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Abstract

All the methods which estimate the unperturbed �uid �ow velocity relying on particle suspensions

address the same question: How can the �uid velocity be computed measuring the particles trajec-

tory and/or their velocities? The tracking of a few large density-mismatched particles is here used

to e�ciently and accurately reconstruct the background �uid �ow. Approximating the particulate

phase space and taking the limit of vanishing Stokes number St → 0, we retrieve the background

�ow for three test cases: a shear �ow near a wall, a rigid-body vortex, and a strained vortex. The

major advantages and the potentials of this approach are discussed in the end, highlighting how to

overcome the classic shortcomings of experimental measurements faced for near-boundaries particle

tracking.

∗ Email: frromano@umich.edu
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I. INTRODUCTION

Particle-laden �ows consist of a dispersed phase made of rigid particles immersed in a

continuous �uid phase. The relevance of this class of multiphase �ows is readily understood

considering that several natural phenomena (e.g. debris �ows, [1], or transport of red blood

cells, [2]) and industrial applications (e.g. aerosol technology, [3], or combustion, [4]) involve

particle suspensions over a very wide range of scales.

The understanding, prediction and control of particle-laden �ows is best achieved knowing

the background �ow, i.e. the �uid �ow in the absence of the particulate phase. This becomes

even more important when dilute suspensions are considered, and the motion of the particles

is strongly correlated to the background �ow and weakly correlated to collective e�ects [5, 6].

Moreover, the reconstruction of the unperturbed �ow �eld in presence of the particulate

phase is the goal of measurement techniques such as particle image velocimetry (PIV and

µPIV, [7]) and particle tracking velocimetry [8].

The motion of a particle immersed in a �uid �ow depends on the velocity of the �uid, on

the presence of boundaries (walls, free surfaces, other particles, see [9, 10]), and on particle

parameters which relate the shape, density and size of the particle to characteristic lengths,

densities and time scales of the background �ow [11]. Apart from very theoretical cases,

the particle trajectory di�ers from the pathline of a tracer initialized at the same location

and with the same velocity. This concept is best highlighted by considering the motion

of a particle in an incompressible two-dimensional steady �ow. In fact, the particulate

dynamical system is intrinsically dissipative, whereas the �uid �ow is a Hamiltonian system,

where the Hamiltonian coincides with the streamfunction. One major consequence is the

particle dynamics can admit attractors and repellors, while a corresponding tracer cannot

[12]. Such considerations further extend to time-periodic two-dimensional and steady three-

dimensional �uid �ows, which are the analogous of a piecewise Hamiltonian system with 1.5

degrees of freedom [13].

The characterization of the dynamical properties of the particulate system immersed in

a turbulent �uid �ow has been studied by [14�16] using a point-particle model based on

the Maxey�Riley equation [17]. They showed that the particle inertia induces preferential

concentrations for the particles, and the characterization of the statistical and dynamical

properties of the particulate system can be done in terms of the particle size, the particle-to-
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�uid density ratio and the properties of the background �ow. More recent investigations have

considered the e�ect of �nite-size particles which interact with the smallest active scales of a

turbulent �ow (i.e. the Kolmogorov scale, see e.g. [18�23] for experimental and theoretical

studies). In this case the particle motion and the �uid �ow are strongly a�ected by their

mutual interactions, and an explicit equation which models the particle dynamics is not

available. Hence, several numerical methodologies with di�erent degrees of approximation

have been developed to take into account the coupling between the two phases (see e.g.

[24, 25]), and in the recent years di�erent approaches have been proposed to reconstruct the

undisturbed �uid �ow for two-way coupled Euler-Lagrangian simulation (see e.g. [26�29]).

For a review of mixed particles in developed turbulence and of particle-modulated turbulent

�ows we refer to [30]. Particle suspensions are, however, also used in laminar �ows and

especially in micro�uidics, and in such low-Reynolds-numbers �ows the relevant �ow scale

cannot be identi�ed by Kolmogorov scaling. Hence, in the followings, we will address as large

particles all those particles whose size ap (equivalent radius) is comparable to the length scale

of the background �ow L which we want to reconstruct, i.e. ap = O(10−2 − 100)L.

