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Objective: In this study we investigate cortical and subcortical gray matter structure

in patients with Idiopathic REM-sleep behavior disorder (IRBD), and their relation to

cognitive performance.

Methods: This study includes a sample of 20 patients with polysomnography-confirmed

IRBD and 27 healthy controls that underwent neuropsychological and T1-weighted MRI

assessment. FreeSurfer was used to estimate cortical thickness, subcortical volumetry

(version 5.1), and hippocampal subfields segmentation (version 6.0). FIRST, FSL’s

model-based segmentation/registration tool was used for hippocampal shape analysis.

Results: Compared with healthy subjects, IRBD patients showed impairment in facial

recognition, verbal memory, processing speed, attention, and verbal naming. IRBD

patients had cortical thinning in left superior parietal, post-central, and fusiform regions,

as well as in right superior frontal and lateral occipital regions. Volumetric and shape

analyses found right hippocampal atrophy in IRBD, specifically in posterior regions.

Hippocampal subfields exploratory analysis identified significant differences in the right

CA1, molecular layer, granule cell layer of dentate gyrus, and CA4 of this patients. No

correlations were found between cognitive performance and brain atrophy.

Conclusion: This work confirms the presence of posterior based cognitive dysfunction,

as well as cortical and right hippocampal atrophy in IRBD patients.

Keywords: idiopathic REM-sleep behavior disorder, MRI-magnetic resonance imaging, cortical gray matter

atrophy, hippocampal atrophy, hippocampal subfields, cognition
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INTRODUCTION

Rapid eye movement (REM) sleep behavior disorder (RBD)
is a parasomnia characterized by abnormal motor and
vocal behaviors associated with unpleasant dreams and
increased electromyographic activity during REM sleep (1).
Polysomnography with audiovisual recording is needed to
confirm the diagnosis of RBD and to exclude other sleep
disorders that can mimic its symptoms, including obstructive
sleep apnea, nocturnal hallucinations, and confusional
arousals (2).

Over the past years, the idiopathic form of RBD (IRBD)
has been increasingly recognized as a prodromal phase of some
neurodegenerative diseases, mainly of alpha-synucleinopathies
such as dementia with Lewy bodies (DLB), Parkinson’s disease
(PD), and multiple system atrophy (3, 4). The risk for IRBD
patients of eventually developing a neurodegenerative disease
increases with time (3, 5). IRBD is by far the strongest
and most specific clinical predictor of neurodegenerative
disease available (6). Therefore, there is growing interest in
describing neuroimaging and cognitive biomarkers of brain
neurodegeneration in this prodromal disorder.

With an estimated prevalence of 50%, cognitive impairment
is frequently present in IRBD patients (7), affecting manly
attention, verbal memory, visuospatial, and executive domains
(8). Furthermore, previous works demonstrated cognitive decline
in attention and executive functions strongly predict conversion
to DLB in IRBD patients (9).

Structural brain imaging techniques have been used to
investigate neurodegenerative changes in IRBD. Previous works
using diffusion-tensor imaging showed that IRBD patients
had decreased fractional anisotropy in the tegmentum of the
midbrain, increased mean diffusivity in the pontine reticular
formation (10), and microstructural changes in widespread areas
including brainstem, substantia nigra, temporal lobe, and visual
stream (11). Voxel-based morphometry (VBM) studies revealed
that IRBD patients had gray matter volume reduction in the
superior frontal sulcus (12), anterior cingulate gyrus, caudate
nucleus (13), anterior lobes of the cerebellum, tegmental portion
of the pons, and parahippocampal gyrus (14). Studies addressing
cortical thickness, in turn, have reported thinning in the frontal
cortex, lingual gyrus, and fusiform gyrus (12), as well in medial
superior frontal, orbitofrontal, anterior cingulate cortices, and
dorsolateral primary motor cortex (13).

