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ABSTRACT 
 
Skeletal muscle is an extremely plastic tissue for its ability to respond to different stimuli such as physiological 
variation and external stress. Muscle hypertrophy involves an increase in muscle mass, changes in myofibril 
composition and adaptation of metabolic pathways. Plasticity of skeletal muscle in response to exercise 
training is also caused by proliferation and differentiation of the satellite muscle stem cells in response to 
various growth and differentiation factors. This process is mainly mediated by myokines secreted during 
skeletal muscle contraction. Myokines are proteins that act as hormones both locally in the muscle and/or in 
an endocrine manner in other organs, mainly liver, brain and adipose tissue. Myostatin, known as growth 
differentiation factor-8, a myokine member of transforming growth factor-b (TGF-b) superfamily, can act on 
muscle cells in an autocrine manner leading to inhibition of muscle myogenesis. Muscle myostatin expression 
and its plasma concentration are downregulated after acute and long-term physical exercise thus allowing 
muscle hypertrophy. In addition, myostatin is correlated to obesity and insulin resistance for its ability to affect 
energy metabolism and insulin-sensitivity in muscle cells, respectively. These findings reveal that myostatin 
may have potential therapeutic applications to treat muscle atrophy diseases in humans. Even in sports, 
drugs able to inhibit myostatin expression can lead athletes to increase their sport performance. Here, we 
present a brief overview of myostatin and its role in biological mechanisms involved in exercise-induced 
plasticity of skeletal muscle. Keywords: Myostatin; Skeletal muscle plasticity; Myokines; Physical activity. 
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INTRODUCTION 
 
The muscle plasticity is the ability of the muscle tissue to modify its structure, function and metabolism in 
response to contractile activity and many physiological changes (Hoppeler et al., 2011). This response 
includes the modification both in size and fibre composition of the skeletal muscle. Physical exercise plays a 
major role among factors affecting muscle plasticity, such as nutritional changes (Vogt et al., 2003), disuse 
(Bodine, 2013), hypoxia (Hoppeler et al., 2008), weightlessness (Desplanches, 1997). In particular, 
prolonged aerobic resistance exercises induce an increase of the number of mitochondria and associated 
proteins without any effect on fibre size (hyperplasia). On the contrary, a chronic increase in the workload 
affects the skeletal muscle leading to an increase in the cross section of the myofibril and concomitant 
variation in the type of contractile proteins (from type IIa to type I) and in the activity of the enzymes involved 
in the tissue metabolism. On the contrary, the unloaded muscle undergoes atrophy. Several cellular and 
molecular mechanisms underlay these muscle modifications. There are also strictly biochemical aspects that 
regulate the miotrophism, such as insulin-like growth factors (IGF-1), hormones of a protein nature with a 
molecular structure similar to that of insulin. Produced mainly by the liver, IGF-1 promotes cell proliferation 
and differentiation, especially at the cartilage and muscle level by promoting the activity of satellite cells, 
through its muscle isoform, the mechanical growth factor (MGF). In addition, IGF-1 mediates many actions 
of growth hormone (GH) and vice versa. GH activates muscle mass growth by stimulating the liver to release 
IGF-1 and especially MGF at the muscle level, the latter stimulating the transformation of satellite cells into 
myocytes. Levels of IGF-1 and MGF increase in plasma and skeletal muscle, respectively, after resistance 
exercises. On the contrary, as described below, myostatin plays a diametrically opposite role to the above 
growth factors. The aim of this work is to overview the role of myostatin in modulation of skeletal muscle 
plasticity induced by physical exercise. 
 
SKELETAL MUSCLE PLASTICITY 
 
Satellite cells are muscle stem cells that play a crucial role in muscle growth during hypertrophy and 
regeneration process (Tamura et al., 2017). Different growth factors and cellular events regulate the 
activation of muscle satellite cells during skeletal muscle regeneration that occurs following a myofibril 
damage, including the proliferation of satellite cells (Bazgir et al., 2017). Activated satellite cells are 
characterized by high expression of transcription factors such as MRF, MyoD and Myf5. The proliferative 
phase is followed by terminal differentiation and fusion of myoblasts with damaged myofibers to form the new 
myofibers that are similar to the original ones. During the process of muscle regeneration, some myoblasts 
return to the quiescent state to replenish the pool of satellite cells for subsequent muscle growth. 
 
