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1 Introduction

At its inception, large N two- and three-pt correlators for local CFT operators in the

vacuum were computed in the AdS/CFT framework using a prescription that requires to

solve for classical dual fields on Euclidean AdS in the presence of boundary sources [1–4].

Even though these results can be extrapolated to the Lorentzian AdS spacetime by analytic

extension, some important ingredients of the real time description are left out from the

beginning. For instance, amplitudes in arbitrary excited states 〈out|O(x1) . . .O(xn)|in〉
and the analysis of intrinsic real time phenomena such as response functions. See [5–8] for

previous related work.

Skenderis and van Rees (SvR) have proposed a setup that extends the Gubser-

Klebanov-Polyakov-Witten (GKPW) prescription [2, 3] to Lorentzian signature and allows

the calculation of n-point correlation functions of local CFT operators in real time. Among

its virtues one finds the natural emergence of the causal Feynman propagator [9, 10].
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For the case of vacuum to vacuum scattering amplitudes, the SvR prescription requires

to consider a Lorentzian AdS cilinder ML smoothly glued to two halves of Euclidean AdS

M± along the past/future spacelike surfaces Σ± that limit the Lorentzian region, as shown

in figure 1(a). The outcome of their construction is that time ordered correlators for CFT

operators O, inserted at the timelike boundary ∂ML, are computed in the large N limit,

through the formula

〈0|T [ e
−i

∫
∂ML

O φL
] |0〉 ≡ eiS[φL;φ±=0] . (1.1)

On the right hand side S
[
φL;φ± = 0

]
stands for the on-shell action for Φ, the bulk field

dual to the CFT operator O, which is solved on a multi-pieces geometry with: (i) van-

ishing Dirichlet conditions φ± = 0 on the Euclidean asymptotic boundaries ∂M± and (ii)

arbitrary non-trivial φL boundary condition on ∂ML, the latter being the external source

from the CFT perspective. A picture of the whole manifold M, and Φ as a single field, is

presented in figure 1(b).

In [9] it was also conjectured that in order to describe non-vacuum states, one should

consider turning on non-trivial boundary conditions φ± 6= 0 on ∂M±. A detailed proof of

this claim was given in [11] where it was explicitly analyzed for the case a free scalar field,1

and it was also shown that states constructed this way were precisely given by

|φ−〉 ≡ P [e
−

∫
∂M−

Oφ−
]|0〉 , (1.2)

where P stands for Euclidean time ordering. Consistency with the alternative holographic

prescription called BDHM [18], then permitted infer that (1.2) are coherent states [11].

The prescription for the generating functional given by (1.1) thus generalizes, for arbitrary

in/out states φ±, as

lnZ in/outCFT [φL] ≡ ln〈φ+|T [e
−i

∫
∂ML

OφL
]|φ−〉 = iS

[
φL;φ±

]
. (1.3)

Here the right hand side denotes the bulk field action evaluated on the classical solution

for Φ satisfying non-trivial boundary data φ± on the Euclidean boundaries ofM as shown

in figure 1(a). As customary, time ordered n-pt O correlators are obtained by taking n

derivatives with respect to φL and then setting φL → 0. The glued manifold M can be

thought of as dual to a (complex) time evolution as shown in figure 2.(a).

The purpose of the present work is to study the formalism presented above in the

presence of bulk interactions.2 To get some intuition we recall that the (free) field theory

solution to the Lorentzian bulk equation of motion reads

Φ0(z, t,x) =

∫
dt̃dx̃ K(z, t,x; t̃, x̃)φL(t̃, x̃) + Φ0(N)(z, t,x) . (1.4)

The first term consists of the familiar boundary-bulk propagator K carrying the information

contained in the source φL into the bulk, while the second term, Φ0(N), encodes the excited

1For previous work regarding excited states in Lorentzian signature see [12–17].
2Bulk interactions have been already been studied, for example in [19, 20], but not in the context of

semiclassical excited states as far as the authors are aware.
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Figure 1. Bulk dual to the In-Out formalism as a gluing of Lorentzian and Euclidean AdS

manifolds.

states structure into the normalizable mode.3 In fact one can verify that whenever Φ0(N) 6=
0 the expectation value for O(t,x), obtained by the standard prescription [2, 3, 9], becomes

non-trivial
〈φ+|O(t,x)|φ−〉
〈φ+|φ−〉

≡ δS0

δφL(t,x)

∣∣∣∣∣
φL=0

∼ O
(
Φ0(N)(z, t,x)

)
.