In the current work, we aimed to investigate [1] cognitive
impairment in a sample of IRBD patients compared to
healthy controls, [2] MRI gray matter changes and [3]
correlation between cognitive impairment and cortical and
subcortical atrophy.

METHODS

Participants
Twenty patients with IRBD without cognitive or motor
complaints at the time of diagnosis were recruited from our
multidisciplinary sleep unit. Diagnosis of IRBD required a
history of dream-enacting behaviors, video-polysomnographic

demonstration of REM sleep without atonia and absence of other
neurological diseases (15, 16). Twenty-seven healthy subjects
without cognitive, motor, or sleep complaints were recruited
from the Institut de l’Envelliment (Barcelona, Spain).

Exclusion criteria consisted of: [1] Presence of psychiatric
and/or neurologic comorbidity, [2] low global IQ score estimated
by the Vocabulary subtest of the Wechsler Adult Intelligence
Scale, 3rd edition (scalar score ≤7 points), [3] MMSE score
<25, [4] claustrophobia, [5] MRI movement artifacts, and [6] no
evidence in HC of sleep disorders or mild cognitive impairment.

The study was approved by the Ethics Committee of
the University of Barcelona (IRB00003099) and Hospital
Clinic (HCB/2014/0224). All subjects provided written
informed consent to participate after full explanation of the
procedures involved.

Neuropsychological and
Clinical Assessment
Participants were evaluated with a neuropsychological battery
assessing the main cognitive domains impaired in alpha-
synuclein-related neurodegenerative diseases. Attention and
workingmemory were assessed with the TrailMaking Test (TMT,
parts A and B) (in seconds), Digit Span Forward and Backward,
the Stroop Color-word Test, and the Symbol Digits Modalities
Test (SDMT)-Oral version. Executive functions were evaluated
with phonemic (words beginning with the letter “p” in 1min)
and semantic (animals in 1min) fluencies. Language was assessed
by the total number of correct responses in the short version
of the Boston Naming Test (BNT). In the memory domain, we
assessed total learning recall (sum of correct responses from
trial I to trial V), delayed recall (total recall after 20min),
and recognition abilities using Rey’s Auditory Verbal Learning
Test (RAVLT total, RAVLT recall, and RAVLT recognition,
respectively). Visuospatial and visuoperceptual functions were
assessed with Benton’s Judgement of Line Orientation (JLO),
Visual Form Discrimination (VFD), and Facial Recognition
(FRT) tests (17). Expected z scores adjusted for age, sex,
and education for each test and each subject were calculated
based on a multiple regression analysis performed in the HC
group (18).

Beck Depression Inventory II (19), Starkstein’s Apathy Scale
(20), and the Neuropsychiatric Inventory (NPI) (21) were used
to assess neuropsychiatric symptomatology.

MRI Acquisition
MRI data were acquired with a 3T scanner (MAGNETOM
Trio, Siemens, Germany). The scanning protocol included high-
resolution 3-dimensional T1-weighted images acquired in the
sagittal plane (TR = 2,300ms, TE = 2.98ms, TI = 900ms, 240
slices, FOV= 256mm; 1mm isotropic voxel) and an axial FLAIR
sequence (TR= 9,000ms, TE= 96 ms).

MRI Preprocessing and Cortical
Thickness Analysis
FreeSurfer software was used to estimate cortical thickness. This
study sample is part of an extensive cohort recruited since
2010, for that reason T1-weighted images were preprocessed
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with the FreeSurfer 5.1 version (available at https://surfer.
nmr.mgh.harvard.edu/ since 2011). The 3D cortical surface
model used in this estimation is created using intensity and
continuity information, as described in detail by the authors
(22). Independent steps are performed in the initial preprocessing
of images for each subject: removal of non-brain tissue,
automated Talairach transformation, intensity normalization
(23), tessellation of the gray matter/white matter boundary,
automated topology correction (24), and accurate surface
deformation to optimally place the gray matter/white matter
and gray matter/cerebrospinal fluid (CSF) boundaries (22). The
resulting representation of cortical thickness is calculated as the
distance between white and gray matter surfaces at each vertex
of the reconstructed cortical mantle (23). In our study, results for
each subject were carefully inspected visually to ensure accuracy
of registration, skull stripping, segmentation, and cortical surface
reconstruction. Cortical thickness maps were smoothed using a
circularly symmetric Gaussian kernel across the surface with a
full width at half maximum (FWHM) of 15 mm.