Growing evidences have demonstrated that contracting skeletal muscle releases soluble factors, termed 
myokines that affect the metabolic pathways of different tissues. Myokines can act either in autocrine or in 
para/endocrine manner on the adipose tissue, liver and brain through their receptors (Pedersen et al., 2007). 
Myokines that can act as positive and negative regulators such as various interleukins (IL-6, IL-7, IL-8 and 
IL-15), fibroblast growth factor 21 (FGF21), irisin, brain-derived neurotrophic factor (BDNF), insulin-like 
growth factor-1 (IGF-1), leukaemia inhibitory factor (LIF) and follistatin-like protein-1 (FSTL-1) and the small 
organic acid β-aminoisobutyric acid (BAIBA). 
 
Up to now, secretome analysis of human myocyte culture medium has revealed over 100 myokines and only 
few of them have been extensively studied for their effects on skeletal muscle growth and metabolism, such 
IL-6, IL-15, BDNF, FGF21, irisin, myostatin, hepatocyte growth factor (HGF), insulin-like growth factor (IGF), 
leukaemia inhibition factor (LIF) and the family of transforming growth factor-β (TGF-β) (Lee and Jun, 2019). 



Pagliara et al. / Myostatin & plasticity of skeletal muscle tissue                                        JOURNAL OF HUMAN SPORT & EXERCISE 

                     VOLUME 14 | Proc5 | 2019 |   S1933 

 

STRUCTURE AND FUNCTIONS OF MYOSTATIN 
 
Myostatin (MSTN), also termed growth and differentiation factor 8 (GDF-8) is a member of the TGF- β 
superfamily that acts as negative regulator of skeletal muscle growth (McPherron and Lee, 1997). MSTN is 
predominantly expressed in the muscle tissues but it is also been detected in other tissues including the 
adipose tissue, mammary glands, heart, spleen, lymphocytes (Deng et al., 2017). Human MSTN is secreted 
as an inactive precursor protein (pro-myostatin, a disulphide‐linked homodimer) that under-goes to a complex 
proteolytic processing to generate a disulphide-linked C-terminal fragment dimer that is the biologically active 
molecule (Cotton et al., 2018). The mature myostatin consists of a heterotetramic complex with two active 
type II receptors (ActIIRA or ActIIRB) and two type I receptors (ALK4), TGF-β (ALK5) to initiate signalling 
(Lee and McPherron, 2018). 
 
Several studies have reported that inactivating mutations in the MSTN gene can led to gross muscle 
hypertrophy in cattle (McPherron and Lee, 1997), mice (McPherron et al., 1997) and humans (Schuelke et 
al., 2004). In addition, the inactivation of the MSTN gene also caused a decrease of fat mass (Lin et al., 2002; 
McPherron and Lee, 2002). The molecular mechanisms by which myostatin acts as a negative regulator of 
muscle growth involves the inhibition of activation of satellite cells and myoblast proliferation, through the 
decrease of muscle protein synthesis. In addition, further evidences obtained using in vitro cell models 
demonstrated that myostatin may act as common regulator in the differentiation of both myogenic and 
adipogenic cells (Adornetto et al., 2013; Artaza et al., 2005; Konopka et al., 2018). 
 
Myostatin activity is regulated mainly by follistatin that acts as an inhibitory factor (Negaresh et al., 2019). 
The expression of follistatin has been detected in almost all animal tissues and high level of this protein are 
correlated to a great muscle development (Hansen et al., 2011). 
 
EFFECT OF PHYSICAL EXERCISE ON MYOSTATIN EXPRESSION 
 
Physical exercise and sports training can induce myoblast differentiation from the quiescent stage to 
differentiated myotubes through activation of transcription factors involved in the myogenic process (Vitucci 
et al., 2018). It has been shown that physical exercise can modulate myostatin expression allowing muscle 
hypertrophy (Hallen et al., 2011; Drevon et al., 2016). However, several studies demonstrated that aerobic 
activity alone does not increase muscle mass and musculoskeletal strength that require resistant training. 
 
