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Abstract  

The consumption of alcohol during pregnancy is frequent despite clear guidelines that indicate that 

abstinence is the safest option to prevent adverse offspring outcomes. These outcomes range from 

overt craniofacial abnormalities through to outcomes such as mental illness, hyperactivity and social 

difficulties. Human and animal studies have demonstrated that these neurological outcomes may be 

due to impaired function of the hypothalamic-pituitary-adrenal axis (HPA) in offspring, resulting in 

altered basal glucocorticoid tone and disrupted responsiveness to stress. However, little is known of 

the impact of alcohol consumption around the time of conception, known as the periconceptional 

period, on offspring HPA function. Therefore, this study aimed to use a well-established rat model of 

ethanol consumption during the periconceptional period (PC:EtOH) to investigate offspring HPA 

activity, including behaviours, stress responsiveness and underlying molecular pathways. As alcohol 

consumption directly alters HPA function, this study also aimed to examine if PC:EtOH exposure 

impairs maternal HPA activity and related physiological pathways, including renal and metabolic 

function.  

Female Sprague-Dawley rats were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a control 

diet from 4 days before conception, until embryonic day (E) 4. Behavioural tests were performed on 

offspring at three months of age to assess mental illness-like phenotypes (utilising the Forced Swim 

Test [FST] and Social Interaction [SI] paradigm), and at five months of age, HPA reactivity tests 

(combined dexamethasone suppression test [DST] and corticotropin-releasing hormone stimulation 

test [CST] and restraint stress) were performed. In a separate study, basal corticosterone 

concentrations were measured at 6 months, and adrenal glands were collected for analysis of 

steroidogenic gene expression. Aged cohorts (12-14 months) were utilised to measure basal plasma 

corticosterone, followed by the collection of adrenal glands, pituitary glands, hypothalamus and 

hippocampal tissue for analysis of various steroidogenesis and glucocorticoid signalling genes and 

pathology. In a separate cohort of aged rats, telemetry was used to asses blood pressure, heart rate 

and plasma corticosterone concentrations during 30-minute restraint stress.  

Maternal hormones (corticosterone, aldosterone), renal function and plasma glucose and lipids were 

assessed at various stages in gestation. Adrenal glands were collected from dams at E5, E15 and 

E20 for analysis of steroidogenic gene expression. Placental samples were collected at E20 and 

genes expression of the glucocorticoid (Nr3c1) and corticotrophin hormone receptor (Crh-r1) 

measured.  
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This study revealed that PC:EtOH exposure resulted in altered offspring behavioural outcomes, 

including increased depressive-like behaviour in the forced swim test and altered social interaction 

with a novel rat. Adult offspring also demonstrated HPA hyperactivity, with elevated responses to the 

DST/CST challenge. Although there was no difference observed in adult offspring, aged PC:EtOH 

female offspring demonstrated an altered response to restraint, with reduced stress-induced plasma 

corticosterone and pressor response. Interestingly, PC:EtOH exposure also resulted in reduced 

basal plasma corticosterone concentrations in adult and aged female but not male offspring. 

Furthermore, female offspring showed pituitary gland abnormalities and increased mRNA for Nr3c1 

and heat shock protein 90 (Hsp901a) in the hippocampus, suggesting altered HPA signalling and 

regulatory pathways. Adrenal and hypothalamic mRNA expression of genes regulating glucocorticoid 

production were not overtly altered by PC:EtOH in aged offspring.  

PC:EtOH significantly increased plasma corticosterone in the dam prior to mating (E-2). During 

pregnancy, PC:EtOH resulted in lower concentrations at E5, no differences at E15, and an increase 

at E20. Only minor changes in the expression of genes which regulate adrenal steroidogenesis were 

observed in PC:EtOH dams at E5 and E15, with the latter likely to have contributed to the observed 

increase in plasma corticosterone at E20. PC:EtOH had no impact on metabolic parameters (high 

and low-density lipoproteins and triglycerides) or renal function (food, water, urinary flow and renal 

electrolytes) in late gestation. However, placental markers of glucocorticoid exposure were elevated 

in response to exposure. 

This study supports the hypothesis that periconceptional ethanol exposure alters the HPA of the 

mother and programs sex-specific alterations in offspring in a rat model. Maternal HPA and related 

physiological changes as a consequence of PC:EtOH is likely to contribute to the HPA 

hyperresponsiveness, and underlie behavioural outcomes observed in this study. Furthermore, these 

changes to the HPA may be independent of the adrenal gland, with central regulatory pathways 

involving the hippocampus altered by PC:EtOH.  

This thesis has provided novel and important evidence that alcohol exposure around the time of 

conception impairs offspring mental-health like outcomes and induces HPA dysregulation. This work 

reinforces the concept that the maternal stress axis is highly sensitive to perturbations during early 

pregnancy. As this system is critical in many major physiological pathways, this can have significant 

long-term disease implications for both the mother and the child, supporting the critical need for 

education of appropriate health and wellbeing in preparation for pregnancy. 
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Chapter One 

 

Literature Review 

 

“It is not right that procreation should be the work of bodies 

dissolved by excess of wine, 

but rather that the embryo should be compacted 

firmly, steadily and quietly in the womb.” 

- Plato-
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1.0 Overview 

Medical guidelines around the world generally recommend abstinence from alcohol while 

pregnant. The 2009 National Health and Medical Research Council of Australia (NHMRC) 

guidelines clearly state that “When pregnant, or planning a pregnancy, not drinking is the safest 

option”. Although most women attempt to adhere to these guidelines and cease consumption 

when they become aware of their pregnancy, there is a startling number of women who admit 

to consumption before pregnancy detection. As alcohol is accepted as a teratogen, with a wide 

range of research published highlighting adverse outcomes for offspring 1–4, it is concerning 

that many women may have unintentionally exposed their early embryo to this insult. 

A key biological system that is known to be both directly and prenatally influenced by alcohol is 

the hypothalamic-pituitary-adrenal axis (HPA). This central neuroendocrine system is essential 

in maintaining homeostasis of a wide range of physiological functions, including cardiovascular, 

metabolic, mental health and behaviour. As such, numerous human and animal studies have 

investigated the link between prenatal alcohol exposure (PAE) and alterations to the HPA, with 

suggestions that this may be the underlying mechanism leading to neurological and 

cardiometabolic conditions. However, there is little knowledge of the outcomes of alcohol 

consumption during the periconceptional period, which is defined as the period prior to and 

including conception, fertilisation and implantation. Furthermore, the investigation of maternal 

changes associated with PAE has largely been neglected. Therefore, this chapter will firstly 

explore the epidemiology of Non-Communicable Diseases (NCDs) and alcohol consumption, 

followed by discussing the specific impacts of alcohol consumption during pregnancy on 

offspring outcomes and maternal physiology.  

1.1 Health burden of Non-Communicable Diseases 

NCDs are defined by the World Health Organisation (WHO) as diseases of long duration, which 

are generally slow in progression, including but not limited to cardiovascular and metabolic 

disease. NCDs were the lead causes of morbidity and mortality globally in 2012 5. In this year, 

NCDs were responsible for 62% of all deaths and attributed a 54% loss of disability-adjusted 

life years. Alarmingly, these conditions are projected to be responsible for 70% of all deaths by 

2020 5. Mental illness is a close second in the cause of morbidity and mortality 6, with a 36% 
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prevalence rate worldwide and a 13% loss of disability-adjusted life years 6,7. Due to the burden 

of these illnesses, the WHO has recently enveloped these conditions into the Non-

Communicable Disease and Mental Illness cluster (NCDMI), to ensure focus on addressing 

these commonly comorbid conditions. This aims to understand risk factors, as well as 

increasing health care and rehabilitation to prevent premature death and disability. Common 

risk factors associated with NCDMI include a range of lifestyle factors such as insufficient 

physical activity, poor dietary regulation and alcohol consumption, which is of interest in this 

thesis. 

1.2 Worldwide alcohol consumption 

Worldwide guidelines for alcohol consumption have recommended that for both men and 

women, no more than two standard drinks (one standard drink is equivalent to 10 grams of 

ethanol) on any occasion should be consumed 5. Regardless, alcohol is the most commonly 

used drug for both adolescents and adults worldwide. Recent data collected in the Australian 

National Drug Strategy Household Survey (NDSHS) has revealed that 36% of people from 18 

to 40 years of age exceeded the recommended 20g of alcohol in a single drinking session, at 

least once a month 8. Furthermore, from 2016 – 2017, the Australian Bureau of Statistics (ABS) 

determined that individuals over the age of 15 drank on average 9.4 litres of pure alcohol per 

person per year 9. Similarly, Yusuf et al. has demonstrated that Australian men and women are 

drinking an average of 4-7 drinks per day 10. Similar consumption levels are observed in many 

nations including the United States of America and Europe, with the highest consumption 

worldwide observed in Belarus, Russia, Czech Republic and Lithuania, where consumption 

reaches 17 litres per person per year 5.  

Alcohol Use Disorder is one of the most common substance use disorders worldwide, with 4.9% 

of the population with this diagnosis 5. The Global Status Report on Alcohol and Health released 

by the World Health Organisation in 2014 suggests that alcohol is within the top five risk factors 

for disease, disability and death worldwide 5 and is associated with a number of NCDMI 

outcomes. The NDSHS revealed that more than 3 million Australians are at risk of alcohol-

related disease or injury during their lifetime, particularly those within the 18 to 29 age bracket 

8. Gao et al. recently compiled data from the Victorian Health System in 2010, showing that 5 

554 deaths and 157 132 hospitalisations could be directly attributed to alcohol consumption 
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(Table 1. 1) 11. These statistics demonstrate the prevalence of alcohol consumption and 

illustrate the consequences for both individual and societal health and disease.  

Table 1. 1: The per cent (%) of hospitalisations and deaths associated with alcohol 

consumption during 2010, within the Victorian (Australia) Health System 5. 

Health 

Condition 

 Hospitalisations  Death 

 Men  

(n =101 425) 

 Women  

(n =55 707) 

 Men  

(n =3 467) 

 Women  

(n =2 087) 

Cancer  5%  9%  25%  31% 

Cardiovascular  7%  6%  13%  34% 

Digestive  7%  5%  16%  11% 

Infectious   5%  7%  4%  6% 

Neuropsychiatric  30%  41%  7%  6% 

Injury  47%  32%  37%  12% 

 

1.2 Sexual dimorphism of alcohol effects 

Traditionally, research investigating the adverse effects of alcohol consumption on health and 

wellbeing have focused on males, however as shown in Table 1. 1, women are also at a 

significant risk of adverse health outcomes 5. Although women do drink less than men, recent 

epidemiological studies have shown that the gap between male and female alcohol 

consumption levels is closing, particularly within the child-bearing years 10,12,13. It is suggested 

that this is due to men reducing their consumption, as well as a response to societal changes 

regarding gender equality 14–17. However, women are considerably more susceptible to the toxic 

effects of alcohol, due to a slower metabolism as a result of less water volume and reduced 

activity of alcohol metabolising enzymes 12,18. Frezza et al. determined that the activity of 

alcohol dehydrogenase is significantly less in women than in men, with negligible levels in those 

women who drank at high levels 19. This results in the majority of alcohol reaching the liver, 

increasing intoxication levels and susceptibility to widespread tissue damage 18,19. Alcohol-

induced hypertension and stroke are often observed within both sexes20–23. However, it has 

recently been shown that women have a greater susceptibility to alcohol-induced 

cardiovascular outcomes, neurological damage, and sex-specific cancers 24–26.  
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Evidence shows that alcohol consumption significantly contributes to the development of 

female breast cancer, but not in the rarer male breast cancer 16,27. Hamajima et al. performed 

an analysis of 53 epidemiological studies to demonstrate that for every additional 10 grams of 

alcohol consumed there was a 7.1% increased risk of developing breast cancer 28. A study 

carried out in New Zealand has revealed a 55% increase in the risk of breast cancer in Maori 

women who have at least one weekly binge (greater than 40 grams of alcohol). Interestingly, in 

this study, these women were more likely to have estrogen or progesterone positive breast 

cancers, drawing attention to the close link of alcohol and the endocrine system 29.  

Sexual dimorphism is also observed in alcohol-induced brain damage. Imaging studies reveal 

that the corpus callosum and intracranial spaces are smaller in alcoholic women compared to 

both the brains of women who did not consume alcohol, as well as alcoholic and non-alcoholic 

men 30,31. However, alcohol-induced mental illness is observed in both men and women, with 

varying symptoms. Men are more likely to experience disinhibiting traits such as impulsivity and 

risk-taking compared to women 16,32–34, whereas women are three times more prone than men 

to affective disorders such as depression and anxiety 16,35. Surveys have also revealed that 

suicide attempts are more likely to occur in women who drink, while men are more likely to 

experience suicidal thoughts 36,37. Although these outcomes will influence the lives of both men 

and women who consume alcohol, this is highly relevant to female emotionality and behaviours 

relating to family structure and child-bearing. 

1.3 Alcohol consumption during pregnancy 

The sexual dimorphism and severity of outcomes for women is an essential focus for this thesis, 

as many women of childbearing age (18 – 23 years of age) are drinking five or more drinks per 

occasion, at least once a week 38. Recent statistics reveal that up to 75% of women consume 

alcohol when planning a pregnancy 39. This may seem surprising; however, over the years, 

conflicting advice has been provided to women from medical, government and media sources 

regarding consumption during pregnancy. In just 2001, Australian guidelines stated that two 

standard drinks per day and no more than seven per week were permissible in pregnancy, 

which was revised from the 1992 recommendation of abstinence 40. However, there is much-

varied advice (Table 1. 2), which has undoubtedly caused significant confusion for pregnant 

women. In 2009, the NHMRC restated their earlier advice that during pregnancy, abstinence is 
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the safest option 41,42. However, a survey performed by the Foundation of Alcohol Research 

and Education in 2018 revealed that only 46% of Australian women were advised by a health 

professional during their pregnancy to modify their alcohol intake 41,43. Of these women, fewer 

than 15% adhere to the current guidelines presented by the NHMRC 43. For this reason, it is 

not surprising that such a high number of women admit to drinking at some point during 

pregnancy. This suggests a widespread public health message was and still is required. 

Given that 50% of all pregnancies are unplanned 44,45, and the fact that many women will cease 

alcohol consumption once they become aware of their pregnancy, estimates suggest that up to 

30% of women may have consumed alcohol after conception but prior to pregnancy recognition 

44,46. As such, alcohol consumption around conception is likely to be the most common 

exposure during pregnancy and therefore is the focus of this thesis. Very little evidence is 

available on the impact of this early alcohol exposure on offspring outcomes. In contrast, 

numerous studies have investigated gestational alcohol exposure and its effects on fetal 

development and childhood outcomes. As there may be overlapping pathological mechanisms 

which contribute to disease outcomes regardless of the timing of exposure, the impact of 

consumption throughout pregnancy on offspring outcomes must first be discussed.  
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Table 1. 2: The policies for alcohol consumption during pregnancy, in 2007 across Australia 47. 

Sources  Abstinence  Drinking level  Other recommendations and information 

Federal 

NHMRC (2001)  Consider  
≤ 2 per day 
≤ 7 per week 

•  

• Consume drinks slowly over two hours. 

• Do not become intoxicated. 

• Avoid the first trimester. 

Australian Government,  
Department of Health and 
Aging 

 Consider  
≤ 2 per day 
≤ 7 per week 

•  

• Do not become intoxicated. 

• Evidence of adverse outcomes following 
moderate alcohol consumption is not clear. 

Ministerial Council on Drug 
Strategy  
National Clinical Guidelines 

 Ideal  
≤ 2 per day 
≤ 7 per week  

•  

• No level has been determined as completely 
safe. 

• All women need to communicate their 
consumption levels and be advised of the risks 
associated. 

State 

The Australian Capital 
Territory 

 Not stated  Not stated •  
• ACT Drug and Alcohol Office stated that 

advice to women varies across health service 
providers. 

Queensland Health  Consider  
Reduce 
consumption 

•  

• It is recommended to reduce or cease alcohol 
consumption. 

• No level of consumption is recommended. 

NSW Health  Safest  
Low levels may be 
harmful 

•  

• Binge drinking, particularly in the first trimester 
is harmful. 

• No safe level has been determined. 

NSW Health (Centre for 
Drug and Alcohol) 

 Safest  

Moderate 
consumption (2 
drinks/day, 3-4 
times per week) 
may be harmful 

•  
• Heavy drinking is dangerous during 

pregnancy. 

South Australian Department 
of Health 

 Ideal  Not recommended •  

• Reduce alcohol consumption during the 
planning of pregnancy. 

• Cease upon pregnancy detection. 

• Increased quantities of consumption increase 
risk. 
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• No safe level is established. 
Tasmanian Department of 
Health and  
Human Services 

 Ideal  
≤ 2 per day 
≤ 7 per week 

•  • Adhere to the NHMRC guidelines. 

Victorian Department of 
Health 

 Ideal  
≤ 2 per day 
≤ 7 per week 

•  

• Adhere to the NHMRC guidelines. 

• Opinions on the safe level of consumption 
vary. 

Western Australian Drug and 
Alcohol Office 

 Ideal  
≤ 2 per day 
≤ 7 per week 

•  • Adhere to the NHMRC guidelines. 

Western Australian 
Department of Health 

 Not stated  Not stated •  

• The consumption of alcohol while pregnant is 
hazardous or harmful. 

• This may increase the risk of growth restriction 
and low birth weight and premature birth. 

Medical and Nursing Organisations 

Royal Australian College of 
General Practitioners 

 Ideal  Restrict •  

• Assess pregnancy and planning to become 
pregnant women annually for levels of 
consumption. 

• Intervene for those women who drink high 
levels. 

Royal Australian and New 
Zealand College of 
Obstetricians and 
Gynecologists  

 Not stated  Not stated •  • Not stated. 

Royal Australasian College 
of Physicians, Royal 
Australian and New Zealand 
College of Psychiatrists 

 Ideal  
No level has been 
deemed safe 

•  
• Inform women of risks associated with 

consumption during pregnancy. 

Australian Medical 
Association 

 Ideal  Not stated •  

• Guidelines were based on the NHMRC 
guidelines of 2001, stating to abstain from 
alcohol during pregnancy. 

• It was suggested that NHMRC need to review 
their guidelines again to recommend 
abstinence. 
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1.4 Prenatal alcohol exposure and offspring outcomes  

Despite, numerous references in non-scientific literature, the earliest scientific manuscript 

discussing the teratogenic effects of alcohol was published in 1973 with Jones and Smith 

associating “maternal alcoholism and aberrant morphogenesis in the offspring” 48. Alcohol 

rapidly disperses into all cell types, including the placenta and fetal tissues, contributing to a 

wide range of outcomes including miscarriage, preterm birth, growth restriction and subsequent 

low birth weight 49–53. The most severe outcome associated with teratogenic levels of alcohol 

consumption in pregnancy is fetal alcohol syndrome (FAS). A recent meta-analysis performed 

by Popova et al. suggests a prevalence of FAS to be 14.6 per 10 000 54. FAS is associated with 

altered brain structure, craniofacial abnormalities, cardiac defects and prenatal growth 

restriction 48,55. Once born, children with FAS display developmental delays, behavioural 

difficulties and have a greater susceptibility to conditions such as addiction and mental illnesses 

in later life 55–57. However, the severity of FAS symptoms depends on variables such as dosage, 

the timing of alcohol exposure and genetics 47. Since this first identification of FAS, the umbrella 

term, Fetal Alcohol Spectrum Disorder (FASD), has been adopted to include all diagnostic 

criterion of FAS, including partial Fetal Alcohol Syndrome, Alcohol-Related Birth Defects and 

Alcohol-Related Neurodevelopmental Disorder 58. FASD is a complex condition to diagnose, 

even with the guidelines describing only two specific categories; FASD with three sentinel facial 

features and FASD with less than three sentinel facial features (diagnosis details can be seen 

in Table 1. 3) 58. As such although epidemiological research has determined the prevalence of 

FASD as greater than overt FAS, with 1.1-5% of the population in the United States, and up to 

19% in some regions of Australia impacted 59–61, this has been suggested to be an under-

estimate.  
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Table 1. 3: The diagnostic criteria for Fetal Alcohol Spectrum Disorder, as of 2016 58. 

Diagnostic Criteria  
FASD without  

three facial features 
 

FASD with  
three facial features 

Prenatal alcohol exposure  Confirmed/unknown  Confirmed 

Neurodevelopmental  

• Altered brain structure 

• Impaired motor skills 

• Difficulty with language 

• Impaired Memory 

• Attention deficits 

• Poor school performance 

• Impulse control 

• Hyperactivity 

• Inappropriate social awareness 

 

3 or more  3 or more 

Sentinel Facial Features 

• Short palpebral fissure 

• Smooth philtrum 

• Thin upper lip 

 

3 or more  Less than 3 

 

Animal models have been utilised to interrogate the impact of prenatal alcohol exposure on 

offspring without the confounding impact of nutrition and social demographics on childhood 

outcomes. The earliest studies using animal models, pre-dating the classification of FAS and 

FASD were performed in the early 1890s by Charles Stockard and team. Evidence was 

provided that following soaking of zebrafish eggs in water containing 1-5% ethanol, embryos 

displayed deformities in the Fundulus in central nervous system 62. Following this, Stockard et 

al., repeatedly intoxicated guinea pigs via alcohol vapour inhalation, and demonstrated that 

offspring were “defective”, and although some died, some also continued to live in “monstrous 

form” 63. Investigations directly aimed at modelling FASD did not commence until the 1970s. 

Numerous studies have supported knowledge that PAE results in reduced brain weight 64,65, 

and reduced volume changes in the forebrain, cerebellum, brainstem 66, olfactory bulb and 
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hippocampus 66,67, corpus callosum 67,68 and amygdala 69 in several animal models. PAE has 

also been associated with alterations to pathways associated with the aetiology of mental 

illness, including reduced 5-HT-ir neurons in the dorsal raphe nucleus of the brainstem 70, 

reduced dopamine D2 receptor (D2R) mRNA and protein levels 71, and the HPA, which is the 

focus of this thesis and will be discussed in greater detail in Section 1.6 Hypothalamic-pituitary-

adrenal axis. 

Many systemic changes are observed in offspring following PAE, including a low birth weight 

72–76 and metabolic abnormalities, such as altered insulin and glucose homeostasis 74,77,78, 

altered skeletal muscle utilisation 79, increased adiposity 76 and elevated gluconeogenesis 74. 

Morphological changes have been seen in PAE offspring, with reduced nephron count 80, 

myocardial contractile function 81 and altered liver weight 82. These changes collectively indicate 

that many physiological systems can be influenced by PAE, increasing the risk of NCDMI 

outcomes. 

The diagnostic criteria for FASD are quite rigid, which, unfortunately, does not allow individuals 

with more subtle deficits to fall into the current guidelines 83,84. This is despite clear evidence 

that PAE can lead to a range of long-term diseases outcomes related to developmental 

adaptations to alcohol exposure. Therefore, if PAE were to be considered in the context of the 

Developmental Origins of Health and Disease (DOHaD) hypothesis, FASD diagnosis may apply 

to a higher number of impacted individuals.  

1.5 The Developmental Origins of Health and Disease (DOHaD) hypothesis 

The DOHaD hypothesis, which associates the intrauterine environment and later life disease 

originated from what was formerly known as the “Barker Hypothesis”. This hypothesis was 

established in the 1980s when David Barker and his team observed an inverse relationship 

between infant mortality and cardiovascular-related deaths within lower-income regions of the 

United Kingdom 85. The subsequent investigation further established the link between low birth 

weight and the risk of hypertension and cardiovascular disease, which was suggested to be as 

a result of intrauterine nutrient deficiency 86. Further evidence determined a link between in 

utero growth restriction (IUGR), glucose tolerance and insulin resistance, with a significant 

increase in the likelihood of developing type 2 diabetes mellitus and other metabolic conditions 

87,88, as well as lung disease and mental illness 89.  
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Since this time, DOHaD has been defined more succinctly, that a sub-optimal in utero 

environment may influence fetal development and increase the risk of developing chronic 

diseases in later life. This may occur by directly altering fetal development or indirectly by 

altering maternal physiology and fetal exposure to key nutrients and hormones. These initial 

insults may induce changes in the developing fetus known as predictive adaptive responses 90–

92. These adaptations are often observed in key organs such as the kidney, heart and brain, 

and are essential for continued in utero development and survival 93,94; however they may 

increase the risk of adverse offspring outcomes 92,95.  

It is now understood that although low birth weight is commonly reported in DOHaD, it is not 

the deciding factor in offspring disease risk, with adverse outcomes demonstrated across a 

range of birth weights. Since this discovery, the relationship between perturbations such as 

alcohol consumption, maternal diet, placental insufficiency, hypoxia, maternal stress, 

glucocorticoid exposure and drug exposure can result in both fetal and offspring outcomes 96–

100. These outcomes include altered growth profiles and impaired function of key systems such 

as renal, metabolic, cardiovascular and endocrine systems, changes which may increase the 

risk of associated diseases. The range of disease outcomes in response to various maternal 

perturbations is too extensive to discuss in detail within this thesis and as such, Table 1. 4 

displays a non-exhaustive collection of published review articles within the last five years.  

Of particular focus for this thesis are programmed alterations to neuroendocrine systems such 

as the HPA and related psychiatric disorders 101–103. However, before programmed disease 

outcomes related to the HPA are discussed in detail, it is first essential to outline the structure 

and function of this axis. 
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Table 1. 4: A non-exhaustive collection of published reviews of a range of maternal perturbations associated with adverse offspring 

outcomes, within the last five years. 

Perturbation Altered physiological system Ref 

Nutrition, Obesity, Gestational Diabetes Mellitus 

• Behavioural 

• Cardiovascular and metabolic 

• Neuroendocrine and neuropsychiatric 

• Renal 

• Respiratory 

104–129 

Placental dysfunction and hypoxia 

• Behavioural 

• Cardiovascular and metabolic 

• Neuropsychiatric 

• Pregnancy complications 

121,130–137 

Drug use (amphetamines, cannabis, cocaine, nicotine) 

• Behavioural 

• Immune 

• Neuropsychiatric 

• Pregnancy complications 

• Physical abnormalities 

121,138–161 

Endocrine Disrupting Chemicals 

• Cancer 

• Endocrine 

• Metabolic 

• Neuropsychiatric 

162–172 
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• Pregnancy complications 

• Respiratory 

Maternal stress, mental illness and glucocorticoid exposure 

• Allergies 

• Behaviour 

• Birth weight 

• Central nervous system development 

• Metabolic and obesity 

• Neuropsychiatric 

133,173–189 

Overall review of the field • Numerous 190,191 
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1.6 Hypothalamic-pituitary-adrenal axis 

The HPA is a complex neuroendocrine signalling pathway connecting the hypothalamus, 

pituitary gland and adrenal gland (Figure 1. 1). This axis is necessary for the communication of 

both psychological (also known as processive), and physiological (also known as homeostatic) 

stress through the action of glucocorticoids. The activity of the HPA is driven by neurosecretory 

neurons located within the dorsomedial parvocellular division of the paraventricular nucleus 

(PVN) 192–194. Upon stimulation of these neurons, secretagogues such as corticotropin-

releasing hormone (CRH, historically known as corticotropin-releasing factor [CRF]) and 

arginine vasopressin (AVP) are released into the median eminence 195. These hormones act 

on CRH and AVP receptors respectively, on the corticotrophs of the anterior pituitary gland, 

stimulating the synthesis of adrenocorticotropic hormone (ACTH) from the proopiomelanocortin 

(POMC) gene, for packaging into vesicles and release into systemic circulation 193,196. Within 

the adrenal cortex, ACTH acts on the melanocortin receptor (MC2R), which stimulates the 

transport of low-density lipoprotein (LDL) into the cell, producing free cholesterol within the 

lysozymes 197–199. The initial and rate-limiting step of the steroidogenesis pathway is the transfer 

of cholesterol from the outer mitochondrial membrane to the inner membrane by steroidogenic 

acute regulatory protein (StAR) 197,200, whereby (CYP11A1, P450scc) converts cholesterol to 

pregnenolone 199,201.  

Pregnenolone is a key precursor for a range of steroid hormones including androgens, 

mineralocorticoids and glucocorticoids, all of which are produced by the adrenal gland. Various 

members of the Cytochrome P450 family regulate which steroid is produced in which tissue. 

Cytochrome p450 family 21, subfamily a, member 1 (CYP21A1, P450c21a) is expressed in 

both the zona glomerulosa and zona fasciculata of the adrenal gland where it is essential for 

the production of glucocorticoids. These are further converted to aldosterone within the zona 

glomerulosa by the actions of CYP11B2 (P450C18, aldosterone synthase). In humans, much 

of the pregnenolone involved in the production of glucocorticoids is firstly catalysed into 17 

alpha-hydroxy pregnenolone by CYP17A1 prior to conversion into cortisol. Rodents (rats and 

mice), however, do not express CYP17A1 within the adrenal gland, so they instead produce 

corticosterone as their predominant glucocorticoid hormones. This pathway can be seen in 

Figure 1. 2. Unless species-specific, the term glucocorticoids will be used throughout this thesis.  
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Regardless of species, the secretion of glucocorticoids undergoes a daily rhythm, as discussed 

in Section 1.6.1 HPA regulation, with the highest plasma concentration at wakening 202,203. This 

secretion allows glucocorticoids to occupy their receptors optimising the functional tone of many 

systems 204. Glucocorticoids are lipophilic and exert their effects by cell membrane diffusion, 

binding to their receptors, the mineralocorticoid receptors (MR, Nr3c2), and the glucocorticoid 

receptors (GR, Nr3c1) 205,206. Within systemic tissues, the MR is predominantly involved in 

regulating fluid and sodium homeostasis and is primarily the target for aldosterone 207.  

The GR acts via the binding of glucocorticoids, resulting in changes to chaperone proteins, 

such as heat shock proteins (HSP) 70 and 90 occur, to facilitate translocation to the nucleus 

and interaction with glucocorticoid response elements within the promoter region of genes 

199,208–210. This cascade of events will ultimately impact transcription factor binding, influencing 

gene transcription. In addition to this traditional transcriptional pathway, glucocorticoids and 

their receptors can regulate cellular biology through additional mechanisms such as trans-

repression and protein-protein interactions 211.The GR acts via the binding of glucocorticoids, 

resulting in changes to chaperone proteins, such as heat shock proteins (HSP) 70 and 90 occur, 

to facilitate translocation to the nucleus and interaction with glucocorticoid response elements 

within the promoter region of genes 199,208–210. This cascade of events will ultimately impact 

transcription factor binding, influencing gene transcription. In addition to this traditional 

transcriptional pathway, glucocorticoids and their receptors can regulate cellular biology 

through additional mechanisms such as trans-repression and protein-protein interactions 211. 
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Figure 1. 1: A simplified schematic of the hypothalamic-pituitary-adrenal axis. Stress is 

detected by the hypothalamus, which results in a release of corticotropin-releasing hormone 

(CRH). This signals the release of adrenocorticotrophic hormone (ACTH) from the anterior 

pituitary gland. ACTH acts on the adrenal gland and results in the synthesis and release of 

glucocorticoids, cortisol (human) and corticosterone (rodent). 
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Figure 1. 2: The adrenal steroidogenic pathway of the zona glomerulosa and zona fasciculata, 

producing mineralocorticoids and glucocorticoids. Blue represents rodent, and pink represents 

the human pathways involved in glucocorticoid production. A key difference between humans 

and rodents is that rodents do not express CYP17A1 in the zona fasciculata of the adrenal 

gland. As such, corticosterone is the predominant glucocorticoid in rodents while cortisol is the 

predominant glucocorticoid in humans. Abbreviations: CYP11A1: cytochrome p450, family 11, 

subfamily a, polypeptide 1, STAR: steroidogenic acute regulatory protein, 3Β-HSD: 3β- 

hydroxysteroid dehydrogenase; CYP21A1: cytochrome p450, family 21, subfamily a, 

polypeptide 1, CYP11B1: cytochrome p450, family 11, subfamily b, polypeptide 1, CYP11B2: 

cytochrome p450, family 11, subfamily b, polypeptide 2, HSD-11B1: 11-beta-hydroxysteroid 

dehydrogenase 1, HSD-11b2: 11-beta-hydroxysteroid dehydrogenase 2, CYP17A1: 

cytochrome p450, family 17, subfamily a, polypeptide1. Image adapted from Arlt et al. 199. 
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1.6.1 HPA regulation  

Regulation of the HPA is also under the control of numerous systemic and local factors with 

both negative and positive feedback pathways. The secretion of glucocorticoids is under tight 

circadian control with external light, regulated by the master circadian clock known as the 

suprachiasmatic nucleus (SCN) of the ventral hypothalamus 213,214. The SCN receives 

information from the external environment via light signals reaching the retina, stimulating the 

retino-hypothalamic tract and autonomic systems and subsequently, the entire organism. The 

core circadian feedback loop occurs with the stimulation of CLOCK in the morning, which 

binds to BMAL1 to drive the transcription of several genes including Period (Per1 and 2) and 

Cryptochrome (Cry1 and 2). Throughout the day, these genes act via negative feedback to 

repress CLOCK/BMAL1 mediated transcription until the next morning 215. Intrinsic regulators 

of the SCN can also maintain a level of circadian rhythm indefinitely without a light source; 

however, this can be disrupted by several external reasons. Humans, non-human primates 

and rodents demonstrate robust circadian rhythmicity of glucocorticoid secretion, with 

glucocorticoids increasing before waking, waning through the day and falling in preparation 

for sleep cycles 215,216.  