Comparisons between groups were assessed using a vertex-
by-vertex general linear model introducing age as a covariate
(FreeSurfer 5.1). A subsequent analysis introducing both age
and sex as covariates was computed. Vertex-wise correlations
between cortical thickness and cognitive measures were
computed in the IRBD group. In order to avoid clusters
appearing significant purely by chance (i.e., false positives),
Monte Carlo Null-Z Simulation with 10,000 iterations was
applied to cortical thickness maps to provide clusterwise
correction for multiple comparisons; results were thresholded at
a corrected p-value of 0.05 (25).

Subcortical Segmentation
Automated subcortical segmentation performed with FreeSurfer
(version 5.1) was used to estimate subcortical volumetry.
Estimated Total Intracranial Volume (eTIV) was obtained
to correct volumetric data for inter-individual differences in
head sizes.

TABLE 1 | Demographic and clinical characteristics.

HC (n = 27) IRBD (n = 20) Test stat/p-value

Age (years) 66.4 (9.9) 71.3 (7.8) 1.83/0.073

Education (years) 12.19 (4.3) 11.9 (4.9) 0.25/0.804

Sex (male/female) (13/14) (14/6) 2.24/0.134

Neuropsychiatric Inventory 1.9 (2.5) 6.4 (5.9) 3.17/0.004

Beck Depression Inventory II 5.1 (4.7) 7.0 (5.0) 1.30/0.201

Starkstein’s Apathy Scale 8.9 (5.3) 10.9 (5.6) 1.20/0.237

Disease duration (years) – 3.1 (3.5) –

MDS-UPDRSIII – 2.4 (1.9) –

HC, healthy controls; IRBD, idiopathic rapid eye movement sleep behavior disorder;

MDS-UPDRSIII, Movement Disorder Society Unified Parkinson’s Disease Rating Scale

motor section. Group differences between HC and IRBD were tested using Student’s t-

test. Differences in categorical variables were analyzed with Pearson’s chi-squared test.

Measures are presented as mean (standard deviation) for continuous variables.

In bold highlighted those results that reached statistical significance.

Hippocampal Shape Analysis
FIRST, FSL’s model-based segmentation/registration tool was
used for hippocampal shape analysis (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FIRST) (26). Segmentation of both hippocampi with
automated boundary correction were generated. We then used
first-utils to run a vertex-wise analysis on the results. FSL’s
Randomize script (27, 28) with 5,000 random permutations of
the data was used to study inter-group differences. ETIV was
estimated with FSL according to ENIGMA’s imaging protocol
(http://enigma.usc.edu/). Age and eTIV were introduced as
covariates in the analyses. A subsequent analysis introducing
both age and sex as covariates was computed. All results were
thresholded at p < 0.05. Correlations with cognitive variables
were performed.

Segmentation of Hippocampal Subfields
FreeSurfer automated hippocampal subfield segmentation
[version 6.0 (29)], was used to estimate individual hippocampal
subfield volumes. Segmentation analysis was conducted for
the right hippocampus. Since no previous works have studied
hippocampal subfields in IRBD patients, an exploratory analysis

TABLE 2 | Group comparison of neuropsychological performance.

