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1 Introduction

In N = 2 superconformal field theories (SCFT’s), correlators of a special type of scalar

operators known as chiral primary operators (CPO’s) can be computed exactly from a

deformed matrix model obtained by adding suitable source terms to the theory on S
4 [1].

Since the construction involves a conformal map from S
4 into R

4, and because the regu-

lated theory on S
4 breaks the U(1)R symmetry, mixings among operators with different

R-symmetries are possible. Alternatively, since the radius of the S
4 sets a scale which

can soak up dimensions, operators of different dimensions can mix. These mixings can be

viewed as a manifestation of the conformal anomaly.

In order to take care of the operator mixings, Gerchkovitz et al. [1] proposed a Gram-

Schmidt procedure to disentangle the correct operators corresponding to those in R
4. Such

procedure was carried out explicitly in [2] for N = 4 Super Yang-Mills theory (SYM) in

the large N limit, where the structure of the CPO’s dramatically simplifies as only single-

trace operators are kept. In particular, it was shown how the expected free-field result is

recovered. This is a consequence of a celebrated non-renormalization theorem [3–7].

As discussed in [1], the coefficients encoding the mixings among operators are subject

to an ambiguity; as they are defined modulo the addition of holomorphic and antiholo-

morphic functions of the couplings. This ambiguity can nevertheless be removed by taking

appropriate derivatives. Thus, the resulting differentiated mixing coefficients should be

observables, very plausibly linked to new manifestations of the conformal anomaly. It is

therefore natural to expect the structure of the operator mixings (modulo the holomorphic

ambiguity) to be very interesting.

In this note we explore the structure of the operator mixing, focusing in the case of

N = 4 SYM in the large N limit (we provide some results for N = 2 superconformal QCD
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as well). As we will see, the mixing coefficients nicely fit into a pattern corresponding

to the Chebyshev polynomials (see eq. (2.18)). We will show that this form is exactly

what is needed in order to recover the expected correlation functions from the matrix

model [2]. Moreover, these operator mixings in the form of Chebyshev polynomials are

also exactly what is needed to recover the expected form of the correlators between CPO’s

and Wilson loops [8–12], thus providing a highly non-trivial check of the relevance of the

mixing structure.

It is worth emphasizing that the correlator between a CPO and a Wilson loop has

been previously computed in [8–12]. Since the propagators evaluated on the loop become

position independent, the computation can be done through a certain two-matrix model

encoding the combinatorics of the Feynman diagrams. Interestingly, such matrix model is

related to 2d Yang-Mills theory [13]. Here we shall arrive at the same result through a

completely different path, thus suggesting an intriguing large N “duality” between matrix

models.

This paper is organized as follows: we start section 2.1 with a brief review of the

construction of [1] to compute correlators of CPO’s and explain the relevance of the operator

mixing. After this review section we jump into the new results found in this paper. In

section 2.2 we then specialize to N = 4 SYM and establish the generic expression (2.18)

encoding such operator mixing. In section 3 we turn to the computation of the correlator

of a Wilson loop and a CPO. Following the same logic, we uncover a new representation

for these correlators in terms of the S
4 matrix model with the insertion of operators in

the form of the Chebyshev polynomials, as in eq. (2.18). This reproduces the same result

obtained in [8] in a highly non-trivial way, and confirms the general form of the operator

mixing on S
4. In section 4 we turn to N = 2 conformal SQCD, for which we compute

the analogous correlator among a Wilson loop and a CPO. Along the way, we find that

correlators of CPO’s in N = 2 superconformal QCD can be written in terms of correlators

of N = 4 CPO’s and prove a conjecture [2] about the 2-point function for CPO’s in N = 2

SQCD with arbitrary SU(N) gauge group. We close in section 5 with concluding remarks.

2 Operator mixing in SSS
4 from correlators of chiral primary operators

2.1 Review

Let us start with a brief review of the procedure presented in [1] to extract, from a deformed

version of the S
4 partition function, correlators for chiral primary operators; as well as its

recent application to the computation of large N correlators in N = 4 SYM and N = 2

superconformal QCD in [2].