An important parameter for particle-laden �ows is the Stokes number, de�ned as St =

2Reρpa
2
p/9ρfL

2, where ρp and ρf are the density of the particle and of the �uid, respectively,

ap is the radius of the particle, L the characteristic length scale of the �uid �ow, Re = UL/ν

is the Reynolds number of the unperturbed �ow and ν the kinematic viscosity of the �uid.

The limit for St → 0 leads the particle to behave like a tracer, hence the particle velocity

becomes a direct measure of the background �uid �ow. Following the classic experimental

approach, i.e. employing smaller and smaller particles (better if density matched to the

�uid), has major experimental shortcomings. In fact, there are technological limitations

in accurately tracking very small particles, and the smaller the particle, the harder and

inaccurate the tracking. Thereafter, particle�boundary interactions strongly in�uence the

particle trajectories at distance O(ap) from the boundary [31, 32]. As a result, near a wall

or a free surface, the particle velocity remarkably deviates from the velocity of the �uid.

Moreover, even for conditions in which almost-tracer particles can be accurately tracked,

employing very small particles requires a very expensive experimental apparatus.

In this paper, we propose to exploit the dissipative e�ects related to the particle �nite

size and the particle-to-�uid density and velocity mismatch in order to e�ciently reconstruct

the background �ow. Rather than following the approach St ≈ 0 by employing smaller and
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smaller particles with the same Stokes number, we reconstruct the particle phase space for

�nite-size (even relatively large) particles with di�erent Stokes numbers and then compute

the limit for St → 0 in the approximated phase space, constraining ρp/ρf to remain �nite

and not tend to zero. For three cases, it will be shown that very accurate estimates of

the �uid �ow velocity can be obtained, and that the di�culties of estimating the �uid �ow

velocity near the boundaries can be overcome.

Recalling that the Maxey�Riley equation has been used by [33] to study the e�ect of the

Faxén correction for �nite-size particles in turbulent �ows, we will employ this same particle

motion model to theoretically demonstrate the potential of our approach. The concept

at the basis of our study is however not limited by the use of the Maxey�Riley equation,

since the methodology we propose does not rely on it. Assuming the Maxey�Riley equation

as particle motion model, the �uid �ow velocity could be computed by solving an inverse

problem in which the particle trajectory is given and the �uid velocity is unknown. We

stress, however, that this is not the purpose of our paper and the Maxey�Riley equation is

employed just for demonstration purpose. The aim of this study is to propose an approach

to reconstruct the background �ow regardless of how the particle trajectories are numerically

or experimentally obtained. By only exploiting the tracer limit, our paper will demonstrate

how to reliably and accurately retrieve the background �ow by approximating the phase

space and taking the limit St→ 0. The only requirement of our approach is the assumption

that there are no phase-space catastrophes, i.e. the phase space subdomain employed in the

neighborhood of St = 0 to compute the limit St → 0 must be smooth enough. This is not

the case for caustics, i.e. singularities in the particle dynamics which imply that the phase

space manifold of the particulate �ow admits a fold [34]. Hence, the approach proposed in

this study is limited, in general, to St < O(1).

The remainder of this paper is structured as follows: Sec. II de�nes the mathematical

model, which is solved numerically as described in Sec. III. Section IV reports the results of

our study for the three �ows considered and discusses them. The conclusions are drawn in

Sec. V, pointing out the potentials of the current approach.
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II. PROBLEM FORMULATION

The motion of a rigid spherical particle in an incompressible �ow is modeled by a modi�ed

version of the Maxey�Riley equation [17], in which we include the force exerted by the

boundaries on the particle

ρp
dv

dt
=ρf

Du

Dt
+ (ρp − ρf) g −

9νρf

2a2p

v − u−
a2p

6
∇2u

− ρf

2

dv

dt
−

D

Dt

u +
a2p

10
∇2u



+ F b −
9ρf

2ap

√√√√ν

π

∫ t

0

1
√
t− τ

d

dτ

v − u−
a2p

6
∇2u

 dτ , (1)

where t is the time, v = (vx, vy) and u = (ux, uy) denote the velocity of the particle and of

the �uid, respectively, and g indicates the gravity acceleration. The rate of change of the

particle momentum is represented by the left-hand side of (1), whereas the right-hand side

includes: the force due to the background �ow, the buoyancy term, the Stokes drag, the

added mass, the particle�boundary interaction force F b, and the Basset history force. In

addition, the Faxén correction [35] is taken into account by the terms proportional to ap∇2u.