Regulation of the HPA occurs via the SCN, with studies demonstrating that lesions within this 

region result in reduced secretion of glucocorticoids and expression of adrenal clock genes 

217,218. The SCN stimulates the rhythmic release of CRH via projections to the PVN, 

stimulating ACTH production and subsequent activation of the adrenal gland 219, regulating 

the diurnal rise in glucocorticoids 216,220,221. The SCN also activates the autonomic nervous 

systems via multiple projections to the adrenal gland 222, which is likely to be the primary 

regulator for maintenance of adrenal circadian rhythm. This is supported by studies 

demonstrating that removal of the pituitary gland does not alter the rhythmicity of the adrenal 

gland 223. The adrenal gland itself acts as a peripheral circadian clock, whereby rhythmic 

expression of several genes impacts adrenal sensitivity to ACTH, as well as adrenal steroid 

metabolism (reviewed in Oster et al. 224). Research suggests that this is not under the 

regulation of the steroidogenic pathway, as neither Star nor Cyp11a1 et al. circadian 

transcription 224.  

The circadian rhythm is essential in regulating the sexual dimorphism of the HPA. Studies have 

demonstrated that female rats have a higher peak in the circadian release of corticosterone, 



47 | P a g e  
 

resulting in higher plasma and adrenal concentrations than male rats 225,226. It is suggested that 

this is due to circadian regulation of the hypothalamic-pituitary-gonadal axis, whereby estradiol 

has a significant role in the release of glucocorticoids, as discussed below, and testosterone 

has an essential feedback role in reducing HPA functionsaw A recently identified pathway 

occurs via the activation of CXCR7, a β-arrestin-biased G-protein coupled receptor, selectively 

expressed in the adrenal cortex of females only, and has a significant role in glucocorticoid 

amplitude (see Ikeda et al. 228). Disruption to the regulation of the HPA has an extensive impact 

on normal physiology and increases the risk of disease outcomes including obesity, insulin 

resistance, hyperglycaemia, dyslipidaemia and hypertension (as reviewed by Nader 229), sleep 

patterns, behaviours and mental health 215. 

In addition to circadian regulation, glucocorticoids concentrations are maintained by systemic 

mechanisms. Corticosteroid binding globulin (CBG) is produced by the liver and binds up to 

80% of endogenous glucocorticoids to regulate the biological availability of these hormones for 

transfusion through membrane and binding to steroid receptors 212,213. However, CBG itself is 

down-regulated by glucocorticoids forming a negative feedback loop, consequently increasing 

glucocorticoid bioavailability 212,214. Additional proteins such as albumin within the blood are 

also involved in mediating glucocorticoid bioavailability. Both systemic and local concentrations 

of glucocorticoids are also regulated by two different 11-beta-hydroxysteroid dehydrogenases 

(HSD11b) enzymes, which are expressed in key tissues throughout the body and placenta. 

These act to interconvert active corticosterone to its inactive precursor, 11β-deoxyhydro-

corticosterone and reducing bioactive concentrations 215–217. Systemically, HSD11b2 converts 

active glucocorticoids into their inactive metabolites and is highly expressed in tissues with high 

MR expression patterns, preventing glucocorticoid-induced regulation of the MR 218.  Withing 

the brain, however HSD11b is not expressed, and therefore does not mediate the binding of 

glucocorticoids to the MR, which is in high abundance here. Therefore MR is more easily 

stimulated by endogenous glucocorticoids than GR, and is therefore bound by ligand even 

when circulating hormone levels are low 219–221. Regulation of the HPA axis is also mediated by 

the balance between expression of GR and MR, particularly within the limbic system. Discussed 

in the review published by Joels et al., both GR and MRs are essential for stress 

responsiveness, cognition, behaviour and negative feedback to the HPA 210,222,223. 

Within the brain, glucocorticoids act in multiple areas including cortical regions with both direct 

and indirect actions mediating positive and negative feedback pathways. This regulation can 
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occur via direct pathways, such as neuronal connections into the PVN CRH neurons from the 

nucleus of the solitary tract and circumventricular organs of the brainstem 202, as well as 

humoral inputs from other endocrine glands 224. The regulation also occurs via indirect 

pathways including the limbic forebrain circuits, such as the hippocampus 225,226.  

These structures act indirectly, via synapses on intermediate neurons of the bed nucleus of 

stria terminalis, hypothalamic nuclei and brainstem nuclei, which provide descending 

information to CRH neurons to regulate HPA function 202,222,224,227. Numerous studies have 

demonstrated that damage to the hippocampus is associated with elevated ACTH and 

corticosterone, both in basal concentrations and following immobilisation stress 228–230, as well 

as increased in PVN CRH mRNA levels 231,232. Both human and rodent studies have shown 

that electrical stimulation to the hippocampus results in long term suppression of ACTH and 

corticosterone response to photonic stimulation stress 233,234. Glucocorticoid receptor 

antagonism in the hippocampus, via injections of RU38486, resulted in a reduction of 

corticosterone and ACTH 235.  

1.6.2 Physiological actions of the HPA 

Glucocorticoid hormones stimulate approximately 20% of genes within the human genome and 

participate in a vast array of physiological actions 205. Reactivity to stress responses is an 

essential role of the HPA. However, many physiological actions required for survival are also 

regulated by glucocorticoids. This includes mobilisation of energy stores via gluconeogenesis, 

amino acids and fat breakdown, as well as immune activity, fluid homeostasis, pro-

inflammation, bone homeostasis, mammary gland function, memory and emotional regulation 

210,236. For many years, dysregulation of the HPA has been associated with psychiatric illness. 

Furthermore, 50% of depressed patients present with an impaired ability to suppress cortisol 

concentrations following dexamethasone administration 237,238. Furthermore, studies have 

shown reduced expression of glucocorticoid receptors and CRH receptors in the hippocampus 

of suicide victims 239. Interestingly, while depressive patients show a greater concentration of 

glucocorticoids, patients who suffer Post Traumatic Stress Disorder following combat, 

earthquake or sexual abuse show low to normal 24-hour free urinary cortisol 240–244. Collectively, 

these studies indicate impaired HPA function and responsivity with several psychiatric illnesses. 

Human studies to investigate the underlying molecular mechanisms that may explain why 

some individuals are more prone to poor mental health are limited. Much of the current 
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knowledge is based on imaging techniques such as Magnetic Resonance Imaging and 

Positron Emission Tomography scans. For this reason, animal models are vital in advancing 

the field of knowledge. Although it is difficult to translate findings from an animal model to 

human mental illness, many behavioural tests have been used. Mental illness-like outcomes 

in the rodent have traditionally been referred to as emotionality, which encompasses 

depressive-like and anxiety-like and social behaviours. Depressive-like and social interactions 

are the primary focus of behavioural investigation in this thesis, utilising the forced swim test, 

and an open arena social interaction test is used to investigate behaviour that may be 

associated with mental-health like phenotypes, as is further discussed in Chapter Three. 

Stress and psychiatric illnesses are often associated with increased cardiovascular function 

and increased risk of cardiovascular disease 245–249.  Stress responses are generally associated 

with increased cardiovascular activity, with studies demonstrating that psychological stress 

results in arrhythmia and fatal cardiac events. In one such study, it was seen that following the 

Northridge earthquake, sudden deaths from cardiac causes increase by 4.6 per day in the week 

before to 24 per day on the day of the earthquake 250, with similar results being shown following 

the 1995 Hanshin-Awaji earthquake in Japan 251. Furthermore, other studies that individuals 

with high cardiac reactivity to stress also demonstrate hyperactivity of the HPA and sympathetic 

pathways 252.  

The main neurological pathways activated by stress are stimulation the HPA and sympathetic 

nervous system (SNS) and withdrawal of parasympathetic activity 253. These systems interact 

to generate adaptive responses to both physiological and psychological threat, known as the 

‘fight-or-flight” response. Neurosensory signals are processed in the PVN of the 

hypothalamus, where CRH neurons directly innervate the locus coeruleus (LC) in the 

brainstem 252,254,255, stimulating the release of noradrenaline (NA). This is a bidirectional 

pathway, with the SNS further stimulating the release of CRH and further activation of the 

HPA 252. Stress-induced activation of the LC-NA pathway further stimulates peripheral 

catecholamine release, activation of α - and β-adrenergic receptors and the intermediolateral 

nucleus of the spinal cord. This subsequently increases blood pressure and heart rate 

253,256,257 and highlights the intrinsic link between the stress response and the cardiovascular 

system. This interaction will be investigated in Chapter Four of this thesis.  
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1.7 Programming of the HPA  

Dysfunction of the HPA is implicated in many systemic and psychological disorders, in a 

complex and bi-directional manner, acting as both a risk factor and a consequence of disease. 

As such, much literature suggests that the HPA as a central pathway impacted by in utero 

perturbations. 

Programming of the HPA is observed in studies across several maternal perturbations, 

including altered nutrition, intrauterine insufficiency, exposure to endogenous and synthetic 

glucocorticoids and drug and alcohol use. This programming is suggested as advantageous for 

offspring, regulating nutrient availability, or preparing for awareness necessary for survival in 

what is predicted to be an adverse ex-utero environment 258,259. However, the conditions in the 

external environment are often not equivalent to that during in utero, resulting in a hyperactive 

or increased basal tone of the HPA in offspring. This triggers a cascade of inappropriate 

physiological responses collectively contributing to the progression of disease state.  

The most extensively researched maternal perturbation related to the offspring HPA is maternal 

stress. These studies range from the administration of exogenous glucocorticoids through to 

physiological and psychological disorders that increase the concentration of endogenous 

glucocorticoids. Human studies associate maternal psychosocial stressors, including anxiety 

and elevated cortisol, with altered, albeit varied, offspring HPA outcomes. Davis et al. and 

Gutteling et al. demonstrated that infants of mothers with these conditions present with elevated 

cortisol in response to stressors, such as their first day of school and heel-stick blood draw 

260,261. Another study determined that infants of mothers who experience high anxiety during 

pregnancy had elevated cortisol at five weeks of age; however, blunted cortisol at two months 

and one year 262. 

Similarly, elevated maternal amniotic fluid cortisol concentrations resulted in increased basal 

cortisol, but a blunted response to stress in offspring 263. This was also observed in two studies 

of adolescents of mothers who suffered from depression and anxiety during pregnancy 264,265. 

Maternal treatment with synthetic glucocorticoids has also been associated with a suite of HPA 

changes in both infants and young children, such as increased basal cortisol concentrations, 

exaggerated stress responses and altered cortisol upon awakening 266–269. Numerous studies 

also reveal impaired offspring behaviour following maternal stress (reviewed by Van Den Bergh 
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et al. 187), including attention deficit hyperactive disorder (ADHD) symptoms 270–272, elevated 

anxiety 272 and cognitive development 273.  

In rodents, maternal social defeat stress programs elevated offspring stress response, with 

increased corticosterone and ACTH in both male and female offspring 274. Likewise, maternal 

exposure to predator odours resulted in elevated female offspring ACTH reactivity, as well as 

changes to glucocorticoid signalling genes 275. Maternal forced swimming during pregnancy 

revealed that although male offspring had reduced basal corticosterone, there was an elevated 

and prolonged stress response 276 and in a guinea pig model of maternal repeated exposure to 

strobe light (10Hz), offspring cortisol was reduced in both plasma and faeces 277. Studies have 

also determined that offspring exposed to maternal stress display significantly altered 

neurological morphology, and suffer from a range of emotional deficits such as anxiety-like 

behaviour, as well as learning deficits and altered attention 278–284. 

Exogenous treatment with synthetic glucocorticoids such as dexamethasone and 

betamethasone have similarly revealed several changes in the HPA function in offspring. 

Rodent models have demonstrated that offspring of dams treated with synthetic glucocorticoids 

have elevated basal corticosterone levels 285, diminished adrenal structure 286 and altered 

expression of the Mc2r 287 in the adrenal gland. HPA hyperactivity in these offspring is observed, 

with increased urinary corticosterone following overnight isolation stress and plasma 

corticosterone following anaesthesia 287.  

Sheep models have demonstrated that offspring exposed to maternal treatment with 

betamethasone have increased basal and stress cortisol levels, at one year of age, which had 

normalised at two years, suggesting transient but relevant changes in HPA activity 288,289. Other 

studies have revealed that a single maternal dexamethasone treatment in guinea pigs results 

in elevated corticosterone in male offspring, but decreased responsiveness in female offspring 

290, whereas multiple course treatment of synthetic glucocorticoids throughout pregnancy 

results in the opposite outcome 291,292. In contrast to the above studies, when betamethasone 

was administered to ewes, only during early gestation, female but not male offspring had 

decreased cortisol concentrations 293. This again highlights that events that occur in early 

pregnancy may induce offspring deficits that are different from those that occur following 

exposure later in pregnancy.  
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Alterations within the placenta are associated with HPA programming outcomes in offspring. 

As HSD11b2 regulates fetal exposure to glucocorticoids, alterations in this enzyme can have 

significant implications for offspring development. As such, numerous studies demonstrate that 

HSD11b2 either fails to increase its activity or has reduced expression following prenatal stress 

294–296. Placental HSD11b2 activity is also observed to be diminished in human growth-

restricted pregnancies, with subsequent elevated fetal cortisol concentrations 297. Similarly, 

animal models of protein restriction suggest that reduced HSD11b2 activity is likely to contribute 

to the adverse outcomes in offspring 298. Other placental alterations that occur in response to a 

maternal insult may similarly contribute to programmed deficits in HPA activity. Genetically 

manipulated reductions in placental expression of O-linked N-acetylglucosamine transferase is 

associated with disrupted hypothalamic gene expression profiles and elevated corticosterone 

concentrations following restraint in offspring 299.  

Numerous studies have demonstrated that protein or calorie restriction during pregnancy can 

program deficits in the HPA in offspring. In a sheep model, Bloomfield et al. restricted food 

consumption to 15% of the recommended intake for ten days during late pregnancy (day 105 

to 146) and revealed that female offspring showed increased HPA response to a CRH stress 

challenge 300. Conversely, Hawkins et al. performed a more mild restriction, 85% of daily 

requirement during the first 70 days of gestation and showed that the fetus had significantly 

reduced gene expression of Crh in the PVN, deceased Nr3c1 in the anterior pituitary and 

reduced cortisol and ACTH concentration 301,302. Rodent models of undernutrition have 

demonstrated that prenatal nutrition restriction of 50% protein calories results in offspring 

adrenal atrophy, decreased gene expression of Nr3c1 and Nr3c2 in the hippocampus and Crh 

in the PVN, as well as altered corticosterone and ACTH responses to ether inhalation stress 

but a delayed corticosterone return to baseline compared to control offspring 303.  

Maternal overnutrition and obesity have also been associated with significant offspring HPA 

outcomes. A human study performed in Kingston, Jamaica, demonstrated that children of 

women with truncal obesity had elevated cortisol secretion at eight years of age with 

subsequent high blood pressure 304. Sheep studies have also revealed that a prenatal diet of 

150% recommended daily calorie intake programs offspring to have elevated basal cortisol and 

ACTH concentrations 305. Maternal hypoxia is also associated with altered offspring HPA 

function, as determined by Fan et al. observing that 10.8% oxygen throughout gestation in a 

rat model was associated with increased offspring plasma ACTH and corticosterone 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/o-linked-n-acetylglucosamine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transferase


53 | P a g e  
 

concentration, elevated relative gene expression of Crh and Crh-r1 in the PVN, as well as 

elevated expression of Crh-r1 and Crh-r2 in the anterior pituitary gland 306. Additionally, this 

study performed a restraint test on offspring to reveal an even greater elevation in these 

parameters, demonstrating that stress-responsiveness is also impaired following prenatal 

hypoxia. Similarly, human studies of maternal cigarette smoking, which can also result in 

hypoxia, showed that offspring at two months of age had elevated cortisol concentrations and 

attenuated stress responses 307. Rodent models of nicotine exposure are associated with 

altered HPA outcomes, including elevated ACTH and corticosterone concentration during the 

early post-natal period. Hyperactivity of the stress response is also observed with excessive 

concentrations of these hormones 96,308. Cannabis smoking is associated with greater startle 

responses to stress 309, disrupted sleep patterns 98,310 and some other HPA axes related 

disorders such as hyperactivity and delinquent behaviour 98,311.  

1.8 Prenatal alcohol and HPA programming 

Interestingly, many of the outcomes observed in human studies of drug use are often also seen 

in offspring of PAE, with some studies indicating that it is difficult to elucidate exactly which 

outcome is an effect of which perturbation. Indeed, many of the neurological changes 

associated with FAS and FASD, are linked with the HPA, in an essential regulatory role. 

Autopsies of FASD individuals have demonstrated central nervous system disorganisation, 

gross microcephaly and migration errors (as reviewed by Clarren 312), as well as deformities in 

limbic regions such as hippocampus 313,314. Ramsay et al. demonstrated that cortisol was 

decreased in FASD children at two months of age 307, a result similarly observed in a study by 

Ouellet-Morin et al. with offspring at 19 months of age having reduced basal cortisol, but a 

hyperactive response following the stress of an unfamiliar environment 315. Conversely, other 

studies have demonstrated that cortisol concentrations in PAE infants are higher under basal 

conditions, with a further increase following stress 316,317.  

Animal models have been utilised to understand the impact of PAE with the common consensus 

that PAE results in altered offspring HPA function and hyperactivity to stressors. 

Comprehensive research carried out by Weinberg and colleagues has investigated HPA 

outcomes following prenatal exposure to moderate to high dose alcohol in rats throughout 

gestation. These studies demonstrated that basal corticosterone and ACTH was elevated in 
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offspring, with HPA hyperactivity in response to stressors 318–321. These animals also displayed 

a range of anxiety and depressive-like signs. A separate laboratory, using the same dose of 

PAE exposure, administered to offspring during the weaning period, which is commonly 

compared to the third trimester in humans 322, demonstrated these same offspring outcomes. 

Anxiety-like phenotypes in offspring have also been observed in other models treating dams 

with 6.5% ethanol (liquid diet, E0-E21) throughout pregnancy, and gavage administration of 

25% volume per volume ([v/v], gavage, E7-E21) 323,324.  

Rat models have also revealed changes in central regulatory gene expression profiles, such as 

in the limbic system 325,326. Interestingly, studies also indicate sexual dimorphism in response 

to stressors, depending on duration and type 319, which may be related to alternate but 

interlinking pathways, such as within the aforementioned limbic system. Other studies using 

alcohol vapour from embryonic day 7 to 18 demonstrated elevated CRH and ACTH 

concentrations in offspring following stressors 327. Another model of maternal alcohol exposure 

(6.7% v/v liquid diet) from embryonic day 7 to 21 resulted in several offspring changes including 

elevated basal corticosterone, decreased POMC expression in the anterior pituitary gland and 

increased pituitary gland weight. Following stressors, these offspring demonstrated increased 

corticosterone, ACTH and CRH concentrations 71,328. These outcomes were also seen in 

another study using maternal gavage of 4g/k.day from embryonic day 11 to 21 99. These studies 

are summarised in Table 1. 5.  

While these studies investigated the impact of alcohol exposure either late in pregnancy or 

throughout gestation on offspring HPA outcomes, less is known about the impact of alcohol 

when exposure occurs around conception. Given that this is likely to be the most common 

exposure in humans, it is essential to understand how this may contribute to diseases in 

offspring.  
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Table 1. 5: A non-exhaustive list of prenatal alcohol effects on the programming of the HPA and related behaviours. 

Species 
 

Dose 
 

Mode 
 

Timing 
 Outcomes  

Ref 
    Behaviour HPA  

Human  

Maternal 
reporting of 

alcohol during 
pregnancy 

 Liquid 

 
Over 

gestation 
  

↑ basal cortisol levels 
↑ stressed cortisol levels 
↓ HPA return to baseline 
after stressors 

 307,316,317307,316,317 

Mice  
25% v/v, 

gavage, 4 
hours apart 

 Gavage 
 

E7–E21  
Anxiety-like in 
males 
(Light dark)  

↑ CORT (males) (FS) 
↑ ACTH (females) (FS) 

 323323 

Rat 
 

 
175 ± 7 mg/dl 
blood ethanol 

levels 
 Vapour 

 
2nd-week 
gestation 

  
↑ ACTH secretion (FS) 
↔ CORT secretion (FS) ↑ 
CRH mRNA (hypothalamus) 

 329329 

 
36% ethanol 

derived calories 
145-155 mg/dl 

 Liquid 

 

E0–E21  

Depressive-like in 
male (FST) 
Anxiety-like in 
male and female 
(OFT and EPM) 
 

↑ basal CORT (males) 
↑ CORT (FS) 
↑ ACTH (FS) 
↓ HPA return to baseline 
(FS) 
↓ adrenal weight 
∆ pituitary sensitivity to CRH 
and ACTH 
↑ HPA activity to 
dexamethasone 
↑ CORT (FS) ∆ feedback 
mechanisms 
↓ CRH mRNA 
(hypothalamus) (FS) 

 
319,330–335319,330–

335 

 
BAL 273 ± 
11mg % 

 Vapour 
 

E7–E18   ↑ CRH following (FS) 
↑ ACTH (FS) (females) 

 327327 

 
5% v/v – 129.2 

mg/dl 
  

 
E8–E21   ↑ CORT (FS)  336336 

 
4g/kg.d.  

87 – 58mM 
 Gavage 

 
E11–E21   ↓ basal CORT 

↓ basal ACTH 
 99 
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↑ CORT (FS) 
↑ ACTH (FS) 

 6.7% v/v  Liquid 

 

E7 to E21   

↑ CORT (FS) 
↓ POMC expression 
Epigenetic changes to 
POMC 
↑ CORT following stressors 
↑ ACTH following stressors 
↑ CRH following stressors 
↑ pituitary weight 

 71,328,33771,328,337 

 

 
6.5% 

(~14.01g/kg/d) 
 Liquid  (E0-22/23)  

↑ Activity in male 
and females 

  324324 

 

Dams: 
4.3g/kg/d 

36%EDC Pups: 
4g/kg 12%v/v 

 Liquid  E1-PN10  

Depressive-like in 
male and female 
(FST) 
Anxiety-like: male 
and females 
(EPM) 

  322322 

Abbreviations: ACTH: adrenocorticotropic hormone; CORT: cortisol (human, sheep), corticosterone (rodent [rat and mice]); CRH: 

corticotropin-releasing hormone; E: embryonic day; EDC: ethanol derived calories; EPM: Elevated plus maze; FS: the following 

stress; FST: Forced swim test; HPA: hypothalamic-pituitary-adrenal axis; OFT: open field test; POMC: proopiomelanocortin; Δ: 

change in.
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1.9 Limitations of animal models.  

Animal models have provided the opportunity to investigate the structural and molecular 

changes that occur as a consequence of prenatal alcohol exposure. However, these models 

are not without limitations when comparing the clinical outcomes. It is important to note that the 

many animal studies performed have resulted in outcomes that differ depending on factors such 

as timing of exposure, ethanol dose and duration. While timing and dose are often discussed 

in-depth, the method of alcohol administration is rarely discussed. Studies administer alcohol 

in a variety of ways including addition to drinking water, a liquid diet, gavage, vapour or injection. 

Some modes of administration, in particular oral gavage, have been demonstrated to induce a 

maternal stress response and cause a significant impact on corticosterone concentration in rats 

329. As such, this may be inducing additional prenatal perturbations of maternal stress, which is 

associated with several adverse offspring outcomes. For this reason, this thesis will administer 

alcohol in a liquid diet to reduce stress and mirror human consumption as closely as possible. 

The metabolism of alcohol between human and rodents differs, with humans metabolizing 

alcohol at an approximate rate of 100mg per kilogram per hour and rodents metabolizing at a 

rate three times greater 62. It is important to consider this when comparing to those studies 

performed in humans. However, there is a significant amount of research which indicate the 

similarities between human and rodent response to alcohol, particularly endocrinology and 

behavioural outcomes (as discussed in Crabbe et al., 338 and Tabakoff et al., 339). However, 

information from animal studies needs to be interpreted with caution as the dose and timing of 

the exposure, social interaction, housing, genetics and a wide range of factors have significant 

implication in results obtained from animal studies. Regardless, these models have proven 

valuable for determining neurochemical and molecular pathways that may be common between 

species following alcohol exposure. 

1.10 Periconceptional alcohol and programming outcomes. 

The timing and duration of the maternal perturbation dictate the extent and severity of disease 

outcomes in offspring. While later in pregnancy, specific organs and systems may be 

particularly vulnerable to a perturbation, during the periconceptional period these systems are 

yet to begin development. This period is characterised by numerous cellular events occurring 
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over a short period, leading to the formation of distinct embryonic and placental cell structures. 

These processes include meiotic division, maturation and oocyte release from the ovary, 

conception, and development of the blastocyst leading to implantation 340. As such, 

perturbations occurring during the periconceptional period may influence any of these 

processes and lead to permanent alterations to the entire embryo.  

While very few studies have investigated the impact of alcohol exposure around conception on 

offspring outcomes, numerous studies published in recent years have investigated the impact 

of other insults around conception on offspring disease. A classic study utilised survivors of the 

Dutch Winter Famine, where during World War II, a large population in the Netherlands was 

restricted to a diet of only 400-800 calories per day, from 26 November 1944 to 5 May 1945 

341,342. This population provided an invaluable tool for research into developmental 

programming during specific critical windows. It was observed that offspring conceived during 

these harsh conditions showed a propensity to develop cardiovascular and metabolic disease 

343–345, and had an increased risk of mental illness 346,347.  

Animal models of periconceptional undernutrition have also observed some systemic 

alterations in offspring including increased fat mass 348,349, impaired muscle development 350, 

increased blood pressure 351–353, altered renal structure and function 354,355 and have significant 

metabolic outcomes such as impaired glucose and insulin homeostasis 352,356. Likewise, 

deficiencies in key vitamins such as folate, choline, methionine and B12 during the 

periconceptional period have been associated with increased body weight, fat mass, insulin 

resistance, glucose intolerance and elevated blood pressure in offspring 357.  

As mentioned above, the impact of periconceptional ethanol exposure (PC:EtOH) is poorly 

researched, with human studies often compounded by other factors including poor diet, drugs 

and domestic abuse 358. However, it has been shown that women who drink 4 or more standard 

drinks per week within the first trimester of pregnancy had a greater risk of miscarriage, with 

the strongest association occurring when alcohol consumption occurred prior to ten weeks of 

gestation 359. Babies born of mothers who drank up to five standard drinks within the first 

trimester are observed to have increased rates of cleft lip, cleft pallet 360,361, conotruncal heart 

deficits 362 and gastrointestinal abnormalities including omphalocele and gastroschisis 363. 
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However, beyond these studies, very little research has been performed regarding the long-

term outcomes of offspring following this common pattern of human drinking in pregnancy. 

Animal models have started to investigate specific aspects of offspring physiology following 

alcohol exposure around conception. Lo et al. utilised Rhesus Macaques to investigate the 

impact of 1.5g/kg per day of self-administered ethanol (4%) during the periconceptional period 

(preconception to E60 of a gestational time of 168 days) and demonstrated reduced fetal 

weight, reduced growth and development of the fetal brain and reduced placental blood 

oxygenation 364. It must be noted, however, that the length of time of alcohol exposure in this 

Macaque model includes a significant proportion of pregnancy and would not be representative 

of women ceasing alcohol consumption immediately at the recognition of pregnancy. Sheep 

models of intravenous injection of alcohol from embryonic day 4 to 41 results in reduced fetal 

brain weight. Coll et al. demonstrated that maternal exposure to 10% ethanol from 17 days 

before mating to E10 in mice, decreased embryonic differentiation, inhibited the rate of 

embryonic development and increased neural tube deficits 365, however, this model again 

exposed the embryo for a large proportion of pregnancy. Recently, Asimes et al. showed that 

alcohol consumption during five days prior to conception only, altered offspring body weight, 

with decreased play behaviour and altered hypothalamic-pituitary-gonadal axis function with 

decreased testosterone and changes to luteinising hormone and gonadotropin-releasing 

hormone 366. Within the Moritz laboratory, the rat model used administers 12% v/v ethanol from 

4 days before conception to embryonic day 4. This is representative of one oestrous cycle 

before conception and up until the time of implantation. This model had been shown to induce 

fetal growth restriction associated with glycogen accumulation in the placenta 367. When these 

rats aged, they developed metabolic dysfunction including glucose intolerance and insulin 

insensitivity 367. Male offspring had an increased preference of a high-fat diet with decreased 

dopamine receptor type 1 expression in the ventral tegmental area of the mesolimbic system 

368, suggesting that PC:EtOH may also impact neurological pathways. In studies conducted in 

parallel to those in this thesis, female offspring exposed to PC:EtOH displayed increased 

anxiety-like behaviour, and spatial memory deficits associated with changes in hippocampal 

expression of memory-related genes and epigenetic regulatory pathways 369. Interestingly, 

many of these offspring outcomes may relate to the HPA. Furthermore, as offspring HPA activity 

is highly dependent on maternal physiology, it is important to consider just how alcohol 
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exposure around conception may indirectly program offspring disease by affecting maternal 

physiology.  

1.11 Impact of periconceptional exposures on maternal physiology 

The periconceptional timeframe is marked by extensive maternal physiological, metabolic and 

endocrine changes 340,370, necessary to initiate the cascade of events required for the 

maintenance of a healthy pregnancy. If insults occur in early pregnancy that can impact how 

these processes are initiated, then subsequent stages of development can be perturbed leading 

to a cascade of events that collectively harm the developing embryo. These physiological and 

endocrine adaptations start even before conception when the previous menstrual cycle is 

initiated.  

1.11.1 Physiological changes in a healthy pregnancy  

The increase in estrogen production that occurs as the selected follicle begins to expand plays 

a major role in regulating when ovulation occurs. Similarly, the hypothalamus and pituitary must 

respond to this increase in estrogen and produce sufficient luteinizing hormone to stimulate 

ovulation. Following ovulation, the corpus luteum secretes progesterone to maintain the 

endometrial lining. This progesterone will decline if conception does not occur. However, if the 

ovulated oocyte is fertilised, the early embryo secretes hormones such as Human Chorionic 

Gonadotropin to maintain the corpus luteum and allowing continued production of progesterone 

and prevention of menstruation (reviewed in Kumar et al. 371). As pregnancy advances, 

increased production of estrogen and progesterone from the corpus luteum and later by the 

developing placenta progressively alter maternal hemodynamic and cardiovascular function. 

