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Abstract—Internet of Things (IoT) devices participate in an
open and distributed perception layer, with vulnerability to cyber
attacks becoming a key concern for data privacy and service
availability. The perception layer provides a unique challenge for
intrusion detection where resources are constrained and networks
are distributed. An additional challenge is that IoT networks are a
continuous non-stationary data stream that, due to their variable
nature, are likely to experience concept drift. This research aimed
to review the practical applications of online machine learning
methods for IoT network intrusion detection, to answer the
question if a resource efficient architecture can be provided?
An online learning architecture is introduced, with related IDS
approaches reviewed and evaluated. Online learning provides a
potential memory and time efficient architecture that can adapt to
concept drift and perform anomaly detection, providing solutions
for the resource constrained and distributed IoT perception layer.
Future research should focus on addressing class imbalance in
the data streams to ensure that minority attack classes are not
missed.

Index Terms—Internet of Things, Intrusion Detection, Online
Machine Learning, Concept Drift, Anomaly Detection

I. INTRODUCTION

The open and distributed architecture of Internet of Things
(IoT) devices makes them vulnerable to both active and passive
cyber attacks affecting the data privacy and availability of
these services [1], [2]. Intrusion Detections Systems (IDS) are
capable of both host and network based monitoring of cyber
attacks [3]. IDS perform detection in several ways: misuse
detection involves monitoring for known attack signatures;
anomaly detection involves monitoring for deviations from
known behaviour, enabling detection of unseen or zero day
attacks; hybrid detection is a combination of misuse and
anomaly detection [3]. Machine Learning (ML) techniques
have been applied across all of the aforementioned detection
methods [3]. IoT presents a unique challenge compared to
traditional applications of IDS in so much that devices or
sensors are constrained in performance capability and com-
municate over distributed, low power networking technolo-
gies, known as a perception layer, as described in [1] and
[2]. Data gathered from the perception layer is transported
to a back end application layer via a transportation layer
consisting of traditional IP networking technologies [1], [2].

Machine Learning typically requires substantial computational
resources to complete continuous testing and training of the
model, this is a challenge within the perception layer where
these resources are scarce [2], and requires consideration of
IDS deployment architecture which, when centralised will
become a single point of failure, with a distributed or hybrid
architecture being preferred to ensure coverage [1], [2].

Communication at the perception layer and onwards via the
transport layer, can be considered to be a continuous data
stream which has no end [4]. ML methods map the posterior
probability: p(y|X), of a predicted class (y) given an observed
feature (X). Given the variable nature of networks within the
perception layer [1] and the possibility of new attacks, the
data stream can be considered to be non-stationary whereby
the posterior probability will change over time, degrading
performance, this is known as real concept drift [5]. Signature
based and offline trained IDS models cannot cope with concept
drift, making necessary the use of online adaptive ML methods
to ensure new concepts can be effectively learned and any
loss in performance mitigated. A common challenge between
IoT environments and online learning is resource constraints,
where memory and processing time need to be effectively
managed [1], [2], [5]. The aim of this research is to review the
practical applications of online ML methods to IoT network
intrusion detection, to answer the question of do online ML
techniques provide a resource efficient architecture for IoT
intrusion detection? The primary contribution of this research
is the demonstration of practical online learning techniques to
solve the resource constraints of the IoT perception layer for
intrusion detection.

The remainder of this paper is organised as follows: section
II, introduces the necessary architecture for online learning;
section III, discusses online IDS approaches presented in
related studies; section IV, provides evaluation results of
informed and unsupervised approaches for IDS; section V,
discusses how online learning can provide a resource effi-
cient architecture for IoT intrusion detection; and section VI,
presents conclusions.



II. ONLINE LEARNING ARCHITECTURE

Traditional IDS ML studies focus on offline batch learning
[3], [6], whereby the model is trained and tested using all of
the data set at once. Failure to update the model over time
to adapt to concept drift will result in degradation of perfor-
mance as demonstrated by [7]. Online learning necessitates
that each data item can only be processed once, requiring
incremental or interleaved-test-then-train evaluation, whereby
a model is tested and then trained once on each individual
unseen data item within the stream to facilitate loss estimation
[5]. Evaluation of online algorithms requires measurement of
performance loss, time complexity and memory consumption
over time [5], [8].