The e�ect of the particle rotation is neglected. The di�erent notations used for indicating

the material derivatives dt and Dt refer to the derivative along the particle trajectory

dA

dt
=
∂A

∂t
+ (v · ∇)A (2)

and along the �uid trajectory

DA

Dt
=
∂A

∂t
+ (u · ∇)A, (3)

where A denotes an arbitrary vector �eld and ∂t is the Eulerian derivative.

The interaction between a particle and a rigid wall is modeled assuming that, near the

boundary, the particle is immersed in a creeping �ow. Such an assumption holds true

if the particle Reynolds number, Rep = |u − v|ap/ν � 1, where u and v denote the

dimensional �uid �ow and particle velocity evaluated at the particle centroid. If we further

consider |u − v|a2p/νh, where h is the distance of the particle centroid from the wall, the

�ow around the particle is governed by Stokesian dynamics. Hence, it is described by a

linear momentum equation and di�erent contributions to the particle�wall interaction can be
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FIG. 1. (a) Force Fx exerted by the �uid on a steady particle in a creeping shear �ow near a steady

wall. Bullets: solution of [37]; solid line: cubic spline interpolant of the results reported in tab. 1 of

[37]. (a) Force Fx exerted by the �uid on a particle moving in a quiescient �ow near a steady wall.

Bullets: solution of [38]; solid line: cubic spline interpolant of the results reported in tab. 1 of [38].

superposed splitting the problem in three sub-problems. The boundary force F b = (Fx, Fy)

is computed by superposing: (a) the force on a particle moving towards a rigid wall, (b) the

force on a steady particle immersed in a near-wall shear �ow, and (c) the force on a particle

moving along a solid wall. For consistency with (1), the e�ect of the particle rotation is

neglected.

Case (a) gives rise to Fy, and an exact solution is reported in [36]

Fy

6πνρfapvy
=

4

3
sinhα

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)

 2 sinh(2n+ 1)α + (2n+ 1) sinh(2α)

4 sinh2(n+ 1/2)α− (2n+ 1)2 sinh2 α
− 1

 ,
(4)

where α = cosh−1(h/ap).

Cases (b) and (c) give rise to an Fx obtained by superposing the approximated solutions

by [37] and by [38] for case (b) and (c), respectively. Their results are here included in the

Maxey�Riley equation by interpolating tab. 1 of [37] and tab. 1 of [38] by cubic splines. The

result of the interpolations is depicted by solid lines in �g. 1, whereas the original data are

denoted by the bullets.

6



III. NUMERICAL SIMULATIONS

The Maxey�Riley equation is solved by means of the 4th-order Runge�Kutta, 3/8-rule.

The Basset-history term is discretized explicitly following the same approach of [39], where

the code has been validated. Throughout this paper, the time step is set equal to ∆t = 10−3

when dealing with unbounded �ows, and ∆t = 10−5 for particle trajectories near a wall.

The data obtained by tracking the particles are scattered in the particulate phase space,

hence, a meshless interpolant is required to numerically reconstruct a phase space approx-

imation. The reconstruction of the particulate phase space is carried out by using a mul-

tiquadratic radial basis interpolant. The radial basis functions φ(r) have as argument the

scalar radius r = ||x−xi||2 from the i-th coordinate to interpolate xi. We use a generalized

radial basis function interpolant fRBF (x) for approximating the multivariate function f(x).

This yields

fRBF (x) =
L∑
l=1

βlpl(x) +
N∑

n=1

λnφ(||x− xn||2), (5)

where N is the number of nodes to interpolate, pl are the elements of a hierarchical polyno-

mial functional basis usually employed to make the interpolant fRBF positive de�nite, and

L is the maximum order of the polynomials. The coe�cients βl and λn are found using the

matching conditions fRBF (xi) = f(xi) and imposing the following homogenous conditions

to constrain the interpolant:
∑N

n=1 λnpl(x) = 0, 1 ≤ l ≤ L. The multiquadratic functions

are de�ned as φ(r) =
√

1 + (r/σ)2, where σ is set equal to the average distance between the

nodes. In our study, L is set equal to 2.