Acute aerobic exercise combined with endurance and strength exercises down-regulate myostatin levels in 
skeletal muscle (Hittel et al., 2010) that is caused by the decrease of muscle expression (Louis et al., 2007). 
Resistance training can affect and/or prevent the age-related sarcopenia (Maltais et al., 2016) through a 
decrease in MSTN (Mero et al., 2013) that is associated to an increase of muscle protein synthesis and 
translational efficiency (Kumar et al., 2009). 
 
On the contrary, diseases including obesity (Park et al., 2006; Hittel et al., 2010), reduced glucose tolerance 
and type 2 diabetes (Palsgaard et al., 2009) are associated with an up regulation of myostatin expression. 
 
MYOSTATIN IN THERAPEUTIC APPLICATIONS AND DOPING 
 
The progressive loss of the muscle mass that occurs during the aging process is termed sarcopenia and it 
share similarity pathological diseases including neuromuscular syndrome and cancer cachexia. In the light 
of myostatin functions, it has been immediately suggested that its inhibitors could be used either for the 
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treatment of muscle-wasting conditions in human or in doping practices (Mazzeo and Raiola, 2018) to 
increase muscle growth. 
 
In the medical field, research on myostatin is aimed at the treatment of diseases such as neuromuscular 
disease. The potential relevance of myostatin in the treatment of disease in humans has been suggested by 
studies involving mdx mice, which carry a mutation in the dystrophin gene and are therefore used as a genetic 
model for Duchenne and Becker muscle dystrophy. The treatment of these diseases involves the inhibition 
of myostatin. 
 
In addition, also the use of neutralizing monoclonal antibodies directed against myostatin, can represent a 
useful to inhibit myostatin expression. Furthermore, the identification of components involved in the MSTN 
signalling pathway has allowed the development of pharmacological agents capable of blocking MSTN 
effects in vivo. These agents can inhibit myostatin acting at the transcriptional or protein biosynthesis level 
or impairing the receptor binding. Myostatin inhibitors have been divided into five different types: anti-
myostatin antibody, anti-ActRIIB antibody, anti-ActRIIB-Fc antibody, follistatin-AAV gene therapy and 
myostatin peptide. In terms of chemical structure, most of these inhibitors consist of peptides. 
 
Recently, the compound IMB0901 has been reported to act as myostatin inhibitor (Dong, 2019; Liu et al., 
2019) acting as an inhibitor of the promoter's activity, the signalling pathway and the regulation of positive 
myostatin feedback. In a cell model of atrophied myocardial cells, the compound IMB0901 was able to induce 
a negative modulation of myostatin effects impairing its transcription and signalling pathway. The important 
advantages of myostatin as a therapeutic target is its regulation of both protein degradation and protein 
synthesis. In summary, IMB0901 could be a double inhibitor of myostatin as it could simultaneously inhibit 
both the transcription activity and the signalling pathway, thus protecting muscle atrophy induced by 
cancerous cachexia through the inhibition of the ubiquitin-mediated proteolysis and protein synthesis 
promotion. 
 
Therefore, IMB0901 as an attractive therapeutic option for the treatment of cancer-induced muscle atrophy. 
It also provides new research ideas for studying muscle atrophy induced by other chronic diseases. Even in 
sports, the availability of drugs capable of inhibiting myostatin action would lead many athletes to increase 
their performance quickly and with little training. 
 
CONCLUSIONS 
 
Myostatin can influence the plasticity of skeletal muscle and energy metabolism at multiple levels even more 
specifically through its relationship with physical exercise, glucose and lipid metabolism and with all the other 
factors that influence its expression. 
 
Therefore, myostatin is a useful target to develop new strategies for treatment of diseases such as 
dystrophies and cancer, providing the possibility for the patient to preserve muscle mass. Finally, it will be 
equally important to take into account the aspects concerning doping substances and thus avoiding that 
myostatin inhibitors can be used improperly and to safeguard the health of athletes. 
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