Superconformal primary operators, annihilated by the superconformal supersymmetry

generators Si
α and S̄i

α̇, play a prominent role in N = 2 theories. Among those, chiral

operators (CPO), annihilated as well by the Poincaré supercharges of one chirality Q̄i
α̇,

are of special relevance. In particular, strong arguments suggest that these operators are

always Lorentz scalars satisfying the BPS bound ∆ = R
2 , being R the U(1)R charge.

This implies that their OPE is non-singular with constant structure functions, endowing

these operators with a ring structure. Very recently, there has been much progress in
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understanding the structure of such ring [1, 2, 14–18]. In particular, in [1] it was argued

that correlators of CPO’s in R
4 can be extracted from the partition function of a deformed

version of the theory on S
4. This is possible due to a Ward identity on the S

4, which

relates the integrated correlator of particular combination including the top component of

the N = 2 chiral superfield where the CPO lives, denoted by C, with the (unintegrated)

correlator of CPO’s O at North and South poles of the sphere (see [1, 17, 18] for more

details). Explicitly,

(

1

32π2

)2 ∫

S4

d4x
√

g(x)

∫

S4

d4y
√

g(y) 〈Cn(x)Cm(y)〉S4 = 〈On(N)Om(S)〉S4 . (2.1)

Furthermore, due to supersymmetry, it holds that correlators on R
4 satisfy that [15]

〈On1
(x1) · · · Onn(xn)O

′
m(y)〉R4 = 〈On(x1)O′

m(y)〉R4 ,

for On(x) ≡ On1
(x) · · · Onn(x). Since these operators are CPO’s and thus satisfy a BPS

bound, R-charge conservation sets their correlator to zero unless ∆O = ∆O′ . Thus, on

general grounds their correlator is

〈On(x)O′
m(0)〉R4 =

Cnm

|x|2∆O
δ∆O∆O′ . (2.2)

This can now be recast as

|x|2∆O 〈On(x)O′
m(0)〉R4 = Cnmδ∆O∆O′ . (2.3)

In order to relate the correlators on R
4 to the correlators on S

4, one makes use of the

fact that R4 and S
4 metrics are related by a conformal transformation,

ds2
R4 =

(

1 +
~x2

4

)2

ds2
S4
. (2.4)

Given that x → ∞ in the S
4 corresponds to the North pole, one has

lim
x→∞

|x|2∆OO(x) = 4∆O lim
x→∞

(

1 +
~x2

4

)∆O

O(x) = 4∆OO(N) , (2.5)

where we used the conformal map induced by (2.4). Conversely, since x → 0 corresponds

to the South pole,

O(0) = lim
x→0

(

1 +
~x2

4

)∆

O(x) = O(S) . (2.6)

Thus, this allows one to relate the R
4 correlator to the S

4 correlator as

〈
(

lim
x→∞

|x|2∆OOn(x)
)

O′
m(0)〉R4 = 4∆O 〈On(N)O′

m(S)〉S4 = Cnmδ∆O∆O′ . (2.7)

Substituting this formula into (2.1), one obtains

(

1

32π2

)2 ∫

S4

d4x
√

g(x)

∫

S4

d4y
√

g(y) 〈Cn(x)Cm(y)〉S4 = 4−∆Cnm . (2.8)
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The next problem is to determine the correlators on S
4. A convenient way to gen-

erate these correlators is by considering a deformed version of the S
4 partition function

by adding sources τm for all CPO’s, obtaining in this way a deformed partition function

Z[{τm, τ̄m}] [1]. Here τ2 = τYM, where, as usual, Im τYM = 4π
g2
YM

. Correlators can then be

computed by

1

Z[{τm, τ̄m}]∂τm∂τ̄mZ[{τm, τ̄m}] =
(

1

32π2

)2 ∫

S4

d4x
√

g(x)

∫

S4

d4y
√

g(y) 〈Cn(x)Cm(y)〉S4 .

(2.9)

There is, however, one important subtlety, namely that, due to the conformal anomaly, on

the S
4 there is a highly non-trivial operator mixing. This is expected, since the S

4 theory

preserves the supergroup osp(2|4), which contains the SU(2)R symmetry but breaks the

U(1)R symmetry. Thus, mixings among different chiral primary operators are possible.