This well known result [11, 14–16, 21] is interpreted as a manifestation of the CFT being

shifted from its symmetric vacuum state. Bulk interactions of the form λΦm will induce

corrections to (1.4) so that, to first order in λ, the on-shell configuration Φ will now

contain a polynomial in φL of degree m, thus modifying every n-point function n ≤ m.

In the following we will compute in the SvR setup time ordered 2- and 3-pt amplitudes

of conformal (scalar) local operators for states (1.2), and explicitly verify that adding

interactions to the gaussian bulk action result in the states losing their coherent character.4

In particular, we show that to first order, the cubic self-interacting field turns (1.2) into

squeezed states.

The paper is organized as follows: in section 2 we specify the scalar field model in which

we are going to study eq. (1.3), this is, a cubic self-interacting real massive scalar field in

AdS, dual to a scalar local operator in the CFT. In section 3 we construct the free field

solution to the field in the presence of boundary sources, this is the necessary building block

for computing the first order λ-correction to the on-shell action. In section 4.1 we analyze

the standard boundary term of the on-shell action arising from the quadratic piece, and in

section 4.2 the (bulk) self-interacting contribution. An analysis of the results is made in

section 5. Finally, section 6 summarizes the results and suggest prospects for future work.

We relegate to the appendixes many explicit computations and technical details.

2 Interacting scalar field theory on AdS

Let us consider the simplest example of interacting fields on a global AdS spacetime back-

ground: a real massive scalar field with a cubic self interaction, which should be enough to

3We would like to remind the reader that the normalizable modes are uniquely defined once the propa-

gator ambiguities present in the Lorentzian context are fixed.
4Possible multi-trace operator and back-reaction issues that may come from considering non vanishing

data φ± [22], are avoided, as suggested in [3], by taking the scalar field’s mass m2
BF ≤ m2 ≤ 0, with m2

BF

the Breitenlohner Freedman mass [23, 24].

– 3 –



J
H
E
P
0
3
(
2
0
1
7
)
1
4
8

see corrections to the 1- and 2-pt functions and also to the inner product between the (1.2)

states. The generalization to multiple scalar field becomes straightforward after consider-

ing this minimal example. The action we are going to work with in the In-Out formalism

(figure 2(a)) is,

S = −1

2

∫
M

√
g
(
∂µΦ∂µΦ +m2Φ2

)
− λ

3

∫
M

√
g Φ3 , (2.1)

where the integration runs over the d + 1 dimension manifold M ≡ M+
⋃
ML

⋃
M−

obtained by appropriately gluing Euclidean and Lorentzian AdS regions as shown in fig-

ure 2(b) (see [9, 11] for details). The equation of motion following from (2.1) is(
�−m2

)
Φ = λΦ2 , (2.2)

which we solve perturbatively in λ expanding the field as

Φ = Φ0 + λΦ1 + λ2Φ2 + · · · , (2.3)

obtaining(
�−m2

)
Φ0 = 0 ,

(
�−m2

)
Φ1 = Φ2

0 ,
(
�−m2

)
Φ2 = 2Φ0Φ1 , . . . . (2.4)

Here the free field solution Φ0 meets the {φ±, φL} boundary conditions on ∂M, whereas

every other Φi have Dirichlet conditions over the asymptotic boundary.

The on shell action results

S = −1

2

∫
M

√
g
(
∂µΦ∂µΦ +m2Φ2

)
− λ

3

∫
M

√
gΦ3 ,

= −1

2

∫
M
∂µ (
√
gΦ∂µΦ) +

1

2

∫
M

√
gΦ
(
�−m2

)
Φ− λ

3

∫
M

√
gΦ3 ,

= −1

2

∫
∂M

√
γ Φnµ∂µΦ +

λ

2

∫
M

√
gΦ3 − λ

3

∫
M

√
gΦ3 (2.5)

where γ is the induced metric on the boundary ∂M and nµ is the outgoing unit normal

vector. When writing the third line we have used the equation of motion (2.2). These ex-

pressions are rather formal though, as an appropriate prescription is required for imposing

the asymptotic boundary conditions on Φ to avoid divergences. We will choose to work

with the so called ε-prescription [2, 25] which consists in regularizing the problem by setting

the boundary conditions at a fixed radial distance z = ε� 1 in Poincare coordinates, with

the ε→ 0 limit taken at the end of the computations. Inserting (2.3) into (2.5) one finds

S = S0 + λS1 + λ2S2 + . . .