Plasma volume increases by 45% and cardiac output increases from 15% within the first 

trimester to 50% at parturition 372,373. Additionally, blood pressure decreases, and heart rate 

increases to ensure appropriate uterine blood flow, placental perfusion and nutrient delivery to 

the fetus. These changes, however, collectively place an increased strain on kidney function, 

whereby activation of the renin-angiotensin-aldosterone system (RAAS) occurs, catalysed by 

the increased concentration of estrogen, inducing a two to three-fold increase in circulating 

aldosterone concentrations. The elevation in aldosterone will subsequently alter sodium 

handling, filtration, plasma osmolality and increase erythropoietin production to elevate red 
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blood cell count, which may have implications for both maternal and fetal cardiovascular 

function and nutrient provision via the placenta 374,375.  

Importantly, many of these processes interact with the HPA. Cortisol concentrations are known 

to decline during the follicular phase of the menstrual cycle, important for follicular maturation 

leading up to ovulation and fertilisation. Following conception, cortisol concentrations begin to 

increase by 2% each day until the 4th week of gestation 376. These changes in cortisol are 

attributed to the increased production of estrogen, which stimulates CBG levels and reduces 

the rate of cortisol clearance 375. The early rise in cortisol is vital for the allocation of energy to 

specific tissues ensuring that pregnancy is sustained. However, excessive increases in cortisol 

during this period may impair rates of conception, implantation, regulation of anti-rejection 

pathways and maintenance of a successful pregnancy, acting itself as a maternal perturbation. 

Studies utilising patients undergoing in vitro fertilisation have additionally shown reduced 

fecundability and a 90% increased risk of miscarriage when cortisol levels are perturbed 376,377. 

The vast changes associated with the establishment of pregnancy strongly highlights the 

importance of the HPA around the timing of fertilisation.  

Although there are slight fluctuations in cortisol concentration around the fourth week of 

gestation, cortisol continues to increase by 9% per day up to 42 days post-conception 376. From 

this time onwards, cortisol concentrations remain elevated. This sustained increase is essential 

for the regulation of cardiovascular changes discussed above and adaptations of maternal 

glucose control and insulin resistance, as well as the final developmental wave of fetal tissues 

and the onset of parturition 378–380. 

1.12 Perturbations that impact maternal physiology 

Food restriction, undernutrition, overnutrition and drug exposure have all been observed to 

result in alterations to the maternal HPA including changes to both plasma glucocorticoid 

concentrations, ACTH and adrenal pathways 303,351,381–384. However, many of these studies 

investigated perturbations that occurred later in pregnancy. Studies which have investigated 

the impact of periconceptional insults on the maternal HPA have predominantly involved 

maternal undernutrition. In sheep fed a restricted nutrient diet until 30 days after conception, 

maternal cortisol was decreased during the undernutrition period 385. Similarly, sheep fed a diet 
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that contained 70% of recommended calories until day 7 of gestation, had lower levels of 

cortisol prior to conception but normal cortisol concentrations at day 55 of pregnancy 382. In a 

mouse model of hypoxia, Cuffe et al. demonstrated that dams had significantly elevated 

corticosterone concentrations following a short exposure of 12% oxygen from embryonic day 

14.5 to 18.5 in a hypobaric chamber 386. These studies and the strong association between 

maternal glucocorticoid exposure and offspring disease highlight that periconceptional 

exposure to adverse conditions may program offspring disease outcomes by disrupting 

maternal HPA function.  

Limited studies have investigated the effect of alcohol consumption during pregnancy on 

maternal HPA outcomes. However Weinberg et al. determined that alcohol stimulates maternal 

adrenal activity, with elevated adrenal weights and elevated basal and stress-induced 

corticosterone concentration 387. Research performed by Wilcoxon and Schwartz has 

demonstrated that adrenalectomy of the dam following PAE (5% wt/vol, 35% ethanol derived 

calories) prevented many of the outcomes caused by maternal alcohol consumption, including 

reduced placental weight and increased fetal corticosterone at embryonic day 21, as well as 

hypertrophy of the left ventricle of the heart in adult female offspring 388,389. These studies 

indicate the essential role of the maternal HPA in both pregnancy and offspring outcomes and 

resulted in the question: does PC:EtOH program similar outcomes in offspring through 

alterations to maternal HPA physiology, thus inflicting a “maternal stress” paradigm. 

1.13 Rationale  

This chapter has reviewed the evidence that alcohol consumption during pregnancy is 

associated with some adverse offspring outcomes; the most severe being FAS and FASD, but 

includes a spectrum of other outcomes including hyperactivity and mental illness, with the 

suggestion that this is related to dysfunctional neuroendocrine signalling 57. Animal models 

used to explore these underpinning mechanisms have shown PAE is associated with offspring 

HPA hyperactivity, reduced corticosterone normalisation after stressors and changes within the 

central regulatory pathways 318. This dysfunction may have significant impacts on offspring 

outcomes, as the HPA and associated pathways are critical in the homeostatic maintenance of 

most physiological systems within the body, as well as underlying cognitive and emotional tone. 
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Furthermore, as similar outcomes have been demonstrated following prenatal exposure to 

glucocorticoids, the potential role of PC:EtOH on the maternal HPA is also of interest 318. 

As dysfunction in the HPA may contribute to the worldwide burden of NCDMI, understanding 

how prenatal alcohol may influence this axis, is essential. Although the current 

recommendations are that “for women who are pregnant, or planning a pregnancy, not drinking 

is the safest option” 41, it has recently been established that that up to 64% of women admit to 

drinking throughout pregnancy 46. However, although up to half of these women will cease 

consumption upon pregnancy detection, little is known of the maternal impacts of ethanol 

(EtOH) exposure, or if the periconceptional period is a sensitive time to this maternal 

perturbation. For this reason, the research within this PhD aimed to determine the impact of 

PC:EtOH on offspring outcomes, including behaviour and function and regulation of the HPA. 

To complement these studies in offspring, the examination of maternal HPA activity following 

PC:EtOH was conducted throughout pregnancy.  

1.14 Aims 

This thesis aims to determine if PC:EtOH exposure results in  

1. Altered offspring behaviour and HPA responses to both physiological and psychological 

stressors, in both adult and aged offspring, associated with changes in genes regulating 

adrenal steroidogenesis.  

2. Altered basal corticosterone concentration in both adult and aged offspring. 

3. Altered maternal corticosterone throughout gestation, associated with changes to 

adrenal steroidogenic pathways. 

4. Altered maternal plasma aldosterone and renal physiology parameters. 

5. Altered placental glucocorticoid signalling gene expression.  

1.15 Hypotheses 

It is hypothesised that PC:EtOH will stimulate the maternal HPA throughout gestation, 

programming a mental illness-like phenotype and HPA dysfunction in offspring.  
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Specifically, this will be divided into three experimental chapters with the respective 

hypotheses:  

1. Chapter Three: It is hypothesised that PC:EtOH will result in a depressive-like and 

altered social phenotype in offspring, with HPA hyperactivity in response to a 

dexamethasone suppression/corticotrophin-releasing hormone stimulation test and 

restraint test, with alterations in underlying adrenal gland steroidogenesis gene 

expression.  

2. Chapter Four: It is hypothesised that basal corticosterone concentration will be altered 

in adult and aged offspring, with HPA hyperactivity following restraint in aged offspring. 

This will be associated with altered cardiovascular stress response, as well as altered 

adrenal gland steroidogenesis gene expression.  

3. Chapter Five: It is hypothesised that PC:EtOH exposure will increase maternal plasma 

corticosterone concentration throughout gestation, with associated changes in adrenal 

steroidogenic gene expression. This will be associated with alterations in plasma 

aldosterone and renal physiology. It is also hypothesised that PC:EtOH will alter gene 

expression of key glucocorticoid signalling genes in the placenta at the end of gestation.
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Chapter Two 

 

General Methods 

 

“Research is formalised curiosity. 

It is poking and prying with a purpose” 

- Zora Neale Hurston – 
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This general methods chapter will include a more detailed description of techniques used in 

multiple chapters but will leave out details relevant only to specific experimental protocols such 

as sample size and statistical analyses. Behavioural testing, stress responsiveness and 

metabolic cage analysis will be discussed in relevant chapters.  

2.1 Ethics 

All animal experimentation performed throughout this thesis were approved by The University 

of Queensland’s Anatomical Bioscience Animal Ethics Committee (SBS/022/12/NHMRC, 

SBMS/467/14/NHMRC and SBMS/085/17/NHMRC). The code of practice for animal care and 

use for scientific purposes was followed. Power calculations were performed prior to the 

commencement of this work to determine the minimal sample size required to achieve 

meaningful statistical significance.  

2.2 PC:EtOH treatment 

Sprague Dawley rats (Rattus norvegicus) at 12 weeks of age, were ordered from the animal 

resource centre (ARC, Perth Western Australia), and housed within a 12:12 hour light-dark 

cycle at 22°C and 60% humidity at the Institute for Bioengineering and Nanotechnology animal 

facility at the University of Queensland. This cycle commenced at 1200h with lights off, to allow 

for optimal lighting, breeding and experimental conditions for the rats during standard work 

hours. Rats were provided standard laboratory chow (4% fat, 13.6% protein, 64.3% 

carbohydrates; 15.5 MJ/kg, SF-08-020 Specialty Feeds, Glenforrest, Western Australia, 

Australia) and water ad libitum for a minimum of one week prior to experimental protocols. Once 

female rats reached 230 grams of body weight, they were placed on a liquid control or ethanol 

diet established using the Lieber-DeCarli nutritionally complete diet 390 and optimised prior to 

the commencement of this research study 102 for 21 hours, with diet consumption and body 

weight monitored. The composition of these diets is outlined in Table 2. 1. 

Rats were tested for oestrous daily using the EC40 oestrous cycle monitor (Fine Science Tools, 

Foster City CA, USA), with a vaginal impedance reading of 4.5x 103Ω or greater indicating 

oestrous. Upon this reading, rats were allocated to control or ethanol liquid diets, with this day 

being denoted as embryonic day (E)-4. These diets were made fresh daily and were placed on 
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the cage at the commencement of the dark period (1200h). The diet bottle was shaken at 1700h 

daily to prevent blockages from forming. At 0900h on the following day, the diet bottle was 

removed, and water was provided ad libitum for three hours before replacement with a freshly 

made liquid diet. This continued for four days or until an oestrous reading of 4.5x 103Ω was 

recorded again. If a rat did not reach this reading by six days, they were removed from the 

protocol. At this point, female rats were placed in a wire-based floor cage and a male rat 

introduced to the cage. Successful mating was detected by the presence of seminal plugs either 

at 1700h, with the following day denoted as E1. If seminal plugs were not present at 1700h, 

mating continued until 900h, with successful mating resulting in this day being denoted as E1. 

Dams were returned to their home cages, and diet treatment continued until 4 days post-mating 

(E5). Dams were weighed daily prior to and throughout pregnancy. Dams were mated for two 

consecutive days and were removed from the protocol if unsuccessful.  

Table 2. 1: The composition of control and ethanol liquid treatment diets. 

Ingredient Control Ethanol Supplier 

Sustagen hospital 

formula (g) 
19.50 22.00 

Mead Johnson Nutritionals, Auckland, New 

Zealand  

Corn flour (g) 15.70 15.00 Coles Supermarket Australia Pty Ltd 

Low-fat milk (mL) 58.33 50.00 Dairy Farmers Australia, LD&D Milk Pty Ltd 

Ethanol (12.5%, mL) 0.00 10.00 General Laboratory 

Selenium (g) 
0.03 0.60 

Selemite B; Blackmores, New South Wales, 

Australia 

Sunflower oil (mL) 0.83 2.00 Crisco 

Copper (II) sulphate 

(50mM) 
0.01 0.01 

Sigma Aldrich Inc, Missouri, United States of 

America 

Ferric Citrate (199mM) 
0.01 0.01 

Sigma Aldrich Inc, Missouri, United States of 

America 

Manganese sulphate 

(303mM) 
0.01 0.01 

Sigma Aldrich Inc, Missouri, United States of 

America 

 

2.3 Experimental cohorts 

Six separate cohorts of rats were set up for experiments within this research project to ensure 

appropriate handling and to eliminate the impact of experimental stress on subsequent 
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experiments. Due to the labour intensiveness of the protocols, additional students and staff 

were involved in the treatment of these animals. Of the six cohorts, the first was established for 

the generation of offspring. Offspring were then divided into three groups with some animals 

undergoing experiments at 3 months of age, a separate group undergoing experiments at 5 

months of age and a final group undergoing experiments at 12-14 months of age.  

The subsequent cohorts were established for maternal investigation. One was set up to 

measure plasma corticosterone at E-2 and E2, before rats were culled, others for tissue 

collection at E5, E15 and E20. The final cohort was subject to experimental protocols on E16 

and E18. The various cohorts of rats used throughout this project are described in detail in 

Figure 2. 1. 
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Figure 2. 1: The different cohorts of rats used throughout this thesis for various experimental 

protocols (within the dotted lines are details about each of the 6 cohorts of animals used). Dams 

were treated with 12.5% ethanol during the periconceptional period (PC:EtOH). Separate 

cohorts of dams were established to measure outcomes at embryonic day (E) 2. E2, E5, E15, 

E16/E18 and E20) for analysis of plasma corticosterone, adrenal steroidogenesis, plasma 

aldosterone, metabolic and plasma lipid analysis and glucocorticoid (GC) pathways within the 

placenta. Offspring cohorts were established from another cohort of dams (3, 5-6 and 14-16 

months of age). These offspring underwent behavioural testing including the forced swim test 

(FST) and social interaction test (SI), stress tests including the dexamethasone suppression 

test (DST) and corticotropin-releasing hormone stimulation test (CST) as well as restraint 

testing. Basal corticosterone, which refers to corticosterone concentration within animals who 

were not exposed to stressors, was also measured, as well as gene expression (GE) in the 

hippocampus. 



 

70 | P a g e  

 

2.4 Animal handling 

As this thesis aimed to investigate the HPA, special care was taken to ensure animals were 

unstressed and in an enriched environment wherever possible. All dams were housed 

individually, except when housed with male rats for mating. Dams were acclimatised to 

artificial lighting for a minimum of two weeks prior to mating. Bodyweight was recorded daily 

by the team of researchers, rapidly and with utmost care to ensure the lowest possible stress 

levels. On the day of birth (denoted as post-natal (PN) day 0), neither dams nor offspring 

were interrupted. However, all were weighed daily from PN1 to PN30. Rats were weaned 

into sex-specific cages at PN28, with no more than two male and three female rats per cage. 

After PN30, offspring were handled and weighed weekly, until two weeks before behavioural 

testing at 3 months of age. At this time, rats were placed into individual cages and handled 

daily for a minimum of 10 minutes.  

Following behavioural testing, rats remained individually housed but returned to handling 

and weighing weekly until one week prior to the stress reactivity tests, whereby animals 

were handled again for 10 minutes per day. Aged animals were handled and weighed 

weekly until experimentation at 14-16 months of age.  

2.5 Sampling and tissue collection in maternal cohorts 

Prior to the commencement of this PhD, a tail tip blood sample was collected from dams at 

E-2 and E2. At 1230h, dams from control and PC:EtOH treatment groups were briefly 

restrained within a fabric sock. A scalpel was used to slice a 3-millimetre section of the tail 

from the tip, followed by a collection of blood (0.3mL) into two tubes. Each tube was coated 

with heparin and ethylenediaminetetraacetic acid (EDTA). Blood was centrifuged at 

3500rpm for 5 minutes and plasma collected and stored at -80°C for subsequent hormonal 

analysis.  

A separate subset of dams was euthanised at E5 using a guillotine. Maternal trunk blood 

was collected and stored with heparin or EDTA. Samples were centrifuged at 3500rpm for 

5 minutes, and plasma stored at -80°C for analysis of corticosterone and aldosterone. 

Maternal adrenal glands were collected and snap-frozen in liquid nitrogen and stored at -

80° Celsius for subsequent molecular analysis. 
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Another cohort of rats was generated and handled daily until E15. Dams were transported 

to a separate facility (approximately 5 minutes in duration). Here, rats were anaesthetised 

rapidly using an intraperitoneal injection (IP) of 50:50 ketamine and xylazine (0.1ml/100g of 

body weight, Lyppard Australia Ltd, Queensland, Australia). Once anaesthetised, a midline 

incision was made along the abdomen and fetuses externalized for tissue collection. Dams 

were euthanised using cardiac puncture for the rapid collection of blood from which plasma 

was collected as described above. Maternal adrenal glands were collected and snap-frozen 

in liquid nitrogen and stored at -80°C for molecular analysis.  

The final cohort for blood and tissue collection was generated, and blood was collected at 

E20 via tail-tip, as described above, from conscious, restrained dams at 0830h. This blood 

sample was collected prior to transportation, to eliminate the compounding impacts of 

external stress on corticosterone values. Following the tail bleed, dams were transported to 

a separate laboratory for tissue collection. Anesthetisation occurred as above, and fetal 

tissues were collected prior to maternal cardiac puncture and blood collection. Maternal 

adrenal glands were snap-frozen in liquid nitrogen and stored at -80°C for molecular 

analysis. All blood samples were centrifuged at 3500rpm for 5 minutes, and plasma was 

stored at -80°C for subsequent analysis of corticosterone and aldosterone. 

It is important to note that all blood collection, excluding collections at E-2 and E2, were 

performed at 0900h. This is nine hours following lights on (1200h) and was chosen for 

consistency across animals, as well as for logistical purposes. It would be expected that 

corticosterone would be close to peak concentration 391. Blood was collected from dams at 

E-2 and E2 at 1230h, when blood was simultaneously collected for measurement of blood 

alcohol concentration 102. At this time, corticosterone concentrations would at a trough 391. 

For these reasons, direct comparisons between corticosterone concentrations at these 

different time points have not been discussed within this thesis. 

2.6 Offspring cohorts 

2.6.1 Adult cohort 

Three age groups of offspring were established using one male and one female per litter. 

Offspring were handled and weighed as outlined in Section 2.4 Animal handling. All rats had 

ad libitum access to standard laboratory chow and water. All female rats were tested in 

diestrus. One of these groups underwent behavioural testing at 3 months of age. 

Behavioural testing occurred during the dark phase of the light cycle (1400h – 1600h), when 
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both plasma corticosterone and activity are at its peak 391,392. At 5-6 months of age, animals 

underwent a dexamethasone suppression (DST) and corticotropin-hormone stimulation test 

(CST). Following a minimum of two days of recovery, these animals underwent a 30-minute 

restraint test. These tests were performed during the light phase of the light cycle, whereby 

plasma corticosterone would be at its trough 391. Tissues were collected from rats at 5 

months of age. 

In addition to the above ages, the impact of PC:EtOH on aged offspring was also of interest. 

Although key parameters were measured in both ages, due to the range of experiments and 

collaborative nature of offspring cohorts, a different range of tests was performed as the 

focus of experiments were altered to measure as many outcomes as possible. Therefore, 

the final group was aged to 14-16 months and underwent telemetry surgery for 

cardiovascular measurements during a 15-minute restraint test. These animals recovered 

for two days before being culled for tissue collection. Cohorts and experiments are illustrated 

in Figure 2. 1. 

2.6.2 Tissue collection  

For all tissue collection, rats were transported to a separate facility for cull between 0900h 

and 1000h by an IP injection of pentobarbitone sodium (Lethobarb [325.73g/L]; 0.1 ml/kg 

body weight). Adrenal and pituitary glands were collected and weighed from offspring at all 

ages. Hypothalamus and hippocampus were dissected from aged (12 months) offspring 

using coordinates obtained from Paxinos and Franklin  393. Hippocampal tissue was 

collected from Bregma −2.28 to −3.64. Likewise, the hypothalamus was collected with 

coordinates Bregma -3.24 to -4.44. Tissues were snap-frozen in liquid nitrogen and stored 

at -80°Cfor molecular analysis. Pituitary glands from aged rats were fixed in 4% 

paraformaldehyde for histological analysis using methodologies similar to those performed 

previously 286. Pituitary glands were processed to paraffin and sectioned before staining with 

hematoxylin and eosin and sent to an expert veterinary pathologist for blinded assessment 

286. 

2.6.3 Hormone analysis 

The corticosterone analysis was performed using an in-house radioimmunoassay as 

described in Spiers et al 394. Plasma corticosterone was extracted from 5µL of plasma using 

dichloromethane (Sigma Aldrich, Castle Hill, NSW, Australia) and reconstituted into assay 

buffer (porcine gelatin with phosphate-buffered saline). Standards of known concentration 
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range (39pg/µl to 10000pg/µl) and samples were incubated for 12 hours at 4°C with 

corticosterone antibody (anti-corticosterone antibody, AB1297, Merck-Millipore) and a 

tritiated [1,2,6,7-3H] corticosterone tracer. The unbound steroid was removed using 

centrifugation (1000 x g for 10 minutes at 4°C) with activated dextran charcoal. Radiation 

readings were collected using a scintillation spectrometer (Tri-Carb 3100 TR, Perkin Elmer). 

The assay sensitivity ranges from 39ng/ml up to 5000ng/ml based on 5µl of plasma per 

sample, and all samples were run in triplicate. The intra-assay coefficient of variation and 

inter-assay coefficient of variation across assays performed were 6.8% and 7.3% 

respectively. This assay has been shown to have minimal cross-reactivity (<1%) for 

progesterone, testosterone, cortisol or 11 deoxycorticosterone. 

Plasma aldosterone was measured using an enzyme-linked immunosorbent assay (ELISA) 

(Alpha Diagnostic International Inc, Texas, US) as per the manufacturer's details. Briefly, 

50µl of plasma stored in EDTA and standards were combined with 100µl avidin conjugate 

into a 96 well plate and incubated for 60 minutes. Samples were washed with provided wash 

buffer, and 150µl of TMB substrate (provided) was added. 50µl of stop solution was used 

following a 10-minute incubation on a shaker. Absorbency was measured at 450nm using 

and absorbency scanner (TECAN, Life Sciences, Switzerland). Concentration was 

determined using a logarithmic line of the best fit curve of standards. The assay sensitivity 

ranges from 15pg/mL up to 2000pg/ml based on 50µl of plasma per sample. This assay has 

been shown to have minimal cross-reactivity (1.1%) for 11 deoxycorticosterone, and 

negligible cross-reactivity with androsterone, cortisone, 11-deoxycortisol, 21-deoxycortisol, 

dihydrotestosterone, estradiol, estriol, estrone, and testosterone. All samples were assayed 

on a single plate, in duplicate with an intra-assay coefficient of variation of 3.8%.  

2.7 Molecular analysis 

2.7.1 RNA extraction  

Total mRNA was extracted from adrenal glands, hypothalamus and hippocampus using the 

RNeasy mini kit column extraction (QIAGEN, Doncaster, Australia) as per the 

manufacturer's details. Adrenal glands, whole hypothalamus and hippocampal samples 

were used for extraction. Samples were homogenised using beta-mercaptoethanol and 

appropriate lysis buffer, followed by required procedural washes. Samples underwent a 

DNase digestion (10µL) with a 25-minute incubation period. Final washes were performed 

and samples were eluted in RNase free water. RNA yield was assessed using the Nanodrop 
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1000 spectrophotometer (Thermo Fisher Scientific, Scoresby Vic, Australia), with the 

absorbance of A260: A280nm wavelengths. Pure RNA samples were accepted with an 

optical density reading between 1.8 and 2.1. These samples were used for complementary 

DNA (cDNA) synthesis. 

2.7.2 Reverse transcription for cDNA synthesis 

cDNA (10µL) was synthesised using the iScript cDNA synthesis kit (Bio-rad, Gladesville, 

New South Wales, Australia) as per manufacturers details. 1µg of RNA was combined with 

2µL of iScript reverse transcription master-mix and nuclease-free water for a total reaction 

volume of 10µL. cDNA was synthesised using a thermocycler (StepOne Plus Real-Time 

PCR System, Applied Biosystems) with the protocol as seen in Table 2. 2. cDNA was diluted 

to 1:10 in RNase free water for gene expression analysis. 

The iScript reverse transcription MasterMix contains an optimal mix of oligodT and random 

primers to ensure unbiased representation of the 5’ and 3’ regions of target genes. Based 

on this information, 18S is an appropriate housekeeper as cDNA was synthesised using 

random primers. 

Table 2. 2: The reaction set-up for cDNA synthesis using the StepOne Plus Real-Time PCR 

System. 

Priming 5 minutes at 25ºC 

Reverse Transcription (RT) 30 minutes at 42ºC 

RT inactivation 5 minutes at 25ºC 

 

2.7.3 Relative gene expression analysis 

Quantitative PCR was performed to investigate gene expression levels. Assays were 

performed using the RT2 Profiler PCR Array (QIAGEN, Doncaster, Victoria, Australia) for 

maternal samples, and TaqMan Assay-on-demand primers (Thermo Fisher Scientific, 

Scoresby, Victoria, Australia) for offspring studies (details to be discussed in relevant 

chapters), with details of primers in Table 2. 3. Samples were run in duplicate. 96 well plates 

were utilised and analysed with the Quantstudio6 Flex Real-Time PCR systems (Life 

Technologies, Carlsbad, CA). Relative gene expression was measured using the 

comparative cycle of threshold fluorescence (ΔΔCT) method. The cycle threshold (CT) value 

of the housekeeper was subtracted from that of the gene, to give the change in CT (ΔT). 
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Samples were normalised to the mean of the control group, which was designated control 

(control male for the offspring studies) and was labelled ΔΔCT. Relative expression was 

determined by calculating 2- ΔΔCT. Gene expression was normalised to the geometric mean 

of endogenous controls, 18S ribosomal RNA (Rn18s), peptidylprolyl isomerase B (Ppib) and 

glucuronidase (Gusb) or beta-actin (Actb). 

2.8 Statistical details  

 Statistical details will be discussed in each chapter relevant for the data included. All data 

are presented as the mean ± standard error of the mean and statistical significance was 

accepted when p-values were significantly less than 0.05. Statistical abbreviations are Ptrt 

representing P-value for treatment, Psex representing P-value for sex and Pint representing 

P-value for a treatment x sex interaction. Post hoc analysis significance is denoted as p. P 

values of * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001. 
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Table 2. 3: The genes investigated within this research study using Taqman AOD probes. 

Gene  Gene Name  
Assay on 

demand 

HSD11b2  11-beta hydroxysteroid dehydrogenase 2  Rn00492539_m1 

Crh  Corticotrophin releasing hormone   Rn01462137_m1 

Crh-r1  Corticotrophin releasing hormone receptor 1  Rn00578611_m1 

Cyp11a1  Cytochrome P450, Family 11, Subfamily A, 

Polypeptide 1 

 Rn00568733_m

1 

Cyp11b1  Cytochrome P450, Family 11, Subfamily B, 

Polypeptide 1 

 Rn00568733_m

1 

Cyp21a1  Cytochrome P450, Family 21, Subfamily A, 

Polypeptide 1 

 Rn00588996_g1 

Hsp90a1  Heat shock protein 90  Rn00822023_g1 

Mc2r  Melanocortin receptor 2  Rn02082290_s1 

Nr3c1  Nuclear receptor subfamily 3, group C, member 1  Rn00561369_m1 

Nr3c2  Nuclear receptor subfamily 3, group C, member 2  Rn00565562_m1 

Star  Steroidogenic acute regulatory protein  Rn00580695_m

1 

https://www.thermofisher.com/taqman-gene-expression/product/Rn00568733_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Rn00568733_m1?CID=&ICID=&subtype=
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Chapter Three 

 

Periconceptional ethanol exposure alters behaviour and hypothalamic-

pituitary-adrenal axis activity in young adult offspring 

 

“foolish, drunken, or haire-brain women 

most often bring forth children  

like unto themselves, morose and languid.” 

- Burton – 
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3.1 Abstract 

Alcohol consumption throughout pregnancy has been associated with mental illness, 

hyperactivity and social difficulties in offspring. Human and animal studies have 

demonstrated that this may be due to programmed disruption of the hypothalamic-pituitary-

adrenal (HPA) activity and responsiveness. However, it is unknown if the HPA is affected 

following alcohol exposure during the periconceptional period and if so, whether this results 

in similar outcomes. This study hypothesised that periconceptional ethanol (PC:EtOH) 

exposure would alter offspring behaviour, resulting in depressive-like and altered social 

phenotypes. Additionally, that HPA reactivity and molecular pathways regulating 

steroidogenesis within the adrenal gland would be altered.  

Female Sprague-Dawley rats were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a 

control diet from 4 days before conception, until embryonic day 4. At 3 months of age, rats 

underwent behavioural testing, including the forced swim test (FST) and social interaction 

test, followed by HPA reactivity tests (combined dexamethasone suppression test [DST] and 

corticotropin-releasing hormone test [CST], restraint stress) at 5 months of age. Tissues 

including adrenal glands, liver and pituitary glands were also collected at this age in a 

separate cohort. 

PC:EtOH exposure resulted in a significant increase in immobility (p < 0.05) in both male 

and female offspring in the FST. PC:EtOH also increased the duration of affiliative behaviour 

(p < 0.05) within the social interaction test in female offspring. There was no impact of 

PC:EtOH on non-affiliative or rearing behaviour in either male or female offspring although 

males displayed more non-affiliative behaviour than females. When administered 

dexamethasone, plasma corticosterone suppression was less in both male and female 

offspring exposed to PC:EtOH (p < 0.05). Female but not male offspring exhibited an 

exaggerated plasma corticosterone response to the corticotropin-releasing hormone (CRH) 

(p < 0.05). There was no impact of PC:EtOH on plasma corticosterone concentration in 

response to restraint. Adrenal mRNA expression of genes regulating steroidogenesis 

(melanocortin receptor 2 [Mc2r], steroidogenic acute regulatory protein [Star], cytochrome 

p450, family 11, subfamily a, polypeptide 1 [Cyp11a1], 3β- hydroxysteroid dehydrogenase 

[Hsd3ab], : cytochrome p450, family 21, subfamily a, polypeptide 1 [Cyp21a1], cytochrome 

p450, family 11, subfamily b, polypeptide 1 [Cyp11b1], cytochrome p450, family 11, 

subfamily b, polypeptide 2 [Cyp11b2], 11-beta-hydroxysteroid dehydrogenase 2 [Hsd11b2], 
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glucocorticoid receptor [Nr3c1] and heat shock protein 90a1 [Hsp90a1]) were not altered by 

PC:EtOH in the unstressed cohort.  

This study supports the hypothesis that PC:EtOH exposure programs sex-specific 

alterations in HPA responsiveness, which occurred without underlying changes in adrenal 

gene expression. This HPA hyperresponsiveness may underlie the depressive-like 

outcomes and altered social behaviours observed in this study following PC:EtOH. However, 

outcomes suggest that HPA pathways independent of the adrenal gland may be influenced 

by PC:EtOH, such as within central regulatory pathways, warranting greater investigation.  
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3.2 Introduction 

Prenatal alcohol is associated with adverse cognitive functioning in children and adults 

395,396. These deficits are often observed as language and learning difficulties 395,396, 

inappropriate social interaction with peers 397,398 and dysfunctional behaviours such as 

hyperactivity 396,399–402. However, secondary to these outcomes, mental illness is highly 

prevalent, with studies revealing that over 90% of persons diagnosed with fetal alcohol 

spectrum disorder (FASD) report depression, anxiety and mood disorders 395,396. These 

disorders, as well as many physiological conditions, are often associated with impaired 

function of the HPA, in a complex and bi-directional manner, acting as both a risk factor and 

a consequence of disease. Higher diurnal cortisol concentration and cortisol awakening 

responses are predictive of poor mental health in children and the onset of depressive and 

anxiety disorders in adolescence and adulthood 403–409. Furthermore, patients with 

depression have increased adrenocorticotropin hormone (ACTH) and cortisol pulses, 

reflected in total cortisol levels and elevated corticotropin hormone (CRH) in cerebrospinal 

fluid 410,411.  

