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Abstract

Rice growth monitoring using Synthetic Aperture Radar (SAR) is recognized

as a promising approach for tracking the development of this important crop.

Accurate spatio-temporal information of rice inventories is required for wa-

ter resource management, production risk occurrence, and yield forecasting.

This research investigates the potential of the proposed Generalized volume

scattering model based Radar Vegetation Index (GRVI) for monitoring rice

growth at different phenological stages. The GRVI is derived using the con-

cept of a geodesic distance (GD) between Kennaugh matrices projected on a

unit sphere. We utilized this concept of GD to quantify a similarity measure

between the observed Kennaugh matrix (representation of observed Polari-
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metric SAR information) and the Kennaugh matrix of a generalized volume

scattering model (a realization of scattering media). The similarity measure

is then modulated with a factor estimated from the ratio of the minimum

to the maximum GD between the observed Kennaugh matrix and the set

of elementary targets: trihedral, cylinder, dihedral, and narrow dihedral. In

this work, we utilize a time series of C-band quad-pol RADARSAT-2 obser-

vations over a semi-arid region in Vijayawada, India. Among the several rice

cultivation practices adopted in this region, we analyze the growth stages

of Direct seeded rice (DSR) and conventional Transplanted rice (TR) with

the GRVI and crop biophysical parameters viz., Plant Area Index – PAI.

The GRVI is compared for both rice types against the Radar Vegetation In-

dex (RVI) proposed by Kim and van Zyl. A temporal analysis of the GRVI

with crop biophysical parameters at different phenological stages confirms its

trend with the plant growth stages. Also, the linear regression analysis con-

firms that the GRVI outperforms RVI with significant correlations with PAI

(r ≥ 0.83 for both DSR and TR). In addition, PAI estimations from GRVI

show promising retrieval accuracy with Root Mean Square Error (RMSE)

<1.05 m2 m−2 and Mean Absolute Error (MAE) <0.85 m2 m−2.
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1. Introduction1

Rice (Oryza sativa) is the major crop grown in the Indian subcontinent of2

Asia. The majority of the rice cultivars are grown during the monsoon season3

(July to November), i.e., Kharif season. Despite available rain, in many4

regions, rice production is significantly affected by the early or late arrival of5
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monsoon. In particular, farmers have been cultivating rice for decades in the6

rainfed regions of the Krishna and Guntur districts of India which fall under7

the semi-arid climatic zone. However, instead of traditional transplanted rice8

cultivation practices, direct seeding of rice is gaining attention and is being9

promoted under Integrated Crop Management (ICM) government policies in10

the semi-arid region of these districts (APAgriculture, 2018; NIBIO, 2012).11

Rice production strongly depends on the crop establishment period, which12

affects the critical phenological stages (tillering, flowering, and grain filling13

periods) (Mahajan et al., 2009; Lampayan et al., 2015). Thus, it is essen-14

tial to monitor the temporal dynamics of plant growth over a large spatial15

extent. Despite promising results reported from optical remote sensing, the16

implementation of optical sensing for mapping and monitoring of rice during17

the monsoon season is problematic given the persistent presence of clouds.18

As such, the exploitation of Synthetic Aperture Radar (SAR) has drawn19

considerable attention for rice monitoring in the monsoon season, given the20

ability of microwaves to acquire data regardless of cloud cover and the sensi-21

tivity of SAR signal to dielectric and geometric properties of targets (Le Toan22

et al., 1997; Inoue et al., 2002; Chakraborty et al., 2005; Wang et al., 2009;23

Kuenzer and Knauer, 2013). Recognizing the role of SAR systems for opera-24

tional monitoring of rice, international initiatives have been launched includ-25

ing the Asian Rice Crop Estimation and Monitoring (Asia-RiCE) under the26

Group on Earth Observations Global Agriculture Monitoring (GEOGLAM)27

framework (Nelson et al., 2014; Oyoshi et al., 2016). Recent studies are also28

turning their attention towards developing processing chains in cloud-based29

platforms to evaluate the potential and transferability of operational crop30
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characterization at regional scales with the availability of operational SAR31

systems (Mandal et al., 2018; Singha et al., 2019).32

Polarimetric SAR can provide a rich source of data to track temporal dy-33

namics of vegetation conditions (Wiseman et al., 2014; De Bernardis et al.,34

2015; McNairn and Shang, 2016; Wang et al., 2016; Steele-Dunne et al., 2017;35

McNairn et al., 2018). In exploiting SAR sensors (ALOS-2, RADARSAT-36

2, and TerraSAR-X), several researchers have reported the potential of crop37

growth monitoring by relating the associated physical scattering mechanisms38

from the vegetation canopy to phenology (Lopez-Sanchez et al., 2012, 2014;39

Torbick et al., 2017; Canisius et al., 2018). Several studies further utilized40

the dynamics of scattering response for phenology estimation (Lopez-Sanchez41

et al., 2014; Rossi and Erten, 2014; Vicente-Guijalba et al., 2014; Yuzugullu42

et al., 2015, 2017; He et al., 2018). Retrieval of biophysical parameters for43

rice, using backscatter coefficients of different polarizations (HH, HV, VH,44

and VV), has also been demonstrated with acceptable estimation accura-45

cies (Kumar et al., 2013; Yang et al., 2014; Inoue et al., 2014). Several46

studies have reported on the use of backscatter intensity ratios, the pedestal47

height, polarization fraction, and polarimetric decomposition parameters as48

a proxy for crop growth monitoring (Bouvet et al., 2009; Jiao et al., 2011;49

Blaes et al., 2006; Cable et al., 2014; McNairn and Shang, 2016).50

Similar to spectral indices that are well established in optical remote51

sensing, a vegetation index derived from SAR data could be an alterna-52

tive, especially for crop growth monitoring during periods of cloud cover.53

In this direction, Kim and van Zyl (2009) introduced the Radar Vegetation54

Index (RVI) which uses a measure of scattering randomness within vegeta-55
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tion targets. RVI is expected to increase (within the range of 0-1) as volume56