IV. RESULTS AND DISCUSSION

A. Shear �ow near a wall

The �rst case we consider is a linear shear �ow near a rigid wall characterized by the

length scale H, initial distance of the particle centroid from the rigid wall, and the velocity

scale U , �uid �ow velocity at distance H from the wall. Scaling lengths, velocities and time

by H, U and H/U , the unperturbed �uid �ow velocity is u = (y, 0) (see inset of �g. 2(a)

and left panel of �g. 2(c)) and the non-dimensional Maxey�Riley equation for an initially
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velocity-matched particle reads

dv

dt
=

1

%+ 1/2

3

2

Du

Dt
−
%λ

St
(v − u) +

(%− 1)

Fr2
eg −

√√√√ 9%

2πSt

∫ t

0

1
√
t− τ

d

dτ
(v − u) dτ

 , (6)

where, eg = g/|g| = (0,−1), a = ap/H and u, v and t are now intended as non-dimensional

velocities and time. Beside %, St and Re, another non-dimensional group arises: the Froude

number Fr = U/
√
gH. In (6), the Faxén correction is identically null since ∇2u ≡ 0 and

the parameter λ is used to take into account the boundary-induced forces on the particle

due to its �nite size. We assume that the particle dynamics near the wall is dominated by

creeping �ow e�ects and the corresponding enhanced particle drag is taken into account as

explained in Sec. III. We further remark that no lift forces are included when considering

the Stokesian solutions of [36�38].

The trajectory of �ve relatively large particles is computed by numerical integration of (6)

and the Basset term is neglected in this �rst example. The �uid �ow parameters are Re = 1

and Fr2 ∈ {10−4, 10−5, 10−6}, and the �ve particles have (a, %) = (0.02, 0.5), (0.02, 2.5),

(0.03, 1.7), (0.04, 0.8) and (0.05, 1.05).

The smaller the Froude number, the larger the e�ect of gravity becomes, if compared to

the shear �ow velocity. Hence, for Fr2 = 10−6 the particle trajectory is strongly a�ected by

sedimentation e�ects and reconstructing the background �ow using large-particle trajectories

becomes very challenging. This is the case presented in �g. 2, where sedimenting particles

travel a longitudinal distance which is 200 times smaller than the traveled height, as shown

by the particle trajectories in �g. 2(a) and by the fast sedimentation velocity depicted in the

bottom panel of �g. 2(b). Analogous results for the larger-Froude-number cases are reported

in the Appendix.

The deviation between the velocity of the particle and the velocity of the �uid is depicted

in �g. 2(b). The top panel shows the relative deviation in terms of horizontal velocity,

the middle panel depicts the particle-to-�uid di�erence in x-velocity, and the bottom panel

shows the vertical velocity of the particle (we recall that uy ≡ 0). The major deviations

are observed for particles which approach the boundary. Near the wall, the in�nite-norm

of their relative deviation between longitudinal velocities is about 60% (see ∗ and � in the

top panel of �g. 2(b)). This makes very unreliable the near-boundary estimate of the �uid

velocity based on the particle velocity. Moreover it demonstrates the limitations of reducing

8



FIG. 2. (a) Particle trajectories and sketch of the background shear �ow. (b) Deviation of the

particle velocity from the �uid �ow velocity. (c) Fluid �ow velocity ux (arrows and dashed line),

approximation of the �uid �ow ũx (solid line), relative (+) and absolute (•) approximation error

(right panel) for the horizontal velocity. In (a) and (b), the markers depict: (a, %) = (0.02, 0.5), ◦,

(0.02, 2.5), �, (0.03, 1.7), ∗, (0.04, 0.8), 4, and (0.05, 1.05), ×. All the results refer to Fr2 = 10−6.

the particle size for reconstructing near-boundary �ows without taking the limit St → 0.

Indeed, halving the Stokes number by passing from a = 0.03 (∗) to a = 0.02 (�) brings the

in�nite-norm of the relative deviation in longitudinal velocity from 59% only to 48%.

Instead of relying on the tracking of a single particle which might approximate the �ow

relatively well, we rather reconstruct the shear �ow pro�le by approximation of the phase

space of the particulate dynamical system. Gathering the trajectories and the velocities of

all the �ve particles, we obtain a discrete characterization of vx in the hyperspace (St, %, y),

de�ned on scattered points. We then use multiquadratic radial basis functions to de�ne

an interpolant Vx(St, %, y) which considers St, % and y as coordinates and vx as function to

interpolate. The boundary condition along the wall vx(St→ 0, %, y = 0) = ux(y = 0) = 0 is
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�nally enforced when constructing the interpolant Vx by applying Vx(St→ 0, %, y = 0) = 0.