Indeed, denoting by r the radius of the S
4, a given operator O∆ of dimension ∆ on R

4,

when mapped into S
4, generically mixes with all operators of lower dimensions in steps of

2, that is

OR4

∆ → OS4

∆ + α
(2)
∆

1

r2
OS4

∆−2 + α
(4)
∆

1

r4
OS4

∆−4 + · · · . (2.10)

Due to this effect, in order to find the expected R-charge conservation on R
4, when mapping

the S
4 computation back into the R

4, the operator mixing must be disentangled. This

can be accomplished by a Gram-Schmidt orthogonalization procedure. From now on, we

set r = 1.

Following [1], in the recent work [2] correlators of CPO’s in N = 4 SYM have been

computed solving the deformed matrix model in the large N limit. In this limit, the

set of CPO’s dramatically simplifies as only single-trace operators contribute. Thus, the

operators in the chiral ring are of the form OR4

n = Trφn, being φ one of the complex scalars

in the theory (that interpreted to live in the vector multiplet when the theory is viewed

as an N = 2 theory). Upon mapping into the S
4, the operators Trφn|S4 acquire a vacuum

expectation value (VEV) due to the mixing with the identity operator given by [2]1

〈Trφ2r〉S4 = N

(

λ

4π2

)r Γ
(

r + 1
2

)

√
π (r + 1)!

= N

(

λ

4π2

)r (2r)!

4rr!(r + 1)!
, (2.11)

and 〈Trφ2r+1〉S4 = 0. It is useful to define the operator OS4

n as the VEV-less version of

Trφn in S
4, i.e.

OS4

n = Trφn|S4 − 〈Trφn〉S41 . (2.12)

Then, the large-N correlators of OS4

n are given by [2]

〈OS4

2nO
S4

2r〉S4 =

(

λ

4π2

)n+r Γ
(

n+ 1
2

)

Γ
(

r + 1
2

)

π (n+ r)Γ(n)Γ(r)
; (2.13)

〈OS4

2n+1O
S4

2r+1〉S4 =

(

λ

4π2

)n+r+1 Γ
(

n+ 3
2

)

Γ
(

r + 3
2

)

π (n+ r + 1)Γ(n+ 1)Γ(r + 1)
. (2.14)

1This VEV can also be read from the VEV of the 1/2 BPS circular Wilson loop, which at large N is

given by [19, 20] 〈W 〉 = 〈Tr exp(2πφ)〉 = 2√
λ
I1(

√
λ), by expanding the exponential (see (3.3), (3.1) below).
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The map (2.10) between OR4

n and OS4

n arising from the Gram-Schimidt procedure was

explicitly calculated in [2] for the first few operators. One finds

OR4

1 = OS4

1 ;

OR4

2 = OS4

2 ;

OR4

3 = OS4

3 − 3
λ

(4π)2
OS4

1 ;

OR4

4 = OS4

4 − 4
λ

(4π)2
OS4

2 ;

OR4

5 = OS4

5 − 5
λ

(4π)2
OS4

3 + 5
λ2

(4π)4
OS4

1 ;

OR4

6 = OS4

6 − 6
λ

(4π)2
OS4

4 + 9
λ2

(4π)4
OS4

2 ;

· · · (2.15)

With these ingredients, it was shown in [2] that the first few correlators of OR4

n exactly

match the general formula

〈OR4

n (x)O
R4

m (0)〉R4 =
δnm

|x|2∆n

∆n λ
∆n

(2π)2∆n
, (2.16)

being λ the ’t Hooft coupling. This formula coincides with the free field theory result due

to a non-renormalization theorem [3–7].

2.2 A general expression for the operator mixing in large N N = 4 SYM

The mixings in (2.15) appeared in [2] for the first few operators. While the extension to ar-

bitrary dimension is in principle straightforward, it becomes intrinsically more cumbersome

to perform the Gram-Schmidt procedure. Our first task will be finding the generic form

of the mixing coefficients. To that matter, upon inspection of (2.15) one can identify the

general pattern underlying the mixing structure. We find that the operator mixing (2.15)

is encoded in the general expression

OR4

n → 2

(

λ

(4π)2

)
n
2

[

Tn

(

2πx√
λ

)

− Tn(0)

]

