP 1

f f

Irrespective to the insert used, the WC-Co substrate exhibits
the most area fraction against CFRP because of relatively rapid
removal of superior coating layers. Once these former fully dis-
appear, the fibers enter in contact with the substrate allowing
hence abrasion to develop within the active zone. In the case
where the TiAlN layer occupies the intermediate location, the
coating set shows better performance in protecting the substrate
against GFRP than against CFRP. In fact, the coating set was found
able for dissipating more than 80% of generated wear

( )= +A A Af f fCoat top int when operating face to GFRP composite

Table 5
Wear modes dominating material removal process upon considered coatings. * refers to wear modes over TiAlN.

Material Coating type Constituent 1st Intermediate layer 2nd Intermediate layer Top layer
Substrate

GFRP TiCN–Al2O3–TiN Mild abrasion Hard abrasion/irregular cratering Mild abrasion
TiAlN–AlCrO Mild regular abrasion Hard regular abrasion/ fine cratering* – Erosion dominant
TiN–TiAlN Severe regular abrasion Hard regular abrasion – Severe irregular abrasion*

CFRP TiCN–Al2O3–TiN Hard abrasion Mild abrasion Hard regular abrasion Mild abrasion
TiAlN–AlCrO Hard-to-severe abrasion Mild-to-hard abrasion* – Mild abrasion/'local cratering'
TiN–TiAlN Severe abrasion/edge wear Severe abrasion – Severe abrasion/material removal*

Fig. 5. Worn area fraction measured upon coating layers of each PVD insert at =l 100 mc . (a) GFRP cutting tests, and (b) CFRP cutting tests.
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compared to only 29% face to CFRP. The same conclusion might be
outlined when TiAlN occupies the top layer since the whole
coating area fractions ( )−Af Coat obtained in cutting GFRP and CFRP
are, respectively, 55% and 24%. This indicates the high vulnerability
of PVD coating to resist the carbon fiber aggressiveness.

3.4. Flank wear rate

Fig. 6a and b show the maximum flank wear measured over the
studied inserts. From tendencies, it is easily to distinguish the ty-
pical behavior of TiAlN–AlCrO versus GFRP if compared to the two
other coatings.

The wear rate, =W V
t

Bmax

c
where tc is the cutting lifetime, re-

sulting from CFRP cutting tests was intentionally calculated for
investigating the resistance to wear of the three inserts. The ob-
tained values of W show very close behavior between CVD and
PVD insert. The wear rate is virtually constant for the three coated
inserts since the values range in 0.0015–0.0017 mm s�1. The dis-
crepancies were, however, found significantly larger when the
inserts operates versus GFRP since W exhibits wide variation
range i.e. 0.0006–0.0036 mm s�1. Referring to the former values,

TiAlN–AlCrO coating records a wear rate versus GFRP of about two
times higher than the rate obtained versus CFRP. This reflects, in
turn, the vulnerability of such a coating set because of a premature
failure of the top layer by effect of erosion. The CVD and TiN–TiAlN
PVD coatings proved better efficiency to resist the wear progres-
sion within the cutting period.

3.5. Apparent friction maps

A tribological test reflecting the real technical configuration
was proposed for investigating the reliability of multilayer coat-
ings in cutting unidirectional fiber-reinforced composite struc-
tures. The TiAlN–AlCrO PVD coating behavior was especially
compared to the CVD coating behavior. Fig. 7 shows the apparent
friction maps versus both applied pressure and fiber orientation,
built for the aforementioned inserts.

The measurements performed for GFRP plates using the two
coating types lead to comparable plots (Fig. 7a and e). The ap-
parent friction coefficient was found more sensitive to fiber or-
ientation than pressure since μap exhibits a non-linear behavior
versus θ marking thus an inflection transition about 45° along all
pressure range. The friction values are as high as θ and P are high.
However, the variation gap appears more significant versus fiber
orientation. The highest friction values were recorded within 60–
90°. In such an orientation range, the number of cut fibers in
contact with the tool is relatively high which explains, in part, the
rise observed in apparent friction. However, 0°-fiber orientation
shows the lowest values because the fiber circumferential surface
favors sliding while fiber cut sections enhances adherence.

While CVD-on-CFRP tests (Fig. 7b) yield a tendency roughly
similar to those obtained on GFRP, the PVD-on-CFRP tests (Fig. 7f)
doesn't lead to a so neat similitude with the map shown in Fig. 7b.
It is worth noting that friction resulting in PVD coating fluctuates
in larger ranges irrespective to fiber type (Table 6).