= −1

2

∫
∂M

√
γ Φ0n

µ∂µΦ0 −
λ

2

(∫
∂M

√
γ Φ0n

µ∂µΦ1 −
∫
M

√
gΦ 3

0

)
− λ

3

∫
M

√
gΦ 3

0 +O(λ2) , (2.6)
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Figure 2. (a) In-Out path in the complex t-plane (b) Holographic SvR dual set-up in Poincare

coordinates.

where the first term is the contribution of the free field action, the second term5 will be

shown to be zero in appendix A and the third term will give rise to first order corrections

in correlation functions. Being the second term in (2.6) absent, Φ0 is the only relevant

piece of Φ necessary to compute the first order corrections in λ to correlation functions.

We will devote the next section to build such a solution for the In-Out path.

A somewhat technical but relevant comment regarding the structure of this work is

related to the treatment of the expression coming from the free on shell action, containing

only boundary terms, and the one coming from the interaction terms, containing bulk in-

tegrals. As noticed in [4], there is a slight difference between the Asymptotic prescription

as performed in [3] and the ε-prescription as defined in [2] when regularizing the diver-

gences appearing from the asymptotic boundary of AdS. The two techniques give different

normalizations for the CFT 2-pt function (which gets its contribution from the boundary

term), but give identical results for any other higher point function, which arise from bulk

terms. While the first prescription leads to easier computations, the latter is more natural

in the sense that it automatically meets the Ward identities between two and higher order

point functions. With this in mind, we are going to follow the ε-prescription when treating

the free contribution of the on-shell action and follow the asymptotic prescription in the

interacting terms.

3 Free field solution Φ0 on in-out path

In this section we build the leading order solution Φ0 in M by solving the first equation

in (2.4). To this end we will first find the most general solutions on ML and M± and

afterwords impose continuity of the fields and their conjugated momenta across the Σ±

gluing surfaces. This procedure will determine uniquely the solution.

5The contribution
∫
∂M
√
γ Φ1n

µ∂µΦ0 is absent in (2.6) since, as stated above, Φ1 = 0 on ∂M.
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3.1 Lorentzian section

The Klein-Gordon equation of motion in ML is

(�−m2) ΦL
0 = 0. (3.1)

with the Poincaré AdSd+1 metric given by

ds2 = z−2(−dt2 + dx2 + dz2) , x = (x1, . . . , xd−1) , z ∈ [ε,∞) , t ∈ [T−, T+].

(3.2)

Inserting the ansatz ΦL
0 = e−iωt+ikxfωk(z) in (3.1) one finds

z2f ′′ωk(z) + (1− d)zf ′ωk(z)− z2
(
k2 − ω2

)
fωk(z)−m2f(z) = 0 . (3.3)

In the ε-prescription equation (3.1) is supplemented by a boundary condition at z = ε

given by

Φ(ε, t,x) = εd−∆φL(t,x). (3.4)

where ∆ ≡ d/2 + ν and ν =
√
d2/4 +m2. In the present work we consider the case where

ν ∈ N.6

The most general solution to (3.1) satisfying (3.4) can be written as

ΦL
0 (z, t,x) =

∫
dt̃dx̃Kε(z, t,x; t̃, x̃)φL(t̃, x̃)

+

∫
+

dωdk

(2π)d
θ
(
ω2 − k2

) (
L+
ωke
−iωt + L−ωke

iωt
)

× eikxz
d
2

(
Jν

(√
ω2 − k2 z

)
− Kν (qz)

Kν (qε)
Jν

(√
ω2 − k2 ε

))
. (3.5)

The first line, which we will refer as NN-solution, fulfills (3.4) provided we take the

boundary-bulk propagator Kε to be given by [2, 25]

Kε(z, t,x; t̃, x̃) ≡ εd−∆

∫
dωdk

(2π)d
zd/2Kν(qz)

εd/2Kν(qε)
e−iω(t−t̃)+ik(x−x̃) , q ≡

√
k2 − ω2 − i0+.

(3.6)

Here Jν is the Bessel function of the first kind and Kν the modified Bessel function of the

second kind. A small imaginary piece −i0+ is added to q to properly define the momentum

integrals appearing in (3.6) as shown in figure 3(a). As discussed in [10, 14–16], this choice

leads to the Feynman propagator. The second line in (3.5), or (Normalizable) N-modes,

specify the form of Φ0(N) that we mentioned in (1.4). They involve a combination of

Bessel functions and correspond to solutions which by construction vanish at z = ε. We

have written the second independent solution to (3.1) (second term in the last parentheses

of (3.5)) as a Kν Bessel function with imaginary argument. Normalizability demands the

momentum domain for N-modes to be timelike, i.e. (ω2 − k2) ≥ 0. We have explicitly

separated the positive and negative frequencies in (3.5), and in the following,
∫
± denote

6The ν = 0 case (Breitenlohner Freedman mass lower bound [23, 24]) requires some special treatment.