Within the clinic, the dexamethasone suppression (DST) and CRH stimulating tests (CST) 

are used to interrogate disorders of the HPA including depression and Cushing’s disease 

412–415. Patients suffering from depression resist dexamethasone suppression of cortisol but 

have elevated responses to the combined dexamethasone suppression and corticotropin-

releasing hormone stimulation test (DST/CST). These outcomes correlate with a four-fold 

increased likelihood for the reoccurrence of depressive symptoms in depressed patients, 

compared to those who have a normal suppression response, potentially as a consequence 

of a hyperactive neural response to stressful events 237,412,416–418. Mouse models of 

glucocorticoid receptor knock out in the forebrain (FBGRKO) display increased anxiety and 

depressive-like behaviour, with increased basal and stress-induced corticosterone secretion 

419–421. Importantly, these depressive-like outcomes in FBGRKO mice are reversed with 

treatment of the anti-depressant imipramine 419.  

The HPA is highly susceptible to programming by prenatal alcohol exposure (PAE). Studies 

demonstrate elevated basal and stress-induced cortisol concentrations in infants following 

PAE 307,315–317. Animal models have indicated a range of adverse outcomes following 

prenatal alcohol exposure, including depressive and anxiety-like phenotype 318,331,422, 

altered HPA function, including hyper-responsiveness to stressors, negative feedback 

pathways and gene expression in offspring 321,330,335,423–425. To date, research has focused 
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on understanding how alcohol intake throughout the entirety of pregnancy, or specifically 

during organogenesis and brain development, impairs long-term outcomes. It is yet to be 

determined if alcohol exposure during the periconceptional period can program altered HPA 

activity in response to stressors, depressive-like and social behaviour in offspring. Of 

significant interest, sexual dimorphism is evident in mental illness with three-fold greater 

prevalence in females than males 426. Although the factors mediating this increased 

incidence are not well understood, sexually dimorphic programming of the HPA is likely to 

contribute. For these reasons, this study hypothesised that PC:EtOH would result in altered 

depressive-like behaviour and altered social interactions, with impairments in underlying 

HPA activity in response to physiological and psychological stressors, with different 

outcomes in male and female offspring.  

3.3 Methods 

3.3.1 Ethics 

All experiments were performed with approval by The University of Queensland’s 

Anatomical Bioscience Animal Ethics Committee (SBS/022/12/NHMRC and 

SBMS/467/14/NHMRC). 

3.3.2 PC:EtOH treatment 

Sprague-Dawley rats were housed individually in a 12-hour light-dark cycle (lights on 00:00 

h to 12:00 h, light off 12:00 h to 24:00 h) and treated as discussed in General Methods 

Section 2.2 PC:EtOH treatment. Briefly, Sprague Dawley dams were treated with 12.5% v/v 

ethanol in a liquid diet (PC:EtOH, sample size = 30 dams), or an isocaloric control liquid diet 

(Control, sample size = 30 dams) from four days before until four days after mating. Water 

was provided ad libitum for the remaining three hours. Dams were paired with a male rat 

overnight, and mating was confirmed by the presence of a seminal plug. This day was 

denoted as embryonic day 1 (E1). On E5, dams were returned to standard laboratory chow 

and water ad libitum. Dams were handled daily and allowed to litter down naturally at E21-

22, with the day of birth was designated as postnatal day (PN) 0. Offspring were weighed 

daily from PN1 to PN30, weaned at PN28 and housed in groups of three female or two 

males per cage. All offspring were weighed weekly throughout the testing protocol. Two 

cohorts of rats were used for these studies, with one undergoing behavioural testing, and 

the other being euthanised for tissue collection. Often, each test was performed once, on 
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one animal of each sex from each litter. If more than one male or female rat was used from 

one litter, results were averaged. 

3.3.3 Behavioural tests  

All rats were housed individually and handled daily for 14 days prior to the commencement 

of behavioural testing. Testing occurred between two and four hours after lights off (14:00h 

to 16:00h) within a separate room of the animal facility. All experiments were performed 

when females were in diestrus. Two days prior to behavioural testing, rats were relocated to 

the behavioural room within 30 minutes of lights off. Rats were habituated to the room for 

one hour (12:00 – 13:00h) in the dark and one hour (13:00 – 14:00h) in red light 

(approximately 20 lux). Rats were returned under dark conditions to the main housing room. 

Behavioural tests were video recorded using a generic webcam located above the arena. 

Videos were blinded before manually scored for the appropriate behaviours. All areas were 

cleaned with 70% ethanol prior to testing of the next rat. 

3.3.3.1 Social interaction 

The social interaction (SI) test was adapted from Burne et al. 427. All offspring were 

habituated to the 60cm square arena for 15 minutes on day one. On day two, rats of the 

same sex, and within 20% body weight were placed into the arena for 15 minutes and 

movement was electronically recorded. Affiliative, non-affiliative and rearing behaviour was 

measured manually by an assessor blinded to prenatal treatment. Affiliative behaviour is 

defined as self-grooming, circling, following and social rest. Non-affiliative behaviour is 

classified as aggressive behaviour including biting and dragging, as well as rough and 

tumble play, wrestling and pinning.  

3.3.3.2 Forced swim test 

The protocol for the forced swim test (FST) was adapted from Porsolt et al. 428. On day one, 

rats were placed in a 60cm tub filled with water at 25°C for 15 minutes. On day two, water 

was refreshed, and swimming was digitally recorded. Immobility was defined as anytime the 

rat was stationary, excluding leg movements which ensured its head was above water and 

was assessed blinded to prenatal treatment.  
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3.3.4 HPA reactivity tests 

Following behavioural testing, offspring remained in individual housing and were weighed 

weekly until 5 months of age. At this age, rats were handled daily for seven days. HPA 

reactivity tests, as outlined below, were performed. These tests were used to investigate 

how PC:EtOH impacts offspring sensitivity to stressors.  

3.3.4.1 Combined dexamethasone suppression and corticotropin-releasing hormone 

stimulation test 

The DST/CST was adapted from work published by Osborn et al. 429. Testing was performed 

within the home cage to reduce any stress effects. The protocol for this experiment is 

illustrated in Figure 3. 1A. Six hours after lights on (0600h), 150µL of blood was collected 

via tail snip into ethylenediaminetetraacetic acid (EDTA) coated capillary tubes. Immediately 

following an IP injection of dexamethasone (15µg/kg for male and 30µg/kg for female), rats 

were returned to their home cage for 90 minutes. 150µL of blood was collected, as well as 

at 120, 150 and 210 minutes after injection. Following the blood collection at 210 minutes, 

CRH (2µg/100g in 50µl saline) was administered by IV tail vein injection. Blood was collected 

20, 40 and 60 minutes following CRH injection. No more than 150µl of whole blood was 

collected at any each time point. All blood samples were centrifuged at 3500rpm for 5 

minutes, and plasma separated within 30 minutes of collection for analysis of plasma 

corticosterone concentrations. Plasma samples were frozen rapidly and stored at -80°C until 

analysis.  

At the commencement of this experiment, blood glucose readings were taken. At 90 

minutes, following dexamethasone injection, another blood glucose reading was recorded. 

In the rare instance where blood glucose concentration had not increased at 90 minutes 

after dexamethasone injection, the rats were removed from the protocol. Rats were also 

removed from protocol if IV injection of CRH was unsuccessful. Sample sizes, including 

those removed from the protocol, are shown in Table 3.1.  
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Table 3. 1: The sample sizes for rats who underwent the dexamethasone suppression test 

(DST) and corticotropin-releasing hormone stimulation test (CST). Rats were removed from 

both DST and CST protocols if blood glucose had not increased at 90 minutes after 

dexamethasone injection or if IV injection was unsuccessful. *two rats were used from one 

litter, and therefore the result was averaged. 

  
Total  

 DST  CST 

  Removed  Total  Removed  Total 

Male 
Control  12  3  9  1  8 

PC:EtOH  8  1  7  0  7 

Female 
Control  10  1  8*  2  6* 

PC:EtOH  7  1  5*  0  5* 

 

3.3.4.2 30-minute restraint test  

Following a minimum of three days of recovery from the DST/CST rats underwent a 30-

minute restraint test. The protocol for this experiment is illustrated in Figure 3.1. A. After 

approximately 7 hours of light (0700h), 150µL of blood was collected from rats via tail snip 

into EDTA tubes. The restraint test occurred within the home cage using clear Perspex 

dividers, holding the rats firmly in place, with a limited ability to rear. One divider ran along 

the rat’s body, holding the animal against the wall, and the other on its rear. The rat had a 

limited ability to rear, and food and water were withheld. At the end of the 30 minutes, the 

restraint device was removed, and food and water were returned. At 30, 60 and 90 minutes 

post-initiation of restraint, 150 µL of blood was collected. All blood samples were centrifuged 

at 3500rpm for 5 minutes, and plasma separated within 30 minutes of collection. Samples 

were frozen rapidly on dry ice and stored at -80°C for subsequent plasma corticosterone 

concentration measurements.  
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: 

 

Figure 3. 1: The protocols for DST/CST (A) and restraint test (B), performed at least three 

days apart, on offspring at 5 months of age who were prenatally exposed to control or 

PC:EtOH treatment. Colours represent different events within protocols relative to the 

number of hours after lights on. Abbreviations: CRH; corticotropin-releasing hormone, CST; 

corticotropin-releasing hormone stimulation test, Dex; dexamethasone, DST; 

dexamethasone suppression test, IP; intraperitoneal injection, IV; intravenous. 
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3.3.5 Post-mortem and tissue collection 

Tissues were collected from rats which did not undergo behavioural testing, at five months 

of age. Rats were euthanised with sodium pentobarbital (1mL/kg) and the brain, liver, 

pituitary and adrenal glands collected, weighed and snapped frozen in liquid nitrogen and 

stored at -80°C for subsequent molecular analysis. 

3.3.6 Adrenal steroidogenesis relative gene expression 

RNA was isolated from the left adrenal glands of rats in the unstressed cohort, to ensure 

baseline gene expression was being analysed. RNA was extracted using the RNeasy mini 

kit (QIAGEN, Doncaster, Australia) and cDNA synthesised using the iScript cDNA synthesis 

kit (Bio-rad, Gladesville, New South Wales, Australia) as described in Section 2.7.2 Reverse 

transcription for cDNA synthesis. Quantitative PCR was utilised to investigate the expression 

of melanocortin receptor (Mc2r, Rn02082290_s1), steroidogenic acute protein (StAr, 

Rn00580695_m1), 3β-hydroxysteroid dehydrogenase (Hsd3a, Rn01789220_m1), 

cytochrome p450 family 21 subfamily a polypeptide 1 (Cyp21a1, Rn00588996_g1), 11-beta-

dehydrogenase isozyme 2 (Hsd11b2, Rn00492539_m1), cytochrome P450 family 11 

subfamily B polypeptide 1 (Cyp11b1, Rn02607234_g1), cytochrome P450 family 11 

subfamily polypeptide 2 (Cyp11b2, Rn01767818_g1), nuclear receptor subfamily 3 group C 

member 1 (Nr3c1, Rn00561369_m1) and heat shock protein 90 alpha 1 (Hsp90a1, 

Rn00822023_g1). Gene expression was normalised to the geomean of housekeepers 

Rn18s and Rpl19. Relative gene expression was measured using the comparative cycle of 

threshold fluorescence (ΔΔCT) method. The cycle threshold (CT) value of the housekeeper 

was subtracted from that of the gene, to give the change in CT (ΔCT). Samples were 

normalised to the mean of the male control group and were labelled ΔΔCT. Relative 

expression was determined by calculating 2-ΔΔCT.  

3.3.7 Hormonal analysis 

An in-house radioimmunoassay was used to analyse plasma corticosterone concentration 

as previously described in Section 2.6.3 Hormone analysis.  

3.3.8 Statistics 

All data were presented as the mean ± standard error of the mean and analysed using 

GraphPad Prism 8 for Windows (GraphPad Software, Inc., San Diego, CA). All repeated 

measures data were analysed using a repeated measure analysis of variance (ANOVA). All 

https://www.thermofisher.com/taqman-gene-expression/product/Rn02607234_g1?CID=&ICID=&subtype=
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other data were analysed by two-way ANOVA or a students t-test. Relevant posthoc analysis 

was performed as necessary. Outcomes of behavioural testing were compared using 

treatment (trt) and time as factors. Weights at post-mortem were compared using treatment 

and sex as factors. For analysis of DST/CST and restraint test, Area Under the Curve (AUC) 

of plasma corticosterone concentration was calculated and analysed separately for sex 

using a student’s t-test. This was deemed necessary as basal corticosterone concentration 

are significantly different between sexes (females having a two-fold higher basal 

concentration). Gene expression data was assessed by two –way ANOVA, using treatment 

and sex as factors. Statistical abbreviations are Ptrt representing P value for treatment, Psex 

representing P value for sex and Pint representing P value for a treatment x sex interaction. 

Post hoc analysis significance is denoted as p. P values of * < 0.05, ** < 0.01, *** < 0.001 

and **** < 0.0001.
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3.4 Results 

3.4.1 Body and relative organ weights 

PC:EtOH did not significantly alter the bodyweight of male or female offspring at 5 months 

of age (Table 3. 2), however female offspring were significantly smaller than male offspring 

(Psex < 0.0001, Table 3. 2). At post-mortem, PC:EtOH significantly reduced relative liver 

weight (Ptrt < 0.01, Table 3. 2), with a post-hoc analysis revealing that this was significant 

in male offspring (p < 0.05, Table 3. 2). Although female offspring had significantly smaller 

total adrenal, spleen, brain and pituitary weights than male offspring (P < 0.01, 0.001, 0.001 

and 0.001, respectively), there was no difference in any other relative organ weights in male 

or female offspring following PC:EtOH. 
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Table 3. 2: The effect of PC:EtOH on body (gBW) and relative organ weights (mg/gBW) in offspring, at 5 months of age. 

Organ 

Male  Female  ANOVA 

Control PC:EtOH  Control PC:EtOH  Trt Sex Int 

Sample Size 8 9  8 8     

Body Weight (g) 632 ± 16 602 ± 14  339 ± 8 340 ± 8  NS P<.0001 NS 

Liver (mg/gBW) 36.96 ± 1.97 32.29 ± 1.09#  33.63 ± 1.33 31.92 ± 0.89  P<.01 NS NS 

Spleen (mg/gBW) 1.44 ± 0.08 1.42 ± 0.03  1.61 ± 0.08 1.74 ± 0.12  NS P<.01 NS 

Total Adrenal (mg/gBW)a 0.08 ± 0.01^ 0.08 ± 0.01^  0.19 ± 0.02 0.20 ± 0.03  NS P<.0001 NS 

Brain (mg/gBW) 3.55 ± 0.09 3.55 ± 0.12  5.79 ± 0.22 5.90 ± 0.15  NS P<.0001 NS 

Pituitary (mg/gBW)b 24.98 ± 1.46 25.50 ± 0.85  54.6 ± 2.84 55.9 ± 3.67  NS P<.0001 NS 

Trt: treatment, Int: treatment by sex interaction, NS: non-significant, BW: body weight. 

aAverage of two adrenal glands. 

bTotal pituitary weight, including anterior gland, posterior gland and median eminence. 

Bodyweight and relative adrenal weight data presented as mean ± standard error of the mean. Analysed by two-way ANOVA comparing 

sex and treatment. A Bonferroni posthoc test was performed for post-hoc analysis; #p<0.05.  
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3.4.2 Depressive-like and social phenotypes at 3 months of age 

3.4.2.1 Forced swim test 

Immobility in the forced swim test increased over the 5 minutes in both male and female 

offspring (Ptime < 0.001, Figure 3. 2). In male offspring, PC:EtOH significantly increased 

immobility (Ptrt < 0.05). The post-hoc analysis demonstrated that immobility was significantly 

greater at the fourth minute (P < 0.0001, Figure 3. 2A). In female offspring, immobility was 

consistently greater in those exposed to PC:EtOH (Ptrt < 0.05) compared to the control 

counterparts (Figure 3. 2B).  

3.4.2.2 Social interaction 

Affiliative, non-affiliative and rearing behaviours were measured by observing social 

interaction with a novel rat. PC:EtOH resulted in increased affiliative behaviours during the 

15-minute social interaction test in female exposed offspring (Ptrt < 0.05, Figure 3. 3B). This 

behaviour was significantly greater in the 5 to 10 minute period as determined by a 

Bonferroni post-hoc analysis (p < 0.01) when compared to control offspring. PC:EtOH did 

not significantly affect affiliative behaviour in male offspring. There was no difference in the 

number of times rearing (Figure 3. 3E and F) in male or female offspring over the 15 minutes 

time course of the social interaction, regardless of periconceptional treatment. There was 

also no difference in non-affiliative behaviours (Figure 3. 3E and F) in either male or female 

offspring of each treatment, with many rats not displaying these behaviours at any time. 
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Figure 3. 2: Immobility (seconds) in the forced swim test (FST) over 5 minutes in male (A) 

and female (B) 3 month old offspring treated with control (white circles) or PC:EtOH (black 

circles) diet. Data presented as the mean ± standard error of the mean, analysed by a 

repeated measured two-way analysis of variance and a Bonferroni post hoc analysis, *** p 

< 0.0001. One male and female was utilised from each litter, or a litter average was taken. 

Sample size = 12 per sex, per group. 
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Figure 3. 3: Affiliative (A and B), non-affiliative (C and D) and rearing (E and F) behaviour 

in male (A, C and E) and female (B, D and F) offspring at three months of age exposed to 

control (white bars) or PC:EtOH (black) bars diet. Data presented as the mean ± standard 

error of the mean, analysed by a two-way repeated-measures Analysis of Variance, with a 

Bonferroni post hoc test. ***P < 0.01. One male and female was utilised from each litter, or 

a litter average was taken. Samples sizes: male control = 9, male PC:EtOH = 14; female 

control = 9, female PC:EtOH = 12. 
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3.4.3 HPA reactivity at 5 months of age 

3.4.3.1 DST/CST 

Dexamethasone administration reduced plasma corticosterone concentrations in both male 

and female offspring as expected (Ptime < 0.001, Figure 3. 4 A and B). However rats of both 

sexes exposed to PC:EtOH had an impaired suppression of plasma corticosterone 

concentration following the dexamethasone injection compared to control offspring (Ptrt < 

0.05, Figure 3. 4A and B). In PC:EtOH females, plasma corticosterone concentrations were 

significantly greater at time point 2 compared to the control offspring (P < 0.05, Figure 3. 

4B), indicating a delayed response to dexamethasone. In male PC:EtOH offspring, AUC 

analysis of plasma corticosterone during the DST revealed increased concentration overall,  

when compared to control offspring supporting a lack of suppression (p < 0.01, C). In female 

PC:EtOH offspring, the plasma corticosterone AUC was not significantly different (p = 0.09, 

Figure 3. 4D), despite the average being 55% higher than control offspring. This was likely 

due to the variability in response at time point 2.  

Following the CRH administration, the plasma corticosterone concentration increased as 

expected in both male (Ptime < 0.01, Figure 3. 4A) and female offspring (Ptime < 0.05, 

Figure 3. 4B). There was no significant impact of PC:EtOH exposure on plasma 

corticosterone concentrations (Figure 3. 4A) or the AUC (Figure 3. 4E) following CRH 

administration in male offspring. However, in PC:EtOH exposed female offspring, there was 

a significantly greater plasma corticosterone response to CST, as indicated by AUC 

analysis, compared to control (P < 0.01, Figure 3. 4F). 
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Figure 3. 4: Plasma corticosterone concentration in response to a combined 

dexamethasone suppression and corticotropin-releasing hormone stimulation test 

(DST/CST) (A and B) and the area under the curve (AUC) of plasma corticosterone 

concentration during the DST (C and D) and CST (E and F). Experiments were performed 

with male (A, C and E) and female (C, D and F) offspring exposed to control (white 

circles/bars) or PC:EtOH (black circles/bars) diet. Data presented as the mean ± standard 

error of the mean. A and B are analysed by a two-way repeated-measures analysis of 

variance, with a Bonferroni post hoc test. *P < 0.05, ** p < 0.01. C – F is analysed with Mann-

Whitney non-parametric t-test, **P < 0.01. One male and female was utilised from each litter, 

or a litter average was taken. Sample sizes for DST: male control = 9, male PC:EtOH = 7, 

female control = 8, female PC:EtOH = 5. CST: male control = 8, male PC:EtOH = 7, female 

control = 6, female PC:EtOH = 5. 
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3.4.3.2 Restraint 

Both control and PC:EtOH male and female offspring responded to the restraint test with 

increased plasma corticosterone (Ptime < 0.0001 and < 0.01 respectively, Figure 3. 5A and 

B). However, the response was similar in both groups as shown by the comparable plasma 

corticosterone as analysed by AUC (Figure 3. 5C and D).  
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Figure 3. 5: Plasma corticosterone concentration in response to restraint (A and B) and the 

area under the curve (AUC) of plasma corticosterone concentration (C and D) in male (A 

and C) and female (B, D) offspring at 5 months of age exposed to control (white circles/bars) 

or PC:EtOH (black circles/bars) diet. Data presented as the mean ± standard error of the 

mean, analysed by a two-way repeated-measures analysis of variance (A and B) and Mann-

Whitney non-parametric t-test (C and D). One male and female was utilised from each litter, 

or a litter average was taken. Sample sizes: male control = 9, male PC:EtOH = 7,female 

control = 8, female PC:EtOH = 5. 
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3.4.4 Adrenal gland gene expression 

PC:EtOH did not significantly alter relative gene expression of Mc2r, Star, Cyp11a1, 

Hsd3b1, Cyp21a1, Cyp11b1, Cyp11b2 and Hsd11b2 in male or female offspring (Figure 3. 

6). Sexual dimorphism was observed, with female offspring having significantly lower gene 

expression of Mc2r (Psex < 0.01), Star (Psex < 0.01), Hsd3ba (Psex < 0.01), Cyp21a1 (Psex 

< 0.05), Cyp11b1 (Psex < 0.01), Cyp11b2 (Psex < 0.01), and Hsd11b2 (Psex < 0.01) (Figure 

3. 6) compared to males. Relative gene expression of glucocorticoid signalling genes Nr3c1 

and Hsp9a1, were not different in offspring exposed to PC:EtOH (Figure 3. 7). 
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Figure 3. 6: Relative gene expression of melanocortin receptor (Mc2r, A), steroidogenic acute 

protein (Star, B), cytochrome P450 family 11 subfamily A member 1 (Cyp11a, C), 3β-

hydroxysteroid dehydrogenase (Hsd3a, D), cytochrome P450 family 21 subfamily A polypeptide 

1 (Cyp21a1, E), cytochrome P450 family 11 subfamily B polypeptide 1 (Cyp11b1, F), 

cytochrome P450 family 11 subfamily polypeptide 2 (Cyp11b2, G) and 11-beta-dehydrogenase 

isozyme 2 (Hsd11b2, H) in the adrenal gland of 5 month old offspring exposed to control (white 

bars) or PC:EtOH (black bars) diet. Data presented as the mean ± standard error of the mean 

and analysed by two-way analysis of variance. One male and female was utilised from each 

litter, sample size = 10 per sex per group.
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Figure 3. 7: Relative gene expression of nuclear receptor subfamily 3 group C member 1 

(Nr3c1, A) and heat shock protein 90 alpha 1 (Hsp90a1, B) in the adrenal gland of 5 month 

old offspring exposed to control (white bars) or PC:EtOH (black bars) diet. Data represented 

as the mean ± standard error of the mean and analysed by two-way analysis of variance. 

One male and female was utilized from each litter, sample size = 10 per sex per group. 
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3.5 Discussion  

The results of the current study demonstrated that PC:EtOH exposure has a significant 

impact on behaviour and HPA activity in young adult rat offspring. Both male and female 

offspring exhibited increased immobility in the FST suggestive of a depressive phenotype, 

while female offspring displayed increased social interactions with a novel rat. Both male 

and female offspring exposed to PC:EtOH had reduced sensitivity to dexamethasone 

treatment, while female offspring had a delayed response to dexamethasone and an 

exaggerated plasma corticosterone response to the CRH challenge, as determined by an 

AUC analysis. Interestingly, although plasma corticosterone concentration increased as 

expected during a 30-minute restraint test, there was no impact of PC:EtOH in either sex 

nor was there any impact of PC:EtOH on the adrenal expression of Mc2r, StAr, Hsd3ba, 

Cyp21a1, Cyp11b1, Cyp11b2 and Hsd11b2. Overall, these results suggest that PC:EtOH 

exposure programs sex-specific alterations in HPA responsiveness, which occurred without 

underlying changes in adrenal gene expression. This HPA hyperresponsiveness may 

underlie the depressive-like outcomes and altered social behaviours observed in this study 

following PC:EtOH. However, outcomes suggest that HPA pathways independent of the 

adrenal gland may be influenced by PC:EtOH, such as within central regulation from the 

hippocampus or hypothalamus, warranting further investigation. 

3.5.1 PC:EtOH results in a depressive-like phenotype 

This study is the first to indicate that alcohol exposure, even prior to implantation and well 

before brain development begins, increases offspring immobility during the FST in both 

males and females. Immobility in this test is considered to be representative of a depressive-

like phenotype, also known as “behavioural despair” in rodents 428,430–434, a claim supported 

by studies demonstrating a reversal of the behaviour with the treatment of antidepressants 

428,435–440. The depressive-like phenotype observed within PC:EtOH offspring is consistent 

with studies of alcohol exposure at other developmental stages. Alcohol exposure from E8 

to birth or from E1 to postnatal day 10 resulted in increased immobility in male and female 

offspring 322,422,441. However, Hellemans et al. administered alcohol to rats throughout the 

entire of gestation, and exposed offspring to ten days of chronic mild stress, following by the 

FST. Female offspring displayed increased immobility, whereas males had less immobility 

than the control counterparts 330.This decreased immobility in male offspring (female were 

not investigated) was also observed within a study performed by Bilitzke et al. who 

administered alcohol from E7 to 20 442. Interestingly, all of these studies administered a 
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similar dose of alcohol, of around 35-36% ethanol derived calories, and results seem 

inconsistent regardless of if alcohol was administered throughout the entire of pregnancy, 

or if administration occurred from mid-gestation. However, it appears that the stress 

experienced by the rat may be an essential factor in the behavioural response in the FST, 

and indicates that studies need to closely regulate and report handling, housing and other 

stressors that may be experienced during protocols. Within this thesis, although rats were 

handled with the utmost care, this is an important variable to consider. Additionally, as the 

HPA is critical in the detection and interpretation of stressors, this further supports the critical 

role the HPA has in behavioural outcomes, and the susceptibility this axis has to the 

programming effects of PAE.  

While the FST is routinely used to indicate depressive-like behaviour, Nelson et al. has 

suggested that immobility may be interpreted as a sign of elevated anxiety 443. Indeed, within 

our laboratory, PC:EtOH has been shown also to program anxiety-like behaviours as 

determined by Elevated Plus Maze tests and Hole-Board tests, within the same cohort of 

rats utilised in this thesis. Importantly, these recently published results display anxiety-like 

behaviour in adult female offspring at both 6 and 18 months of age, while male offspring 

only showed anxiety-like behaviour at 18 months of age 369. Therefore, we suggest that 

young female offspring display symptoms of both depressive and anxiety-like phenotypes, 

with males potentially having a later onset of disease. These results reflect findings from 

clinical investigations in which 70-90% of adults exposed to fetal alcohol are diagnosed with 

psychiatric conditions including depression and anxiety 444,445. Furthermore, 29% of the 

population suffers from comorbid depression and anxiety 446,447 and the prevalence is three 

times more common in women than men 35. A study by O’Connor et al. demonstrated that 

19% of PAE children reported depressive symptoms, compared to 0% of non-exposed 

controls 448. Another small clinical study from this group established that of 23 children 

prenatally exposed to alcohol, 87% were diagnosed with psychiatric illness, and 61% of 

these were a mood disorder such as major depressive disorder 449. Therefore, the results 

from the current study support the clinical presentation of psychiatric conditions in the 

general population and highlight that exposure even prior to implantation can have long term 

mental illness sequelae.  

3.5.1.1 Sex differences in the depressive-like phenotype 

The sexual dimorphism observed in behavioural outcomes associated with PAE may occur 

as a consequence of various treatment dosages, timing and stress protocols. It is interesting 
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that sexual dimorphism was not observed during the FST following PC:EtOH, however, male 

offspring do reach peak immobility sooner than females, as seen during the fourth minute of 

the test. These results may suggest altered neurological interpretation and signalling 

between the sexes, such as within the hypothalamic-pituitary-gonadal axis (HPG) and 

associated hormones. 17β-estradiol for example, can have significant effects on mood by 

interacting with neurotransmitter pathways associated with depression 450. Interestingly, it 

has been determined by Dorey et al. (unpublished data) that 17β-estradiol is elevated in 

female offspring following exposure to PC:EtOH, supporting this hypothesis. Although the 

HPG is not investigated within this thesis, it is a critical progression of these studies to 

elucidate if this underlying pathway may contribute to the observed phenotype.  

While these studies did not focus on gender as a major factor, others have begun to 

elucidate sex differences in the long-term outcomes of PAE. Sayel et al. investigated sex-

specific mental illness in children following low-level alcohol exposure during the first 18 

weeks of pregnancy, demonstrating that female offspring only had greater levels of mental 

health deficits 451.  

3.5.2 PC:EtOH results in altered social interaction 

In addition to the impact of depression and anxiety on quality of life for PAE offspring, altered 

social behaviours are also commonly reported, making it challenging for these individuals to 

integrate well with other members of society. Indeed, PAE individuals are often described 

as inappropriately friendly and hyperactive 452–455. Results obtained from the current study 

suggest that PC:EtOH can induce similar outcomes in rats, with greater affiliative behaviour 

during the social interaction test being displayed in female offspring. We suggest that this is 

indicative of inappropriately friendly behaviour. In support of these findings, PAE exposure 

(35% calories derived from ethanol, from E6 to E20) in a rat model, has been shown to 

increase social interaction in females rats more than male rats 456. Similarly, a study by 

Hamilton et al. demonstrated increased social interaction in female but not male offspring 

following treatment with 5% v/v ethanol throughout gestation 457. The increased social 

interaction in the current study may also indicate hyperactivity. This is particularly true in 

children with hyperactivity being the most prevalent behavioural symptom following PAE 

402,458. Likewise, we have determined that female PC:EtOH offspring have increased 

locomotor activity (Wing et al, unpublished data). 

In contrast, some studies have shown that PAE impairs social interaction, but results in 

hyperactivity particularly in males. Mooney et al. demonstrated that after treatment with 20% 



 

102 | P a g e  

 

v/v alcohol on E7 only, male offspring had greater social interaction 459. Similarly, Hellemans 

et al. revealed that a high dose of alcohol from E7 to E21 resulted in hyperactivity in both 

sexes but reduced social interaction in males 330. In clinical studies, sex differences within 

outcomes are rarely discussed, however of those that do, varied results are often reported. 

Some studies demonstrate that PAE exposed female individuals suffer greater social 

difficulties and hyperactivity than males 399,460, with others demonstrating converse results 

461. In human studies, increased internalising problems were observed in both male and 

female offspring when heavy exposure only occurred in the first and last trimesters of 

pregnancy, with 10% of individuals displaying altered social behaviour at eight years. 

Overall, these results likely suggest that both sexes are impacted by PAE, but with altered 

severity of the phenotype depending on the timing and dose of alcohol exposure.  

One caveat to the current study is that only a limited number of behavioural tests were 

performed, and the behavioural tests used in the current study are open to interpretation,. 