scattering increases due to development of canopy elements.57

A few studies have attempted to utilize the RVI for crop growth moni-58

toring and biophysical parameter estimation (Kim et al., 2012, 2014; Huang59

et al., 2016). Kim et al. (2012) evaluated the RVI for estimating the Vege-60

tation Water Content (VWC) of rice and soybeans, tracking these crops for61

the entire growing season using ground-based multi-frequency scatterome-62

ters. For both crops, the RVI followed the temporal trend of VWC, with63

the index increasing up to the heading stage then decreasing until harvest.64

However, it was observed that the dynamic range of RVI was low (0.35–0.50),65

in contrast to the significant variation in backscatter intensities during the66

growth cycle of these crops. Canisius et al. (2018) analyzed the correlation67

of RVI with the effective Leaf Area Index (LAI) and height of canola and68

wheat. The RVI showed comparatively a higher sensitivity to the crop height69

dataset, only when smoothing was performed to suppress the high-frequency70

noise of temporal RVI.71

As an alternative to utilizing the RVI as a proxy for crop condition, scat-72

tering models are often used to track plant phenological changes through73

a growing season. PolSAR scattering models have been utilized in the lit-74

erature (Antropov et al., 2011; Sato et al., 2011; Jagdhuber et al., 2012;75

Xie et al., 2017) to approximate the scattering behaviour within a resolu-76

tion cell of SAR observations. The changes in the scattering behaviour with77

plant phenology could be used as a technique to track crop growth condi-78

tion (Jiao et al., 2011; Lopez-Sanchez et al., 2014; Canisius et al., 2018).79

In our recent study, Ratha et al. (2019) proposed a novel radar vegetation80
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index which utilizes the generalized volume scattering model (GVSM) for81

PolSAR data to characterize vegetation growth (Antropov et al., 2011). The82

generalized volume scattering model based radar vegetation index (GRVI)83

utilizes the geodesic distance between two Kennaugh matrices projected on84

unit sphere (Ratha et al., 2017). Unlike the RVI, which models the vege-85

tation layer as an aggregation of randomly oriented dipoles (Kim and van86

Zyl, 2009), the GRVI offers flexibility to choose the parameters describing87

the volume scattering component (Antropov et al., 2011). It is important88

to note that the generalized volume scattering model and the GRVI formu-89

lation intrinsically takes into account the elementary scattering components90

(surface and double bounce) using the co-polarized ratio and the correlation91

coefficient, respectively.92

The GRVI was implemented to characterize wheat and soybeans with a93

multi-temporal RADARSAT-2 dataset (Ratha et al., 2019). The GRVI trend94

followed the growth development of both crops, with VWC and Plant Area95

Index (PAI) increasing as the crops developed. A strong correlation (>0.76)96

was observed between the GRVI and these growth indicators, for both wheat97

and soybeans through their vegetative stages. The GRVI outperformed RVI98

in terms of correlation with these biophysical parameters. This study sug-99

gested that for monitoring crop growth using SAR data, it is advantageous100

to integrate information from a generalized volume scattering model to form101

a vegetation index. This insight is particularly crucial for rice crop where102

the scattering power is dominated by both volume and double bounce mech-103

anisms. Unlike other crop types (e.g., canola, soybean, wheat) where the104

volume scattering is often used as a proxy for canopy development (more105

6



random scatterers), the scattering mechanism is more complex for rice due106

to its canopy architecture (vertical stems and erectophile leaf distribution)107

and the underlying inundated field condition (or saturated soil).108

In the research presented here, we utilize the GRVI for monitoring rice109

growth at different phenological stages. A time-series quad-pol RADARSAT-110

2 dataset over a semi-arid region of India is available for a comparative as-111

sessment of GRVI and RVI. This study assesses GRVI for estimating crop112

biophysical parameter. The rest of the paper is organized as follows: Sec-113

tion 2 briefly describes the study area and the dataset used for the analysis.114

Section 3 explains in detail the methodology proposed used in this study.115

Section 4 discusses the results with the main conclusions of this research116

summarized in Section 5.117

2. Study area and dataset118

This research is conducted over the Joint Experiment for Crop Assessment119

and Monitoring (JECAM) test site in Vijayawada, India, as shown in Fig. 1.120

The Vijayawada test site covers the Krishna and Guntur districts in the state121

of Andhra Pradesh, India. Within this state, roughly 63% of the geographical122

area falls in a semi-arid climatic zone (Rao et al., 2013). The test site covers123

an area of approx. 50 × 25 km2 and is characterized by three major annual124

crops–rice, sugarcane, and cotton. These crops are grown in two distinct125

seasons– monsoon or kharif (June-November) and winter or rabi (December-126

March). The flat topography and the dominance of agriculture make this site127

particularly attractive for SAR based research. A detailed description of the128

test site is provided in Mandal et al. (2019b).129
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Figure 1: The JECAM-Vijayawada (Andhra Pradesh) India test site with a RADARSAT-
2 PauliRGB image of 29th July 2018. Two distinct regions for direct seeded rice (Region
A in cyan box) and transplanted rice (Region B in yellow box) are marked with in the test
area of 50 km×25 km. A layout of a sampling unit (white box) is highlighted at the right.