HC (n = 25) IRBD (n = 20) Test stat/p-value Effect

size

MMSE 29.4 (0.8) 28.2 (1.6) 10.21/0.003* 0.95

VFD 29.6 (2.6) 29.2 (3.5) 0.01/0.914

JLO 24.7 (3.8) 22.8 (5.2) 1.08/0.303

FRT Short 23.1 (1.9) 21.4 (2.3) 4.96/0.031* 0.81

Phonetic fluency 15.8 (4.4) 12.9 (4.8) 3.38/0.073

Semantic fluency 19.5 (3.2) 15.4 (4.9) 9.24/0.004* 0.99

RAVLT total 48.9 (6.8) 41.7 (8.5) 8.44/0.006* 0.94

RAVLT recall 10.4 (2.6) 8.0 (3.5) 6.41/0.015* 0.78

RAVLT recognition 14.6 (0.8) 13.7 (1.5) 6.28/0.016 0.75

Direct Digits 5.2 (1.3) 5.3 (1.5) 0.05/0.827

Indirect Digits 4.2 (1.1) 4.4 (0.8) 0.44/0.509

Stroop W 96.6 (14.7) 89.0 (16.8) 1.68/0.202

Stroop C 64.4 (10.6) 55.9 (11.1) 5.21/0.028 0.78

Stroop WC 34.3 (11.3) 29.5 (9.7) 1.18/0.283

SDMT 48.4 (9.2) 39.1 (12.5) 6.10/0.018 0.85

TMTA 36.9 (11.4) 53.9 (23.7) 8.95/0.005* 0.91

TMTB 94.1 (49.8) 143.4 (67.5) 5.60/0.023* 0.83

BNT 13.9 (0.9) 13.2 (0.9) 5.30/0.026* 0.78

BNT, Boston Naming Test; FRT Short, Facial Recognition test short form; HC, healthy

controls; IRBD, idiopathic rapid eye movement sleep behavior disorder; JLO, Benton’s

Judgment of Line Orientation test; MMSE, Mini-mental state examination; RAVLT, Rey’s

Auditory Verbal Learning Test; RAVLT recall, total recall after 20min; RAVLT recognition,

total recognition after 20min; RAVLT total, sum of correct responses from trial I to trial V;

Symbol Digits Modalities Test (SDMT)-Oral version; Stroop W, Stroop Word; Stroop C,

Stroop Color; Stroop WC, Stroop Word-Color; TMTA, Trail Making Test part A; TMTB,

Trail Making Test part B; VFD, Visual Form Discrimination. Group differences between

HC and IRBD were tested using general linear model with age as a covariate. In bold

highlighted those results that reached statistical significance. *Comparisons that remain

significant (p < 0.05) when age, sex and years of education were regressed out. Cohen’s

d effect size was computed for significant effects. Measures are presented as mean

(standard deviation).
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was undertaken, and results were considered significant if
they showed a p-value of p < 0.05. All hippocampal subfield
measures were introduced in a general linear model with eTIV
as a covariate.

Statistical Analyses
Statistical analyses of neuropsychological, demographic, clinical,
and MRI volumetric data were carried out using the statistical
package SPSS-24 (2016; Armonk, NY: IBM Corp.). Student’s
t-test was used to assess group differences between IRBD and
healthy subjects in clinical variables. The general linear model
was used to assess group differences in neuropsychological
variables and MRI volumetric data. Pearson’s chi-squared
test was applied to assess group differences in categorical
variables. Correlations between structural measures and
neuropsychological scores were analyzed using Pearson’s

correlation. Age, sex, and eTIV were introduced as covariates
when needed.

RESULTS

Sociodemographic, Clinical, and
Neuropsychological Data
Groups did not differ significantly in any demographical
measure. The interval between IRBD diagnosis and time of
neuroimaging was 3.1+/– 3.5 years. Inter-group comparisons of
clinical, sociodemographic, and neuropsychological variables are
shown in Tables 1, 2, respectively.