An example online learning architecture is given in fig. 1.
The components of which are briefly discussed below:

• Forgetting Mechanism: allows for management of the
model’s memory footprint by implementing a sliding
window or fading factor so that only most relevant
examples are remembered [5].

• Classifier: implements an interleaved test-then-train eval-
uation, estimating loss based on testing new observations
[5].

• Change Detector: detects concept drift by either moni-
toring the change in distribution of a detection window
or using statistical techniques to monitor changes in loss
estimation, referred to as statistical process control (SPC)
[5]. When change is detected, a warning or change signal
is sent to the classifier based on predefined thresholds to
signal training data collection and retraining [5], [9].

Fig. 1. Online Learning Architecture

III. ONLINE IDS APPROACHES

Whilst broader studies have covered application of online
techniques to varying use cases [8], there are fewer complete
examples for IDS. In this section more recent studies are
introduced and briefly evaluated covering the areas of semi-
supervised, informed, and unsupervised approaches.

A. Semi-Supervised Approaches

The highly variable and distributed nature of IoT networks
means that data labeling is an expensive task, requiring human
expertise. The aim of semi-supervised approaches is to detect
concept drift with the minimal amount of labeled data [10],
[11]. Incremental Intrusion Detector (ISF-NIDS) [10] performs
unsupervised clustering combined with a supervised cluster

adjustment (CA) algorithm, achieving a recall of 85% and
false alarm rate (FAR) of 0.9% against the KDD Cup 1999
data set, when using 20% labeled data. Time complexity is
given as O(n) for the online clustering phase [10].

Margin Density Drift Detector (MD3) [11], allows for con-
cept drift detection to occur based on unsupervised monitoring
of the uncertainty margin of SVM or random subspace of
ensemble classifiers, using labeled data only to confirm a
suspected concept drift. Combined with an ensemble classi-
fication approach, an accuracy of 89%, using 7.9% labeled
data was demonstrated with the NSL-KDD data set. Based on
the algorithm presented in [11], the time complexity of MD3
is O(n).

B. Informed Approaches

Informed methods make use of a separate change detec-
tion algorithm to decide when to collect training data and
retrain the model, allowing for faster adaptation to concept
drifts [5]. MD3 is an example of a novel informed ap-
proach [11]. Informed approaches can be model independent
whereby the change detector is separate to the classification
model, as demonstrated by the concept drift based ensemble
incremental learning intrusion detection (CDIL) method for
data streams [4]. Drift Detection Method with Hoeffding’s
Inequality (HDDM), an SPC based change detector, is com-
bined with master and standby ensemble classifier models,
determining when to train and replace the models to adapt
to concept drift. This method preserves the models in order to
counter a performance degradation problem known as global
replacement, whereby the model is replaced by one that is
trained on only a small number of recent examples [4], [5].
Accuracy is given as 94.9% and recall as 97.22% with the
KDD Cup 1999 data set.

An alternative to global replacement strategy is to adopt
local replacement, whereby only part of the model changes
to adapt to new concepts, for example with very fast decision
trees (VFDT). Hoeffding Adaptive Tree (HAT) is an example
of a VFDT algorithm [12], where the Adaptive Windowing
(ADWIN), a detection window based change detection algo-
rithm, is used to determine when to split or remove trees.
Accuracy with a custom power station data set was 98% and
94% for binary and multiple classes, respectively.

C. Unsupervised Approaches

Clustering techniques typically require multiple passes over
the data set, this is not possible with online learning where
data items can be processed only once. To accommodate this,
online-offline data stream clustering algorithms are proposed
whereby microclustering or grid based methods are applied
online before final clustering is applied offline [13].

Density based clustering algorithms are well suite to vari-
able networks, providing the ability to remove noise and form
arbitrary shapes to accurately model the ground truth [13].
DenStream uses microclustering online and DBSCAN offline,
and was evaluated by [14] using a novel HTTP data set, and
[15], using the KDD Cup 1999 data set. True positive rate was



reported as 73% [14], and accuracy as 86% [15]. The online
time complexity of DenStream is given as O(q.n), and offline
as O(q.logq) [13].