, (2.17)

where Tn(x) is the n-th Chebyshev polynomial and it is understood that the term xk in

the polynomial stands for the VEV-less operator OS4

k , defined in (2.12). The formula can

be given in a more explicit form as

OR4

n = 2

(

λ

(4π)2

)
n
2

Tr

[

Tn

(

2π√
λ

φ

)]

, n 6= 2 ,

OR4

2 =
λ

(4π)2

(

2Tr

[

T2

(

2π√
λ

φ

)]

+ 1

)

; (2.18)

– 5 –
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where we have used the property

〈Tr
[

Tn

(

2π√
λ

φ

)]

〉 = −δ2,n
2

. (2.19)

This can be proved by substituting the expressions for the VEV given in (2.11).2

Using (2.18) and the sphere correlators (2.13), we can now prove in full general-

ity (2.16). To that matter, note that

Tn(x) =
n

2

⌊n
2
⌋

∑

k=0

(−1)k
(n− k − 1)!

k!(n− 2k)!
(2x)n−2k . (2.20)

For even n, Tn only contains even powers of x, while for odd n, Tn contains only odd powers

of x. Since the correlators (2.13) vanish for 〈OS4

2nO
S4

2m+1〉, it follows that 〈OR4

2nO
R4

2m+1〉 = 0.

Consider now the case of 〈OR4

2n+1O
R4

2m+1〉R4 . Substituting the Chebyshev polynomi-

als (2.20), we find

〈OR4

2n+1O
R4

2m+1〉R4 = 42n+1(2n+ 1)(2m+ 1) (2.21)

×
n
∑

k=0

m
∑

q=0

(−1)k+q gk+q (2n− k)! (2m− q)!

k! q! (2n− 2k + 1)! (2m− 2q + 1)!
〈OS4

2(n−k)+1O
S4

2(m−q)+1〉S4 .

where we have set, for simplicity, λ
(4π)2

≡ g. The overall numerical factor 42n+1 stands for

the 4∆ factor discussed above, originating from the conformal map S
4 → R

4. Substituting

here the formula (2.13), we obtain

〈OR4

2n+1O
R4

2m+1〉R4 = 42n+1(2n+ 1)(2m+ 1)gn+m+1 (2.22)

×
n
∑

k=0

m
∑

q=0

(−1)k+q

k! q!

(2n− k)! (2m− q)!

(n+m− k − q + 1)(n− k)!2(m− q)!2

= (2n+ 1)

(

λ

(2π)2

)2n+1

δn,m . (2.23)

Strikingly, this exactly reproduces (2.16) for odd-dimensional operators.

Next, for even-dimensional operators the analogous computation reads

〈OR4

2nO
R4

2m〉R4 = 42n(2n)(2m)gn+m (2.24)

×
n−1
∑

k=0

m−1
∑

q=0

(−1)k+q (2n− k − 1)! (2m− q − 1)!

(n+m− k − q)k! q!(n− k)!(n− k − 1)!(m− q)!(m− q − 1)!

= 2n

(

λ

(2π)2

)2n

δn,m , (2.25)

which exactly reproduces the general result (2.16) for even-dimensional operators.

2The particular combination of factors 2b
n

2 Tn(
x
2b
) goes in the literature under the name of bivariate

Chebyshev polynomials.
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We have seen that the mapping between R
4 operators and S

4 operators in large N

N = 4 SYM is given by the Chebyshev polynomials (2.18). We can now extract the

explicit formulas for the operator mixing coefficients. Comparing (2.10) with (2.18), we

have that

α(2k)
n = (−1)k n

(n− k − 1)!

k!(n− 2k)!

(

λ

(4π)2

)k

. (2.26)

As discussed in [1], these coefficients are scheme-dependent and can be redefined as

α(2k)
n → α(2k)

n + f (2k)
n (τYM) + f̄ (2k)

n (τ̄YM) .

Nevertheless, an unambiguous quantity, which we will denote as A
(2k)
n , can be construct-

ed as

A(2k)
n = ∂τYM

∂τ̄YM
α(2k)
n . (2.27)

In the case at hand, we find

A(2k)
n = (−1)k

n(k + 1)(n− k − 1)!

4N2(k − 1)!(n− 2k)!