The research presented in this manuscript focuses on rice cultivation dur-130

ing the kharif season, within the JECAM test site. In particular, two major131

rice cultivation techniques, i.e., transplanted rice (TR) and direct seeded132

rice (DSR) are being practiced (NIBIO, 2012; APAgriculture, 2018). In133

traditional farming, rice is primarily grown by transplanting seedlings into134

flooded puddled fields. The TR cultivation requires large volumes of water135

(approx. 150 cm of total irrigation water) for puddling and further mainte-136

nance of standing-water conditions (Singh et al., 2001). Alternatively, the137

DSR cultivation is being promoted in this region (Fig. 1), which includes138

alternate wetting and drying instead of a persistent standing-water condi-139

tion (Mahajan et al., 2013). The DSR method of cultivation reduces water140
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consumption by approximately 30% by eliminating the nursery raising, pud-141

dling, transplanting, and initial standing-water condition during the early142

tillering stage (Balasubramanian and Hill, 2002; Cabangon et al., 2002).143

2.1. In-situ sampling strategy144

Field campaigns were conducted in the kharif season to track different rice145

growth stages from June to November 2018. During the campaign, in-situ146

measurements were collected of crops and soil for 75 agricultural fields. The147

nominal size of each field is around 100 m×100 m. In each sampling field, soil148

moisture was measured at two sampling locations, arranged in two parallel149

transects along the row direction, as shown in Fig. 1. Each transect was150

separated by approximately 80 m. Soil moisture was measured at each point151

using a theta-probe. However, it is important to note that soil underlying the152

rice canopy was saturated during most of the growing season due to frequent153

irrigation and rainfall events.154

In each field, vegetation sampling was conducted at two points (Fig. 1)155

corresponding to the soil sampling locations. Vegetation sampling included156

the measurement of PAI, plant height, density, and phenology through non-157

destructive approaches. The PAI was estimated from photographs using the158

concept of hemispherical digital photography (Jonckheere et al., 2004; Weiss159

et al., 2004). During each of the measurement day, ten photos were taken160

along two transects which are separated by 2m in each sampling point, using a161

wide-angle lens mounted on a digital camera. These photos record the geom-162

etry of the plant canopy obstructing the field of view against the soil surface.163

All images were post-processed using the CanEYE software (INRA, 2017) to164

provide an estimate of PAI. The phenological growth of rice is usually ex-165

9



pressed with three major stages: vegetative, reproductive, and maturation or166

ripening. Each of these stages has particular morphological changes and vari-167

ations in the biophysical parameters. These phenological developments were168

indicated in terms of a quantitative measure using the BBCH (Biologische169

Bundesanstalt Bundessortenamt und CHemische Industrie) scale by visual170

inspection (Bleiholder et al., 2001). The detailed description of vegetation171

and soil sampling strategies can be found in the field campaign report (Man-172

dal et al., 2019b).173

2.2. SAR dataset174

During the campaign, seven RADARSAT-2 images were acquired in Fine175

Wide quad-pol mode (FQW) as given in Table 1. The selection of acquisition176

dates was based on in-situ measurement periods. All these acquisitions were177

in quad-pol mode with a scene center incidence angle of 35.2◦.

Table 1: Specification of C-band quad-pol RADARSAT-2 acquisitions over the test site
during the field campaign

Acquisition date Beam mode
Incidence angle

range (.deg)
Orbit

In-situ
measurements

05-07-2018 FQ15W 33.7 - 36.7 Ascending 04 Jul., 05 Jul.
29-07-2018 FQ15W 33.7 - 36.7 Ascending 01 Aug., 02 Aug.
22-08-2018 FQ15W 33.7 - 36.7 Ascending 22 Aug., 23 Aug.
15-09-2018 FQ15W 33.7 - 36.7 Ascending 14 Sep., 15 Sep.
09-10-2018 FQ15W 33.7 - 36.7 Ascending 08 Oct., 09 Oct.
02-11-2018 FQ15W 33.7 - 36.7 Ascending 02 Nov., 03 Nov.
26-11-2018 FQ15W 33.7 - 36.7 Ascending 25 Nov., 26 Nov.

178
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3. Methodology179

3.1. GRVI Formulation180

In PolSAR theory, the Radar Vegetation Index (RVI) proposed by Kim

and van Zyl (2009) uses the eigenvalue spectrum obtained from the coherency

T matrix (van Zyl, 2011). It is expressed as (1):

RV I =
4 min(λ1, λ2, λ3)

λ1 + λ2 + λ3
(1)

where λi denotes the i-th eigenvalue of T , i = 1, 2, 3.181

In PolSAR scattering theory, the 4 × 4 real Kennaugh matrix K for

incoherent targets is expressed in terms of the elements of the coherency

matrix T as,

K =


T11+T22+T33

2
<(T12) <(T13) =(T23)

<(T12)
T11+T22−T33

2
<(T23) =(T13)

<(T13) <(T23)
T11−T22+T33

2
−=(T12)