Cortical Thickness Analysis
Results of whole-brain cortical thickness analyses showed that
IRBD patients had cortical thinning compared with HC in left
superior parietal, post-central, and fusiform regions, as well as in

FIGURE 1 | Differences between HC and IRBD patients in cortical thickness. Image show vertex-wise cortical thickness differences between HC and IRBD patients

when age was introduced as covariate. Significant clusters are highlighted in warm colors. Results after FWE correction with Monte Carlo simulation and threshold at

p ≤ 0.05. Graphics program: Freeview from FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide), and edited with Microsoft PowerPoint®.
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right superior frontal and lateral occipital regions. Left superior
parietal, left post-central, and right lingual and paracentral
regions remained significant after controlling for both, age and
sex Figure 1, Table 3, and Supplementary Material 1.

Subcortical Segmentations
Inter-group analysis of subcortical segmentations showed IRBD
patients had reduced hippocampal volume (F = 7.730; P =

0.008; Cohen’s d effect size = 0.77). In a subsequent analysis
right hippocampal volume achieved significance (F = 5.086; P =

0.029; Cohen’s d effect size = 0.85), whereas no differences were
found for the left hippocampus (F = 2.491; P = 0.122). These
results remained significant after controlling for both, age and
sex Table 4.

Hippocampal Shape Analysis
Shape analysis showed inter-group differences for the right
hippocampus in a cluster located in its posterior region, including
mainly the CA1, the hippocampal tail, the subiculum, and the
dentate gyrus Figure 2. A clear tendency to significance was seen
when sex was introduced as a covariate (P = 0.058).

Segmentation of Hippocampal Subfields
An exploratory analysis of right hippocampal subfields showed
that, in comparison with the HC group, IRBD patients had a
significant reduction in the right cornu ammonis 1 (CA1) (F =

5.685; P = 0.021; Cohen’s d effect size = 0.616), molecular layer
(F = 5.764; P = 0.021; Cohen’s d effect size = 0.645), granule cell
layer of the dentate gyrus (F = 4.863; P = 0.033; Cohen’s d effect

TABLE 3 | Differences between HC and IRBD patients in cortical thickness.

Cluster size

(mm2)

MNI305 space Clusterwise

p-value

Cluster

anatomical

annotationX Y Z

HC>RBD (AGE AS COVARIATE)

LH Clusters

1 4846.8 −22.9 −74.4 29.9 <0.001 Superior parietal

2 2935.7 −52.9 −11.7 23.8 <0.001 Post-central

3 1987.3 −24.1 −31.1 63.3 0.003 Post-central

4 1438.7 −34.0 2.0 −39.4 0.041 Fusiform

RH Clusters

1 2272.63 21.3 28.4 39.9 0.003 Superior frontal

2 1774.5 43.5 −78.7 −6.4 0.017 Lateral occipital

HC>RBD (AGE AND SEX AS COVARIATES)

LH Clusters

1 2863.5 −23.1 −73.5 30.0 <0.001 Superior parietal

2 2672.3 −49.8 −10.3 23.2 <0.001 Post-central

3 1767.1 −32.3 −54.8 61.5 0.007 Superior parietal

RH Clusters

1 2195.6 9.1 −69.1 −1.1 0.003 Lingual

2 1530.3 8.6 −8.5 66.6 0.045 Paracentral

HC, healthy controls; IRBD, idiopathic rapid eye movement sleep behavior disorder; LH,

left hemisphere; RH, right hemisphere. Results after FWE correction with Monte Carlo

simulation and threshold at p ≤ 0.05.

size= 0.579), and cornu ammonis 4 (CA4) (F = 4.890; P= 0.032;
Cohen’s d effect size= 0.586) Supplementary Material 2.

Correlation Analyses
To search for cortical substrates of cognitive changes in patients,
we performed cortical thickness analyses. Nevertheless, none
cognitive function correlated significantly with cortical thickness
maps. Moreover, no significant correlations in the IRBD group
were found betweenmeasures of hippocampal atrophy and either
memory scores or other cognitive variables.