We briefly address this in App A. In what follows we take positive integer ν ≥ 1.
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Figure 3. (a) Position of the branch cuts (red) in the ω-complex plane and integration contour

(blue) in (3.6). (b) Position of cuts and integration path for the boundary-bulk propagator in the

euclidean regions.

that the integration in the first differential variable runs over R±. Every other integration

variable should be taken over R. We will show below that the coefficients L±ωk in (3.5),

arbitrary in principle, will get determined after imposing continuity conditions for Φ0 across

Σ± (see [9, 11]).

3.2 Euclidean sections

The metric and the equations of motion for the field in the Euclidean section can be

obtained by Wick rotating (3.2) and (3.3). The crucial feature for M± is that τ runs over

the half line R±, allowing for the existence of Normalizable modes. The general solutions

to the Klein-Gordon equation in M± are therefore

Φ±0 (z, τ,x) =

∫
±
dτ̃dx̃Kε(z, τ,x; τ̃ , x̃)φ±(τ̃ , x̃)

+

∫
+

dωdk

(2π)d
Θ
(
ω2 − k2

)
E±ωke

∓ωτ+ikxz
d
2

×
(
Jν

(√
ω2 − k2 z

)
− Kν (qz)

Kν (qε)
Jν

(√
ω2 − k2 ε

))
, (3.7)

with Euclidean boundary-bulk propagator

Kε(z, τ,x; τ̃ , x̃) ≡ εd−∆

∫
dωdk

(2π)d
zd/2Kν(

√
k2 + ω2 z)

εd/2Kν(
√

k2 + ω2 ε)
eiω(τ−τ̃)+ik(x−x̃) .

The main difference with the Lorentzian form (3.6) is that no cuts appear along the in-

tegration contour, as can be seen from figure 3(b). Notice that the N-modes involve real

– 7 –
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exponentials in τ with ω > 0, thus normalizability admits the e∓ωτ behavior for M±.

The coefficients E±ωk are the euclidean counterparts of L±ωk and are fixed by the continuity

conditions across Σ±.

3.3 Gluing the Euclidean and Lorentzian sections

The continuity conditions across Σ±,(
ΦL

0 (t,x, z)− Φ±0 (τ,x, z)
)

Σ±
= 0 ,

(
∂tΦ

L
0 (t,x, z) + i∂τΦ±0 (τ,x, z)

)
Σ±

= 0 , (3.8)

uniquely fix the L±ωk, E±ωk coefficients in (3.5) and (3.7) to be

L±ωk = e±iωT∓
π
(
ω2 − k2

) ν
2

2ν−1Γ(ν)
φ∓±iωk , E±ωk = e∓iωT±

π
(
ω2 − k2

) ν
2

2ν−1Γ(ν)

(
iφL±ωk + e±iωT∓φ∓±iωk

)
,

(3.9)

where φLωk and φ±ωk are the Fourier components of the sources defined in (B.5) and (B.9).

See appendix Bfor a derivation of these expressions. Similar relations were obtained for

the In-In formalism in [22].

4 On-shell action perturbation theory

4.1 Free field boundary term

In this section we generalize to Poincare coordinates and d dimensions the results obtained

in [11]. In particular, we compute for the excited states (1.2) the inner product and the 1-

and 2-point functions of local operators of conformal dimension ∆. To this end we need to

evaluate the on-shell action.

We start with the Gaussian contribution S0 in (2.6). Inserting the solutions (3.5)

and (3.7), with L±ωk, E±ωk coefficients given by (3.9), back into S0 we find a sum over the

three sections displayed in figure 2(b)7

S0 =S+
0 + SL0 + S−0

= − i

2

∫
+
dτdx ε−∆ φ+

(
z∂zΦ

+
0

)∣∣
z=ε

+
1

2

∫
dtdx ε−∆ φL

(
z∂zΦ

L
0

)∣∣
z=ε

− i

2

∫
−
dτdx ε−∆ φ−

(
z∂zΦ

−
0

)∣∣
z=ε

. (4.1)

We have explicitly replaced the volume element
√
γ = ε−d, inserted the boundary condi-

tions (3.4) and omitted the arguments of the functions to shorten the expression. Only

the asymptotic (z = ε) boundary contribution appear in the expression since the gluing

procedure guarantees that the on shell action pieces arising from the Σ± surfaces cancel

each other [10].

7The on-shell action, both the free and interacting parts, should be understood as a functional only of

the boundary sources S[φL, φ±], for the ease of notation in what follows we will suppress these dependences.