=(T23) =(T13) −=(T12)
−T11+T22+T33

2

 (2)

where < and = denote the real and imaginary part of a complex number.182

The GRVI proposed in Ratha et al. (2019) uses a similarity measure

between the observed K and the Kennaugh matrix, Kv associated with the

generalized volume scattering model (Antropov et al., 2011), which is used
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as a reference model for the scattering from vegetation (3):

Kv = 1
3(1+γ)

4
−

√
γ

6


3
2
(1 + γ)−

√
γ

3
γ − 1 0 0

γ − 1 1
2
(1 + γ) +

√
γ

3
0 0

0 0 1
2
(1 + γ) +

√
γ

3
0

0 0 0 1
2
(1 + γ)−√γ

 (3)

The GVSM proposed in Antropov et al. (2011) is represented by two

parameters: γ and ρ, which correspond to the co-polarized ratio and the

correlation coefficient (fixed at ρ = 1/3), respectively. The similarity measure

is derived from the geodesic distance (Ratha et al., 2018) between observed

K and a reference Kennaugh matrix Ki:

fi = 1−GD(K,Ki), (4)

where GD denotes the geodesic distance between two Kennaugh matrices K1

and K2 on the unit sphere. It is defined as:

GD(K1,K2) =
2

π
cos−1

Tr(KT
1 K2)√

Tr(KT
1 K1)

√
Tr(KT

2 K2)
(5)

where Tr denotes the trace of a matrix and the superscript T denotes the183

matrix transpose. The 2/π factor is used to normalize its range to [0, 1].184

In the formulation of GRVI (6), the similarity measure, fv (7) between

the generalized volume scattering model Kv and the observed Kennaugh

matrix K is obtained using the geodesic distance GDv = GD(K,Kv). A

modulating parameter β is introduced in (7) which is the ratio of minimum

to maximum geodesic distances between K and elementary targets: trihedral
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Figure 2: Schematic workflow for the Generalized volume scattering model based Radar
Vegetation Index (GRVI) formulation.

(Kt), cylinder (Kc), dihedral (Kd), and narrow dihedral (Knd) as given

in (8). The Kennaugh matrix forms of these elementary targets are shown
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in Ratha et al. (2019).

GRVI = β fv, 0 ≤ GRVI ≤ 1, (6)

fv = (1−GDv) , β =
(p
q

)2GDv
, (7)

p = min


GD(K,Kt)

GD(K,Kc)

GD(K,Kd)

GD(K,Knd)

 , q = max


GD(K,Kt)

GD(K,Kc)

GD(K,Kd)

GD(K,Knd)

 (8)

The two extreme cases of GRVI viz., GRVI = 0 and GRVI = 1 correspond185

to K ∈ {Kt,Kc,Kd,Knd} and K = Kv, respectively. A schematic workflow186

of the GRVI is provided in Fig. 2.187

3.2. Preprocessing of SAR data188

In this study, seven RADARSAT-2 images (Table 1) were acquired in189

SLC format. The RADARSAT-2 SLC product in FQ15W beam mode has190

range and azimuth pixel spacing of 4.73 m and 5.11 m, which correspond to191

a nominal resolution equal to 5.2 m and 7.6 m in ground-range and azimuth192

directions, respectively (Slade, 2018). The full-polarimetric images are mul-193

tilooked by 2×2 (in the range and azimuth) to generate the coherency matrix194

T , with the spatial resolution of 10.4 m and 15.2 m. The elements of the T195

matrix are then used to calculate the Kennaugh matrix K as discussed in196

Sec. 3.1. The GRVI images are generated from the derived K for each acqui-197

sition over a 7× 7 moving overlapping window. The GRVI images are then198

co-registered using ground control points (GCP) with an RMSE ≤ 0.54 m199
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and geocoded with an output pixel size of 10 m and 10 m on the ground. A200

comparative analysis is performed for the full crop season between GRVI and201

RVI. The RVI obtained from the T matrix over a 7× 7 moving overlapping202

window is co-registered using GCPs with an RMSE of approx. 0.53 m. The203

GRVI and RVI values for each sampling location (point measurements) are204

extracted over a 3×3 window.205

4. Results and discussion206

The vegetation indices (both the GRVI and RVI) for different sampling207

sites are generated from the RADARSAT-2 quad-pol data set, and the tem-208

poral analysis is performed at different growth stages for TR and DSR. Figs. 3209

and 10 plot the temporal trends of GRVI and RVI, averaged for the two sam-210

pling points in each plot. Furthermore, the correlation of radar vegetation211

indices with PAI (m2 m−2) is analyzed for each rice type. In total, 102 sam-212

ples from 20 TR fields and 200 samples from 41 DSR fields are used for the213

correlation analysis (Fig. 8 and 12). The significance tests are performed214

along with the correlation analysis. Linear regression models are also devel-215

oped for PAI estimation, with independent training and validation datasets216

using these vegetation indices.217

4.1. Transplanted rice (TR)218

The temporal responses of GRVI over the phenological stages of trans-219

planted rice fields are shown in Fig. 3. From the TR fields, 8 representative220

fields (field numbers: 024, 044, 063, 141, 151, 153, 174, 113) distributed221

throughout the region are used for the temporal analysis. These analyses222

are also supported with in-situ measurements of PAI. A primary qualitative223
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Figure 3: Temporal pattern of GRVI and RVI for transplanted rice (TR) fields at different
growth stages. The in-situ measurements of Plant Area Index (PAI, m2 m−2) are plotted
on the secondary axis for each field.

analysis indicates that the growth trends of rice are similar irrespective of224

field numbers; PAI increases as the rice crop develops.225
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Figure 4: Field conditions of a transplanted rice (TR) during the campaign.