DISCUSSION

To our knowledge this is the first study that combine MRI
structural data and cognitive assessment to compare IRBD
patients and a group of healthy controls. Our results showed
that IRBD patients had posterior based cognitive impairment,
cortical atrophy and reduction of the hippocampal volume.
In this study we explore the hippocampal structure through
different structuralMRI techniques and found reductions in right
whole-hippocampus volume, mainly in posterior regions.

Similarly to previous neuropsychological results on IRBD,
in the current study, patients differed from controls in several
cognitive domains (8), namely attention (30, 31), verbal memory
(30–33), executive function (30, 34, 35) and semantic fluency
(30, 31, 36). Our results showed large effect size for facial
recognition, semantic fluency, RAVLT total learning, SDMT,
TMTA, and TMTB tests. Interestingly, a previous work found
TMT, verbal fluency and Stroop Color Word test, were the best
predictors of Lewy bodies dementia in IRBD patients (9). As far
as we know, this is the first work assessing facial recognition
in IRBD patients and showing lower scores in comparison to
HC. In this sense, there are previous literature identifying facial
emotion recognition (37) and facial recognition impairment in
PD patients (38) suggesting this posterior-based dysfunction
could be a cognitive biomarker of PD conversion in IRBD

TABLE 4 | Deep gray matter measures (mm3).

HC (n = 27) RBD (n = 20) Test stat/

p-value

Effect

size

Thalamus 12707.1 (1319.2) 12413.8 (1327.6) 1.325/0.256

Caudate 6609.0 (962.9) 6505.5 (1095.2) 0.337/0.564

Putamen 9682.2 (1051.0) 9213.5 (1201.5) 2.359/0.132

Pallidum 3062.9 (363.3) 2968.7 (378.5) 1.208/0.278

Amygdala 3198.9 (521.1) 2990.1 (431.3) 2.855/0.098

Accumbens 1051.1 (186.1) 975.5 (182.5) 1.938/0.171

Brain stem 20318.7 (2455.7) 20364.2 (2270.1) 0.057/0.813

Hippocampus 8137.0 (941.7) 7447.5 (840.3) 7.730/0.008* 0.77

Right 4082.4 (482.0) 3709.1 (397.3) 5.087/0.029* 0.85

Left 4054.6 (479.9) 3738.4 (479.6) 2.491/0.122

HC, healthy controls; IRBD, idiopathic rapid eye movement sleep behavior disorder.

Measures are presented as means (standard deviation). In bold highlighted those results

that reached statistical significance. *Comparisons that were significant (p < 0.05) when

estimated Total Intracranial Volume, age and sex were introduced as covariates, Cohen’s

d effect size was computed for significant effects.
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FIGURE 2 | Hippocampal shape differences between HC and IRBD patients. Images show right hippocampus shape differences between HC and IRBD patients

when age and estimated Total Intracranial Volume were introduced as covariates. Significant clusters of shape differences (local atrophy) between the groups are

highlighted in warm colors (corrected P < 0.05). Results are overlaid on the right hippocampus mask (blue) and displayed over the sagittal, coronal and axial sections

of the MNI standard brain. Graphics Program: fslview from FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView/UserGuide) and edited with Microsoft PowerPoint®.

patients. Further longitudinal studies are needed to elucidate
this issue.

Cortical thickness analysis showed in comparison to HC,
IRBD patients had atrophy in left superior parietal, post-
central, and fusiform regions, as well as in right superior
frontal and lateral occipital regions. When age and sex were
introduced as covariates, left superior parietal, left post-central,
and right lingual and paracentral regions remained significant.
These results agree with those obtained by Rahayel et al.
(12, 13) regarding the involvement of dorsolateral prefrontal

and occipito-medial regions. In addition, we observed superior
parietal thinning similarly to that described in non-demented PD
(39, 40). Interestingly, similar to our results fusiform gyrus and
parietal lobe thinning was observed in cross sectional (41, 42) and
longitudinal DLB dementia studies (43).