λ2+k

(4π)2+2k
. (2.28)

It would be extremely interesting to understand the physical significance of the A
(2k)
n , in

particular, as a manifestation of the conformal anomaly.

3 Correlators of chiral primary operators and Wilson loops in N =

4 SYM

Let us turn our attention to the correlator between a chiral primary operator and a Wilson

loop [8, 9]. We consider the family of 1/8 supersymmetric Wilson loops introduced in [21–

23]. These are constrained to live in an S2 inside R4 at x4 = 0 and satisfying x21+x22+x23 =

r2. Generically, these Wilson loops couple to three out of the six real scalars of the N = 4

SYM theory, which we may denote by Xi, as

WR(C) = TrR P e

∫

C

(

Aj+iǫijkXi
yk

r

)

dyj

. (3.1)

A specially interesting class of operators are those of the form Tr(Xn + iY )n, where Xn =
∑ xi

r
Xi and Y stands for any of the remaining three scalars [8, 24]. These operators share

2 supersymmetries with the Wilson loop.

We may now choose the loop to lie on the maximal circle — so that it becomes 1/2

BPS — at x3 = 0, when it couples only to X3. Moreover, we can insert the scalar operators

at {x1, x2, x3} = {0, 0, ±r}, so that Xn = ±X3. Then, the combination φ = ±X3 + iY

is just a CPO for which the results of [1, 2] apply. Thus, let us consider the correlator

〈OR4

n (0)W 〉R4 , with OR4

n = Trφn(0). Note that r is then the distance between the insertion

point and the center of the loop. Following the same procedure as in the previous section,

we can then map this into the S
4, so that

〈OR4

n (0)W 〉R4 =
1

rn
〈OR4

n (S)W 〉S4 . (3.2)

– 7 –



J
H
E
P
1
2
(
2
0
1
6
)
1
2
0

In the remainder of this section, we will compute (3.2) and then compare it against

the results in [8]. To that matter, the map (2.18) will be crucial.

It is useful to first compute the vacuum expectation value of the 1/2 BPS Wilson loop,

which amounts to the insertion of Tr e2πφ. Expanding the exponential, it follows that

〈W 〉S4 =

∞
∑

k=0

(2π)n

n!
〈Trφn〉 . (3.3)

Substituting (2.11) into (3.3), we find

〈W 〉S4 =
2√
λ

I1

(√
λ
)

, (3.4)

where In denotes, as usual, the modified Bessel function of the first kind. This reproduces

the familiar formula for the VEV of the circular Wilson loop found in in [19, 20]. Note

that we could have proceeded the other way, and read off the VEV’s for the operators

from the expansion of the Wilson loop in powers of λ, as the coefficient of each term would

be the desired VEV. This prescription can also be used to determine the complete 1/N

expansion of the vacuum expectation value of single trace CPO’s. The exact result is the

formula (2.11) multiplied by the factor B(r,N) in eq. (A.9) in [20] (it can also be computed

ab initio using orthogonal polynomials).

Next, consider

〈OR4

n W 〉S4 =

∞
∑

r=0

(2π)r

r!
〈OR4

n Trφ
r〉S4 . (3.5)

Note that in writing this we are simply using the results of localization, which permits to

compute the Wilson loop in terms of local operators, (3.3). Because of localization, only

the constant part of the scalar field of the vector multiplet appears in the matrix model.

We also use the fact that the preserved SUSY’s between the CPO and the loop are the

same — and therefore we can import (3.3).

In (3.5), the operator OR4

n is to be interpreted through the operator mixing for-

mula (2.18), that is, in terms of the VEV-less operators in S
4 inside the n-th Cheby-

shev polynomial. Note that Trφ
r
does not correspond to a VEV-less operator, and hence

the expressions (2.13) do not directly apply. Nevertheless, we may write 〈OR4

n Trφ
r〉S4 =

〈OR4

n OS4

r 〉S4 + 〈Trφr〉S4〈OR4

n 〉S4 . Since OR4

n is a polynomial in terms of the OS4

n , whose VEV

vanishes, the last term is zero. Therefore we can write

〈OR4

n W 〉S4 =
∞
∑

r=0

(2π)r

r!
〈OR4

n O
S4

r 〉S4 . (3.6)

Writing the operator OR4

n in terms of the Chebyshev polynomials, (2.18), using the expan-

sion (2.20) and computing the two-point functions using (2.13), we find

〈OR4

2nW 〉S4 = 2n
∞
∑

s=0

(2π)2s

s!(s− 1)!