At the field preparation stage (on 05 July), although the plant develop-226

ment has not yet started (Fig. 4), both the GRVI and RVI values are high227

(within a range of 0.25-0.35). Theoretically, for the bare field condition (sim-228

ilar to a trihedral type scattering) the GRVI lies close to zero (Ratha et al.,229

2019). However, the relatively high values of the indices are likely due to230

soil roughness as compared to the 5.6 cm C-band wavelength. The in-situ231

measurements confirmed that the soil roughness was high due to the tillage232

operations.233

With crop establishment completed by 29 July, the GRVI values start to234

increase monotonically. At the early tillering stage (29 July), the magnitude235

of GRVI is / 0.4 for the majority of the plots. However, for TR044 and236

TR113, a sharp increase in GRVI (up to 0.57) is observed on 29 July. This237

increase may be due to development of more number of tillers as these fields238

were more advanced with an active tillering stage with PAI∼1.0 m2 m−2.239

The GRVI continues to increase on 22 August when the majority of rice240

fields are in their active to the end of the tillering stage. These high GRVI241
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values may be due to the high degree of randomness in scattering from the242

canopy elements during the tillering stages. Also, the underlying water may243

contribute to both the volume and even-bounce scattering components.244

The GRVI values reached a maximum (approx. 0.75) when the crop ad-245

vanced to its heading and flowering stages on 09 October. The in-situ mea-246

surements reported PAI of up to approximately 4.2 m2 m−2. This increase in247

the GRVI values indicates the dominance of volume scattering in the fields248

which might increase the similarity between the observed K and the Kv of249

the GVSM. However, changes in GRVI values after the heading stage are250

not apparent. During the dough and maturity stages, the GRVI values are251

still high, which may be a function of volume scattering from the upper252

canopy elements of rice. During the heading to maturity stages of rice with253

ears emerging, multiple scattering dominates within the total backscattered254

power in C-band (Kumar and Rao, 2015). Similar observations with volume255

scattering power for the temporal response of rice are reported in Li et al.256

(2012). The volume scattering power derived from the Freeman-Durden de-257

composition applied to RADARSAT-2 is stable from the heading to maturity258

stage of rice. The high entropy values (H∼ 0.8) and an average scattering259

type α of approximately 50◦ is also in accordance with these observations260

during these growth stages (Li et al., 2012).261

Another important aspect for rice monitoring is the lodging effect, which262

is pronounced during the reproductive to maturity stage. Lodging effects263

are often due to heavy grains load, loosening stem strength, and high wind.264

Representative fields in this category where lodging was observed are TR141265

and DSR205 in November. The GRVI values in the temporal plots also266
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indicate this effect with comparatively lower values than the high vegetative267

stage (09 Oct).268

Figure 5: Temporal pattern of third eigenvalue (λ3) derived from coherency matrix (T )
for transplanted rice (TR) and direct seeded rice (DSR) fields at different growth stages.

The increase in RVI values is less apparent during the vegetative stage269

of the rice crop, as compared to GRVI. The dynamic range of RVI through270

the rice growth period is also lower when compared with the range associ-271

ated with GRVI. An issue to consider with RVI is its formulation from the272

eigenvalue spectrum. The numerator in (1) i.e., third eigenvalue, λ3 is more273

affected by noise rather than changes with vegetation randomness. It is also274

apparent from Fig. 5 that the standard deviation of λ3 increases as the rice275

crop advances from the early tillering stage (22 August) to dough and ma-276

turity, although its mean value increases with PAI and plant growth. The277

structural heterogeneity of plants during the reproductive to maturity stage278

might lead to a spatial variance within a plot (Yuzugullu et al., 2018). He279

et al. (2018) also reported similar heterogeneity in the backscatter signal,280
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which was influenced by the planting density of rice.281

Compared to radar vegetation indices, the variations in the backscatter282

intensities in different polarization channels are apparent during different283

growth stages. In order to check the consistency of C-band measurements284

for the current acquisitions, we evaluated the backscatter intensities in co-285

(HH, VV) and cross-pol (HV) channels, as shown in Fig. 6 and 11. These286

investigations exclusively on the temporal trends of backscatter intensities287

with plant growth are not new. However, they constitute the principal of288

most of the experiments carried out in the literature for rice mapping and289

monitoring with radar data.290

For transplanted rice, it is observed that the backscatter intensity in co-291

pol channels (HH and VV) are very low on 29 July in majority of the fields,292

as shown in Fig. 6. It is likely due to low vegetation growth during the293

early leaf development stage and the underlying inundated field condition.294

The backscatter powers increased during the tillering and stem elongation295

stage. The double-bounce scattering mechanism becomes stronger due to296

the interaction between the rice stems and the underlying water surface.297

This means a lower backscatter power in the VV polarization channel be-298

cause of its stronger attenuation than HH resulting from the vertical rice299

plants. This difference between the co-pol channels was reported by their300

ratio in (Lopez-Sanchez et al., 2014). Concerning the cross-pol response,301

it indicated lower value than the co-pol channels, but also exhibits a high302

growth as plants canopy develops. From the heading stage onward, the vari-303

ation of the backscattering intensities is less pronounced than the previous304

phenological stages. The backscatter responses slowly decrease for both po-305
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Figure 6: Temporal pattern of backscatter intensities in the HH, VV, and HV channels
for transplanted rice (TR) fields at different growth stages. The in-situ measurements of
Plant Area Index (PAI, m2 m−2) are plotted on the secondary axis for each field.
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Figure 7: GRVI and RVI maps over the test site for seven acquisitions (05 Jul., 29 Jul., 22
Aug., 15 Sep., 09 Oct., 02 Nov., and 26 Nov.) of RADARSAT-2. Two subsets (Region A
and Region B, in Fig. 1) are highlighted for the direct seeded rice and transplanted rice.
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larizations during the maturity stage as the rice plants gradually wither and306