Computing the limit ũx = limSt→0
Vx(St, %, y) ≈ ux(y) leads to an approximation of the �uid

�ow velocity ux (arrows and dashed line in the left panel of �g. 2(c)). Such an approximation

is depicted as solid line in the left panel of �g. 2(c) for Fr2 = 10−6. The right panel of �g. 2(c)

shows the absolute and relative deviation of ũx from ux as function of y. Respectively, they

are at most about 1% and 4% even though only �ve particles have been used to approximate

the particle parameter space. We remark that the relative deviation in terms of longitudinal

velocity is one order of magnitude more accurate than what obtained by the single-particle

tracking of the smallest particle we used (for a = 0.02 the relative deviation is 48%). The

reconstruction of the shear �ow becomes more accurate for Fr2 = 10−5, for which ũx−ux and

(ũx− ux)/ux are, at most, 0.5% and 0.8%. Even better for Fr2 = 10−4, where max(ũx− ux)

and max((ũx − ux)/ux) are 0.15% and 0.23%.

B. Solid-body vortex

The second example we consider is a two-dimensional Kirchho� vortex. In this case we

include the Basset history force and neglect gravitational forces. Since the vortex is un-

bounded, F b ≡ 0. Lengths, velocities and time are scaled, respectively, by the characteristic

radius R of the vortical region to reconstruct, the characteristic velocity ΩR, where Ω is

the constant �ow vorticity, and by the characteristic time scale 1/Ω. The non-dimensional

velocity �eld is given by u = (ux, uy) = (y/2,−x/2) and the �uid �ow Reynolds number is

assumed to equal Re = ΩR2/ν = 1.

Only two particles are here employed to reconstruct the �uid �ow: one particle lighter

than the �uid (a, %) = (0.1, 0.8) is initialized at (x, y) = (−0.5, 0), the other, much heavier

than the �uid (a, %) = (0.2, 10), is initialized at (x, y) = (0.5, 0). These particle parameters

are chosen to exploit the inertial attraction/repulsion of the lighter/heavier particle to the

steady vortex core. Especially when a remarkable density mismatch is employed, the particle

experiences a pronounced spiraling motion which cannot be admitted by �uid elements. This

would be a drawback in the classic experimental approach for measuring the �ow velocity,

but it is here exploited to let the particle acting like a probe by moving away from the

initial streamline and reporting information about the �uid �ow in a broad region of the

�uid domain.
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FIG. 3. (a) Sketch of the background Kirchho� vortex. (b) Particle trajectories for (a, %) = (0.1, 0.8)

and (a, %) = (0.2, 10) (solid and dashed line, respectively), and streamlines (gray). (c) Absolute

approximation error, |ũ− u|. (d) Relative approximation error, |ũ− u|/|u|.

A sketch of the �uid �ow is reported in �g. 3(a); the spiraling-out (dashed line) and

spiraling-in (solid line) trajectories of our two particles are depicted �g. 3(b), together

with the �ow streamlines (gray). Based on the two particle trajectories, the hyperspace

in (St, %, x, y) is approximated by the interpolant V (St, %, x, y), which is the analogous

of Vx introduced above for the shear �ow near a wall. Once again, computing the limit

ũ = limSt→0
V (St, %, x, y) ≈ u(x, y) we construct an approximation of the �uid �ow. Even

if we challenge our approach making use of only two (relatively large) particles, the magni-

tude of the absolute (|ũ − u|, �g. 3(c)) and relative approximation error (|ũ − u|/|u|, �g.

3(d)) are always below 2.5%.
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FIG. 4. (a) Sketch of the background strained vortex. (b) Particle trajectories for (a, %) = (0.5, 0.7)

and (a, %) = (0.3, 6) (solid and dashed line, respectively), and streamlines (gray). (c) Absolute

approximation error, |ũ− u|.