Deep gray matter analysis showed a reduction in the right
hippocampus in IRBD patients, there are some works indicating
the existence of medial temporal lobe abnormalities in such
patients using other neuroimaging approaches. For example,
studies using whole-brain VBM approach, reported increased
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hippocampal gray matter density (10), but also gray matter
reduction in related structures such as the parahippocampal
gyrus (14). On the other hand, brain perfusion studies have
found an increased metabolic activity of the hippocampus in
IRBD patients (30, 44–47). Some of these works have found this
effect specifically in the right hippocampus (30, 44). Furthermore,
hippocampal perfusion in IRBD has been reported as a predictor
of PD or DLB evolution (45).

Exploratory analyses indicated a trend to reduction in IRBD
patients in the right CA1 and CA4 subfields, right molecular
layer, and right granule cell layer of the dentate gyrus. In
agreement with our findings, reductions in the CA1 (48, 49),
CA4-DG (50), subiculum, and presubiculum (48) have been
found in DLB patients. By contrast, a previous work reported
preservation of hippocampal subfields in DLB patients (51).
Neuropathological studies in DLB evidenced greater Lewy
pathology in the CA2 (52), but also in the entorhinal cortex, CA1,
CA3, CA4, and the subiculum (53).

In a longitudinal study including a larger sample of MCI
subjects, the hippocampal volume reduction was reported as
predictor of evolution to AD rather than DLB (54). In the same
line, AD showed higher hippocampal atrophy than PDD and
healthy controls, and regional vulnerability differed between AD
and PDD specifically in whole right hippocampus and right
subiculum (55). Previous literature have found the progression
of IRBD patients is mainly to alpha-synucleinopathies such as
DLB, PD, and MSA (3, 4), and not to AD. Further recent
findings also provide evidence that APOE-ε4 is linked to
hippocampal atrophy and learning/memory phenotypes across
the AD/DLB spectrum (56). However, in light of previous data,
we cannot rule out that some of our patients could evolve
to AD, in this sense could be interesting to obtain APOE ε4
genotypic profile.

Finally, it can be difficult to dissociate if hippocampal atrophy
and memory impairment are due to sleep problems itself or
to sleep problems plus the neurodegenerative process. Sleep
deprivation has been related to hippocampal dysfunction and
volume reduction (57), so we cannot attribute our results
to the neurodegenerative process per se. For that reason,
studies including other sleep disturbances as control group
are needed.

Contrary to our hypothesis, we did not find significant
correlations between cognitive performance and brain atrophy.
However, there is coherence between the detected brain
atrophy by MRI and neuropsychological profile observed in
our sample. This could be due to the small sample size, or
the lack of linear relationship between structural changes and
neuropsychological impairment. A previous work studying IRBD
patients reported that cortical thinning was associated with
lower performance in cognitive domains, namely attention and
executive functions, learning and memory, and visuospatial
abilities (58). In this setting, right hippocampus volume has
been related to spatial memory abilities (59) and spatial mapping
(60), with a greater role of posterior hippocampi (60). The
lack of association between hippocampal volume and memory
performance in our study might be improved in the future

by using an extensive neuropsychological assessment including
visual and spatial memory tests, as well as test paradigms
such as the Free and Cued selective Reminding Test to
study memory dissociations between recall and recognition in
IRBD patients.

Despite the novel findings described above, some limitations
of the current study should be acknowledged. First, the relatively
small sample size requires caution in generalizing our results,
therefore these findings need to be reproduced in larger
samples. Second, considering the exploratory nature of the
hippocampal subfield analysis, we did not apply correction for
multiple comparisons

In conclusion, we found reductions of mainly posterior
cortical thickness and right hippocampal volume in IRBD,
alongside evidence of cognitive impairment. This pattern is
similar to cognitive decline and atrophy observed in PD
and DLB.
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