(

λ

(4π)2

)n+s n−1
∑

k=0

(−1)k(2n− k − 1)!

(n+ s− k)k!(n− k − 1)!(n− k)!

= 2n
∞
∑

s=n

(2π)2s

(s− n)!(s+ n)!

(

λ

(4π)2

)n+s
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= 2n

(

λ

8π

)2n ∞
∑

r=0

1

r!(r + 2n)!

(

λ

4

)r

= 2n

(

λ

(4π)2

)n

I2n(
√
λ) , (3.7)

Similarly,

〈OR4

2n+1W 〉S4 = (2n+ 1)
∞
∑

s=0

(2π)2s+1

s!2

(

λ

(4π)2

)n+s+1 n
∑

k=0

(−1)k(2n− k)!

(n+ s− k + 1)k!(n− k)!2

= (2n+ 1)
∞
∑

s=n

(2π)2s+1

(s− n)!(s+ n+ 1)!

(

λ

(4π)2

)n+s+1

= (2n+ 1)

(

λ

8π

)2n+1 ∞
∑

r=0

1

r!(r + 2n+ 1)!

(

λ

4

)r

= (2n+ 1)

(

λ

(4π)2

)n+ 1

2

I2n+1(
√
λ) . (3.8)

Thus

〈OR4

n W 〉S4 = n

(

λ

(4π)2

)
n
2

In(
√
λ) , (3.9)

which is in perfect agreement with [8], yet through a completely different matrix model

— see eq. (4.21) in [8] for A1 = A2 = A
2 = 2π. The two-matrix model in [8] contains two

matrices X and Y . The connection with the Gaussian matrix model used in the present

paper (proposed in [20] and derived from supersymmetric localization [13]) seems to arise

in the process of integrating out the Y matrix, which effectively generates the operator

mixing in terms of the Chebyshev polynomial prescription. This is clear after taking the

large N limit, i.e. to the level of solutions to the saddle-point equations. It would be

extremely interesting to investigate the mechanism behind this duality in the most general

context.

4 Correlators for chiral primary operators and Wilson loops in N = 2

superconformal SQCD

We can extend our computations of correlators between Wilson loops and CPO’s to the

case of other N = 2 theories. In perturbation theory, one can express correlators in any

N = 2 superconformal field theory in terms of correlators of the N = 4 theory. As an

illustration, we consider the example of N = 2 superconformal SCQD. For this case, the

map between R
4 and S

4 operators was partially worked out in [2] at weak coupling. In

the case of N = 2 superconformal SQCD, the map OR4 → OS4 will be given through a

power-series correction to the Chebyshev polynomial prescription of N = 4 theory. This

can be traced back to the fact that the partition function for N = 2 superconformal QCD
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is (we assume that the gauge group is U(N) for definiteness)

ZN=2 =

∫

dNa ∆(a)

∏

i<j H(ai − aj)
2

∏

iH(ai)2N

∣

∣

∣
e−2π Im τYM

∑

a2i

∣

∣

∣
Zinst , (4.1)

H(x) =
∞
∏

n=1

(

1 +
x2

n2

)n2

e−
x2

n .

We shall consider the perturbative expansion in the zero instanton number sector, so we

set Zinst → 1. A perturbative series is obtained by expanding the one-loop factor in powers

of ai. We use

lnH(x) = −
∞
∑

n=2

(−1)n
ζ(2n− 1)

n
x2n . (4.2)

Now we can expand ZN=2 as

Z = ZN=4

{

1− ζ(3)
(

3〈Trφ2Trφ
2〉N=4

S4 − 4〈Trφ3Trφ〉N=4
S4

)

(4.3)

−2

3
ζ(5)

(

10〈Trφ3Trφ
3〉N=4

S4 − 15〈Trφ4Trφ
2〉N=4

S4 + 6〈Trφ5Trφ
1〉N=4

S4

)