water content decreases. The temporal trends at different polarization chan-307

nels plotted in Fig. 4 agree with the well-known response from rice fields at308

C-band radar systems, which are reported in literature (Le Toan et al., 1997;309

Inoue et al., 2002; Bouvet et al., 2009; Lopez-Sanchez et al., 2011, 2014).310

Figure 8: Correlations (r) between vegetation indices (GRVI and RVI) and plant area
index (PAI, m2m−2) for transplanted rice (TR). Samples from several phenological stages
are highlighted by different colours.

The GRVI maps for the seven acquisition dates are shown in Fig. 7 over a311

subset of the test site (Region-B in Fig. 1). Both spatial and temporal vari-312

ability is observed in these maps, which are similar to the temporal behavior313

of transplanted rice, as shown in Fig. 3. The qualitative comparison between314

RVI and GRVI maps for the seven acquisition dates (Fig. 7 over a subset315

of the test site Region-B) confirms the superior performance of GRVI. The316

correlation analysis of GRVI and RVI with PAI is shown in Fig. 8 for differ-317

ent phenological stages of transplanted rice. The correlation coefficient (r)318

of GRVI with PAI is 0.83, higher than that of RVI (r = 0.61). In particular,319

GRVI outperforms RVI for the period from tillering to booting with stronger320
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correlation, as lower variance associated with GRVI. As the transplanted rice321

starts heading and moves to maturity, a higher variance is observed for RVI.322

As previously stated, this higher variance may be due to the noisy values323

associated with λ3. Variations in the vegetation indices during later growth324

stages may be explained by scattering from the upper canopy layer along325

with the saturation of PAI.326

4.2. Direct Seeded Rice (DSR)327

Direct seeding of the rice crop is gaining importance in the semi-arid328

regions of India. Differences in extent, timing, and duration of standing329

water in DSR plots, as compared to that of conventional TR cultivated plots,330

will impact SAR scattering characteristics. DSR cultivation begins with331

the preparation of a smooth seedbed for direct sowing, in order to promote332

proper seed establishment (Fig. 9). The temporal response of GRVI over333

the phenological stages of DSR fields are shown in Fig. 10. Amongst several334

DSR fields, 8 representative fields (field numbers: 205, 212, 242, 253, 271,335

285, 263 and 303), distributed throughout the region, are presented. The336

response of GRVI is compared to that of RVI, with in-situ measured PAI337

aiding in the interpretation of these results. As with the TR cultivation, the338

growth trends of DSR plots are similar irrespective of the field numbers; an339

increase of PAI with crop development.340

It is apparent from Fig. 10 that GRVI increases monotonically as crop341

establishment is completed by 22 August. Here, it is important to note342

that crop development to tillering is delayed in DSR (up to 15 September)343

as compared to TR. Unlike seedling transplanted from the nursery-bed to344

main plots flooded with water in TR cultivation, for DSR plants emerge345
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Figure 9: Field conditions of a direct seeded rice (DSR) during the campaign.

directly from the sown seeds in the main plot. Hence, crop establishment346

and accumulation of peak PAI are generally delayed. This delay is apparent347

in the temporal PAI plots shown in Fig. 10.348

At the early tillering stage (on 22 August) the magnitude of GRVI is <0.4349

for the majority of the plots. GRVI continues to increase during the vege-350

tative stage and ends at booting around 09 October. GRVI values reach a351

maximum (approx. 0.62-0.75) at heading and flowering stages on 02 Novem-352

ber. The in-situ measurements of PAI during this period confirm an increase353

in PAI to approximately 4.3 m2 m−2. However, changes in GRVI values after354

the heading stage are not apparent (02 November). Also, during the dough355

and maturity stages, both the GRVI and RVI values are inconsistent among356

different fields. The GRVI maps over a subset of the test site (Region-A357

in Fig. 1) also qualitatively confirm variability both in spatial and temporal358

scale (Fig. 7). Moreover, the changes indicated by GRVI are more apparent359

in the DSR region than the TR area, which may be due to complex scattering360

phenomena in TR fields given the presence of standing water.361
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Figure 10: Temporal pattern of GRVI and RVI for direct seeded rice (DSR) fields at
different growth stages. The in-situ measurements of PAI, m2 m−2 are plotted in secondary
axis for each field.