– 8 –
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The asymptotic analysis of the boundary terms in (4.1) shows that both the NN-

solution and N-modes contribute to the physical observables. We work out explicitly the

Lorentzian piece, the Euclidean cases being analogous. The NN-solution in (3.5), for z ≈ ε
behaves as

∂z
(
zd/2Kν(qz)

)
εν−1Kν(qε)

∣∣∣∣∣
z=ε

= (d−∆)εd−∆Pν−1

(
q2
)

+ ε∆q2ν ln(q)

(
(−1)ν−1 41−ν

Γ(ν)2
+O(ε2)

)
.

(4.2)

As it is well known [2, 3], the above expansion shows two distinct features: an analytic

(leading) piece given by a polynomial Pν−1

(
q2
)

of order (ν − 1) and a non-analytic (sub-

leading) piece given, for integer ν, by the ln q terms. The former give rise to contact terms

in S0 and will be dropped in the following. This is formalized in appendix A. The latter

give rise to the familiar CFT propagator when transformed back to configuration space.

As for the N-modes, second line in (3.5), an ε-expansion gives

L±ωk ε ∂z

(
z
d
2Jν

(√
ω2 − k2z

)
− z

d
2
Kν (qz)

Kν (qε)
Jν

(√
ω2 − k2ε

))∣∣∣∣
z=ε

= L±ωkε
∆
(
ω2 − k2

) ν
2

(
21−ν

Γ(ν)
+O(ε2)

)
= ε∆

(
ω2 − k2

)ν ( 41−ν

Γ(ν)2
πe±iωT∓φ∓±iωk +O(ε2)

)
. (4.3)

Notice that a leading ε∆ behavior was factored out, both in (4.2) and (4.3), which compen-

sates the divergent ε−∆ factors appearing in (4.1). Higher ε orders in (4.2) and (4.3) are

thus unimportant as they will give vanishing contributions to (4.1) in the ε→ 0 limit. No-

tice that the contribution from (4.3) does not yield contact terms in spite of being analytic

in (ω2−k2) since the N-modes are solely integrated over a timelike domain (see (3.5)). See

appendix C for detailed calculations.

We now have all the ingredients to obtain the on-shell action S0. Inserting (4.2)

and (4.3) in (4.1) leads to momentum integrals that we carry out in detail in appendix C.

The expressions adopt a compact form if we define the distance between points on the

contour in figure 2(a) as

|xµ − x̃µ|2 ≡ (x− x̃)2 − (η − η̃)2 η ≡


T− − iτ τ ≤ 0 for M−

t t ∈ [T−, T+] for ML

T+ − iτ τ ≥ 0 for M+

, (4.4)

where the complex time variable η parametrizes the In-Out path shown in figure 2(a).8

For example, we shown in the appendix C that the term bilinear in the Lorentzian sources

8One may alternatively parametrize the time path as

η(λ) ≡


T− − i(λ− T−) λ ≤ T− for M−

λ λ ∈ [T−, T+] for ML

T+ − i(λ− T+) λ ≥ T+ for M−

where λ ∈ (−∞,∞).

– 9 –
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come up Feynman regulated with |xµ − x̃µ|2 = (x− x̃)2 − (t− t̃)2 + i0+, for xµ ∈ML and

x̃µ ∈M+ the result is |xµ − x̃µ|2 = (x− x̃)2 − (t− (T+ − iτ̃))2.

For the Lorentzian section ML the free on shell action becomes

SL0 = +
i

2

2νΓ(∆)

π
d
2 Γ(ν)

∫
dtdx

[ ∫
dt̃dx̃

φL(t,x)φL(t̃, x̃)

|xµ − x̃µ|2∆

− i
(∫

+
dτ̃dx̃

φL(t,x)φ+(τ̃ , x̃)

|xµ − x̃µ|2∆
+

∫
−
dτ̃dx̃

φL(t,x)φ−(τ̃ , x̃)

|xµ − x̃µ|2∆

)]
,

and similar expressions are obtained for the Euclidean sections M±

S+
0 ≡ −

i

2

2νΓ(∆)

π
d
2 Γ(ν)

∫
+
dτdx

[(∫
+
dτ̃dx̃

φ+(τ,x)φ+(τ̃ , x̃)

|xµ − x̃µ|2∆
+

∫
−
dτ̃dx̃

φ+(τ,x)φ−(τ̃ , x̃)

|xµ − x̃µ|2∆

)
+ i

∫
dt̃dx̃

φ+(τ,x)φL(t̃, x̃)

|xµ − x̃µ|2∆

]
,

S−0 ≡ −
i

2

2νΓ(∆)

π
d
2 Γ(ν)

∫
−
dτdx

[(∫
−
dτ̃dx̃

φ−(τ,x)φ−(τ̃ , x̃)

|xµ − x̃µ|2∆
+

∫
+
dτ̃dx̃

φ−(τ,x)φ+(τ̃ , x̃)

|xµ − x̃µ|2∆

)
+ i

∫
dt̃dx̃

φ−(τ,x)φL(t̃, x̃)

|xµ − x̃µ|2∆

]
.