+ · · ·
}

;

where ZN=4 is the U(N) N = 4 SYM partition function and 〈TrφnTrφ
m〉N=4

S4 refers to

the 2-point function of the Trφn, Trφ
m

operators in the N = 4 SYM matrix model on the

S4. In this way we write the partition function for N = 2 superconformal QCD solely in

terms of quantities in N = 4 SYM at arbitrary N . In fact, using the results in the previous

sections one can see that, at large N

ZN=2 = ZN=4

{

1− 3N4 ζ(3)

16π2 Im τ2YM

+
30N5ζ(5)

96π3 Im τ3YM

+ · · ·
}

. (4.4)

Since, for instance, the correlator 〈OR4

2 O
R4

2 〉R4 = 〈OS4

2 O
S4

2 〉S4 ∼ ∂τYM
∂τYM

lnZN=2, we see

that the correlator in N = 2 superconformal SQCD can be written in terms of correlators

in N = 4. It is clear that, mutatis mutandi, this result extends to all other correlators in

N = 2 superconformal QCD.

Let us now turn to the correlator between CPO’s and Wilson loops. For simplicity,

we will focus on the correlator between OR4

2 = Trφ2 and the Wilson loop. As shown

in [2], OR4

2 → OS4

2 . Moreover, the correlators between OS4

2 and any other even-dimensional

operators can be read off from the formula

〈OS4

2nO
S4

2m〉S4 =

(

λ

4π2

)m+n Γ
(

m+ 1
2

)

Γ
(

n+ 1
2

)

π(m+ n)Γ(n)Γ(m)
(4.5)

−3

4
ζ(3)

(

λ

4π2

)m+n+2 (3 +m+ n+mn)Γ
(

m+ 1
2

)

Γ
(

n+ 1
2

)

π(m+ 1)(n+ 1)Γ(m)Γ(n)
+ · · · ;

where the first line corresponds to the leading order term, which is identical to that of

the free field theory (and consequently analogous to that of N = 4 SYM due to the non-

renormalization theorem) and the second represents the NLO correction. Correlators with

odd dimensional operators vanish.

– 10 –



J
H
E
P
1
2
(
2
0
1
6
)
1
2
0

Consider the correlator

〈OR4

2 W 〉SQCD
S4

=
∞
∑

r=0

(2π)2r

(2r)!
〈OS4

2 O
S4

2r〉S4 . (4.6)

Substituting the 2-point function (4.5), we find

〈OR4

2 W 〉SQCD
S4

=
λ

8π2

∞
∑

r=1

1

(r − 1)!(r + 1)!

λr

4r
− 3ζ(3)λ3

512π6

∞
∑

r=1

(2 + r)

(r − 1)!(r + 1)!

λr

4r

=
λ

8π2
I2(

√
λ)

(

1− 9ζ(3)

64π4
λ2

)

− 3ζ(3)

1024π6
λ

7

2 I3(
√
λ) + · · ·

=
λ2

64π2
+

λ3

768π2
+

λ4

24576π2

(

1− 54ζ(3)

π4

)

+ · · · . (4.7)

This formula generalizes the results by Giombi and Pestun to N = 2 superconformal

QCD. It can be extended to other N = 2 superconformal field theories by following the

same procedure. One may also compute the analogous correlators for CPO’s of higher

dimensions, though they are much more complicated because of the operator mixing. One

writes 〈OR4

n W 〉SQCD
S4

=
∑

cn 〈OS4

n W 〉SQCD
S4

, where the first few cn’s can be read off from the

explicit map given in [2].

4.1 The SU(N) case

As emphasized above, (4.3) is valid for any gauge group. Let us now particularize it and

compute the partition function for N = 2 SQCD with SU(N) gauge group at finite N .

Imposing that Trφ = 0, we get

ZSU(N)
N=2 = ZSU(N)

N=4

{

1− 3ζ(3)〈Trφ2Trφ
2〉N=4,SU(N)

S4 + · · ·
}

. (4.8)

We stress that we will be interested on the perturbative part. This corresponds to zero

instanton number (for non-zero instanton number, one needs to project out the contribution

of the U(1) vector multiplet from the U(N) instanton partition function).