Similar to the TR backscatter signal, the DSR plots also indicate backscat-362

ter intensity variations with phenological stages (Fig. 11). However, during363

the early leaf development stage, the backscatter powers are notably higher364

than the majority of TR fields. It is likely due to the delayed plant de-365

velopment up to tillering stage. The in-situ measurements also confirm a366
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delayed accumulation of peak PAI for DSR fields. This delay is apparent in367

the temporal PAI and backscatter intensity plots shown in Fig. 11.368

Figure 11: Temporal pattern of backscatter intensities in the HH, VV, and HV channels
for direct seeded rice (DSR) fields at different growth stages. The in-situ measurements
of Plant Area Index (PAI, m2 m−2) are plotted on the secondary axis for each field.
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Figure 12: Correlations (r) between vegetation indices (GRVI and RVI) with plant area
index (PAI, m2m−2) for direct seeded rice (DSR). Samples from several phenological stages
are highlighted in different colours.

Increases in RVI throughout the phenological stages of rice development369

are different when compared to GRVI. The dynamic range of RVI is lower370

relative to GRVI, throughout the entire growing period. As well, the corre-371

lation analysis of GRVI shows its competence with RVI as given in Fig. 12.372

The correlation coefficient (r) of GRVI with PAI is 0.84, significantly higher373

than the correlation between RVI and PAI (r = 0.62). The GRVI of DSR374

fields is more sensitive to the changes in PAI, relative to RVI, as was also375

observed with the responses from the TR fields. This improved sensitivity376

was particularly noted for the tillering to booting stages. As the DSR crop377

advanced from the heading to maturity stages, the responses associated with378

RVI had higher variance. This increased variance is likely due to the nature379

of λ3, as shown in Fig. 5. It is worth mentioning that in addition to volume380

scattering, the double bounce scattering mechanism is also one of the major381

contributors to the total backscatter power given the erectophile geometry382

of rice crops. This characteristic may lead to low signal to noise ratio (SNR)383
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for the third eigenvalue. On the other hand, the GRVI suitably takes into384

account the GVSM parameters along with the modulation parameter β (7)385

to better capture changes in the crop morphology.386

4.3. Potential of TR and DSR discrimination387

In addition to the temporal dynamics of vegetation indices, it is also inter-388

esting to evaluate the characterization capability of VIs for both rice types.389

The literature reports that techniques to characterize rice growth depend390

primarily on the detection of the backscattered signal from the underlying391

water at the start of the growing season (Le Toan et al., 1997; Nelson et al.,392

2014; Mandal et al., 2018). These techniques are typical of transplanted rice393

(TR) cultivation. In contrast, the DSR cultivation includes alternate wet-394

ting and drying of the soil, without extended periods of standing water. This395

difference in the cultivation practice is challenging to characterize with SAR396

backscatter coefficients (Fikriyah et al., 2019).397

In principle, it would be possible to characterize differences between cul-398

tivation practices early in the rice growing season. Even though limited399

investigations have focused on the discrimination of rice cultivation practices400

using SAR, it is imperative to focus on the period of land preparation to401

the tillering and stem elongation stages (Choudhury and Chakraborty, 2006;402

Yang et al., 2017; Phan et al., 2018).403

A recent study by Fikriyah et al. (2019), using C-band dual-pol Sentinel-1404

backscatter intensities, demonstrated that TR and DSR cultivation practices405

could be discriminated. In our experiment, even though the correlation of406

PAI with vegetation indices for TR is similar to that of DSR, the sensitivity of407

GRVI to PAI varies among phonological stages as shown in Fig. 3 and 10. The408
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spatio-temporal maps (Fig. 7) also highlight variations between TR and DSR409

regions at early growing to late vegetative stages. However, the vegetation410

indices appeared similar for TR and DSR fields during heading to maturity411

stages. Nevertheless, the discrimination capability of GRVI is superior to412

that of RVI for qualitative assessment of rice cultivation practices.413

4.4. PAI estimation from vegetation indices414

The retrieval of PAI from PolSAR observations is of significant impor-415

tance for in-season monitoring of crop growth. The PAI is correlated directly416

with canopy foliage and structure (Jonckheere et al., 2004), which is a valu-417

able indicator of crop condition. The PAI estimation from the vegetation418

indices is achieved via linear regression. Other researchers (Becker-Reshef419

et al., 2010; Jiao et al., 2011; Kogan et al., 2013; Liao et al., 2018) have420

utilized linear regression for the operational scalability of remote sensing421

products for vegetation monitoring. In spite of their localized application,422

linear regression techniques are often the preferred approach owing to their423

limited data requirements and simplicity to implement. Conversely, a higher-424

order polynomial may lead to an over-fitting problem that would likely fail425

to generalize on the test data set. Nevertheless, considering that the correla-426

tions between the GRVI and PAI are high (> 0.80) for both the TR and DSR427

(Fig. 8 and 12), the application of linear regression would be a cost-effective428

approach for PAI estimation from the GRVI.429

Independent samples are used for training and testing of the regression430

model. In total 118 samples (from 24 fields) and remaining 80 samples (from431

16 fields) of DSR are used for training and validation, respectively. In the432

case of TR cultivation, 65 samples from 12 fields are used for training with the433
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remaining 42 samples from 8 fields reserved for validation. It is important to434

note that the training and validation points are sampled from all phenological435

stages of rice. However, PAI values <0.15 m2 m−2 are not considered for436

training and validation of the model as these samples are likely to be affected437

by the underlying soil at the very early plant growth stages.438

A k-fold (k=3 in this case) cross-validation is performed while estimating439

PAI from the radar vegetation indices. In the cross-validation experiment,440

the samples are split into multiple pairs of training and test sets. Here it441

is important to note that with multi-temporal observations for each in-situ442

sampling location, the split of the dataset is based on field numbers. Hence,443

random sampling from the entire temporal dataset is not desirable. The PAI444

estimation accuracy is assessed for both the DSR and TR cases, with each445

having three validation datasets (Table 2). Among them, the best result is446

taken for representation in Fig. 13 with a 1:1-plot for GRVI and RVI provided447

separately. The accuracy of the PAI retrieval is measured by the correlation448

coefficient (r), Root Mean Square Error (RMSE), and Mean Absolute Error449

(MAE).450

Table 2: Error estimates for PAI retrieval from GRVI using k-fold cross validation tech-
niques for three validation dataset