Notice the appearance of crossed terms between the Lorentzian and Euclidean sources

in these expressions which add up in (4.1). Their consequences will be explored below.

In particular, using (1.3) we will evaluate the inner product between excited states and

compute the 1- and 2-pt correlation functions.

Inner product: the inner product between excited states (1.2) can be computed by

collapsing the Lorentzian section (∆T = (T+ − T−) → 0) in the absence of Lorentzian

sources [11]. This amounts to consider only the first terms in S+
0 and S−0 . Defining

φE(τ,x) ≡ Θ(τ)φ+(τ,x) + Θ(−τ)φ−(τ,x) , (4.5)

the inner product can be rearranged to give [11]

ln 〈φ+|φ−〉|λ=0 = lim
∆T→0

iS0|φL=0 =
1

2

∫
dτdx

∫
dτ̃dx̃

(
2νΓ(∆)

π
d
2 Γ(ν)

φE(τ,x)φE(τ̃ , x̃)

((x− x̃)2 + (τ−τ̃)2)∆

)
,

(4.6)

in agreement with the well known expression in [3].

1-pt correlation function: the 1-point function arises from the linear terms in φL in S0,

〈φ+|O(t,x)|φ−〉
〈φ+|φ−〉

∣∣∣∣∣
λ=0

= − δS0

δφL(t,x)

∣∣∣∣∣
φL=0

= −
∫
dτ̃dx̃

(
2νΓ(∆)

π
d
2 Γ(ν)

φE(τ̃ , x̃)

|xµ − x̃µ|2∆

)
(4.7)

Notice that this expression corresponds to a propagation of the boundary conditions φ±

on the Euclidean sections to the Lorentzian section. When performing the integral recall

that x̃µ = (T± ∓ iτ̃) for τ̃ ≷ 0.
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Connected 2-pt function: the second term in (4.1) is the relevant one for computing

the 2-pt connected correlator. The result is

〈φ+|T [O(t,x)O(t̃, x̃)]|φ−〉c
〈φ+|φ−〉

∣∣∣∣∣
λ=0

≡ −i δ2S0

δφL(t,x) δφL(t̃, x̃)

∣∣∣∣∣
φL=0

=
2νΓ(∆)

π
d
2 Γ(ν)

1

((x− x̃)2 − (t− t̃)2 + i0+)∆
. (4.8)

Eqs. (4.6)–(4.8) review and generalize the results in [11], where they have been thoroughly

analyzed.

4.2 Self-interaction bulk contribution

In this section we compute the first order correction in λ to the on shell action. We already

mentioned that the second term in (2.6) vanishes (see appendix A), thus the term we are

going to work with is

S1 = −λ
3

∫
M
dz dη dx

√
g (Φ0(z, η,x))3 , (4.9)

where we have used the complex time variable η introduced in (4.4). As mentioned in

section 2, we will work out the bulk integrals involving the non-linear interaction in the

Asymptotic prescription. Appealing to results in [4], we will find a closed analytic ex-

pression for the contributions. In passing we will give a diagrammatic interpretation of

the results.

To compute (4.9) we need the expression for Φ0 in the Asymptotic prescription. This

can be obtained from expressions (3.5), (3.7), (3.9) by taking ε→ 0. For the NN-piece, the

first line in (3.5), the limit leaves a momentum integral which can be computed analytically,

giving [3, 10]

lim
ε→0

∫
dt̃dx̃ Kε(z, t,x; t̃, x̃)φL(t̃, x̃) = i

∫
dt̃dx̃

(
Γ (∆)

π
d
2 Γ(ν)

z∆

(|xµ − x̃µ|2 + z2)∆

)
φL(t̃, x̃) ,

(4.10)

notice that the boundary-bulk propagator comes Feynman regulated as mentioned in the

paragraph below (4.4).

We now show that the N-modes containing the information of the excited states (second

line in (3.5)) can be written as a convolution involving the boundary sources φ± and a

generalized boundary-bulk propagator. Taking the ε→ 0 limit on the N-modes piece, with

L±ωk given by (3.9), one again finds a momentum integral which can be explicitly carried

out (see appendix C)

ΦL
0 (N)(z, t,x) =

21−νπ

Γ(ν)

∫
+

dωdk

(2π)d
Θ
(
ω2 − k2

) (
ω2 − k2

) ν
2 z

d
2Jν

(√
ω2 − k2z

)
×
(∫

+
dτ̃dx̃ e−iω((T+−iτ̃)−t)+ik(x−x̃)φ+(τ̃ , x̃)

+

∫
−
dτ̃dx̃ e−iω(t−(T−−iτ̃))+ik(x−x̃)φ−(τ̃ , x̃)

)
.