It is useful now to re-write 〈Trφ2Trφ
2〉N=4,SU(N)

S4 in terms of VEV-less operators O2

in the SU(N) N = 4 theory as

〈Trφ2Trφ
2〉N=4,SU(N)

S4 = 〈O2O2〉N=4,SU(N)
S4 + V 2

2 , (4.9)

being V2 the VEV of Trφ2 in the SU(N) theory. Note that both V2 and 〈Trφ2Trφ
2〉N=4,SU(N)

S4

follow from the partition function ZSU(N)
N=4 through derivatives. Recall that (see e.g. [20])

ZSU(N)
N=4 =

√

2N Im τYMZU(N)
N=4 ; ZU(N)

N=4 = (4π Im τYM)−
N2

2 (2π)
N
2 G(N + 2) . (4.10)

Therefore

〈O2O2〉N=4,SU(N)
S4 = π−2∂τYM

∂τYM
lnZSU(N)

N=4 =
N2 − 1

8π2 Im τ2YM

, (4.11)

and

V2 = iπ−1∂τYM
lnZN=4,SU(N)

S4 =
N2 − 1

4π Im τYM
. (4.12)
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With this at hand

ZSU(N)
N=2 = ZSU(N)

N=4

{

1− 3ζ(3) (N4 − 1)

16π2 Im τ2YM

+ · · ·
}

. (4.13)

Let us now consider correlators for CPO’s. The special case of correlators for Trφ2

is simple, as these insertions arise from derivatives of the YM coupling τYM. The case of

the SU(N) theory is particularly interesting, since a conjecture for 〈Trφ2Trφ
2〉R4 was put

forward in [2]. Using (4.13) one finds

〈Trφ2Trφ
2〉N=2,SU(N)

R4 =
2(N2 − 1)

π2 Im τ2YM

− 9ζ(3) (N2 − 1)(N2 + 1)

2π4 Im τ4YM

+ · · · , (4.14)

which demonstrates the conjecture of [2]. In the particular case of SU(2) gauge group, this

formula reproduces an earlier result given in [15] (see also [1]) and, for SU(3), SU(4), the

formula (4.14) also reproduces the expressions given in [1, 16].

5 Conclusions

In this paper we have analyzed the structure of the operator mixing arising when mapping

the R
4 theory into the S

4. Concentrating on the N = 4 SYM case, and at large N ,

such operator mixings are elegantly encoded into Chebyshev polynomials. This provides a

general expression for the mixing coefficients, whose ∂τYM
∂τYM

derivative is an unambiguous

quantity A
(2k)
n . It would be be extremely interesting to understand if the gauge-invariant

mixing coefficients A
(2k)
n can be computed in the holographic dual setup for supergravity

in AdS5 × S5 space.

We have provided very non-trivial evidence of the relevant role of the Chebyshev

polynomial mixing by computing the 〈WOR4

n 〉R4 correlator. In [8], such correlators were

computed by means of a completely different matrix model — namely the two-matrix

model. Here we have reproduced the result [8] for the correlation function 〈WOR4

n 〉R4 from

first-principles, using the localized partition function and disentangling the operator mixing

induced by mapping into S4. Thus, our result proves the conjectural relation proposed in [8]

with the two-matrix model. In addition, it suggests a novel duality between two completely

different matrix models at large N . It would be very interesting to explore such “duality”

and understand its origins, in particular under the light of the connection of the two-

matrix model to 2d Yang-Mills, and the extent to which this duality holds. In particular,

it would be very interesting to understand the generic correlators 〈W ∏

iO
R4

ni
〉R4 . Note that

the Chebyshev polynomial prescription does not take into account mixing with multitrace

operators in the S
4, which, on the other hand, might be relevant whenever there is more

than one CPO in the correlator with the Wilson loop. Understanding this point would be

very interesting.

We have also computed the 〈WOR4

n 〉R4 correlator in N = 2 superconformal SQCD

up to (and including) O(λ4) in perturbation theory. Along the way, we have seen that

correlators of CPO’s in N = 2 superconformal QCD can be written in terms of correlators

of CPO’s in N = 4 SYM. In particular, this allowed us to provide a simple proof of the
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formula for the finite N two-point function of the OR4

2 operator conjectured in [2]. Further

studying this connection among CPO correlators of N = 2 SQCD and N = 4 SYM would

be very interesting.
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