Therefore, the results of the current chapter must be treated with caution. For instance, 

immobility in the FST has been suggested to be an advantageous learnt behaviour 

performed in an attempt to reduce energy expenditure during a stressor rather than an 

indicator of despair (as reviewed in Molendijk & de Kloet. 462). This article based its 

conclusion on data from a range of publications which investigated the involvement of the 

sympathetic nervous system, the HPA and neurotransmitter pathways in behavioural 

outcomes. It was suggested that increased immobility is an enhanced ability for acquisition, 

consolidation and retention of danger, resulting in increased immobility for survival. Similarly, 

alternative interpretations of the social interaction test suggest that this may also be an 

advantageous behaviour, rather than an anxious and/or hyperactive state. Indeed, some rat 

studies have demonstrated that social interaction increases in a state of lower cortisol 463 

and decreases in the case of reported stress 464,465, where elevated cortisol would be 

expected. It would be of benefit to perform a greater range of behavioural testing related to 

these phenotypes to support the conclusion that PC:EtOH induces depressive-like and 

social interaction alterations. 

3.5.3 PC:EtOH programs altered HPA activity: as a cause of altered offspring 

behaviour? 

The phenotypes presented in this chapter may occur as a consequence of altered HPA 

activity. Patients with Cushing’s disease and those treated with glucocorticoids for a variety 

of reasons often suffer depressive symptoms 466–470. Additionally, HPA dysregulation is 
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shown in both human and animal models of altered social interaction 471,472, with a strong 

association between mental illness and stressful life experiences 473. Furthermore, the 

DST/CST is used in the diagnosis of depressive disorders, with depressed patients failing 

to respond to cortisol suppression following dexamethasone treatment, and demonstrate 

increased cortisol concentration following CRH treatment 237,413,474–478. In the current study, 

both male and female PC:EtOH offspring had significantly reduced plasma corticosterone 

suppression in the DST test, and female offspring had an increased plasma corticosterone 

response to CST. In another study, Osborn et al. demonstrated that male and female 

offspring exposed to PAE (35% ethanol derived calories, E0 to E21) both had greater 

plasma corticosterone concentrations following the DST and an increased response to CST 

332,429. Similarly, Coe et al. demonstrated that prenatal stress exposure, in a Rhesus Monkey 

model, resulted in reduced suppression during the DST, with other HPA related changes 

including altered behaviour and elevated basal cortisol levels479. It is known that 

dexamethasone binds with high affinity to the glucocorticoid receptor, predominantly in the 

anterior pituitary gland, to suppress ACTH and inhibit feedback pathways, ultimately 

inhibiting glucocorticoid production 413,480. CRH stimulates these pathways 192,481 and is often 

administered to investigate the secretory function of pituitary corticotropes 482. The results 

from the current study suggest that PC:EtOH exposed offspring would have elevated ACTH 

levels due to a loss of sensitivity to dexamethasone. It would be expected that this would 

similarly be elevated following the CRH challenge. This hypothesis is supported by the 

aforementioned studies performed by Osborn et al. which revealed similar corticosterone 

results as in this study, with elevated ACTH response 332,429. Previous studies investigating 

the effect of prenatal alcohol exposure on the regulation of the ACTH precursor, 

proopiomelanocortin, have shown increased mRNA levels in male rats 483 and epigenetic 

dysregulation 484. Therefore, it would be of value to measure ACTH concentrations in this 

study, however, due to time restraints and small sample volume ACTH analysis was not 

possible.  

In addition to the effects on pituitary and hypothalamic suppression, dexamethasone 

suppression of the HPA can occur through inputs from neural tissues including various 

regions of the limbic system 485. While the role of PC:EtOH on limbic regulation of the HPA 

is unclear, prenatal alcohol is well documented to induce multiple deficits in limbic structures 

in humans 486,487. The limbic system is also critical in behavioural outcomes, suggesting that 

the effects of PC:EtOH as seen in this study, may also be as a result of programming within 

this central system. Indeed, models utilising rats, mice and rhesis monkeys have 
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demonstrated that prenatal alcohol exposure results in altered limbic system signalling and 

structure 468,488–490. The fact that PC:EtOH had no impact on adrenal regulators of 

steroidogenesis further supports the hypothesis that the effect of PC:EtOH may be occurring 

centrally, such as within the higher levels of the HPA, or in the limbic system, which is 

investigated in Chapter Four of this thesis. 

Despite the differences in the DST, PC:EtOH had no impact on the reactivity of the HPA to 

the ‘psychological’ stressor, physical restraint. Many animal studies investigating PAE 

throughout pregnancy have demonstrated that although basal corticosterone is often 

normal, HPA activity in response to prolonged or acute stress is elevated in offspring 

424,425,491,492. Infants exposed to alcohol had increased cortisol responsivity to a “still face” 

protocol, and at two and six months of age, children had greater cortisol responses to 

vaccination stress 307,316. However, Jacobson et al. revealed elevated basal cortisol levels 

in PAE infants, but no change in cortisol to vaccination stress 317. Interestingly, animal 

studies have shown that lesions in the hippocampus, glucocorticoid receptor deletion and 

glucocorticoid receptor inactivation all diminish HPA feedback efficacy to psychological 

stress, but not physiological stressors 235,493. Stress can be classified into psychological (also 

known as processive), defined as those that are perceived as a danger to the organism, or 

physiological (also known as homeostatic), defined as those that pose a threat to the 

organism’s survival. Psychological stressors are detected by the limbic system, before 

stimulating the HPA. Physiological stressors on the other hand, are of immediate attention 

and act on the HPA directly 494. It may be hypothesised, therefore, that the DST/CST and 

restraint may be centrally processed and regulated differently, posing an explanation for the 

unexpected discrepancy in results observed in this chapter. An alternative explanation may 

relate to the threshold of sensitivity of the HPA with the positive and negative feedback 

pathways being more strongly affected than responsiveness to stress. Again, this may be 

as a result of PC:EtOH induced alterations within alternate regions of the HPA; the 

hypothalamus and pituitary gland, or the hippocampus, which is highly susceptible to the 

programming effects of prenatal alcohol exposure 69,487,495,496. 

3.5.4 Conclusion 

In summary, this is the first study to establish that PC:EtOH has a significant impact on 

depressive-like and social interaction phenotypes, with underlying dysfunction relating to 

suppression but not stimulation of the HPA. A lack of altered adrenal steroidogenic gene 

expression suggests that PC:EtOH exposure may result in underlying changes within other 
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levels of the HPA or within the limbic system, primarily the hippocampus. These changes 

may be mechanistic in the development of altered behavioural phenotypes observed and 

leads to the necessity of investigating these pathways. As many individuals inadvertently 

consume alcohol prior to pregnancy recognition, this study has significant implications 

relating to the high prevalence of mental illness in society. Furthermore, HPA dysfunction 

and dysregulation is associated with many diseases, including metabolic and cardiovascular 

446,497,498, lending to the necessity to further characterise the effects and mechanism of 

PC:EtOH exposure in offspring.  
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Chapter Four 

 

Periconceptional ethanol exposure alters the stress axis in adult 

female but not male rat offspring. 

 

“Parents’ Drinking Weakens Children’s Vitality” 

- World’s and National Woman’s Christian Temperance Union, 1914 -
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This paper has been published in its entirety as: 

Burgess DJ, Dorey ES, Gardebjer EM, Bielefeldt-Ohmann H, Moritz KM, Cuffe JSM. 

(2019). Periconceptional ethanol exposure alters the stress axis in adult female but not male 

rat offspring. Stress, p:1-11. DOI: 10.1080/10253890.2018.1563068. 

This chapter is presented adhering to guidelines requested by the publishing journal.  
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4.1 Abstract 

Ethanol consumption during pregnancy is associated with altered offspring hypothalamic-

pituitary-adrenal axis (HPA) regulation, however little is known about the outcomes of 

alcohol consumption confined to the periconceptional period. This study investigated 

periconceptional ethanol (PC:EtOH) exposure on corticosterone concentrations, response 

to restraint stress and gene expression of adrenal, hypothalamic and hippocampal 

glucocorticoid-related pathways in rat offspring. Female Sprague-Dawley rats were treated 

with PC:EtOH (12.5% v/v EtOH liquid diet) or a control diet from 4 days before conception, 

until embryonic day 4. At 6 (adult) and 12-14 (aged) months of age, basal corticosterone 

concentrations were measured, while in a separate cohort of aged rats, blood pressure, 

heart rate and plasma corticosterone concentrations were measured during a 30-minute 

restraint stress. Adrenal gland, hypothalamic and hippocampal tissue from aged rats were 

subjected to transcriptomic analysis. PC:EtOH exposure reduced basal plasma 

corticosterone concentrations in adult and aged female but not male offspring (p<0.05). The 

corticosterone and pressor response was significantly reduced in aged PC:EtOH female 

offspring following restraint (p < 0.05). Adrenal steroidogenesis genes (melanocortin 

receptor 2 [Mc2r], cytochrome p450, family 11, subfamily a, polypeptide 1 [Cyp11a1], 

cytochrome p450, family 21, subfamily a, polypeptide 1 [Cyp21a1], 11-beta-hydroxysteroid 

dehydrogenase 2 [Hsd11b2] and glucocorticoid receptor [Nr3c1]) and hypothalamic genes 

(Corticotropin-releasing hormone [Crh], Corticotropin-releasing hormone receptor 1 [Crh-r1], 

glucocorticoid receptor [Nr3c1] and heat shock protein 90a1 [Hsp90a1]) were not affected 

by PC:EtOH. In aged female offspring exposed to PC:EtOH, adrenal mRNA expression of 

Hsp90a1 was significantly elevated, and within the hippocampus, relative gene expression 

of Nr3c1 and Hsp901a1 were increased (p < 0.05). This study supports the hypothesis that 

prenatal alcohol exposure programs sex-specific alterations in the HPA and provides the 

first evidence that the periconceptional period is a critical window for programming of this 

axis. 
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4.2 Introduction  

Alcohol consumption is a worldwide concern, contributing to the top 5 risk factors for 

disease, disability and death 499. Regardless, up to 50% of women drink at some point during 

pregnancy 46, despite warnings that consumption may increase the risk of fetal alcohol 

spectrum disorders (FASD) and increased offspring risk of neurological dysfunction 

including changes in learning, behaviour, reward pathways and mental illness 453,500. 

Alcohol exposure during pregnancy has been associated with alterations in the 

hypothalamic-pituitary-adrenal axis (HPA) of offspring in both human and rodent studies. 

Alcohol intake throughout pregnancy increased basal and post-stress cortisol 

concentrations in children 501. Similarly, increased cortisol reactivity and elevated heart rate 

(HR) have all been demonstrated in children following prenatal alcohol exposure 307,316,502, 

suggesting that prenatal alcohol exposure may alter endocrine pathways and related 

physiological stress responses 503,504. Rat models have established similar outcomes with 

alcohol exposure from mid-gestation until embryonic day 20 (E20), increasing offspring 

basal plasma corticosterone concentrations by 90% and altering the expression of adrenal 

steroidogenic enzymes 505. Prenatal alcohol exposure throughout pregnancy also resulted 

in offspring with elevated plasma corticosterone concentrations 330,334. Other studies have 

demonstrated prenatal alcohol consumption does not alter basal corticosterone 

concentrations but greater plasma corticosterone concentrations following a challenge, 

including a delayed return to baseline in the alcohol-exposed group 323,332,335,429,506. This may 

be due in part to alterations in the hypothalamus or pituitary gland as prenatal alcohol 

exposure alters basal hypothalamic mRNA expression of the glucocorticoid receptor (Nr3c1, 

GR) and corticotropin-releasing hormone (CRH) 321,507. Long-term regulation of HPA 

function may also be driven by alterations to the hippocampus, which plays a major role in 

regulating the HPA response to stress. Previous studies support this, as prenatal alcohol 

exposure also alters HPA negative feedback pathways in the hippocampus via dysregulation 

of the glucocorticoid receptor 496,508. 

Recent statistics suggest that most women cease or decrease alcohol consumption once 

they are aware of their pregnancy. However, 20% admit to episodes of binge drinking before 

pregnancy detection 46. Currently, there are few studies which investigate the long-term 

outcomes of alcohol consumption around the time of conception on the HPA. One clinical 

study found that alcohol consumption before pregnancy recognition increased infant cortisol 

concentrations and heart rate in a sex-specific manner, but alcohol consumption after 



 

110 | P a g e  

 

pregnancy recognition had no effect 316. Our study, therefore, aimed to investigate the 

effects of PC:EtOH exposure on the function and regulation of the HPA in rat offspring. We 

have demonstrated PC:EtOH exposure results in long-term neurological and metabolic 

disorders in offspring 367,368,509 and is currently investigating a potential role of the HPA in 

this dysfunction. We hypothesised that PC:EtOH exposure would disrupt the regulation of 

corticosterone production in offspring under both basal and stressed conditions due to 

dysregulated adrenal steroidogenesis or negative feedback through the hippocampus.  
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4.3 Methods 

All rat experiments and procedures were approved by The University of Queensland 

Anatomical Bioscience Animal Ethics Committee and performed according to the Guidelines 

from the National Health and Medical Research Council of Australia. 

4.3.1 PC:EtOH treatment 

Rats were obtained from the animal resource centre (ARC, Perth Western Australia). 

Sprague-Dawley rats were housed individually in a 12-hour light-dark cycle (lights on 00:00h 

to 12:00h, off 12:00h to 24:00h) and treated as previously described 367. Briefly, rats were 

tested for stage of oestrous using the EC40 oestrous cycle monitor (Fine Science Tools, 

Foster City CA, USA). Upon a reading of 4.0 x 103 Ω or higher, indicating oestrous, rats 

were randomly allocated to either a liquid diet containing alcohol (PC:EtOH [12.5% v/v 

ethanol, n =19 dams]) or an isocaloric diet containing no alcohol (control). This day was 

denoted as embryonic day (E) -4. After 4 days of being on the diet, female rats were paired 

with a male rat overnight and the day of pairing was designated E0. Mating was confirmed 

the following day by the presence of seminal plugs, and this day was denoted as E1. The 

liquid diet continued until embryonic day 4 (E4) and was offered for 21 hours each day. 

Water was provided ad libitum for the remaining 3 hours. On E5, rats were placed back on 

a standard chow diet and delivered naturally on approximately day 22. The day of birth was 

designated as postnatal (PN) day 0. Offspring were weaned at day 28. Littermates of the 

same sex were housed together after weaning, with two male or two to three female offspring 

per cage. No animals were housed alone. Rats were handled weekly. At six months of age 

(adult), a tail vein blood sample was collected from conscious, restrained rats. At 1030h, 

rats from a subset of control and PC:EtOH groups (1 rat/sex/litter) were briefly restrained 

within a fabric sock for a 3mm tail tip slice and collection of 0.3mL of blood. Rats were aged 

to 12-14 (aged) months before being assigned to two groups: rats from Group 1 were 

sacrificed for blood and tissue collection (1-2 rats/sex/litter) while Group 2 underwent 

radiotelemetry surgery for measurement of blood pressure during a restraint challenge (see 

below).  

4.3.2 Tissue collection (Group 1 at 12 months) 

Rats were transported to a facility for blinded tissue collection with all tissue samples being 

collected between 0900h and 1000h. Rats were euthanised by an intraperitoneal injection 

of pentobarbitone sodium (Lethobarb; 0.1 ml/kg body weight). Blood was collected via 

cardiac puncture for analysis of corticosterone. In aged rats, adrenal and pituitary glands 
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were weighed. Hypothalamus and hippocampus were collected. The coordinates for brain 

regions were determined using Paxinos and Watson 510. Hippocampal tissue was collected 

from Bregma −2.28 to −3.64. Likewise, the hypothalamus was collected with coordinates 

Bregma -3.24 to -4.44. Adrenal glands, hypothalamic and hippocampal tissues were snap-

frozen and stored at -80°C for qPCR analysis. While tissues were being collected, anomalies 

were noted, and a number of pituitary glands were recorded as abnormal and enlarged. 

These were fixed in 4% paraformaldehyde for histological analysis using methodologies 

similar to those performed previously 286. Pituitary glands were processed to paraffin and 

sectioned before staining with hematoxylin and eosin and sent to an expert veterinary 

pathologist for blinded assessment 286. 

4.3.3 Measurement of the cardiovascular stress response (Group 2) 

Due to the intrinsic link between the HPA and cardiovascular function, a subset of aged rats 

at 14 months of age underwent surgery for implantation of radiotelemetry monitors to allow 

for measurements of cardiovascular responses during a restraint challenge. These rats were 

transported to a separate facility with a 12-hour light-dark cycle (0600h to 1800h) and 

allowed to adjust for two weeks prior to telemetry surgery. Anaesthesia was induced using 

5% isoflurane in oxygen and maintained using 2-3% isoflurane. Upon confirmation of reflex 

abolishment, a 2cm incision was made in the left hind limb, and the cannula of the telemetry 

probe (PA-C40, DSI, St Paul, USA) inserted into the femoral artery and advanced into the 

descending aorta. The radiotelemeter transmitter was then placed subcutaneously. Each rat 

was housed individually in a cage located on a PhysioTel-Receiver (Model # RPC-1, DSI, 

St Paul, USA). After a recovery period of 10 days, the radio transmitters were turned on, 

and measurements were assessed for 14 days before restraint test. Following this, cardiac 

parameters of systolic and diastolic blood pressure and HR were measured before and from 

2 to 15 minutes of a 15-minute restraint challenge to measure the change in cardiovascular 

parameters from baseline, adapted from the protocol published previously by O’Sullivan et 

al. 511. Results were analysed by calculating the change from baseline (delta, Δ) for each 

parameter. The restraint stress was performed 3 to 5 hours after lights on, and once per rat, 

within its home cage. Rats were restrained by inserting custom-made Perspex dividers 

[462mm (length) x 125mm (height) and 325 mm (width) x 125 mm (height)] into the cage. 

These dividers press against one side and rump, to confine the rat within the corner of their 

home cage, limiting its ability to rear, turn or move forward and backwards. Rats had 

adequate air holes, however food and water were removed for the 30-minute duration of 

testing. The restraint stress was performed with rats in their home cage with animals 
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restricted from nose to rump, on both sides and with a limited ability to rear, using a custom-

made transparent device. A tail vein blood sample was collected (0.3mL) immediately upon 

removal from restraint for plasma corticosterone concentration analysis as described below.  

4.3.4 Corticosterone radioimmunoassay 

An in-house radioimmunoassay was used to analyse plasma corticosterone concentration 

in both adult and aged rats, as previously described 386,394. The assay sensitivity ranges from 

39ng/ml up to 5000ng/ml based on 5ul of plasma per sample. The intra-assay coefficient of 

variation and inter- assay coefficient of variation for assays performed for this manuscript 

were 6.8% and 7.3% respectively. This assay has been shown to have minimal cross-

reactivity (<1%) for progesterone, testosterone, cortisol or 11 deoxycorticosterone. 

4.3.5 Quantitative PCR  

RNA was extracted from adrenal glands (n=8/group/sex), hypothalamic (n=8/group/sex) and 

hippocampal (n=5-7/group/sex) samples using the commercially available RNeasy Mini-kit 

(Qiagen, Doncaster, VIC) and cDNA was synthesised using iscript (Bio-Rad, Gladesville, 

NSW, Australia). Commercially available assay-on-demand primer and probe sets (Life 

Technologies) were used to analyse gene expression of key steroidogenic genes within the 

adrenal gland including Mc2r (rn02082290_s1), Cyp11a1 (rn00568733_m1), Cyp21a1 

(rn00588996_g1), Hsd11b2 (rn00492539_m1), Nr3c1 (rn00561369_m1) and Hsp90a1 

(rn00822023_g1). Hypothalamic gene expression of Crh (rn01462137_m1), Crh-r1 

(rn00578611_m1), Nr3c1 and Hsp90a1 (rn00822023_g1) and hippocampal gene 

expression of Nr3c1 and Hsp90a1 was assessed. A panel of housekeeper genes was 

measured, with the geomean of Rn18S and Actb being used for aged adrenal gland and 

hypothalamus, and Rn18S for hippocampal gene expression. PC:EtOH did not significantly 

alter housekeeper gene expression.  

4.3.6 Statistical analysis 

All data are presented as mean ± standard error of the mean (SEM). All data were analysed 

using a two-way Analysis of Variance (ANOVA). Weights, plasma corticosterone 

concentrations and gene expression analyses compared treatment (trt) and sex as factors 

with an LSD Fisher post hoc test. Two-way ANOVA was used to analyse radiotelemetry 

parameters with an LSD Fisher post hoc test. Statistical analysis was performed using 

GraphPad Prism 7 for Windows (GraphPad Software, Inc., San Diego, CA). Pituitary gland 
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weight was tested for normality using a D’Agostino-Pearson test, and a Fishers Exact Test 

was used to determine the association between tumours and treatment. 



 

115 | P a g e  

 

4.4 Results 

4.4.1 Body weights and relative organ weights of offspring 

PC:EtOH did not alter body weight of aged rats (Table 4. 1). However, females were 

significantly lighter than male offspring (F(sex) (1,67) = 179.2, Psex < 0.0001). In aged rats at 

post-mortem, total and relative adrenal weights and pituitary weights were not significantly 

different between treatment groups (Table 4. 1). 

4.4.2 Basal corticosterone concentrations in adult and aged offspring 

Plasma corticosterone concentrations were higher in adult females compared to male 

offspring (F(sex) (1,22) = 6.86, Figure 4. 1A, Psex < 0.05). A sex by treatment interaction (F(trt*sex) 

(1,22) = 4.03, Pint < 0.05) was further examined by post hoc analysis, demonstrating that 

plasma corticosterone concentrations were 25% lower in adult female but not male PC:EtOH 

exposed offspring (T(21) = 2.19, P < 0.05). Within aged rats, PC:EtOH offspring had lower 

plasma corticosterone concentrations (F(trt) (1,26) = 9.80, P < 0.05, Figure 4. 1B) with a post 

hoc analysis demonstrating that this was due to a 34% reduction in female offspring exposed 

to alcohol (T(26) = 3.2, P < 0.05). Of interest, plasma corticosterone concentrations were 

similar in male and female offspring at this age 

.
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Table 4. 1: The impact of periconceptional alcohol on body and organ weight in aged male and female offspring. 

 Male Female ANOVA 

 Control PC:EtOH Control PC:EtOH Trt Sex Int 

Body (g) 
761 ± 26 
(n = 19) 

739 ± 26 
(n = 18) 

434 ± 18 

(n = 19) 

445 ± 19 
(n = 16) 

NS <0.0001 NS 

Average adrenal (mg)a 
40.3 ± 3.7 
(n = 19) 

39.9 ± 3.0 
(n = 17) 

46.4 ± 3.6 
(n = 17) 

39.4 ± 1.9 
(n = 15) 

NS NS NS 

Relative adrenal 
(mg/BWg) 

0.05 ± 0.01 
(n = 19) 

0.06 ± 0.01 
(n = 17) 

0.11 ± 0.01 

(n = 17) 

0.10 ± 0.02 

(n = 15) 
NS <0.0001 NS 

Pituitary (mg)b 
43.4 ± 12.2 

(n = 8) 
85.4 ± 36.8 

(n = 9) 
52.5 ± 7.8 

(n = 9) 
150.9 ± 66.3 

(n = 10) 
NS NS NS 

Relative pituitary 
(mg/BWg) 

0.05 (0.13, 0.01) 
(n = 8) 

0.05 (0.58, 0.01) 
(n = 9) 

0.11 (1.7, 0.03) 
(n = 9) 

0.16 (1.49, 
0.03) 

(n = 10) 
- - - 

Trt: treatment; Int: interaction between treatment and sex. 

Bodyweight and relative adrenal weight data presented as mean ± standard error of the mean. Analysed by two-way ANOVA comparing 

sex and treatment, with a Bonferroni post hoc test. Relative pituitary weight data are presented as median (upper, lower limit).  

aaverage of two adrenal glands. 

btotal pituitary weight, including anterior gland, posterior gland and the median eminence. 
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Figure 4. 1: The basal plasma corticosterone concentration (ng/mL) in adult (A) and aged (B) 

offspring exposed to control (white) or periconceptional ethanol (PC:EtOH, black) diets. 

Samples were collected prior to experimental paradigms and within 4 hours of light. Sample 

size at 6 months: Control = 6 PC:EtOH = 7 per sex. Sample size at aged: Control = 8, PC:EtOH 

= 7 per sex). Data represented as mean ± standard error of the mean, analysed by a two 

analysis of variance, with a Bonferroni post-hoc analysis, *p <0.05. 

 

4.4.3 Adrenal gland gene expression in aged offspring 

Given that female PC:EtOH offspring had reduced plasma corticosterone concentrations, the 

gene expression of key factors in the adrenal gland, the hypothalamus and hippocampus in the 

aged cohort were investigated to establish if this may be as a result of an adrenal or central 

deficit. PC:EtOH did not affect the expression of Mc2r, Cyp11a1, Cyp21a1, Hsd11b2 or Nr3c1 

in adult or aged offspring (Figure 4. 2). However, analysis of Hsp90a1 gene expression 

revealed a sex by treatment interaction (F(trt*sex) (1,25) = 6.12, P < 0.05), which when further 

examined by post hoc analysis, demonstrated significantly higher in aged female offspring 

exposed to PC:EtOH when compared to control (T(25) = 2.81, P < 0.05). 

4.4.4 Hypothalamus and hippocampus gene expression in aged offspring 

PC:EtOH did not significantly alter Crh, Crh-r1, Nr3c1 or Hsp90a1 within the hypothalamus of 

aged offspring (Figure 4. 3A-D, respectively), neither was there any difference between males 

and females. In contrast, hippocampal expression of both Nr3c1 and Hsp90a1 were altered by 
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sex and treatment (Figure 4. 3E-F, respectively). PC:EtOH significantly increased hippocampal 

expression of Nr3c1 (F(trt) (1,20) = 13.32, P < 0.05) which was also more highly expressed in 

females compared to males (F(sex) (1,20) = 8.99, P < 0.05). A sex by treatment interaction (F(trt*sex) 

(1,20) = 6.61, P <0.05) and post hoc analysis (T(20) = 4.07, P < 0.01) demonstrated a 4.3-fold 

increase in hippocampal gene expression of Nr3c1 of PC:EtOH female but not male offspring. 

Similarly, PC:EtOH increased mRNA expression of Hsp90a1 within the hippocampus (F(trt) (1,20) 

= 5.65, P < 0.05). Hippocampal Hsp90a1 mRNA were higher in females compared to males 

(F(sex) (1,20) = 6.91, P < 0.05), with a sex by treatment interaction (F(trt*sex) (1,20) = 4.47, P < 0.05) 

and post hoc analysis (T(20) = 2.94, P < 0.05) demonstrating a 2 fold increase in Hsp90a1 

expression in female PC:EtOH offspring only (Figure 4. 3F). 
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Figure 4. 2: The relative gene expression of melanocortin receptor 2 (Mc2r, A), cytochrome 

P450 family 11 subfamily A member 1 (Cyp11a1, B), cytochrome P450 family 21 subfamily A 

polypeptide 1 (Cyp21a1, C), 11-beta-dehydrogenase isozyme 2 (Hsd11b2, D), nuclear receptor 

subfamily 3 group C member 1 (Nr3c1, E) and heat shock protein 90 alpha 1 (Hsp90a1, F) in 

the adrenal gland of aged offspring (sample size = 5-8 litters per group) exposed to control 

(white) or periconceptional ethanol (PC:EtOH, black) diets. Data represented as mean ± 

standard error of the mean and analysed by two-way analysis of variance with a Bonferroni 

post hoc test. 
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Figure 4. 3: The relative gene expression of corticotropin-releasing hormone (Crh, A), 

corticotropin-releasing hormone receptor 1 (Crh-r1, B) in the hypothalamus, nuclear receptor 

subfamily 3 group C member 1 (Nr3c1, C, E) and heat shock protein 90 alpha 1 (Hsp90a1, D, 

F) in the hypothalamus and hippocampus respectively, of aged offspring exposed to control 

(white) or periconceptional ethanol (PC:EtOH, black) diets. Data represented as mean ± 

standard error of the mean and analysed by two-way analysis of variance with a Bonferroni 

post hoc test. Sample size =7-8 for hypothalamus and 6-7 for hippocampus). 
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4.4.5 Effects of restraint stress on cardiovascular parameters in aged offspring 

As expected, heart rate, blood pressure (systolic, diastolic and mean arterial) all increased 

during the restraint protocol. As the cardiovascular response to restraint stress was the 

primary focus of this protocol, all cardiovascular parameters are reported as the change 

from baseline (delta, Δ). After a large initial increase in heart rate and blood pressure, the 

delta heart rate (ΔHR), delta systolic blood pressure (ΔSBP) and delta diastolic blood 

pressure (ΔDBP) decreased towards the initial reading of respective parameters in both 

male and female rats, regardless of treatment over the 15 minutes of restraint (Figure 4. 4, 

Ptime < 0.001. [Male: F(time) (13, 130) = 21.59, 5.93 and 8.24 for ΔHR, ΔSBP and ΔDBP 

respectively]. [Female: F(time) (13, 156) = 17.50, 10.98, 5.18 for ΔHR, ΔSBP and ΔDBP 

respectively]). The ΔSBP was lower in female PC:EtOH offspring (F(trt) (1, 12) = 5.17, P < 0.05) 

with post hoc analysis revealing that this was significant at all time-points after the first two 

minutes except the 7 and 9 minute mark (3, 4 and 5 minutes [T(168) = 2.12, 2.53, 2.61, p < 

0.01], 6, 8 to 10 [T(168) = 2.12, 2.26, 2.07, 1.99, P < 0.05] and 13 to 15 minutes [T(168) = 

2.15, 2.40, 2.53, p < 0.05]). In contrast, the ΔSBP was not affected by treatment in male 

offspring. Both ΔDBP (F(trt) (1, 12) = 4.04, P=0.06) and ΔMAP (F(trt) (1, 12) = 4.25, P=0.06) 

trended towards being lower in female PC:EtOH offspring, however, these parameters were 

not altered in male offspring. ΔHR was not changed by PC:EtOH in either male or female 

offspring. 

Although plasma corticosterone concentrations following restraint were not affected overall 

by PC:EtOH, a sex by treatment interaction (F(trt*sex) (1, 29) = 5.32, P<0.05) was observed and 

post hoc analysis demonstrated that plasma corticosterone concentrations were lower in 

female PC:EtOH offspring compared to control female offspring (T(29) = 2.23, p<0.05, 

Figure 4. 4E). PC:EtOH had no effect on plasma corticosterone concentration following 

restraint stress in male offspring. Plasma corticosterone concentration following restraint 

was greater in female compared to male offspring (F(sex) (1, 29) = 66.46, P < 0.001, Figure 4. 

4E).  
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Figure 4. 4: The delta (Δ) heart rate (A, B) and Δ systolic blood pressure (C, D) during the 

2 to 15 minute duration of the restraint test, and plasma corticosterone concentration 

(ng/mL) at the end of the restraint test (E), in male (left) and female (right) offspring exposed 

to control (white) or periconceptional ethanol (PC:EtOH, black) diets. Sample size = 7-8 per 

group. The data was represented as mean ± standard error of the mean analysed by a two-

way analysis of variance with a Fishers least significant difference test, *p<0.05, **p<0.01. 