=

∫
dτ̃dx̃

(
Γ (∆)

π
d
2 Γ(ν)

z∆

(|xµ − x̃µ|2 + z2)∆

)
φE(τ̃ , x̃) , (4.11)
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with φE defined in (4.5) and the distance |xµ − x̃µ|2 in (4.4). Analogous expressions are

obtained for the fields on M±. Recalling the complex time variable η introduced in (4.4)

motivates the definition of a single source

φ(η,x) ≡


φ−(τ,x) on ∂zM−
φL(t,x) on ∂zML

φ+(τ,x) on ∂zM+

(4.12)

which allows to write Φ0 over the mixed signature manifoldM as a single complex integral

which puts together the contributions from the Lorentzian and Euclidean sources. Sum-

marizing, the final expression for Φ0 in the Asymptotic prescription taking into account all

sources is

Φ0(z, η,x) ≡ i
∫
∂M

dη̃dx̃

(
Γ (∆)

πd/2Γ(ν)

z∆

(|xµ − x̃µ|2 + z2)∆

)
φ(η̃, x̃) . (4.13)

Inserting the expression above in (4.9) leads to an integral over M which is known to

give [4],

− λ

3

∫
M
dz dη dx

√
g (Φ0)3

= i
λ

3

∫
M

dzdηdx

zd+1

3∏
i=1

(∫
∂Mi

dηidxi

(
Γ (∆)

πd/2Γ(ν)

z∆

(|xµ − xµi |2 + z2)
∆

)
φ(ηi,xi)

)

=
λ

3

Γ
(

∆
2

)3
Γ
(

∆
2 + ν

)
2πdΓ (ν)3

3∏
i=1

(∫
∂Mi

dηidxi

)
φ(η1,x1)φ(η2,x2)φ(η3,x3)

|xµ1 − x
µ
2 |∆|x

µ
2 − x

µ
3 |∆|x

µ
1 − x

µ
3 |∆

=
λ

3

3∏
i=1

(∫
∂Mi

dηidxi

)
φ(η1,x1)φ(η2,x2)φ(η3,x3)R(xµ1 , x

µ
2 , x

µ
3 ) , (4.14)

where the arguments xµi of the sources φ defined in (4.12) lie on ∂M =

∂zM−
⋃
∂zML

⋃
∂zM+, and the expression for R is given by

R(xµ1 , x
µ
2 , x

µ
3 ) ≡ 1

2πd
Γ (∆/2)3 Γ (∆/2 + ν) Γ (ν)−3

|xµ1 − x
µ
2 |∆|x

µ
2 − x

µ
3 |∆|x

µ
1 − x

µ
3 |∆

.

Since (4.14) contains powers of φL up to cubic order, we get corrections to the inner

product and connected 1-, 2- and 3-pt correlators. The leading order on shell action for

our system is thus

S = −1

2

∫
∂M

√
γ Φ0n

µ∂µΦ0 −
λ

3

∫
M

√
g (Φ0) 3 = (4.1) + (4.14) . (4.15)

Inner product λ-correction: from the on-shell action we can obtain the inner product

between the excited states. This is found by turning off the Lorentzian sources and setting

the (real time) interval of evolution to zero [11]

ln〈φ+|φ−〉 ≡ lim
∆T→0

(4.15)|φL=0 (4.16)

= (4.6)− λ

3

3∏
i=1

(∫
∂Mi

dτidxi

)
φE(τ1,x1)φE(τ2,x2)φE(τ3,x3)R(xµ1 , x

µ
2 , x

µ
3 ) ,
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φ+

φ–

φ+

(a)

φ–

φ+

(t,x)

(b)

Figure 4. (a) Example of a a diagram contributing to the inner product correction. The bulk and

Euclidean sources insertion points are integrated overM and ∂M± respectively. The final result is

given by (4.16). (b) Example of a first order correction diagram contributing to the 1-pt function.

It is obtained from (4.14) by stripping away one Lorentzian source and removing its accompanying

integral. The final result for the first order correction is given by (4.18).