D-Stream is a density based algorithm using a grid method
online, evaluated by [16], accuracy was reported as 96.5% with
the KDD Cup 1999 data set. The time complexity of D-Stream
is given as O(p.n) [13].

IV. ONLINE IDS EVALUATIONS

Informed and Unsupervised approaches were evaluated us-
ing the Massive Online Analysis (MOA)1 framework (version
2019.04) [17], using the 10% KDD Cup 19992 [18], and
UNSW-NB153 training [19] data sets. Both data sets were
normalised between [0,1] and nominal features converted to
binary numeric. Evaluations were ran on a Windows 10 64bit
PC with Intel i7 1.8GHz processor and 8GB RAM. All
algorithms are set to the MOA default parameters.

The KDD Cup 1999 data set [18] is a popular IDS bench-
mark, consisting of a synthetic network of UNIX systems,
featuring five classes. UNSW-NB15 [19], is a more recent
synthetic data set with network attacks generated by the IXIA
PerfectStorm tool, featuring 10 classes. Both data sets feature
Denial of Service (DoS) as a majority class, although the
attacks are focused on IP networks more typical of the IoT
transport layer.

A. Informed Evaluation

The following informed algorithms were evaluated:
• Naı̈ve Bayes (NB): A well known, simplistic algorithm

based on Bayes Theorem [9] with a time complexity of
O(n)

• Drift Detection Method (DDM): SPC change detection
algorithm, providing warning and change signals [9].

• Drift Detection Method based on Hoeffding’s Inequality
(HDDM): Similar to DDM but provides performance
guarantees with Hoeffding’s inequality, time complexity
is given as O(1) [20].

• Hoeffding Adaptive Tree (HAT): a VDFT algorithm, using
the Adaptive Windowing (ADWIN) detection window
change detector to split or remove trees [9].

Results are given in table I. A sliding window size of 1000
was used for all results. NB, where blind, or no, informed
change detection was compared against NB using informed
DDM and HDDM change detection, and HAT algorithms.
Overall the informed NB approach using either DDM or
HDDM is recommended offering the optimal balance of ac-
curacy, time and memory performance. Note how blind NB is
unable to sufficiently adapt to concept drift or manage memory
effectively as demonstrated by its lower accuracy and higher
memory usage compared to the informed counterpart, this is
illustrated in fig 2. Between interval 200 and 350, performance

1https://moa.cms.waikato.ac.nz/
2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-

NB15-Datasets/

notably drops, with the HDDM informed approach demon-
strating the fastest recovery, it is likely that this performance
could be further improved if strategies to compensate for class
imbalance with minority classes are adopted [21].

TABLE I
INFORMED EVALUATION RESULTS

Algorithm Accuracy (%) Time (s) Memory (KB)
KDD Cup 1999

NB (blind) 94.38 27.48 70
NB (DDM) 99.61 24.25 58

NB (HDDM) 99.59 26.22 58
HAT (ADWIN) 99.56 32.34 868

UNSW-NB15
NB (blind) 31.93 9.30 180
NB (DDM) 77.19 7.84 149

NB (HDDM) 81.88 7.63 147
HAT (ADWIN) 83.03 9.8 1331

Fig. 2. UNSW-NB15 Naı̈ve Bayes Accuracy

B. Unsupervised Evaluation

The algorithms evaluated were the density based DenStream
and D-Stream stream clustering techniques, compared against
CluStream which forms micro clusters online and uses k-
means clustering offline to form final clusters [13]. CluStream
is unable to handle noise and so was used to provide a
comparison to the effectiveness of the density based methods
[13].

Results are given in table II. The overall performance of
both density based techniques is very close, with the clustering
purity, the extent to which clusters reflect their majority
classes, being lower for D-Stream. As shown in fig. 3, the
CluStream algorithm demonstrated the lowest performance,
proving that the ability to handle noise and form arbitrary
shapes is essential for IDS data streams. It was not possible
to collect time and memory metrics in MOA for clustering
evaluation due to a known framework problem, confirmed by
the project lead4.