Rice type Error estimates
Validation

set-1
Validation

set-2
Validation

set-3

DSR
r 0.810 0.823 0.798

RMSE 0.835 0.821 0.852
MAE 0.779 0.787 0.801

TR
r 0.803 0.805 0.789

RMSE 1.049 1.051 1.102
MAE 0.834 0.836 0.857

For GRVI, the estimated PAI closely follows the 1:1 line with r = 0.82,451

RMSE = 0.821 m2 m−2, and MAE = 0.787 m2 m−2 for DSR. The errors of452
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Figure 13: Validation of retrieved and observed Plant Area Index (PAI, m2m−2) retrieval
for direct seeded rice (DSR) and transplanted rice (TR) using radar vegetation indices
(GRVI and RVI). Samples from several phenological stages are highlighted in different
colours. The correlation coefficient (r) values are significant with p-value < 0.05 for all
these four cases.

estimation are comparatively higher (RMSE = 1.049 m2 m−2, and MAE =453

0.834 m2 m−2) in the case of TR. In comparison to GRVI, the errors asso-454

ciated with estimates of PAI are higher when using RVI, regardless of rice455
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type. Correlation coefficients are also low for both DSR (r = 0.56) and TR456

(r = 0.54) cases. Higher dispersion of PAI estimates are observed with RVI457

throughout the entire range. This estimation error with PAI may have prop-458

agated from the training phase of the linear regression model between RVI459

and PAI.460

Although PAI is more accurately estimated using GRVI, overestimation461

occurs in the early vegetative stages of both the rice types. At this early462

stage, the backscatter response is dominated by soil moisture due to low463

leaf area (Ulaby et al., 1984). This phenomenon is also reported for PAI464

estimation in the early stages of wheat (Mandal et al., 2019a; Ratha et al.,465

2019). On the other hand, the estimation accuracy of PAI derived from466

GRVI improves during more advanced stages, e.g., tillering to booting stage.467

At a high canopy density, this improved performance is likely due to the468

dominant volume scattering component generated from multiple interactions469

of the radar wave with stems, leaves, and the underlying soil (Brown et al.,470

2003).471

5. Conclusion472

The potential of using the Generalized volume scattering model based473

Radar Vegetation Index (GRVI) for determining rice growth condition from474

C-band SAR has been examined in this research. The temporal analysis of475

the GRVI derived from quad-pol RADARSAT-2 data suggests that this veg-476

etation index follows crop growth development, i.e., increasing as the Plant477

Area Index (PAI) of rice increases. Correlation analysis is performed be-478

tween the radar vegetation indices (RVI and GRVI) and PAI using samples479
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from several phenological stages of rice. These results indicate that GRVI is480

highly correlated with rice development, as compared to RVI. Unlike RVI,481

the GRVI follows the advancement of plant growth stages until full canopy482

development, and as plant area accumulates. In addition, the dynamic range483

of RVI is less than that of GRVI when rice advances from an early vegetative484

to heading stage. It also confirms the improved characterization potential of485

GRVI compared to RVI. Qualitatively, the improved range and sensitivity of486

GRVI to rice development is observed in the spatio-temporal maps produced487

using this index. PAI is accurately estimated using a linear regression model488

for GRVI with promising error estimates for both the Direct Seeded Rice489

(DSR) and Transplanted Rice (TR). The correlation between the observed490

and estimated PAI from the GRVI-PAI linear regression model indicates a491

higher correlation coefficient (r > 0.80) for both rice type. The error esti-492

mates (RMSE and MAE) are also lower than that of the PAI estimates from493

an RVI-PAI model. Moreover, unlike RVI, the GRVI is able to distinguish494

between DSR and TR fields.495

The application of GRVI, derived from C-band quad-pol SAR data, would496

be of interest for operational monitoring of rice production. Due to its sim-497

plistic and tractable formulation, the GRVI could be implemented at larger498

spatial scales. However, a reduced swath coverage and temporal revisit fre-499

quency associated with these quad-pol measurements would challenge opera-500

tional activity. Nonetheless, a similar concept for the derivation of vegetation501

index based on the geodesic distance can be extended for dual and compact-502

pol SAR data. Considering the operational missions of Sentinel-1, NISAR,503

RCM, SAOCOM, and upcoming RISAT-1A, it would be important to devise504
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a proxy for vegetation growth indicators with geodesic distance-based indices505

for these imaging modes.506

Considering the results presented here, a SAR-based vegetation index507

could provide an essential source of data for rice growth monitoring, in regions508

where optical data acquisitions are hindered due to persistent cloud cover.509

Further testing of this index is warranted and could be accomplished under a510

collaborative framework for cross-site experiment setups like the SAR inter-511

comparison experiment within the Joint Experiment for Crop Assessment512

and Monitoring (JECAM) network and the Asian Rice Crop Estimation and513

Monitoring (Asia-RiCE) initiatives.514
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