 

123 | P a g e  

 

4.4.6 Pituitary weights and abnormalities in aged offspring 

Interestingly, at tissue collection a number of pituitaries from the PC:EtOH group were 

identified as being enlarged and sent for histopathological assessment. Mean pituitary 

weight was not significantly different between groups. However, pituitary weight was 

normally distributed in control rats but highly variable in PC:EtOH exposed rats for both 

males (Pnormality < 0.05) and females (Pnormality < 0.05). It was noted that of the ten male 

PC:EtOH offspring, two were recorded as enlarged and abnormal compared to one of the 

eight control rats (Figure 4. 5). Within the female cohort, five of the ten PC:EtOH rats were 

abnormal, compared to zero within the control group (Figure 4. 5). A Fisher’s exact test 

demonstrated that there was an increased number of enlarged pituitaries in female PC:EtOH 

offspring compared to control offspring (p < 0.05). The expert pathological analysis identified 

mitotic figures in representative sections from the enlarged pituitaries of both male (Figure 

4. 5C) and female offspring exposed to PC:EtOH (Figure 4. 5D). 
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Figure 4. 5: Pituitary gland weights (mg) and pathology from control or periconceptional 

ethanol exposure (PC:EtOH) treated male (A) (nControl = 8, nPC:EtOH = 10) and female 

(B) (nControl = 9, nPC:EtOH = 10) offspring. # indicates rats with observed pituitary 

abnormalities determined during post-mortem. (C) and (D) show pathology results in an 

abnormal gland, as determined by a hematoxylin and eosin stain, in male and female 

offspring, respectively.  
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4.5 Discussion 

This study demonstrated that PC:EtOH resulted in lower plasma corticosterone 

concentrations in adult female offspring, and concentrations remained lower in aged female 

offspring under both resting and stressed conditions. Interestingly, this was sex-specific with 

no differences observed in male offspring exposed to PC:EtOH. These lower corticosterone 

concentrations in females occurred despite no effect of PC:EtOH exposure on the gene 

expression of steroidogenesis regulators in the adrenal gland and hypothalamus. Further 

analysis demonstrated that this dysregulation of corticosterone production might be due to 

altered expression of Nr3c1 and Hsp90a1, genes involved in negative feedback pathways 

within the hippocampus. Previous studies have demonstrated that exposure to alcohol 

throughout the entire pregnancy period programs HPA dysfunction in offspring 512–515. These 

results highlight that alcohol exposure during this early stage of gestation, prior to 

implantation and before initiation of brain development, may have long-term impacts on 

central control of HPA function which may impact physiological outcomes. 

To date, no studies have investigated HPA outcomes following alcohol exposure limited to 

the time before implantation and organogenesis. Within this study, the finding that plasma 

corticosterone concentrations were lower in adult and aged female offspring exposed to 

alcohol around conception contrasts with those following prenatal ethanol exposure 

throughout pregnancy. These studies indicated that even though the adrenal weight was 

unchanged in offspring, there are significant elevations in basal corticosterone 

concentrations in both male and female offspring 334,491. Animal studies of chronic and binge 

alcohol consumption during pregnancy have also revealed elevated basal corticosterone 

levels, albeit in male offspring only 323. Conversely, other studies have demonstrated no 

alterations in basal plasma corticosterone levels 491,516. The reasons for these differences 

have not been determined but may be due to the dose of alcohol, strain and species of 

animal or age at which the measurement was made. In humans, heavy drinking around the 

time of conception and throughout pregnancy has been associated with increased basal 

cortisol levels in 13-month old children 501. Similarly, children diagnosed with FASD have 

increased cortisol concentrations 316,517 although there is evidence this may be dependent 

upon the time of day, with FASD diagnosed children displaying higher cortisol levels than 

healthy children in the afternoon and at bedtime 517. Although the current study is the first to 

report reduced corticosterone concentrations in offspring following PC:EtOH, a recent 

publication investigated high dose ethanol administration (via gavage) during adolescence 

but prior to pregnancy, on offspring HPA outcomes. Male offspring from dams exposed to 
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alcohol before pregnancy had reduced basal corticosterone concentrations. This study 

suggests that these alterations may be due to intergenerational inheritance of epigenetic 

markers 366. 

Within this study, basal plasma corticosterone concentrations reported were slightly 

elevated when compared to values reported in rats by other groups. While basal values in 

our study were approximately 230ng/mL in males and 400ng/mL in females at 6 months, 

others report basal concentrations of approximately 114ng/mL and 292ng/mL respectively 

429. The values obtained from the study by Osborn et al. were from blood collected within 3 

hours of the light cycle, while in our study blood samples are collected 9-10 hours after the 

commencement of the light cycle, as our animals were housed in an alternative cycle. Work 

by Waddell and colleagues demonstrate that basal corticosterone should peak when light is 

withdrawn 391 supporting the values from the current study being basal for the time of day 

they were collected. 

In addition to alterations to basal corticosterone concentrations following various prenatal 

alcohol exposure paradigms, alcohol exposure throughout pregnancy has been shown to 

dysregulate HPA activity following a stress challenge. Rats exposed to stressors such as 

immune challenges, repeated restraint and foot shock show elevated corticosterone, and 

ACTH levels and a reduced return to baseline 335,424,425,518 Other studies of prenatal alcohol 

exposure throughout pregnancy have shown HPA hyperactivity following challenges such 

as the dexamethasone suppression test 332,429. Additional parameters measured as a 

response to stress, such as perturbed heart rate or changes in blood pressure from baseline 

further support alterations to the stress pathways within PC:EtOH offspring. In the current 

study, the restraint induced corticosterone concentrations and ΔSBP were significantly lower 

in female offspring exposed to PC:EtOH. Results collected within this thesis (Section 3.3.4.1 

Combined dexamethasone suppression and corticotropin-releasing hormone stimulation 

test revealed that PC:EtOH programmed a hyperactive HPA in both male and female 

offspring, however, given the link between the HPA and the cardiovascular system, these 

results were counter-intuitive. Furthermore, clinical studies have demonstrated that high-

frequency alcohol consumption before pregnancy recognition increases children’s cortisol 

and cardiovascular response to stress when compared to children of women with low-

frequency alcohol consumption 316. It may be hypothesised that HPA activated pathways to 

the LC-NA, withdrawal of the parasympathetic regulation of cardiovascular activity and other 

neural cardiovascular centres may be perturbed by PC:EtOH, an avenue of research worth 

pursuing.  
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Interestingly, while prenatal alcohol consumption increased infant cortisol response to stress 

to a greater extent in males compared to females, female offspring had a greater increase 

in heart rate in response to stress. This suggests that the underlying mechanisms and 

outcomes of prenatal alcohol exposure is sex-specific and, in part, corroborates the current 

findings that PC:EtOH did not affect restraint induced changes in male offspring. Earlier 

studies using this animal model have demonstrated sex-specific placental adaptations which 

may have contributed to these female-specific disease outcomes, and support the 

hypothesis that sex-specific adaptations due to perturbations in early pregnancy may protect 

male offspring but increase disease risk in female offspring 102,519. Furthermore, sex-specific 

outcomes within our study may be related to PC:EtOH programming of sex steroids, as the 

hypothalamic-pituitary-gonadal axis, has significant cross-communication with the HPA. 

Changes in hormones, such as estrogen, which has a role in the production of the 

glucocorticoid regulatory protein, corticosteroid-binding globulin 520 may have significant 

implications in the observed sexually dimorphic outcomes. 

To investigate the mechanism underlying the programmed decrease in corticosterone 

concentrations in adult females, the mRNA expression of key markers of adrenal 

steroidogenesis and hypothalamic function were investigated. There were no major changes 

in the adrenal or hypothalamus apart from the fact PC:EtOH increased adrenal Hsp90a1 

gene expression in female offspring. This may suggest an increase in negative feedback at 

the level of the adrenal, and although overall gene expression of the steroidogenic pathway 

was not changed, protein or activity levels were not investigated in this study and may be 

altered due to PC:EtOH. These results contrast with previous studies which demonstrated 

significant changes in adrenal steroidogenic enzymes Star and 3β-hsd, as well as alterations 

in mRNA expression of Crh within the hypothalamus of both weanlings and adult offspring 

following prenatal ethanol exposure 321,329,507. Interestingly, while the traditional regulators 

of HPA function were not affected, hippocampal expression of Nr3c1 and Hsp90a1 were 

increased in female offspring exposed to PC:EtOH. The expression of Nr3c1 and Hsp90a1 

within the hippocampus are essential for the interpretation of sensory information, as well 

as mediating glucocorticoid negative feedback within the HPA 521. This suggests that 

alterations in hippocampal Nr3c1 and Hsp90a1 expression may influence glucocorticoid 

production and responses to stress. The reduction in corticosterone is hypothesized to be, 

in part, driving the increased expression of hippocampal Nr3c1. Although limited studies 

have been performed investigating the outcomes of these changes, adrenalectomised rats 

(i.e. removal of endogenous corticosterone production) prenatally exposed to alcohol had 
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increased hippocampal GR and MR expression, suggesting that prenatal alcohol 

consumption may reduce the sensitivity of the hippocampus to glucocorticoids 321. These 

findings provide support for the contention that PC:EtOH may program increased expression 

of GR and its chaperone protein HSP90, with an inability to normalise HPA output due to 

decreased sensitivity. It is important to note here, however, that many other limbic 

structures, such as the amygdala and the prefrontal cortex also play a necessary role in the 

regulation of the HPA 321, and it cannot be discounted that PC:EtOH may also have a 

programming role within these structures.  

An interesting observational aspect of this study was the increased occurrence of pituitary 

abnormalities, particularly in female PC:EtOH offspring. Alcohol exposure throughout 

pregnancy in rats on resulted in an increased incidence of tumorigenesis in offspring 

including in the pituitary gland 328. While immunohistochemistry was not performed in the 

current study due to limitations in the fixation methodology, further studies should focus on 

identifying the cell types associated with the enlarged pituitary glands. Prenatal alcohol 

exposure can also increase pituitary weight in offspring and perturb critical hormonal 

pathways 71, suggesting that further investigation of these abnormalities is warranted, as 

functional alterations within the pituitary gland may contribute to altered hormonal status 

following PC:EtOH exposure. 

This study has demonstrated the adverse impacts of PC:EtOH exposure on offspring HPA 

but further studies are required to fully understand the mechanisms involved. Considering 

that this exposure is before organogenesis, it is likely that mechanisms are indirect. The 

periconceptional period encompasses many drastic changes, including reprogramming of 

methylation profiles 522 and maternal undernutrition in women during the periconceptional 

period results in alterations DNA methylation at metastable epialleles 523 including the Igf2 

gene 345. This has been similarly observed in animal models with periconceptional 

undernutrition results in altered DNA methylation in pig embryos 524, and epigenetic changes 

to adrenal gene expression 525, hypothalamic proopiomelanocortin and glucocorticoid 

receptor genes in the sheep 526. 

Another possible mechanism may be alterations in the maternal physiology. Maternal 

alcohol consumption stimulates the HPA, including increase cortisol concentrations, 

reduced ACTH and HPA responsiveness 527–530. Alcohol exposure throughout the entirety 

of pregnancy has demonstrated increased corticosterone concentration, adrenal weight and 

HPA activity in rat dams 387,531–533. 
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4.5.1 Conclusion 

This study is the first to show that PC:EtOH exposure results in a persistent reduction in 

plasma corticosterone concentrations and reduced pressor responsiveness to stress in 

female but not male offspring. This reduction in corticosterone was likely driven by an 

increase in negative feedback through the hippocampus as indicated by an increase in 

Nr3c1 and Hsp90a1 expression rather than alterations to adrenal steroidogenesis or 

hypothalamus gene expression. Furthermore, morphological alterations in offspring pituitary 

glands of aged rats suggest more significant alterations in the HPA which warrant further 

investigation. This study demonstrates that the effects of alcohol exposure around the 

periconceptional period are significantly different from those induced by chronic alcohol 

consumption. 
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Chapter Five 

 

Periconceptional ethanol exposure alters maternal glucocorticoid 

concentration throughout gestation in a rat. 

 

“The angel of the Lord appeared to her and said, 

‘You are barren and childless, but you are going to 

become pregnant and give birth to a son. Now see to it 

that you drink no wine or other fermented drink 

and that you do not eat anything unclean’” 

- Judges 13: 3-4 –
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5.1 Abstract 

A disrupted hypothalamic-pituitary-axis (HPA) during pregnancy is associated with a range of 

disease outcomes in offspring. Many of these are similar to those observed following 

periconceptional alcohol exposure, as demonstrated within this thesis. However, very few studies 

to date have investigated the impacts of alcohol consumption during pregnancy on the maternal 

HPA function, particularly when alcohol exposure occurs only around the time of conception. 

Therefore, this chapter aimed to establish the impact of periconceptional ethanol (PC:EtOH) 

exposure on maternal corticosterone, aldosterone concentrations and adrenal pathways necessary 

for hormone production. Homeostatic systems regulated by the HPA, including metabolic and renal 

function, were also investigated. Importantly, as these processes are dynamic throughout 

pregnancy, this study investigated both the direct and delayed consequences of alcohol exposure. 

Additionally, as the placenta regulates fetal exposure to disruptions to maternal HPA status, 

expression of placental glucocorticoid signalling pathways were investigated in late pregnancy.  

Female Sprague Dawley dams were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a control 

diet from 4 days before conception, until embryonic day (E) 4. Two days prior to mating (E-2), a 

plasma sample was collected. During early gestation (E2 and E5), mid-gestation (E15) and at the 

end of pregnancy (E18 and E20), further plasma samples were collected, for analysis of 

corticosterone. A plasma sample was collected at E18 for measurement of creatinine and plasma 

lipids. At E16, a separate subset of dams underwent 24-hour metabolic cage testing to assess renal 

function, and urine was analysed for electrolyte excretion (sodium, potassium, chloride and 

creatinine), followed by plasma collection at E18 for assessment of creatinine and plasma lipids. 

Adrenal glands were collected at E5, E15 and E20 for transcriptomic analysis of the steroidogenic 

pathway.  

PC:EtOH consumption significantly increased plasma corticosterone in the non-pregnant dam at E-

2. These changes were not seen following conception at E2. However, a significant decrease was 

observed at E5. Although plasma corticosterone was not different between treatment groups at E15, 

there was an increase during late gestation, at E20, in the PC:EtOH group. Interestingly, only minor 

changes in the expression of genes which regulate adrenal steroidogenesis were observed in 

PC:EtOH dams, with a significant increase in cytochrome p450, family 11, subfamily b, polypeptide 

2 (Cyp11b2), angiotensin receptor, type 2a (Agtr1a) and heat shock protein 90a1 (Hsp90a1) at E5 

and a significant increase in gene expression of cytochrome p450, family 21, subfamily a, 
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polypeptide 1 (Cyp21a1) and cytochrome p450, family 11, subfamily b, polypeptide 1 (Cyp11b1) at 

E15. PC:EtOH exposure did not alter renal function (urinary flow and excretion of electrolytes) at 

E16 or plasma high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides at E18. 

PC:EtOH elevated placental expression of corticotropin-releasing hormone (Crh-r1) in male and 

female and glucocorticoid receptor (Nr3c1) in female only. 

In summary, these results demonstrate that PC:EtOH exposure alters circulating concentrations of 

corticosterone across gestation and that the long-term effects in of this exposure in offspring, may 

in part be related to these maternal hormonal alterations. The variability in plasma corticosterone 

throughout gestation, potentially as an effort to maintain homeostasis throughout pregnancy, 

indicates the burden that PC:EtOH places on the maternal system. While it is difficult to separate 

the impact of direct alcohol exposure and altered maternal physiology on offspring outcomes, this 

study highlights the complex interaction of these two perturbations.  
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5.2. Introduction  

This thesis has determined that periconceptional ethanol exposure (PC:EtOH) results in several 

changes to offspring behaviour, including increased depressive-like and altered social phenotypes, 

hypothalamic-pituitary-adrenal axis (HPA) hyperactivity, and changes within central feedback 

pathways. However, the underlying mechanism causing these changes is yet to be elucidated. 

Alcohol has the potential to act directly as a teratogen on the developing fetus; however, within this 

model, PC:EtOH exposure occurs prior to implantation and fetal development. For this reason, it is 

hypothesised that PC:EtOH may be programming offspring outcomes via alterations in the maternal 

HPA and associated physiology.  

Pregnancy is characterised by a series of remarkable physiological alterations that places the 

maternal system at an increased vulnerability to additional challenges, such as alcohol 

consumption. This includes changes to cardiovascular, renal, metabolic and hormonal physiology, 

which are discussed in detail in Section 1.11.1 Physiological changes in a healthy pregnancy. 

During early pregnancy, changes in estrogen, progesterone and glucocorticoids are essential for 

conception, implantation, regulation of anti-rejection pathways and maintenance of the early embryo 

379. These findings are evident in patients undergoing in vitro fertilisation who have reduced 

fecundability and a 90% increased risk of miscarriage when glucocorticoid levels are either greater 

or lower than healthy pregnancy glucocorticoid ranges 376,377. A sustained increase in the 

concentration of this hormone throughout the remainder of pregnancy is essential for pregnancy-

specific alterations to maternal physiology including glucose control, insulin resistance, lipoproteins, 

triglycerides and the renin-angiotensin-aldosterone system (RAAS) 372,373,534,535. The RAAS is 

essential for the regulation of maternal vasculature and has a role in fetal nutrient delivery, as well 

as maternal thirst and renal function including electrolyte handling, plasma osmolality and 

vasopressin regulation for fluid homeostasis, as well as several other systemic and nervous system 

pathways 536,537. These factors are regulated by mineralocorticoid signalling by both glucocorticoids 

and aldosterone, both of which are produced by the adrenal steroidogenic pathway. Finally, at the 

end of pregnancy, a surge in glucocorticoid concentration to three times the level of that during non-

pregnancy is essential for the final wave of fetal organ developmental, and in some species, 

regulates the onset of parturition 378–380,538,539.  

Alcohol-induced changes to the maternal endocrine system may have significant implications. 

Animal studies have shown that alcohol exposure throughout gestation stimulates the HPA of the 
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dam. These studies demonstrate increased adrenal gland weight during late gestation, as well as 

elevated glucocorticoid levels and increased HPA activity in response to stress, without a change 

in corticosterone binding globulin (CBG) concentration during mid and late gestation 387,388,531. In 

studies which treated dams with ethanol, maternal adrenalectomy ameliorated the alcohol-induced 

low birth weight 540 and reversed the immobility observed in the forced swim test (FST) 441 in both 

male and female offspring. Sexually dimorphic outcomes observed in offspring exposed to prenatal 

alcohol exposure (PAE) were ameliorated following maternal adrenalectomy, with gene expression 

changes in the anterior pituitary gland of male offspring being similar to control values 483. 

Adrenalectomy in PAE animals restored placental expression of 11β-hydroxysteroid 

dehydrogenase-2 and placental weight in females to the level of female control 389. These results 

demonstrate the necessity of glucocorticoids in the programming effects of alcohol consumption 

during pregnancy.  

Furthermore, several studies have associated prenatal stress exposure, due to either endogenous 

maternal glucocorticoids, or exogenous administration of glucocorticoids, with significant impacts 

on offspring outcomes. Human studies have associated maternal stress with adverse pregnancy-

related conditions such as preterm birth and in utero growth restriction 49–53,541,542. Relevant to this 

thesis, human studies also show an association between maternal stress, both during early 

pregnancy and throughout gestation, with altered infant behaviour, depression, schizophrenia and 

attention deficit hyperactivity disorder 270,271,543–546. In animal models, prenatal stress and exposure 

to glucocorticoids are associated with altered offspring mental illness-like phenotypes, HPA activity 

and physiological abnormalities 278,286,295,547–550. 

Therefore, it has been hypothesised that a mechanism of PC:EtOH exposure resulting in offspring 

mental illness-like phenotypes and HPA hyperactivity may be due to the maternal HPA during 

pregnancy. This chapter aimed to determine if PC:EtOH would result in altered plasma 

corticosterone and aldosterone concentrations and expression of critical adrenal regulators of 

steroidogenesis. Importantly, as the HPA is essential throughout the entirety of pregnancy, these 

outcomes will be investigated early in pregnancy, during mid-pregnancy and in late pregnancy 

where possible. 
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5.3 Methods 

5.3.1. Ethics 

All animal experiments and procedures were approved by The University of Queensland Anatomical 

Bioscience Animal Ethics Committee (AEC approval number SBS/022/12/NHMRC) and performed 

according to the Guidelines from the National Health and Medical Research Council of Australia. 

5.3.2 PC:EtOH treatment 

The details of animal treatments are outlined in Chapter Two. Briefly, Sprague Dawley dams were 

treated ad libitum with a 12.5% v/v EtOH (PC:EtOH) or control liquid diet from 4 days before 

conception, to 4 days after. Diets were made fresh daily and were provided ad libitum from 1200h 

to 0900h. Water was provided ad libitum for the remaining hours. Numerous cohorts of animals 

were used throughout this study to determine the effects of PC:EtOH on maternal parameters at 

multiple stages of pregnancy. The first cohort of rats had plasma collected from a tail tip at 

embryonic day (E) -2 and E2. As blood collection may have impaired breeding outcomes, these rats 

were then culled and not used for the remainder of this study. The second cohort of rats was treated 

as above but not subjected to tail bleeding and culled at E5. The third cohort of rats was treated as 

the E5 cohort, but on the fifth morning after mating, were returned to a standard laboratory chow 

and water ad libitum and culled on E15. Separate cohorts of rats were treated as per the E15 cohort 

but were placed in metabolic cages at E16 or culled at E20 for tissue collection. A separate subset 

of rats were treated as above and used to provide offspring for previous chapters of this thesis, 

however, were not utilised for data collected in this thesis. These rats were used for the analysis of 

weight gain over pregnancy. All dams were handled and weighed daily until end-point experiments.  

5.3.3 Plasma and tissue collection 

5.3.3.1 E-2 and E2 cohort 

Following two days of treatment, the tails of female rats were warmed and had topical analgesia 

applied before a 1mm section of the tail tip was removed and 200µL blood collected. This occurs 

between 900h and 1030h. These rats were then mated two days later, and a second tail tip blood 

collection was performed at E2. As blood collection may have impaired pregnancy establishment, 

these animals were not used for subsequent analysis. The blood was centrifuged at 3500 rpm and 

the plasma collected and frozen at -20°C for subsequent corticosterone and aldosterone analysis. 
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5.3.3.2 E5 cohort 

The second cohort of dams were transferred to a separate facility and culled via guillotine at E5. 

Maternal trunk blood (approximately 6mL) was collected in both heparin-coated or 

ethylenediaminetetraacetic acid (EDTA)-coated tubes, centrifuged at 3500 rpm and the plasma 

collected and frozen at -20°C for subsequent hormonal analysis. Tissues including liver, adrenal 

glands and pituitary glands were dissected, weighed and either snap-frozen in liquid nitrogen for 

molecular analysis or fixed in 4% paraformaldehyde for histological analysis.  

5.3.3.3 E15 and E20 cohorts 

For the E15 cohorts, dams were transported to a separate facility for tissue and blood collection. 

For the E20 cohorts, tail tip blood (200µL) was collected from E20 dams immediately prior to being 

transported to a separate facility for tissue collection. Dams were anaesthetised using 50:50 

ketamine:xylazine (0.1ml/100g body weight, Lyppard Australia Ltd, QLD, AUS). Placental regions 

were separated and stored at -80ºC for subsequent molecular analysis. Once fetal tissues were 

collected, dams were culled by cardiac puncture. Cardiac blood (approximately 3mL) was collected 

in heparin-coated or EDTA-coated tubes from the E15 cohort. All blood from both cohorts were 

centrifuged at 3500 rpm and plasma frozen at -20°C for subsequent hormonal analysis. Tissues 

were collected as described above.  

5.3.4 Plasma corticosterone and aldosterone analysis 

Plasma corticosterone was measured via an in-house radio-immunoassay as described in Section 

2.6.3 Hormone analysis. All samples were analysed in triplicate. This measured plasma 

corticosterone in plasma from dams at E-2, E2, E5, E15 and E20 with all samples from each time 

point being analysed within a single assay.  

Plasma aldosterone was measured using an enzyme-linked immunosorbent assay (ELISA) (Alpha 

Diagnostic International Inc, Texas, US) as per the manufacturer's details. Briefly, 50µl of plasma 

stored in EDTA and standards were combined with 100µl avidin conjugate into a 96 well plate and 

incubated for 60 minutes. Samples were washed with provided wash buffer, and 150µl of TMB 

substrate (provided) was added. 50µl of stop solution was used following 10 to 15-minute incubation 

on a shaker. Absorbency was measured at 450nm using and absorbency scanner (TECAN, Life 

Sciences, Switzerland). Concentration was calculated using a logarithmic line of the best-fit curve 

of the standards. The assay sensitivity ranges from 15pg/mL up to 2000pg/ml based on 50µl of 
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plasma per sample. This assay has been shown to have minimal cross-reactivity (1.1%) for 11 

deoxycorticosterone, and negligible cross-reactivity with androsterone, cortisone, 11-deoxycortisol, 

21-deoxycortisol, dihydrotestosterone, estradiol, estriol, estrone, and testosterone. All samples 

were assayed on a single plate in duplicate with an intra-assay coefficient of variation of 3.8%. 

5.3.5 Renal function  

Renal function was assessed at E16 in a separate cohort of dams that underwent metabolic cage 

testing within the homeroom facility. These dams were acclimatised to the metabolic cages for two 

hours on E14 and one hour on E15. Food and water were provided ad libitum during this time. On 

E16, dams were placed within the metabolic cages for 24 hours for quantification of food and water 

consumption, as well as urine output. Urinary electrolytes (Sodium [Na2+], Chloride [Cl-] and 

potassium [K+]) were assessed used the Cobas Integra 400 Plus Chemistry Analyzer System 

(software version 3.5, Block Scientific, NY, USA) by ion-selective electrode potentiometry with 

assay detection. The Cobas Integra 400 Plus Chemistry Analyzer System was also used to measure 

creatinine by an enzymatic colourimetric reaction.  

5.3.6 Plasma lipid measurements 

At E18, tail tip plasma was collected from dams (approximately 300µL), via a tail slice into 

ethylenediaminetetraacetic acid (EDTA) coated tubes. Samples were centrifuged at 3500 rpm and 

plasma frozen at -20°C. Using the Cobas Integra 400 Plus Chemistry Analyzer System (software 

version 3.5, Block Scientific, NY, USA), plasma low-density lipoprotein (LDL), high-density 

lipoprotein (HDL) and triglycerides were measured using enzymatic colourimetric reactions.  

5.3.7 Gene expression of maternal adrenal glands and placental labyrinth 

RNA was isolated from the left maternal adrenal gland at E5, E15 and E20 and placental labyrinth 

at E20, using the RNeasy mini kit column protocol (QIAGEN, Doncaster, Australia) and iScript cDNA 

synthesis kit (Bio-rad, Gladesville, New South Wales, Australia). Relative gene expression of key 

steroidogenic genes was investigated in adrenal glands from E5, E15 and E20. Mc2r, Star, 

Cyp21a1, Cyp11b1, Cyp11b2 and Agtr1a were measured using the RT2 Profiler PCR Array 

(QIAGEN) and normalised to the geomean of housekeeper genes Ppib, Gusb and Rn18S. Nr3c1 

and Hsp90a1 in adrenal glands and labyrinth gene expression of Crh, Crh-r1, Nr3c1, Cyp17a1 was 

measured using TaqMan assay on demand primers (Applied Biosystems, Foster City, CA) and 

normalised to the expression of Rn18S. Expression was analysed by comparing to the average of 
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control dams and by using the ΔΔCT method as described in Chapter Two for adrenal glands, and 

compare to the average of male control for the placental labyrinth.  

5.3.8 Statistics 

All graphs and statistical tests were performed using GraphPad Prism 7 software (GraphPad, Inc., 

San Diego, CA). As samples were collected from different cohorts of rats, no analysis was made 

between animals of different gestational ages except for the change in body weight over gestation, 

which was collected from animals from the E20. Statistical significance was accepted when p-values 

were significantly less than 0.05 (*p< 0.05, **p< 0.01, ***p < 0.001). All data presented as the mean 

± standard error of the mean. Student t-tests were used to compare control and PC:EtOH groups 

for tissue weights, gene expression, hormone analysis, urinary and plasma parameters. When an 

unequal variance was determined, Mann-Whitney non-parametric tests were used. Placental gene 

expression was analysed using a two-way measured of analysis of variance (ANOVA), with a 

Bonferroni posthoc analysis. Bodyweight gain over gestation was measured using an ANOVA.  
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5.4 Results 

5.4.1 Body and relative organ weights throughout pregnancy 

The body weight and change in body weight of dams significantly increased over gestation (Ptime 

< 0.001, Figure 5. 1A and B) however, there was no significant difference due to treatment. At 

post-mortem, maternal weight body weight at E5, E15 and E20 were not significantly different in 

either control or PC:EtOH dams (Table 5. 1). Furthermore, maternal organ weights were not 

significantly different following treatment with PC:EtOH at any time points (Table 5. 1). 
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Figure 5. 1: Bodyweight (grams [g], A) and change (∆) in body weight (as gram body weight change 

from the day of mating [g/gBW], B) of dams from embryonic day -4 to 20, exposed to control (white 

circles) or PC:EtOH (black circles) diet. Data presented as the mean ± standard error of the mean 

and analysed by two-way repeated-measures Analysis of Variance, with a Bonferroni posthoc 

analysis. Sample size: control = 15, PC:EtOH = 16.  
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Table 5. 1: Maternal body weight, relative total adrenal and relative pituitary weight following exposure to control or PC:EtOH diet 

at embryonic day (E) 5, 15 and 20.  

 

Data presented as the mean ± standard error of the mean, analysed by t-test. Sample size (n) is listed in the table. Sig: 

Significance, BW: body weight, g: grams, mg: milligrams, mg/gBW: milligrams per gram body weight. 

aAverage of two adrenal glands. 

bTotal pituitary weight, including anterior gland, posterior gland and the median eminence. 

Organ 
 E5  E15  E20 

 Control  PC:EtOH  Sig  Control  PC:EtOH  Sig  Control  PC:EtOH  Sig 

Bodyweight (g) 
 282 ± 6  269 ± 7  

NS 
 333 ± 12  349 ± 8  

NS 
 376 ± 6  364 ± 10  

NS 
 (n = 8)  (n = 11)   (n = 9)  (n = 9)   (n = 10)  (n = 11)  

Relative adrenal  

(mg/gBW)a 

 0.21 ± 0.02  0.22 ± 0.02  
NS 

 0.21 ± 0.02  0.22 ± 0.02  
NS 

 0.20 ± 0.01  0.22 ± 0.01  
NS 

 (n = 8)  (n = 10)   (n = 9)  (n = 9)   (n = 14)  (n = 15)  

Relative pituitary 

(mg/gBW)b 

 0.06 ± 0.01  0.05 ± 0.01  
NS 

 0.04 ± 0.01  0.04 ± 0.01  
NS 

 0.04 ± 0.01  0.04 ± 0.01  
NS 

 (n = 5)  (n = 9)   (n = 8)  (n = 6)   (n = 6)  (n = 5)  
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5.4.2 Early gestation: Hormonal status and adrenal steroidogenesis 

At E-2, plasma corticosterone was significantly increased by 45% in dams treated with 

PC:EtOH compared to animals treated with a control diet (P < 0.05, Figure 5. 2A). There was 

no effect of PC:EtOH on plasma corticosterone at E2 (Figure 5. 2B). However, following the 

rats return to chow at E5, there was an observed reduction in plasma corticosterone by 62% (P 

< 0.05, Figure 5. 2C).  

Given that dams treated with PC:EtOH showed altered plasma corticosterone concentrations 

at E5, relative expression of adrenal gland steroidogenesis genes was analysed. Interestingly, 

PC:EtOH did not alter expression of Mc2r, StAr, Cyp21a1, Cyp11b1, Hsd11b2 or Nr3c1 at E5 

(Figure 5. 3). Interestingly, Cyp11b2, Agtr1a and Hsp90a1 (Figure 5. 3, Ptrt < 0.05) expression 

were significantly higher in these dams.  
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Figure 5. 2: Plasma corticosterone concentrations (ng/mL) at embryonic day (E) -2 (A), E2 (B) 

and E5 (C) in dams following exposure to control (white bars) or PC:EtOH (black bars) diet. 