4abifet@waikato.ac.nz



TABLE II
UNSUPERVISED EVALUATION RESULTS

Algorithm F1 Score (%) Purity (%)
KDD Cup 1999

DenStream 92.30 100
D-Stream 92.31 96
CluStream 73.68 97

UNSW-NB15
DenStream 58.76 82
D-Stream 63.73 76
CluStream 44.22 85

Fig. 3. UNSW-NB15 F1 Score

V. DISCUSSION

Primary challenges of applying intrusion detection to the
IoT perception layer are resource constraints, reliability and
coverage of a distributed network [1], [2]. The preferred
architecture is to deploy distributed IDS sensors within the
perception layer to ensure coverage, however this limits the
ability to monitor a wide array of attacks and technologies
due to invidual sensor resource constraints [1], [2]. Online
machine learning techniques can provide a resource efficient
architecture for IoT networks in the following ways:

• Memory Management: Online learning models process
each data item only once, and place priority on recent
examples from which new concepts can be learned.
Because of this a strategy of abrupt or gradual forgetting
can be employed to maintain a constant memory size,
which can be tuned with correponding window sizes and
fading factors [5].

• Efficient Learning: Data labeling is expensive, and im-
practical for IoT networks [10], [11], use of semi-
supervised techniques minimises the requirement for
labeled data to detect concept drift. Informed change
detection results in models only collecting training data
when concept drift is suspected, resulting in lower overall
memory requirements as shown in the Naı̈ve Bayes blind
vs informed evaluation presented in this paper. Classifi-
cation can be performed by singular or an ensemble of
simplistic algorithms such as Naı̈ve Bayes, where time
complexity is linear, requiring less overall processing

time.
• Unsupervised Anomaly Detection: A key characteristic

of an IDS is to perform anomaly detection to detect
unknown attacks. The preference would be to combine
this in a hybrid approach with misuse detection [3]. This
paper has demonstrated the potential of density based
algorithms to perform clustering on noisy data streams
generated from IoT networks, although further analysis is
required into processing and memory metrics. It could be
possible to implement a hybrid architecture as suggested
in [1] whereby a clustering IDS is deployed on dedicated
nodes at key aggregation points within the perception
layer in order to perform anomaly detection.

An example architecture is presented in fig. 4. Here a time
and memory efficient, informed online learning approach, such
as NB with HDDM, is used on IoT nodes to perform misuse
detection. Stream clustering techniques are used at key aggre-
gation points to perform anomaly detection, with suspected
attacks fed to an alert aggregator, hosted at the application
layer. Connection to open wireless networks with limited
security features means IoT nodes are inherently unreliable
[1]. Discrepancies in results can be identified through the alert
aggregation to detect and isolate unreliable nodes.

Fig. 4. Example Perception Layer IDS Architecture

A key challenge with IDS machine learning is class im-
balance. The overall distribution of monitored network data
will be heavily biased towards benign traffic, with attack
traffic forming minority classes which will be difficult to
distinguish from background noise [21]. Strategies to handle
class imbalance with incremental online techniques, such as
upsampling and ensemble learners, is a proposed area of
further research, this is also a key consideration for stream
clustering techniques which may wrongly identify attacks as
noise, proactively removing them from the model.

VI. CONCLUSION

This paper aimed to answer if online machine learning
techniques can provide a resource efficient architecture for
IoT intrusion detection. Processing a continuous data stream
introduces time and memory constraints that translate to the



resource constraints of IoT perception layers. Online learning
enables efficient memory management and encourages use
of simplistic, time efficient, algorithms for misuse detec-
tion. Informed change detection enables models to adapt to
changing network conditions overtime, providing adaptation to
variations in device and network behaviour and new attacks.
Semi-supervised and unsupervised approaches minimise the
need for labeled data and provide opportunities to perform
anomaly detection for unknown attacks. Class imbalance will
degrade performance of minority classes that represent legiti-
mate attacks and is a recommended area for future research.
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