C. Strained vortex

So far, only pure shear �ows have been reconstructed by approximation of the particulate

phase space. The last test case introduces a strain component, which is superposed to a

Kirchho� vortex leading to the �uid velocity u = (ux, uy) = (y/2 + 0.3x,−x/2− 0.3y), see

�g. 4(a). Two very large particles are initialized velocity-matched to the �uid �ow at (x, y) =

(0.5, 0): one of them lighter than the �uid (a, %) = (0.5, 0.7), the other one heavier (a, %) =

(0.3, 6). Their trajectories are reported in �g. 4(b) using solid and dashed line, respectively.

The background �ow streamlines are depicted by gray contours. Making use of the two

particle trajectories, the hyperspace in (St, %, x, y) is interpolated with multiquadratic radial
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basis functions leading to V (St, %, x, y). The reconstruction of the �uid �ow is carried out

by taking the limit ũ = limSt→0
V (St, %, x, y) ≈ u(x, y). Even if the tracked particles

remarkably deviate from the conceptual limit of perfect tracers, our reconstruction of the

�uid �ow deviates from the actual background �ow of, at most, 3.5% in relative (|ũ−u|/|u|,

not shown) and absolute error (|ũ− u|, �g. 4(c)).

V. CONCLUSION

Tracking a few large particles in three di�erent background �ows, we demonstrated that

the �uid �ow velocity can accurately be reconstructed by approximating the particulate

phase space and taking the limit St→ 0. This approach is essentially di�erent from approx-

imating the �uid �ow velocity by using small, but �nite-size particles (St � 1) of almost

the same St and %, as typically done in experimental �ow measurements. In fact, combining

the trajectories of particles with di�erent St allows to approximate the particle velocity in

the hyperspace (St, %, ...,x) and taking the limit St → 0 allows to get rid of �nite-size and

inertial e�ects. Moreover, in the tracer limit, boundary e�ects vanish (limSt→0
F b = 0) and

we can rigorously enforce the �uid �ow boundary conditions along the walls, overcoming the

usual limitations of experimental particle measurements near the boundaries.

A further advantage of our approach arises when dilute polydisperse suspensions of large

particles are considered. In this case, if the particles are tracked for reasons independent of

the reconstruction of the background �ow, our approach allows to e�ciently and accurately

retrieve the unperturbed �uid �ow without any additional experimental measurement. We

stress that assuming that the unperturbed �ow velocity is well approximated by the large-

particle velocity would not be accurate. Approximating the phase space and taking the

asymptotic limit St → 0 are therefore required steps for an accurate reconstruction of the

background �ow.

A similar approach can also be employed for two- and four-way coupled simulations, as

well as for fully-resolved simulations. In fact, the methodology here proposed does not rely

on a speci�c particle motion model, but only requires that the tracer limit is recovered when

St→ 0. Limitations in terms of the particle volume ratio apply.

Moreover, our approach is straightforward to extend to time-dependent �ows by includ-

ing t among the coordinates of the particulate phase space. This method consists only of
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instantaneous characterizations of the phase space, and can therefore be used for �uctuating

�ows by carrying out the phase-space approximation and taking the limit for St → 0 at

each instant of time. Hence, also turbulent �ow measurement techniques can bene�t from

it. When experimental uncertainties are considered, the accuracy of the phase space re-

construction will be a�ected by them, leading to a worse approximation of the interpolant

V (St, %, x, y, ...) the larger the errorbar in St, %, etc. We moreover point out that our ap-

proach is more sensitive to errors committed for small-Stokes-number particles since their

trajectories are more in�uential when taking the limit St → 0. We however stress that

the method has been proven robust to the reconstruction of the phase space by means of

large particles, which are normally a�ected by lower relative measurement errors. Finally,

our approach can be used for modeling the particle�boundary interaction forces starting

from experimental particle tracking: Computing ũ = limSt→0
V (St, %, x, y) ≈ u(x, y), and

measuring v(t) and x(t), one can plug them in (1) to retrieve F b.

Appendix A: Near-wall shear �ow: Fr2 = 10−4 and Fr2 = 10−5

The �uid �ow reconstruction for Froude number Fr2 = 10−4 and Fr2 = 10−5 is reported

in �g. 5. Its panels are organized using the same template employed for Fr2 = 10−6. We

stress that changing Fr is not a viable option for experimental measurements since it implies

a change of H or U . For this reason we treated Fr as a given constant and did not include

it among the coordinates of the hyperspace to interpolate, even if the reconstruction of the

particulate phase space would bene�t from using Fr as a variable.
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