The friction range owing to PVD-on-GFRP tests records an en-
largement of about 9.5% while PVD-on-CFRP tests lead to a three
times higher percentage, namely 27.3% (Fig. 7g and h). The sensi-
tivity of friction interval to the coating type can be respectively
expressed for the two studied composite as,

μ μ= ( )−
+

3ap
PVD

ap
CVD

0.051
0.044

GFRP GFRP

μ μ= ( )−
+

4ap
PVD

ap
CVD

0.131
0.142

CFRP CFRP

where μap
j

i
is the apparent friction for a specified deposition mode i

and specified composite material j.
Thus, the PVD coating looks more beneficial for cutting low

fiber oriented structures regardless the fiber type and pressure. At
relatively high fiber orientations, the CVD coating overcomes the
PVD one (see Fig. 7c and d). This was essentially attributed to the
further vulnerability of PVD coating against cut fibers acting in
block for generating premature removal of coating layers. It should
be mentioned, moreover, that PVD deposited layers are 7 to
9 times thinner than CVD deposited one which expose them to
higher failure risk although their better adhesion to the substrate.

3.6. Thermal conductivity

AFM (DIMENSION Edge Veeco) was employed to analyze the
thermal conductivity of both new and worn inserts by means of
scratch test [2,16]. The test uses a thermal probe type VITA-DM-
GLA-1 of 150 μm in length as a resistive heater for scanning active
zone of coated insert. During analysis, the temperature of the
probe was kept constant by dint of an electric voltage adjustment

Fig. 6. Flank wear measured upon considered inserts ( )θ = °45 . (a) GFRP wear tests,
and (b) CFRP wear tests.
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Fig. 7. Typical friction maps and friction evolutions obtained upon GFRP, and CFRP (SD: 0.08670.03). (a–d) CVD coating response, (e–f) PVD coating response.
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[26–28]. As heat flow throughout the probe/insert interface is
sensitive to thermal conductivity ( )λ variation, the scan area was
kept constant for all the analyzed inserts. Any variation in λ in-
duces fluctuations in the output voltage. Contrast mode imaging
analysis lead to deduce the thermal conductivity value as the
average of the all data points to be measured throughout the
scanned area. For comparison purposes, the measured λ-values
were intentionally reported to the thermal conductivity measured
upon glass/epoxy prepreg, using same methodology.

At new state, the three studied inserts commonly show higher
relative thermal conductivity than that obtained at worn state
(Fig. 8). In fact, there is no appreciable difference between thermal
conductivities of the two PVD coatings at the new state. As ob-
vious, the measured values at new state refer to the thermal
conductivities of the top layer. The λ-values fall by approximately
50% after 120 s working period whatever the fiber type. This en-
tails that wear process dominates the structure effect as for ther-
mal conductivity variation.

As a proof, it was typically mentioned in open literature that
λTiN is relatively higher than λTiAlN [29] which fits to the obtained
results upon new inserts. A part of the lost coating, as particles or
debris because of wear mechanisms, will be transferred to the
composite cut area. This should play, somehow, to vary likely the
thermal properties of the composite constituents [2]. In this case,
the cut composite acts as thermal dissipater face to coating layer
which explains, in some way, the drop in the thermal conductivity
values observed upon all the studied inserts.

4. Conclusions

This paper addressed the reliability of typical TiAlN-based PVD
coatings in cutting FRP composites. Wear and friction tests were
performed in order to highlight, respectively, the material removal

process and friction evolution versus testing conditions. The
coating efficiency versus both glass/epoxy and carbon/epoxy was
sensitively reported to the TiAlN layer location within the coating
set. From experimental findings, the following conclusions can be
drawn:

� While abrasion dominates wear upon CVD coating regardless
the fiber type, it shows more vulnerability in cutting GFRP than
in cutting CFRP. TiN top layer fails much earlier versus CFRP so
as to transfer rapidly wear to Al2O3 intermediate layer.

� Unlike GFRP cutting tests, CFRP cutting tests yield so similar
worn area upon both the TiN–TiAlN and TiAlN–AlCrO coatings
while the former exhibits less severe wear mechanisms. As in-
termediate layer, TiAlN emerged early through the AlCrO top
layer due to local cratering resulting in carbon fiber spring-back.

� The location of TiAlN within the PVD coating is of great role in
controlling wear. Although it suffers from damage involved by
the effect of fiber spring-back, such a layer acts in top location to
delay at maximum the progression of in-depth wear face to
GFRP. As intermediate layer, it plays to dissipate glass fiber in-
duced abrasion progressing from the top layer, which delays,
hence, the substrate failure. At that location, the entire coating
set shows better efficiency in protecting the substrate against
GFRP than against CFRP since it dissipates the most glass fiber
induced wear as compared to carbon fiber induced one. This
indicates the particular sensitivity of PVD coating to carbon fi-
ber aggressiveness.

� The results of tribological tests revealed an extension of about
9.5% in PVD-on-GFRP friction range and 27.3% in PVD-on-CFRP,
as compared to tests conducted, respectively, using CVD coating.
PVD coating was found more beneficial at low fiber orientations
irrespective to fiber type and pressure. However, PVD coatings
exhibit vulnerability at higher orientations where cut fibers acts
in package for enhancing premature coating damage.
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