Data presented as the mean ± standard error of the mean and analysed by Student’s t-test or 

Mann-Whitney test, as required. *p < 0.05. Sample size: E-2; control = 7, PC:EtOH = 8. E2; 

control = 4, PC:EtOH = 6. E5; control = 8, PC:EtOH = 10.  
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Figure 5. 3: Relative adrenal gland gene expression of melanocortin receptor 2 (Mc2r), 

steroidogenic acute protein (Star), cytochrome P450 family 21 subfamily A polypeptide 1 

(Cyp21a1), cytochrome P450 family 11 subfamily B polypeptide 1 (Cyp11b1), 11-beta-

dehydrogenase isozyme 2 (Hsd11b2), cytochrome P450 family 11 subfamily polypeptide 2 

(Cyp11b2), angiotensin 2, receptor, type 1a (Agtr1a), nuclear receptor subfamily 3 group C 

member 1 (Nr3c1) and heat shock protein 90 alpha 1 (Hsp90a1) in dams at embryonic day (E) 

5 exposed to control (white bars) or PC:EtOH (black bars) treatments. Data presented as the 

mean ± standard error of the mean and analysed by Student’s t-test or Mann-Whitney non-

parametric test, as required. *P<0.05. Sample size = 8 per treatment. 
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5.4.3 Mid to late gestation: Hormonal status and adrenal steroidogenesis 

PC:EtOH did not result in changes to plasma corticosterone in dams at E15 (Figure 5. 4). 

However, PC:EtOH induced a 30% increase in plasma corticosterone concentration in dams at 

E20 (P < 0.05, Figure 5. 4B). However, there was no significant difference in relative expression 

of steroidogenic genes, Mc2r, Star, Hsd11b2, Cyp11b2, Agtr1a or glucocorticoid signalling 

genes, Nr3c1 or Hsp90a1 in dams at E15, however there was a significant increase in 

expression of Cyp21a1 (P < 0.05) and Cyp11b1 (P < 0.001) at this age (Figure 5. 5). PC:EtOH 

did not change gene expression of key steroidogenic genes Mc2r, Star, Cyp21a1, Cyp11b1, 

Hsd11b2, Cyp11b2, Agtr1a, Nr3c1 or Hsp90a1 at E20 (Figure 5. 6). 
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Figure 5. 4: Plasma corticosterone concentration (ng/mL) in dams at embryonic day (E)15 (A) 

and E20 (B), exposed to control (white bars) or PC:EtOH (black bars) diet. Data presented as 

the mean ± standard error of the mean and analysed by students t-test. Sample size: E15; 

control = 9, PC:EtOH = 8. E20; control = 8, PC:EtOH = 9. 
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Figure 5. 5: Relative adrenal gland gene expression of melanocortin receptor 2 (Mc2r), 

steroidogenic acute protein (Star), cytochrome P450 family 21 subfamily A polypeptide 1 

(Cyp21a1), cytochrome P450 family 11 subfamily B polypeptide 1 (Cyp11b1), and 11-beta-

dehydrogenase isozyme 2 (Hsd11b2), cytochrome P450 family 11 subfamily polypeptide 2 

(Cyp11b2), angiotensin 2, receptor, type 1a (Agtr1a), nuclear receptor subfamily 3 group C 

member 1 (Nr3c1) and heat shock protein 90 alpha 1 (Hsp90a1) in dams at embryonic day (E) 

15, exposed to control (white bars) or PC:EtOH (black bars) diet. Data presented as the mean 

± standard error of the mean and analysed by Student’s t-test or Mann-Whitney non-parametric 

test, as required. Sample size = 8 per treatment. 
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Figure 5. 6: Relative adrenal gland gene expression of melanocortin receptor 2 (Mc2r), 

steroidogenic acute protein (Star), cytochrome P450 family 21 subfamily A polypeptide 1 

(Cyp21a1), cytochrome P450 family 11 subfamily B polypeptide 1 (Cyp11b1), and 11-beta-

dehydrogenase isozyme 2 (Hsd11b2), cytochrome P450 family 11 subfamily polypeptide 2 

(Cyp11b2), angiotensin 2, receptor, type 1a (Agtr1a), nuclear receptor subfamily 3 group C 

member 1 (Nr3c1) and heat shock protein 90 alpha 1 (Hsp90a1) in dams at embryonic day (E) 

20, exposed to control (white bars) or PC:EtOH (black bars) diet. Data presented as the mean 

± standard error of the mean and analysed by Student’s t-test or Mann-Whitney non-parametric 

test, as required. Sample size = 8 per treatment. 
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5.4.4 Maternal aldosterone concentration 

As there were significant changes observed in gene expression of Cyp11b2 and Agtr1a at E5, 

plasma aldosterone concentrations were investigated. However, PC:EtOH exposure did not 

result in any significant differences in aldosterone concentration at either E5 or E15 (Figure 5. 

7A and B, respectively).  
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Figure 5. 7: Plasma aldosterone concentration (ng/mL) in dams at embryonic day (E) 5 (A) and 

E15 (B), exposed to control (white bars) or PC:EtOH (black bars) diet. Data presented as the 

mean ± standard error of the mean and analysed by students t-test. Sample size: E5; control = 

9, PC:EtOH = 8. E15; control = 8, PC:EtOH = 9 



 

148 | P a g e  

 

5.4.5 Maternal renal and metabolic parameters 

As HPA function within the dam is essential for regulating renal and metabolic pathways, these 

parameters were assessed at E16 and E18 respectively.  

Food and water consumption, as well as urinary flow over the 24 hours of metabolic cage 

testing, was not significantly altered following PC:EtOH exposure (Table 5. 2). Urinary excretion 

of electrolytes and creatinine was not significantly altered between control and PC:EtOH dams 

over the 24 hours (Table 5. 2). HDL, LDL or triglycerides in the plasma of dams at E18 were 

not affected by PC:EtOH exposure (Table 5. 2). 
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Table 5. 2: Maternal urinalysis following metabolic cage testing at embryonic day 16 and plasma metabolic parameters at 

embryonic day 18. 

 Parameter  Control  PC:EtOH  Sig 

E16 Urinary analysis 

Body Weight (g)  322 ± 7  311 ± 5  NS 

Food consumption (g)  25.9 ± 4.5  34.42 ± 10  NS 

Water consumption (mL)  34.7 ± 3.6  34.1 ± 2.5  NS 

Urinary excretion (mL/gBW)  0.04 ± 0.01  0.03 ± 0.01  NS 

Urinary Sodium (mmol/L)  65.7 ± 7.3  88.7 ± 13.2  NS 

Urinary Chloride (mmol/L)  105.1 ± 7.6  140.3 ± 14.8  NS 

Urinary Potassium (mmol/L)  209.1 ± 14.2  255.7 ± 17.4  NS 

E18 Plasma metabolic parameters 

HDL (mmol/L)  1.2 ± 0.3  1.0 ± 0.3  NS 

LDL (mmol/L)  0.5 ± 0.1  0.8 ± 0.3  NS 

Triglycerides (mmol/L)  4.7 ± 0.3  1.5 ± 0.5  NS 

BW: body weight. g: grams. HDL: high-density lipoprotein, LDL: low-density lipoprotein. E: embryonic day.  

Sample size = 7 per treatment group. Data presented as mean ± standard error of the mean. Analysed by students t-test or Mann-

Whitney non-parametric test. Sig: significance, NS: non-significant. 
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5.4.6 Placenta: Labyrinth gene expression 

Given that maternal corticosterone was significantly elevated at E20, we investigated the 

expression of genes in the placenta that are known to be altered by or contribute to fetal 

exposure to glucocorticoid exposure. PC:EtOH significantly increased the relative gene 

expression of Crh-r1 in both male and female labyrinth (Figure 5. 8A, Ptrt < 0.01), however only 

increased expression of Nr3c1 in the female labyrinth, but not male was observed (Figure 5. 

8B, p< .05). There was no significant difference in Nr3c2 (Figure 5. 8C) following PC:EtOH in 

either male or female placenta. 
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Figure 5. 8: Relative expression of glucocorticoid signaling genes, corticotropin-releasing 

hormone, receptor 1 (Crh-r1, A), nuclear receptor subfamily 3 group C member 1 (Nr3c1, B), 

and nuclear receptor subfamily 3 group C member 2 (Nr3c2, C) in labyrinth of male and female 

placenta at embryonic day (E) 20 following control (white bars) or PC:EtOH (black bars) 

treatment. Data are presented as the mean ± SEM and analysed by a two-way analysis of 

variance, with a Bonferroni posthoc test, *P<0.05. Sample size: Control; male = 6, female = 8. 

PC:EtOH; male = 8, female = 9. 
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5.5 Discussion 

There has been minimal research performed to determine the impacts of ethanol consumption 

on maternal physiology across pregnancy. As such, this study investigated how alcohol intake 

around the time of conception influences maternal glucocorticoid concentrations over gestation 

using a highly clinically relevant animal model of alcohol consumption. Rats exposed to 

PC:EtOH had significantly greater plasma corticosterone concentrations during ethanol 

treatment prior to conception (E-2). However, this was not observed following conception (E2) 

despite this time point being within the PC:EtOH period. During early gestation (E5), PC:EtOH 

significantly reduced plasma corticosterone, although there was no significant difference in 

expression of adrenal steroidogenesis genes related to glucocorticoid signalling, except 

Hsp90a1. Interestingly, there were elevations in the relative gene expression of adrenal 

markers of RAAS, Cyp11b2 and Agtr1a at E5, without a significant increase in plasma 

aldosterone at E5 or E15. In mid-gestation, at E15, PC:EtOH exposure resulted in significant 

elevations in Cyp21a1 and Cyp11b1 without changes in plasma corticosterone. At E16, renal 

function was not a by altered PC:EtOH and similarly at E18 plasma lipid measures were not 

different. Interestingly, at the end of gestation (E20), plasma corticosterone was elevated 

despite no changes to the expression of steroidogenic genes at this age. At E20, placental 

expression of glucocorticoid-responsive genes were elevated in the placenta suggests that the 

elevated corticosterone in addition to early exposure to PC:EtOH at this age may be impacting 

placental function. Overall, these dynamic alterations to maternal corticosterone following 

PC:EtOH is highly likely to be contributing to the observed programming of HPA function and 

regulation in offspring.  

5.5.1 Early gestation 

It is well accepted that alcohol consumption stimulates the HPA in both non-pregnant humans 

and animals 527,551. It was therefore not surprising that this study demonstrated a significant 

increase in corticosterone at E-2 in dams treated with PC:EtOH. Interestingly, there was no 

increase in corticosterone following conception at E2, but a decrease in corticosterone at E5. 

To our knowledge, this is the first time that these dynamic changes in plasma corticosterone 

concentration have been observed at such an early time point. These results may suggest 

significant implications for pregnancy establishment and progression when alcohol is 

consumed at this time. Disrupted glucocorticoid status around the time of conception is known 
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to result in reduced fertility, altered ovarian and uterine receptivity and maintenance of a 

successful pregnancy. In vitro fertilisation patients with either increased or decreased cortisol, 

have reduced fecundability and a 90% increased risk of miscarriage 376,377. It is important to 

note that despite changes in corticosterone at E-2, there was no significant difference in mating 

success within this study.  

Contrary to the hypothesis of increased plasma corticosterone concentration throughout 

gestation following PC:EtOH, the corticosterone concentrations in PC:EtOH dams at E2 were 

similar to control, with a decrease in concentration at E5. One suggestion for these outcomes 

is an attempt to return to an optimal physiological baseline regardless of alcohol exposure, 

independent of the hormonal changes during early gestation. A study carried out by Wand et 

al. demonstrated a downregulation within the HPA of animals with repeat ethanol exposure, 

due to a reduction in POMC synthesis, and therefore decreased ACTH production and 

downstream corticosterone production 552. Furthermore, it has been suggested that this 

habituation may also impair the ability for the HPA to respond to stressors. These claims also 

support the decrease in plasma corticosterone observed at E5, whereby this habituation may 

be overcompensatory for the PC:EtOH treatment. 

Interestingly, a study of periconceptional undernutrition in a sheep model demonstrated 

reduced maternal cortisol during mid-gestation (day 42 to 80) 553. Similarly, a study by 

Bloomfield et al. utilised a sheep model of undernutrition for 60 days before mating, and 

revealed maternal HPA suppression, with significantly reduced cortisol during treatment 385, 

suggestive of overcompensatory regulatory pathways. Limited literature is available for the 

impacts of decreased glucocorticoid levels during early pregnancy on long-term outcomes. 

However, it has been demonstrated that patients with undiagnosed Addison’s Disease, 

characterised by underproduction of cortisol, show reduced fertility and increased risk of 

spontaneous abortion 554–556. Women who suffer from Post-Traumatic Stress Disorder, where 

reduced plasma cortisol is observed, also demonstrate an increased risk of early complications 

such as ectopic pregnancies and miscarriage 557. It is important to note that despite the changes 

in corticosterone presented in this chapter, there was no difference in the number of resorption 

sites within the uterus during early gestation, suggesting no early spontaneous abortions or 

fetal losses, however, increased resorptions/non-viable fetuses was observed later in 

pregnancy 102,558.  
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There are some pathways that may be impacted following PC:EtOH in dams, contributing to 

the altered plasma corticosterone concentration. These adaptations may include changes to 

function and signalling in the hypothalamus, pituitary, adrenal and associated hormones, or 

within the limbic system of the dams, all which are highly dynamic during the periconceptional 

period 559–561. Hormonal changes including prolactin-like hormones which are secreted into the 

maternal system to mediate a range of biological processes including modulation of enzymes 

involved in the metabolism of hormones such as estrogen and progesterone 562 may be 

contributing to these results, with many having interactions with glucocorticoid pathways. 

Although these hormones were not significantly changed at a later stage in gestation (E5 and 

E7 respectively) within this model 558, several elements in downstream pathways were altered 

within the uterus. This may suggest that other maternal elements related to these hormonal 

pathways may be altered. As genes associated with the production of glucocorticoids (Mc2r, 

StAr, Cyp21a1, Cyp11b1, and Hsd11b2) in the adrenal gland were not significantly different at 

E5, the reduction in plasma corticosterone may be a result of indirect changes. Corticosteroid 

Binding Globulin is regulated by estrogen, and upregulation of this would reduce free plasma 

corticosterone concentration resulting in the reduction observed at E5.  

Interestingly, at E5, there was a significant increase in gene expression of Cyp11b2 and Agtr1a. 

This suggested that PC:EtOH may be inducing alterations to the RAAS, crucial in regulating 

the production and release of plasma aldosterone. Furthermore, Gardebjer et al. demonstrated 

that dams treated with the PC:EtOH diet had greater water consumption only during the 

treatment period 102. Interestingly though, there was no significant change in plasma 

aldosterone concentration at E5. Regardless of these findings, as it has been indicated in the 

literature that alcohol stimulates the RAAS 563, it would be advantageous to interrogate the 

impact of PC:EtOH on this system earlier in pregnancy and even before conception.  

5.5.2 Mid and late gestation  

This study hypothesised that PC:EtOH would program a sustained elevation in plasma 

corticosterone concentration. Plasma corticosterone was not elevated by PC:EtOH at E15, 

however, at E20 an increase was observed. These results suggest that there may have been 

critical adaptations to the maternal HPA to normalise corticosterone concentrations by E15 but 

may be contributing to the elevated corticosterone at E20. Indeed, the increased gene 

expression of Cyp21a1 and Cyp11b2 in PC:EtOH dams at E15 is likely to have a role in the 
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observed increased concentrations several days later at E20. The overcompensation of plasma 

corticosterone at E20 is similarly seen in a study by Bloomfield et al. which demonstrated that, 

upon return to normal nutritional status following periconceptional undernutrition, maternal HPA 

activity returned to a level higher than baseline for several weeks, albeit determined by 

measurement of ACTH 385. These results collectively suggest that insults during the 

periconceptional period may result in a ‘carry-over’ adaptation whereby HPA activity is elevated. 

This may have adverse impacts on a range of maternal parameters as well as impacts on fetal 

development. Indeed, within our laboratory, studies have demonstrated increased resorptions 

at both E15 558, and at E20 in separate cohorts, as well as in utero growth restriction at E20 102, 

it may be implied that this PC:EtOH induced elevation in maternal corticosterone has significant 

implications on fetal viability and programming outcomes in those fetuses that survived 

pregnancy.  

Glucocorticoids during late pregnancy are essential for regulating maternal metabolism, 

ensuring the appropriate fetal nutrient provision, as well as preparing the fetus for birth, 

including final maturation of the lungs, thermoregulatory systems and stimulation of parturition 

564–567. However, considering elevated glucocorticoid concentrations at E20, it was interesting 

to observe that at E16 renal parameters were unaffected by PC:EtOH, and at E18 metabolic 

parameters were not significantly altered. Although this would need to be assessed at E20 

when corticosterone changes were observed, this suggests that appropriate renal and 

metabolic homeostasis is maintained in dams exposed to PC:EtOH. In another preliminary 

study within our laboratory, there was no evidence of elevated maternal glucose or insulin, with 

dams responding appropriately to glucose tolerance tests.  

5.5.3 Placental labyrinth 

A key link between the elevated maternal glucocorticoids at E20 with impaired fetal 

development and offspring outcomes may be due to placental changes observed at this time-

point. Numerous studies within our laboratory have investigated the link between PC:EtOH and 

the placenta with evidence demonstrating a number of changes including in placental structure, 

morphology and gene expression, associated with in utero growth restriction 102. Furthermore, 

PC:EtOH exposure resulted in elevated gene expression of Hsd11b2 in both male and female 

placenta, suggesting perturbed glucocorticoid signalling pathways 102. As the placenta 

regulates fetal exposure to elevations in maternal glucocorticoid concentrations and is 
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susceptible to the effects of glucocorticoids itself 568, this study aimed to further characterise 

changes in these pathways following this exposure. Increases in gene expression of Crh-r1 in 

both male and female offspring, with only a significant increase in Nr3c1 in female offspring, 

suggest that the placenta is adapting to the elevations in maternal corticosterone. These sex-

specific responses to glucocorticoids may be contributing to disease phenotypes that are more 

overt in female offspring. While we would like to propose that these sex-specific placental 

adaptations may be occurring as a result of the increased maternal corticosterone 

concentrations at E20, additional studies are required to determine the relative contribution of 

this secondary insult and PC:EtOH exposure to the observed phenotype in offspring.  

5.5.4 Limitations  

While this study was designed with the intention of investigating maternal outcomes, by its very 

nature, this created limitations that suggest additional studies are required. As a large number 

of pregnancies were required to generate all the sample requires for this chapter, as well as 

other studies within the laboratory, maternal plasma samples were collected from several 

cohorts over the space of three years. Plasma samples, while collected at the same time of 

day, were not all from ‘unstressed’ rats, with dams at E5 and E15 having been transported prior 

to collection. These experimental conditions may have implications for the results collected. 

Ongoing studies using rats that have corticosterone concentrations measured in the same 

individuals at multiple time points of pregnancy are being carried out to confirm results observed 

in the current study. Additionally, this study is one of the first of its kind, particularly in regards 

to investigating the impact of alcohol during the periconceptional period on the maternal HPA 

over pregnancy. For this reason, a limitation in this study is the lack of direct comparison to 

other studies, but rather comparing and contrasting to other perturbations. Furthermore, the 

perturbed trajectory of maternal corticosterone concentration due to PC:EtOH may have 

significant implications on fetal adrenal gland function and development. Studies have 

determined that when maternal adrenalectomy has been performed, the fetal adrenal gland 

was activated to partly return the concentration of glucocorticoids to normal 569, potentially 

damaging their normal development, as well as influencing the maternal physiological system. 

Additionally, studies removing the fetal adrenal gland during pregnancy resulted in reduced 

maternal ACTH concentration and reduced corticosteroid concentration, suggesting that the 

impact of PC:EtOH on maternal and fetal physiology may be bidirectional.  
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5.5.5 Overall significance 

The perturbations in HPA function demonstrated in this model as a result of PC:EtOH may have 

significant implications for both early and late pregnancy outcomes. The rates of infertility in 

Australia and worldwide ranging from 3 to 16 % of all women 570,571. Given that PC:EtOH 

increases glucocorticoid production around conception, low rates of fertility may be partially due 

to high rates of alcohol consumption among women of reproductive age. HPA dysfunction in 

pregnancy increases the risk of pregnancy complications such as pre-eclampsia, hypertension 

and gestational diabetes. These subsequently increase the risk of post-partum cardiovascular 

disease and diabetes mellitus 572–577, highlighting that alcohol consumption should be avoided 

to minimise the risk of these complications. 

Furthermore, long term maternal adaptations to alcohol exposure around conception may 

impair later HPA function having a significant implication on maternal health outcomes. 

Previous epidemiological studies following women whose pregnancies coincided with 

environmental disasters have indicated that elevated maternal glucocorticoids increase the risk 

of long-term adverse maternal outcomes, including cardiovascular conditions 578–580 and higher 

incidences of mental illness 542,581–583. As the HPA is critical for mental health, and given that 

suicide is the leading cause of death in a pregnant woman 568,584, this again supports the 

importance of avoiding alcohol around conception. 

Overall, alcohol consumption during pregnancy is preventable, and thus it is essential to 

increase knowledge of the impacts of alcohol consumption around the time of conception, and 

how this may contribute to the vast array of adverse outcomes that occur commonly in 

pregnancy. 

5.5.6 Conclusions  

To our knowledge, this is the first study that has investigated the impacts of PC:EtOH on 

maternal physiology, and contributes to a sparse field of knowledge. This research determined 

that PC:EtOH results in a dysregulation of the HPA contributing to both elevated and 

suppressed corticosterone concentrations in a gestational age-dependent manner. These 

findings suggest an essential role of the HPA in contributing to the programmed disease 

outcomes demonstrated in other chapters of this thesis.  
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Chapter Six 

 

General Discussion 

 

“The entire universe rested at my mothers’ feet”  
- Rupi Kaur-
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6.1 Thesis summary  

The primary focus of this thesis was to determine the impact of PC:EtOH exposure on the 

HPA of both mother and offspring in a rat model. This research is critical as up to 50% of 

pregnancies are unplanned 44,45, and 30% of women consume alcohol during the 

periconceptional period 44,46. These statistics highlight that many pregnancies are exposed 

to alcohol during this early period and yet the full impact on both the mother and offspring is 

poorly understood. There were three predominant motives for investigating the impact of 

PC:EtOH on maternal and offspring HPA. Firstly, alcohol exposure throughout the entirety 

of pregnancy, or at later stages in gestation, is well accepted to result in altered offspring 

behaviour and HPA activity. Secondly, the HPA is essential for the homeostatic regulation 

of many systems within the body, and therefore, perturbations within this system may 

underlie many of the adverse outcomes observed in this model. Thirdly, the large array of 

data highlighting that the HPA is affected in many models of a perturbed in utero 

environment, suggest that elevated maternal glucocorticoids may be a common mechanism 

of developmental programming. 

This chapter will discuss the findings of this thesis, which commenced with investigating the 

impacts of PC:EtOH on offspring behavioural outcomes, and HPA activity responses to 

physiological and psychological stressors (Chapter Three). This was followed by 

investigations to determine if HPA function is perturbed in unstressed offspring and how 

regulation of the HPA may be altered following PC:EtOH. This thesis then aimed to 

investigate if PC:EtOH is programming these offspring changes via alterations in maternal 

HPA physiology. These findings will be discussed within the context of the literature and 

other results demonstrated in this model. Finally, possible mechanisms (
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Figure 6. 2), limitations and future directions will be discussed. 

6.2 Chapter summaries  

6.2.1 Chapter Three: Periconceptional ethanol exposure alters behaviours and HPA 

activity in young adult offspring 

Chapter Three aimed to determine if PC:EtOH programs mental-illness like phenotypes and 

determine if PC:EtOH programmed HPA hyperactivity following both a physiological 

(DST/CST) and psychological (restraint) stressor. Finally, the adrenal steroidogenic gene 

expression was assessed.  

Results of this chapter demonstrated that: 

1. Both male and female offspring exposed to PC:EtOH displayed altered behaviour, 

indicative of a depressive-like phenotype, whereas only female offspring showed 

increased social interaction. 

2. PC:EtOH exposed offspring demonstrated a hyperactive HPA response to the 

DST/CST but not the restraint stress, with sexual dimorphism observed in the results.  

3. PC:EtOH did not program any changes in gene expression of key regulators of the 

adrenal steroidogenic pathway in either male or female offspring. 

 

6.2.2 Chapter Four: Periconceptional ethanol exposure alters the stress axis in adult 

female but not male rat offspring 

Next, Chapter Four investigated basal plasma corticosterone concentrations and aimed to 

determine if the expression of adrenal steroidogenic gene expression is altered at an older 

age in offspring exposed to PC:EtOH. This study also investigated plasma corticosterone 

and cardiovascular responses following a restraint stressor in aged rats. Finally, this chapter 

investigated hippocampal gene expression to determine if PC:EtOH altered pathways 

typically associated with HPA activity.  

Results of this chapter demonstrated that: 

1.  PC:EtOH decreased corticosterone concentrations in both aged and adult female 

(but not male) offspring and altered the cardiovascular response to the restraint 

stress.  
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2. PC:EtOH did not impact adrenal steroidogenesis gene expression in aged male or 

female offspring.  

3. PC:EtOH did not alter gene expression in the hypothalamus, but resulted in elevated 

expression of regulatory genes in the hippocampus (Nr3c1 and Hsp90a1) of female 

PC:EtOH offspring only.  

6.2.3 Summary of offspring outcomes in Chapter Three and Four 

Overall, these results suggest that PC:EtOH may program mental illness-like phenotypes in 

offspring exposure, with underlying HPA hyperactivity. However, female offspring exposed 

to PC:EtOH may be more susceptible to adverse outcomes, with adult female offspring 

demonstrating reduced plasma corticosterone concentration. Aged female offspring also 

showed a significantly reduced plasma corticosterone but increased pressor 

responsiveness to restraint. These outcomes may be due to altered regulatory mechanisms 

within the hippocampus.  

 

6.2.4 Chapter Five: Periconceptional ethanol exposure alters maternal and placenta 

glucocorticoid pathways throughout gestation in a rat 

As altered phenotypes were observed within offspring following PC:EtOH exposure, the 

focus of this thesis turned to determine possible mechanisms. The maternal HPA, related 

pathways and glucocorticoid signalling in the placenta are essential in the development of 

the fetal HPA, offspring HPA function and behaviour. As such, Chapter Five investigated the 

impact of PC:EtOH consumption on maternal corticosterone, aldosterone and adrenal 

steroidogenesis pathways at significant stages in gestation. This was followed by an 

investigation of key glucocorticoid-related gene expression in the placenta.  

Results of this chapter demonstrated that: 

1. PC:EtOH resulted in alterations in maternal plasma corticosterone concentrations, 

including a decrease at E5 and an increase at E20 compared to animals on a control 

diet.  

2. PC:EtOH resulted in increased gene expression of steroidogenic genes (Cyp21a1 

and Cyp11b1) at E15. 

3. PC:EtOH programmed altered gene expression in genes regulating the RAAS system 

(Cyp11b2 and Agtr1a) within the adrenal gland at E5. However, there were no 

changes in plasma aldosterone at E5 or E15, renal excretion of sodium, potassium 
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or chloride at E16, or plasma concentrations of low- and high-density lipoprotein or 

triglycerides at E18.  

4. PC:EtOH resulted in increased gene expression of Crh-r1 in placentas of both male 

and female fetuses and increased glucocorticoid receptor gene (Nr3c1) in female 

fetuses.  

 

Overall, these results suggest that the HPA is altered in the mother, both during treatment 

(direct effects) and at the end of gestation (indirect effects), two weeks after the end of 

treatment. Changes were also observed late in gestation in the placenta throughout 

gestation, following PC:EtOH. As the appropriate function and regulation of the HPA is 

essential for the establishment and progression of pregnancy and fetal development, these 

changes are likely to be contributing to the adverse outcomes observed within the offspring.  

Although the research conducted during this PhD was investigated in the above order, the 

maternal HPA was altered during pregnancy and is likely central to the offspring outcomes. 

For this reason, this chapter will firstly discuss direct and indirect impacts of PC:EtOH on 

maternal and gestational outcomes, followed by a discussion of outcomes observed in adult 

and aged offspring.  

6.3 The impact of PC:EtOH on maternal physiology 

6.3.1 Maternal outcomes  

Prenatal alcohol exposure and other perturbations related to the DOHaD hypothesis 

highlight, the effect of the maternal environment, can have on offspring health and disease 

outcomes. However, often the research focuses entirely on the offspring, and less research 

has been performed to comprehensively determine the impact of the perturbation itself on 

the maternal physiology. This is particularly true for insults and maternal behaviours around 

the time of conception, such as alcohol consumption, poor diet and smoking. Often it is 

assumed that once these are ceased or improved, pregnancy will progress healthily. 

However, this may not be the case as the maternal response to the perturbation may induce 

inappropriate pregnancy-related physiological changes likely to further contribute to poor 

fetal development and programming outcomes. Therefore, understanding the impact of the 

perturbation on maternal pathways would provide essential insight into mechanisms 

underlying offspring outcomes. Much literature has determined that the HPA is one such 

maternal system that may underlie outcomes following several perturbations. 
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6.3.1.1 Direct effects of PC:EtOH exposure 

Within this model, PC:EtOH exposure occurred from 4 days prior to 4 days following 

conception, being removed on the morning of embryonic day 5. This is comparable to one 

menstrual cycle prior to pregnancy and the first six days of human pregnancy with a 

schematic shown in Figure 6. 1.  

 

 

Figure 6. 1: Timing of peri-implantation development in the human and rat. Note that the 

peri-implantation period in humans and rodents (rat and mice) is comparable, allowing this 

model to be used to investigate the direct effects of periconceptional alcohol exposure. 

Image care of Gardebjer 585. 

During this window of exposure, the ‘direct’ effects of alcohol exposure were investigated. 

As alcohol is well known to stimulate the HPA, the increased maternal corticosterone 

concentrations following two days of treatment (E-2) was predicted. This may have had 

significant impacts on pregnancy establishment and development. Studies of in vitro 

fertilisation demonstrated mothers had perturbed cortisol concentrations resulting in 

reduced fecundity and a 90% increased risk of miscarriage 376,377. 

Interestingly, corticosterone concentration was comparable to control levels at E2, which 

may be indicative of maternal adaptations to normalise hormone levels. Contrary to the initial 

hypothesis that PC:EtOH treatment would increase plasma corticosterone throughout 

gestation, levels were significantly reduced at E5. This may suggest that these adaptations 

are maintained following alcohol exposure and would be of interest to investigate further in 

the days following cessation. It is important to note that, as discussed in Section 6.8 

Limitations and future directions, this study had limitations, with plasma samples collected 
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from two separate cohorts. Future studies will investigate the ontology of corticosterone 

following PC:EtOH to further support this result.  

Our previous work has demonstrated maternal hyperglycemia and increased water 

consumption during this period 102,367, which may be consequential of PC:EtOH induced 

changes to plasma corticosterone. Additionally, a number of other changes at this time have 

been determined within the Moritz laboratory (Table 6. 1). This includes reduced estrogen 

receptor expression, and changes to both the progesterone receptor and downstream gene 

pathways in the uterus, as well as physiological changes within the dam such as elevated 

triglyceride concentrations. These results indicate that this time is highly susceptible to the 

effects of PC:EtOH. As E5 corresponds with the time of implantation (Figure 6. 1), this 

suggests that the establishment of pregnancy may be impacted. Indeed, Kalisch-Smith et 

al. have determined that PC:EtOH impairs blastocyst outgrowth, reduces trophoblast 

differentiation, and alters embryo-uterine communication at E5 to E6 558.  

To our knowledge, reduced glucocorticoid concentrations during early gestation have not 

been observed in other prenatal ethanol exposure models. However, low glucocorticoid 

concentrations in early pregnancy have been observed in models of undernutrition 

351,382,385,553,586, which also demonstrate altered development of the HPA and hyperactivity 

of the axis within the fetus 351,382,586 (discussed in Section 6.3.1.2 Indirect effects of PC:EtOH 

exposure). It is important to note that in the current PC:EtOH model, both control and 

treatment dams were receiving adequate and equivalent nutrition, including total calories 

and amounts of macro and micronutrients. However, the similar results across various 

perturbations indicate the converging mechanisms involving the maternal HPA This 

suggests that key role this system has in programming offspring HPA dysfunction. 
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Table 6. 1: The direct impacts of PC:EtOH on maternal parameters. Results are unpublished 

unless referenced. 

Parameter  E-2  E2  E5 

Growth  ↔  ↔  ↔ 

Corticosterone  ↑    ↓ 

Maternal hyperglycaemia  ↑ (E-4 to 4)  ↑ (E-4 to 4)   

Water consumption102  ↑ (E-4 to E0)  ↑ (E0 to E4)   

Aldosterone      ↔ 

Estrogen/Progesterone      ↔ 

Estrogen receptor mRNA in the 

uterus 

 
    ↓ 

Estrogen receptor mRNA in the 

uterus 

 
    ↓ 

Progesterone response genes      ↓ 

Triglycerides      ↑ 

Adrenal gene expression       Δ 

 

Another potential direct effect of PC:EtOH on early development is through epigenetic 

modifications. Epigenetics is the process whereby DNA, histones and other regulatory factor 

are modified to alter the accessibility of genes, modulating expression and respective 

cellular function 587,588. During very early development, the blastocyst and early embryo 

undergo global DNA demethylation, followed by a remethylation process, as well as X-

chromosome inactivation in female embryos and telomere lengthening 589,590. Studies of in 

vitro embryo cultures treated with ethanol have demonstrated altered DNA methylation 

profiles and growth retardation 591,592. Following PC:EtOH treatment, preliminary data of 

Kalisch-Smith et al. 558 has confirmed altered methylation markers in the blastocyst at E5. 

These changes may have long-term impacts on both fetal development and offspring 

physiological function. This is supported by studies of PAE throughout pregnancy being 

associated with epigenetic modifications in several HPA pathways, including POMC and 

MeCP2, hippocampal DNA methylation profile and one-carbon metabolism 484,593–595. These 

changes may ultimately inhibit appropriate development of the placenta and essential fetal 

physiological systems. It may be that epigenetic changes due to PC:EtOH occur. 



 

165 | P a g e  

 

6.3.1.2 Indirect effects of PC:EtOH exposure 

This model of PC:EtOH exposure was designed to mimic one of the most common forms of 

alcohol exposure during pregnancy with treatment being removed on the morning of E5. 

However, it was hypothesised that PC:EtOH exposure will result in sustained alterations to 

maternal physiology throughout pregnancy, particularly corticosterone, that may indirectly 

impact fetal development and contribute to offspring outcomes. 

This thesis determined maternal plasma corticosterone was elevated at E20, which may act 

as a perturbation, in its own right. In support of this claim, numerous studies have indicated 

maternal stress or glucocorticoid treatment during pregnancy, programs offspring 

physiology and behaviour 285–287 (as discussed in Section  

Stress and psychiatric illnesses are often associated with increased cardiovascular function 

and increased risk of cardiovascular disease 245–249.  Stress responses are generally 

associated with increased cardiovascular activity, with studies demonstrating that 

psychological stress results in arrhythmia and fatal cardiac events. In one such study, it was 

seen that following the Northridge earthquake, sudden deaths from cardiac causes increase 

by 4.6 per day in the week before to 24 per day on the day of the earthquake 250, with similar 

results being shown following the 1995 Hanshin-Awaji earthquake in Japan 251. Furthermore, 

other studies that individuals with high cardiac reactivity to stress also demonstrate 

hyperactivity of the HPA and sympathetic pathways 252.  

The main neurological pathways activated by stress are stimulation the HPA and 

sympathetic nervous system (SNS) and withdrawal of parasympathetic activity 253. These 

systems interact to generate adaptive responses to both physiological and psychological 

threat, known as the ‘fight-or-flight” response. Neurosensory signals are processed in the 

PVN of the hypothalamus, where CRH neurons directly innervate the locus coeruleus (LC) 

in the brainstem 252,254,255, stimulating the release of noradrenaline (NA). This is a 

bidirectional pathway, with the SNS further stimulating the release of CRH and further 

activation of the HPA 252. Stress-induced activation of the LC-NA pathway further 

stimulates peripheral catecholamine release, activation of α - and β-adrenergic receptors 

and the intermediolateral nucleus of the spinal cord. This subsequently increases blood 

pressure and heart rate 253,256,257 and highlights the intrinsic link between the stress 

response and the cardiovascular system. This interaction will be investigated in Chapter 

Four of this thesis.  
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1.7 Programming of the HPA). Other studies of alcohol consumption throughout gestation 

(36% ethanol derived calories) in rats also demonstrate elevated maternal glucocorticoid 

concentration at the end of pregnancy 387. Subsequent studies using this model 

demonstrated impaired behaviour and HPA responsiveness 318,332, results comparable to 

those observed within this thesis.  

A study of maternal undernutrition, in a sheep model, during the periconceptional period 

firstly demonstrated that cortisol was reduced immediately following the return to optimal 

nutritional requirements, however with HPA hyperactivity as determined by increased 

plasma ACTH concentrations, at the end of pregnancy 385. This study further demonstrated 

that fetal HPA development was perturbed, where treatment with an adrenal steroid 

synthesis inhibitor, metyrapone, resulted in increased ACTH, 11-deoxycortisol and mRNA 

concentration of Pomc in the anterior pituitary gland 385. Additionally, glucocorticoid 

administration in late gestation both sheep and rat models have demonstrated elevated 

offspring glucocorticoid concentration and HPA hyperactivity to stressors, with associated 

cardiovascular and metabolic outcomes 288,596. These similarities further cement the concept 

that the maternal HPA is highly susceptible to perturbation and may be a common pathway 

linking adverse maternal environment to long-term offspring disease outcomes.  

Another mechanism whereby PC:EtOH may be impacting offspring development is by 

indirectly influencing placental function, potentially in response to the elevated maternal 

corticosterone concentration. The placenta is the interface between maternal and fetal 

systems and has a crucial role in fetal exposure to maternal glucocorticoid concentration. 

This thesis revealed elevated labyrinth mRNA expression of Crh-r1 in placentas of both 

sexes and Nr3c1 in female placentas at E20. These changes, in association with increased 

corticosterone concentration, would likely result in excess glucocorticoid exposure to the 

fetus, particularly in females. Although mechanisms may be occurring within the placenta to 

regulate fetal exposure to excessive maternal corticosterone, this is unlikely to be fully 

compensatory, therefore compromising fetal development and resulting in programmed 

physiological dysfunction in offspring. Other research within our laboratory has 

demonstrated decreases in cytoplasmic protein concentration of the pro-growth/anti-

apoptotic related glucocorticoid receptor isoform GRα-D3 in the male and the isoform GRα-

A, related to metabolism and inflammation, in females (Kent et al. unpublished data). 

Another significant finding in the placenta is elevated gene expression of Hsd11b2 following 

PC:EtOH, at E20 102. As this enzyme is responsible for converting active glucocorticoid to 

its inactive precursor 597, it may be suggested that increased expression is a protective 
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mechanism to the excess glucocorticoid concentrations and signalling. Although the activity 

of this enzyme is yet to be examined, as it appears that overall glucocorticoid-related 

pathways are elevated, we speculate that this protection may not be enough and fetal 

exposure to glucocorticoids is in excess.  

This theory is supported by a study utilising the treatment of pregnant rats with a placental 

Hsd11b2 inhibitor, carbenoxolone, whereby fetal exposure to glucocorticoids would be 

elevated, demonstrated similar outcomes as seen within our laboratory. This included in 

utero growth restriction, cardiovascular alterations, and impaired glucose tolerance in 

offspring. Interestingly, the negative impact of the inhibition of this enzyme was prevented 

by maternal adrenalectomy. These outcomes, as well as central HPA regulatory changes, 

were similarly observed in rodent (rat and mouse) models of both synthetic and endogenous 

glucocorticoids in late pregnancy 295,549,598. 

Furthermore, investigations of the outcomes following excess glucocorticoid exposure have 

demonstrated that children of mothers who experienced stress or were treated with 

glucocorticoids at the end of pregnancy had altered basal glucocorticoid concentrations, 

HPA response to stressors such as heel prick blood draw, public speaking and mental 

arithmetic tasks (Trier Social Stress Test for children) 260–262,266–269 and impaired behaviour, 

including, including ADHD symptoms 270–272, elevated anxiety 272 and cognitive development 

273. This was similarly observed in animal studies. Similarly, animal studies of maternal 

stress programs altered offspring stress response, including concentrations of 

corticosterone and ACTH 274276, changes to glucocorticoid signalling genes 275 and altered 

neurological morphology, and suffer from a range of emotional deficits such as anxiety-like 

behaviour, as well as learning deficits and altered attention 278–284. Exogenous treatment 

with synthetic glucocorticoids such as dexamethasone and betamethasone revealed several 

changes in the HPA function in offspring. This includes dysregulated corticosterone levels 

and stress responsiveness 285,287 and altered adrenal structure and gene expression 286,287. 

Elevated maternal corticosterone may also have significant impacts on maternal brain 

structure and maternal care, as reviewed by Francis and Meaney 599, and act as another 

indirect impact of PC:EtOH. Maternal brain changes have been particularly observed within 

the hippocampus, which has a significant role in maternal care of pups following birth 600,601. 

Some studies have shown that PAE results in reduced nursing, reduced pup-retrieval 602,603 

and increased self-directed and negative behaviours such as stepping on and dragging pups 

604. This can have significant implications on the physical and mental health of children 605–
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609, supported by numerous animal studies demonstrated similar adverse developmental 

outcomes 610–615.  

Increasing circulating fetal glucocorticoid concentration are essential in late gestation for 

development of key organ systems as well as contributing to parturition 566,616–618. The fetal 

adrenal gland is activated around E16 in the rat, and interestingly, the fetal loss was 

observed in culls at both E15 and E20 558. It is postulated that this is a consequence of the 

alterations to the maternal HPA and other changes associated between E15 and E20. Once 

the fetal adrenal gland is active, excess maternal corticosterone and impaired placental 

signalling may further impact its function. Other fetal systems such as the early HPA, other 

brain regions and physiological systems may also be perturbed and require greater 

investigation. 

Overall, this thesis demonstrated both direct and indirect consequences of PC:EtOH on 

maternal corticosterone concentrations, with an initial increase and subsequent decrease 

during the time of treatment and a significant elevation at E20. This excess glucocorticoid 

concentration is likely to have a significant number of subsequent effects, such as within the 

placenta, maternal brain structure and subsequent care of offspring.  

6.4 An altered HPA in PC:EtOH offspring may underlie physiological dysfunction 

This model of PC:EtOH has been utilised within the Moritz laboratory since 2011, with a vast 

number of outcomes determined in the dam, embryo, placenta as well as in offspring (Table 

6. 2). The HPA is essential for numerous homeostatic processes and behaviour, and 

changes in its function following PC:EtOH exposure is suggested to be a significant 

contributor to the broad range of physiological deficits. Of particular relevance to this study 

are behavioural alterations within offspring including hyperactive and anxiety-like 

phenotypes 369, as well as changes to central reward pathways and circadian rhythm 

regulation of corticosterone and glucose (Lucia et al., unpublished data and Wing et al., 

unpublished data). Systemic dysfunction is also observed with overall perturbation of 

metabolism and cardiorenal function 367,368. However, with the complexity and 

interconnected function and regulation of the HPA, the impact of PC:EtOH is likely to be a 

multifaceted web of dysfunction.  
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6.5 Sexual dimorphism in PC:EtOH outcomes 

A common observation throughout studies investigating PC:EtOH exposure is sexual 

dimorphism of offspring outcomes. Within this study, both male and female offspring 

exposed to PC:EtOH displayed a depressive-like phenotype, whereas altered social 

interaction was only seen in female offspring. Although both sexes exposed to PC:EtOH 

showed HPA hyperactivity during the DST/CST, females had a delayed response, as well 

as reduced basal plasma corticosterone concentration at both adult and aged. This finding 

is supported within the literature, with many models of alcohol exposure throughout 

pregnancy demonstrating sexual dimorphism in HPA hyperactivity. Studies using prolonged 

restraint and cold stress resulted in a greater response in PAE males with increased 

anhedonic behaviour and activity, whereas females show increased responses to ethanol, 

morphine or ether challenges and increased immobility in the forced swim test and social 

interaction 330,424,425,491,492,619. Sexual dimorphism is also observed in human studies where 

alcohol exposure during the first trimester increased mental health issues in girls 451. 

Similarly, May et al. revealed that although boys and girls diagnosed with FASD display 

similar outcomes following PAE, sex ratios indicated that females had more neurocognitive 

impairment than boys 620. These results suggest that it is essential to consider males and 

females individually, in both research and within the FASD diagnostic criteria.  
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Table 6. 2: A summary of results in the adult and aged offspring following PC:EtOH exposure.  

 
 

Adult 

(3 -10 months) 
 

Aged 

(10-19 months) 
 

Ref 

 Male  Female  Male  Female  

Behaviour 

Depressive-like  ↑  ↑      Chapter 3 

Affiliative social  ↔  ↑      Chapter 3 

Rearing  ↔  ↔      Chapter 3 

Anxiety-like  ↔  ↑  ↓  ↔  369 

Learning and memory  ↔  ↓      369 

Overall activity  ↑  ↑  ↔  ↑  Unpublished 

Metabolic 

Bodyweight  ↔  ↔  ↔  ↔  509 

Total FM  ↑  ↑      509 

Glucose intolerance  ↑  ↑      367 

Insulin insensitivity  ↑  ↑      367 

Leptin  ↑  ↔      509 

Cholesterol  ↑  ↑      509 

Food preference:           

368 (aged only) 

368 (aged only) 

- Alcohol      ↔  ↔  

- HFD  ↔  ↔  ↑  ↑  

Circadian 
Circadian glucose pattern  ↔  Δ      Unpublished 

Circadian corticosterone  ↔  Δ      Unpublished 

HPG Estrogen        ↑  Unpublished 
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HPA 

Hippocampal GE        ↑  Chapter 4 

Basal corticosterone  ↔  ↓  ↔  ↓  Chapter 4 

Hypothalamus GE      ↔  ↔  Chapter 4 

Adrenal steroidogenesis GE  ↔  ↔  ↔  ↔  Chapter 3, 4 

DST/CST  ↑  ↑      Chapter 4 

Restraint – Cort response  ↔  ↔  ↔  ↓  Chapter 4 

Restraint – SBP response      ↔  ↑  Chapter 4 

Liver GR isoform  Δ  Δ      Unpublished 

 

Data within this table is collated from this thesis, as well as unpublished and published as denoted. Abbreviations: Cort: corticosterone, 

CST: corticotropin-releasing hormone stimulating test, DST: dexamethasone suppression test, FM: fat mass, GE: gene expression, GR: 

glucocorticoid receptor. HFD: high-fat diet, SBP: systolic blood pressure. 
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6.6 Regulation of the HPA and sexual dimorphic outcomes following PC:EtOH 

6.6.1 Hypothalamic-pituitary-gonadal axis 

The HPG axis contributes to sexual dimorphism that is observed in physiological systems 

and behaviours 621, and both regulates and is regulated by the HPA. Within this thesis, 

female offspring were only tested during diestrus; however PC:EtOH alterations within HPG 

function and sex hormone production may have contributed to offspring phenotypes. Some 

evidence of PC:EtOH induced modifications within the system have been observed with 

Dorey et al. (unpublished data) with elevated plasma oestradiol observed in age female 

offspring. While testosterone and dihydrotestosterone are known to inhibit HPA 622,623, 

oestradiol both stimulates and inhibits HPA activity by alternative processes. These 

processes include inhibiting hypothalamic and pituitary pathways, which both express 

estrogen receptors and by regulating plasma glucocorticoid concentrations by stimulating 

CBG production within hepatocytes, necessary for the regulation of bioavailable 

glucocorticoids 623–628. Investigation of both PAE and prenatal stress paradigms have 

demonstrated reductions in plasma CBG concentrations in offspring 334. As such, PC:EtOH 

alteration in estrogen and CBG concentration may explain the decreased plasma 

corticosterone concentrations in females, with CBG concentration in male PC:EtOH 

offspring ensuring normalised plasma corticosterone concentration. This suggests the 

importance of measuring markers of HPG function, as well as CBG in offspring to determine 

if these alterations may be contributing to results observed within this thesis.  

6.6.2 The impact of PC:EtOH on central pathways  

6.6.2.1 Pituitary glands 

Although adrenal steroidogenesis gene expression pathways were the focus for this thesis, 

evidence of pituitary abnormalities in PC:EtOH offspring highlights that HPA hyperactivity 

may be a consequence of changes within the more central parts of the axis. This is 

particularly relevant as the pathologies observed within the pituitary gland were of greater 

prevalence within female PC:EtOH offspring. Perturbations to the pituitary may impact 

multiple endocrine networks and link alterations seen in glucocorticoid responsivity to central 

regulation of sex hormones. Although hypothalamic gene expression was not significantly 

altered by PC:EtOH exposure within aged offspring, alternate pathways within this region 

may be impaired. This indicates that further investigation is required.  
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6.6.2.2 Limbic system  

Another neurological pathway essential in the regulation of the HPA is the limbic system. 

Results of this thesis indicate that PC:EtOH may program altered limbic function, with 

elevated hippocampal expression of Nr3c1 and Hsp90a1 in female offspring. The 

hippocampus is the most well studied limbic region contributing to HPA regulation and is 

generally considered as inhibitory 421,629–631. Abnormal hippocampal function is known to 

contribute to several cognitive and mental illness outcomes, including depression and stress 

dysregulation via direct connection with the hypothalamus and other HPA regulatory regions 

632. Furthermore, animal studies of reduced glucocorticoid receptor expression due to 

hippocampal lesions, genetic manipulation or pharmacological intervention, all show 

diminished HPA feedback efficacy to stressors 235,493, and it may be concluded that the 

opposite may be true. Therefore, the increased Nr3c1 expression in the hippocampus of 

aged female offspring in the current model is in accordance with the hyperactivity following 

the DST/CST. 

Numerous other regions of the limbic system including the medial prefrontal cortex, 

amygdala and the mesolimbic pathway have an essential role in the regulation of the HPA 

421,629–631,633,634 The amygdala is known to stimulate the HPA 634, whereas the medial 

prefrontal cortex has both a stimulatory and inhibitory effect of the HPA depending on the 

type of stimulus being received 635. Moderate PAE exposure throughout gestation is shown 

to reduced Nr3c1 mRNA expression in the amygdala of male offspring only 636. Similarly, 

although sex differences were not observed, previous studies from our team demonstrated 

that chronic low dose exposure to alcohol during pregnancy altered basolateral amygdala 

structure, associated with an anxiety-like phenotype and increased social interaction 69. 

These studies support the susceptibility of these limbic regions to the effects of alcohol 

exposure pregnancy and that changes within these structures may contribute to the 

outcomes observed in PC:EtOH offspring.  

Interestingly, PC:EtOH may alter other central regions and downstream physiological 

pathways that are related to HPA function and may contribute to observed outcomes. 

Recent data from our laboratory has associated PC:EtOH with significant modifications in 

the SCN (Lucia et al. unpublished data). This is related to altered circadian regulation of 

glucose and corticosterone concentration, whereby PC:EtOH exposure resulted in an 

increase in mesor, amplitude and total blood glucose concentration, as well as a 7-hour shift 

in plasma corticosterone rhythm and increase concentration in female offspring only (Wing 
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et al., unpublished data). This may indicate a mechanism linking HPA function with the 

adverse metabolic outcomes observed following PC:EtOH. PAE is also associated with 

alterations to the production of neurotransmitters such as serotonin and noradrenaline, γ-

aminobutyric acid, glutamate, adenosine and cannabinoids are implicated in offspring 

behaviour related to the HPA. These have yet to be investigated in our model, but PAE has 

been shown to alter serotonin and associated behaviours, similar to what is seen within this 

thesis and other studies within this PC:EtOH model. This includes increased depressive-like 

phenotypes, such as immobility in the FST, and increased passive behaviour in social 

interaction paradigms, which may be interpreted as elevated social interaction and anxiety-

like behaviours in the EPM and open field test 637.  

6.7 The contribution of age to programmed disease risk of PC:EtOH 

A common finding in our PC:EtOH model is increased disease state in female offspring in 

aged cohorts, suggesting that age might exacerbate programmed disease risk in a sex-

specific manner. Within this thesis, plasma corticosterone concentration was comparable 

between control and PC:EtOH offspring following restraint at 5 months of age, however at 

12-14 months, female offspring demonstrated reduced plasma corticosterone response 

despite greater systolic blood pressure response to restraint. Additionally, it was 

demonstrated that females remained hyperactive at 18 months of age, whereas males no 

longer displayed that phenotype. Dorey et al. (unpublished data) also revealed that female 

offspring had altered cardiorenal function at 12 and 19 months of age respectively, which 

was not observed at 6 months or in male PC:EtOH offspring at any time. A number of other 

studies have demonstrated sex-specific age of onset of several illnesses, including OCD, 

bipolar, depression, as well as cardiovascular and metabolic diseases 638–641. Several 

theories have been suggested to explain these differences, including puberty related sex 

hormone changes and HPG function, the timing difference in brain development, as well as 

varied response to stresses between men and women 642. These may all be impacted by 

PC:EtOH exposure. Furthermore, women experience a rapid loss of ovarian sex hormones 

following menopause, including progesterone and 17 beta-estradiol, and although 

testosterone production decreases with age in men, this is a much more gradual process 

643. These hormonal changes with age have associated with an increased risk of disease in 

women more than men, including Alzheimer’s, cardiovascular disease, metabolic disease, 

reduced stress resilience, and some studies suggesting an increased incidence of mental 

illness 643–645. Given these findings, it would be of interest to investigate when behavioural 
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and HPA related outcomes begin to manifest in our model of PC:EtOH. This is important as 

the timing of disease onset may impact the optimal timing for intervention to minimise the 

impact of PC:EtOH on lifelong health. 

6.8 Limitations and future directions 

The results of this study highlight the necessity of gaining a greater understanding of the 

impact PC:EtOH has on maternal physiology, given that existing knowledge in this field is 

narrow. Some changes observed within this thesis and other studies of PC:EtOH indicate 

that maternal changes are not transient and restricted to the timing of exposure, but instead 

result in long-lasting alterations throughout the entirety of gestation. Furthermore, as altered 

maternal HPA function following PC:EtOH may be a significant contributor to the adverse 

offspring outcomes, further investigation should be a primary goal. Methods such as 

maternal adrenalectomy and exogenous corticosterone replacement may be used, as 

previous studies have indicated that maternal adrenalectomy is capable of ameliorating 

adverse offspring outcomes seen in a model of PAE 389. However, as temporal changes in 

the maternal corticosterone observed in this model may have individual impacts on offspring 

outcomes, this method may make changes difficult to interpret.  

Within this thesis, as animals were used for multiple studies, maternal corticosterone was 

measured at each time point in a different cohort, with various collection techniques. and 

related pathways across gestation, within the same cohort of minimally stress animals, using 

consistent techniques. This would allow for the establishment of a more accurate baseline 

of how corticosterone changes over gestation in rats, something that is mostly lacking in the 

literature. This would also provide information about key time points of maternal 

corticosterone variation following PC:EtOH and allow targeted investigation of other 

metabolic and cardiovascular parameters. This would aid in a more comprehensive 

understanding of the role of maternal physiological adaptations in PC:EtOH induced 

programmed disease. This targeted approach would also provide key investigation points 

for interrogating changes to fetal developing organ systems, as well as for intervention at 

the most appropriate times, or knowledge of when to avoid treatment with drugs such as 

synthetic glucocorticoids.  

We hypothesise that PC:EtOH induced alteration in maternal HPA have as a potential 

contributor to offspring behaviour and HPA activity. In order to better understand the impact 

of PC:EtOH on mental illness, a greater suite of behavioural tests are required, ensuring a 
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more robust interpretation of the behavioural phenotype currently observed. Furthermore, a 

limitation of this study was that behavioural and HPA activity testing occurred between 3-5 

months of age. Although all care was taken to ensure there was no age difference between 

control and PC:EtOH animals, this age spread needs to be considered when interpreting 

and comparing across the literature. It would be advantageous to measure hormone 

concentration at these ages to determine if there are changes within HPA output cross these 

three months. A more in-depth analysis of molecular pathways in the HPA and related 

regulatory regions would also allow a greater understanding of this axis and its contribution 

to mental illness and other diseases. To achieve this, genetic manipulation of key regulatory 

factors within specific limbic regions could be established in a mouse model of PC:EtOH. A 

caveat of this study was the lack of protein and enzymatic activity measurements, with the 

necessity to perform these analyses in the future. Further investigation of epigenetic 

modifications as well as regulation of the HPG and other endocrine pathways, as well as 

systemic regulation, would also prove beneficial in elucidating the extent of outcomes 

following PC:EtOH. 

Another consideration of this model is that treatment occurs during both the pre-conception 

and post-conception periods, making it difficult to determine the most critical time of 

exposure. A recent study by Asimes et al. treated rats with alcohol from postnatal day 37 to 

45, followed by mating at postnatal day 67, and determined several HPA related outcomes 

including behavioural, epigenetic and hormonal changes within offspring of these treated 

rats 646. This, therefore, raises the question of how long before conception, women should 

cease alcohol consumption. Finally, as this model utilised an ad libitum liquid diet, the dose 

rats were exposed to was difficult to ascertain. Although, blood alcohol levels have been 

previously established in high drinking rats as 0.18 ± 0.04% (E-2) and 0.25 ± 0.04% (E2), 

we believe this would be different across dams and may explain some variability in observed 

results. Regardless of this, we also believe that although this presents a limitation, it is 

representative of women’s drinking patterns across a population.  
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6.9 Summary 

This thesis is one of the first studies to demonstrate that PC:EtOH has a significant impact 

on maternal physiology, even after cessation of consumption, and results in behavioural 

changes in offspring. Linking the maternal exposure and offspring outcomes is significant 

and sustained alterations to the HPA. A summary, including hypothesised mechanisms, is 

outlined in 
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Figure 6. 2. 

PC:EtOH resulted in dynamic changes in plasma corticosterone concentration throughout 

gestation, with a significant elevation at the end of gestation. Dams also expressed altered 

gene expression in the adrenal glands at varying time points of gestation, and the placenta 

displayed altered glucocorticoid signalling pathways. These results are suggesting impaired 

protection from elevated maternal corticosterone concentrations association of PC:EtOH 

with behavioural alterations in offspring, associated with HPA dysfunction. Although not 

investigated, many changes would be hypothesised to be occurring within the fetus. This 

may include the development and function of the early HPA and related neurological 

pathways, as well as systemic organs which require an appropriate concentration of 

corticosterone to develop.  

My work suggests these maternal and in utero changes are underlying the results observed, 

whereby behaviour and HPA activity was altered in a sexually dimorphic manner. Female 

offspring exposed to PC:EtOH demonstrated both increased depressive-like and altered 

social phenotypes, with a sustained reduction in basal corticosterone concentration. Female 

PC:EtOH offspring also demonstrated a delayed and hyperactive response to a systemic 

stressor and a disposition to an enhanced response to psychological stressors when aged. 

Furthermore, at the aged time point female offspring had elevated Nr3c1 and Hsp90a1 

expression in the hippocampus, suggesting altered regulation of the HPA. Male PC:EtOH 

offspring on the other hand, while displaying a depressive-like phenotype and HPA 

hyperactivity to a systemic stressor, did not have a propensity for altered social interaction, 

altered basal corticosterone or elevated response to the psychological stressor. These 

results propose that male and female offspring may have differentially altered pathways or 

that female offspring are more susceptible following PC:EtOH exposure.  
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Fsecti 
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Figure 6. 2: A schematic of overall PC:EtOH induced changes in mother, placental, fetus 

and offspring. PC:EtOH resulted in dynamic changes to maternal corticosterone 

concentration throughout gestation (discussed in Section 6.3). This is represented by the 

concentration curve (measured time points represented in blue circles) falling outside the 

optimal corticosterone range. A number of changes were observed within the developing 

blastocyst as a direct consequence of PC:EtOH, along with indirect effects on placenta 

across gestation (discussed in Section 6.3.1.2). This thesis determined placental gene 

expression changes to Crh-r1 and the glucocorticoid receptor Nr3c1 at E20, likely as a 

consequence of elevated maternal corticosterone at this time. Although not yet 

investigated, it is hypothesised that these changes result in excessive fetal glucocorticoid 

exposure, impacting some fetal developmental processes. Collectively, these PC:EtOH 

induced changes have resulted in some offspring behavioural, HPA and other alterations, 

which may also be related to change in a number of other central and systemic pathways 

related to the function and regulation of the HPA (discussed in Section 6.6). Legend: Blue: 

determined in this thesis; green: previous research with PC:EtOH model; dashed boxes: 

hypothesised outcomes. Abbreviations: Δ: change; cort: corticosterone; dev: development; 

funct: function; HF: high-fat. 
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6.10 Conclusion 

The knowledge gained from this thesis demonstrates that alcohol consumption immediately 

prior to conception and at the very beginning of pregnancy can have a significant impact on 

the HPA of both the mother and her offspring. Considering the widespread physiological, 

psychological and lifestyle upheaval that occurs with pregnancy, several problems could 

ensue from PC:EtOH consumption. Additionally, as the HPA is a critical regulator of 

numerous physiological systems and is essential in endocrine, cardiorenal and metabolic 

homeostasis during pregnancy, alterations in the function of this system may result in 

multiple pregnancy complications. These complications include miscarriage, the 

development of gestational diabetes or preeclampsia. Furthermore, changes in maternal 

HPA function throughout gestation may have significant implications for long-term maternal 

disease, including obesity, diabetes mellitus type 2, and cardiovascular disease 572. The 

vulnerability of the HPA to in utero perturbations is well established, however until now; few 

studies had investigated the axis’ susceptibility to periconceptional perturbations. As up to 

30% of women admit to drinking prior to pregnancy detection 44,46, the lack of knowledge 

regarding outcomes following and medical research to date should be a priority for research. 

Understanding the contributions that PC:EtOH has on pregnancy, and long-term maternal 

health would provide critical clinical information for monitoring mothers, babies and 

pregnancy outcomes.  

Alcohol consumption is a common practice in many societies and knowing the impacts of its 

consumption before pregnancy detection on common non-communicable diseases and 

mental illness would have an enormous knowledge impact. This would provide an essential 

foundation for a preventative health impact and a greater understanding of the aetiology of 

these illnesses. This study also provides an explanation for sexual dimorphism often seen 

within the clinic, whereby women are three times likely to suffer depression and anxiety than 

men 35 and would provide an early marker for observation of patient throughout their 

lifespan. Furthermore, considering the impact of PC:EtOH in the context of DOHaD may 

extend the diagnostic criteria in place for FASD allowing for a greater number of individuals 

experiencing social, cognitive and stress-related difficulties to receive assistance and 

support to ensure high quality and healthy life. 

As alcohol consumption is entirely preventable, these results highlight the critical importance 

of education towards the outcomes associated with consumption during this time, as well as 

the importance of preparing for pregnancy. While it is unrealistic to expect alcohol 

consumption around pregnancy to be eliminated, this model provides a basis for knowledge 

of the mechanisms underlying programming of mental illness, HPA function and 

downstream physiological systems in both mother and offspring.  
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