φ–

˜
˜(̃t,x)

(t,x)

(a)

˜(̃t,x)
˜̃˜̃(t,x)

(t,x)

(b)

Figure 5. Examples of diagrams contributing to the 2- and 3-pt functions corrections. The diagram

in figure(b) manifests the source independence of the first order correction to the 3-pt function.

with φE defined in (4.5). In analogy with the non-interacting case [11], the left hand side,

which reduces to the computation of the generating functional for a source φE on the

boundary of the Euclidean AdS, matches [4].
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The excited states given by (1.2) are not normalized. Defining |φ±〉N ≡ N±|φ±〉, the

appropriate normalizing factors follow from

N 〈φ±|φ±〉N = |N±|2eiS0 (1 + iλS1) = 1 =⇒ N± = e−
i
2
S0

(
1− iλ

2
S1

)
,

where we have expanded to first order in λ. Recall that upon taking ∆T → 0 limit, iS0

and iS1 become real, see (4.6), (4.16). After some manipulations, the inner product of

normalized states becomes

N 〈φ+|φ−〉N = e−
1
2
|φ−−(φ+)?|2

(
1− λ

3

∫
∂M−

(
φ−(τ1,x1)− (φ+(τ1,x1))?

)
×
∑
s=±

(
s

∫
∂Ms

φs(xµ2 )φs(xµ3 )

)
R(xµ1 , x

µ
2 , x

µ
3 )

)
(4.17)

which naturally gives one when (φ+(τ,x))? ≡ φ+(−τ,x) = φ−(τ,x). This is the conjuga-

tion rule given by [26]. The norm |φ− − (φ+)?|2 = (φ− − (φ+)?, φ− − (φ+)?) built in [11],

is induced by the inner product on the space of smooth fields defined on ∂M− as9

(φ1 , φ2) ≡
∫
−
dτdx

∫
−
dτ̃dx̃

(
2νΓ(∆)

π
d
2 Γ(ν)

φ1(τ,x)φ2(τ̃ , x̃)

((x− x̃)2 + (τ + τ̃)2)∆

)
.

The factor in parentheses modifying the Gaussian in (4.17) indicates that, in the presence

of interactions, the excited states deviate from being strictly coherent.

1-pt function λ-correction: the first order correction to the 1-pt function (4.7) is

obtained by taking the derivative of (4.14) with respect to φL. It yields

〈φ+|O(t,x)|φ−〉
〈φ+|φ−〉

≡ δ (4.15)

δφL(t,x)

∣∣∣∣∣
φL=0

(4.18)

= (4.7) + λ
2∏
i=1

(∫
∂Mi

dτidxi

)
φE(τ1,x1)φE(τ2,x2)R(xµ1 , x

µ
2 , x

µ) .

In the ∆T → 0 limit, i.e. when no time evolution takes place, the expression above becomes

the matrix element of O between the states |φ±〉. The correction is again in line with the

deformation of coherence, as the matrix element are no longer linear in the Euclidean

sources [11, 14–16].

2-pt function λ-correction: taking the second derivative of (4.14) with respect to φL

yields the first order correction,

〈φ+|T [O(t,x)O(t̃, x̃)]|φ−〉
〈φ+|φ−〉

≡ δ2(4.15)

δφL(t,x) δφL(t̃, x̃)

∣∣∣∣∣
φL=0

= (4.8)− 2λ

∫
∂M

dτ1dx1φ
E(τ1,x1)R(xµ1 , x̃

µ, xµ) . (4.19)

9Notice that the denominator is not exactly the bulk to boundary propagator as it contains (τ + τ̃)

rather than (τ − τ̃), see [11].
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Notice that the correction, depending on the arbitrary profile φE , does not correspond to

an anomalous dimension as other type of corrections coming from bulk interactions, cf. [20].

3-pt function: a third φL differentiation of (4.14) leads to the 3-pt function of the scalar

operator O,

〈φ+|T [O(t,x)O(t̃, x̃)O(˜̃t, ˜̃x)]|φ−〉
〈φ+|φ−〉

≡ δ3(4.15)

δφL(t,x) δφL(t̃, x̃) δφL(˜̃t, ˜̃x)

∣∣∣∣∣
φL=0

= 2λR(xµ, x̃µ, ˜̃xµ) .

(4.20)

This is the time-ordered Lorentzian extension of the result in [4]. One notices no depen-

dence on φE in (4.20). This happens as a consequence of the cubic nature of the bulk

interaction vertex form, and is similar to the result found in [11] for the 2-pt function in

a free bulk theory. However, in the present case, the φE sources independence in (4.20) is

only valid up to linear order in λ. This will become clear below from a diagrammatic point

of view.

Diagrammatic interpretation of the results: the result (4.13) and the bulk interac-

tion vertex (4.9) allow a diagrammatic interpretation of the corrections found above (see

figures 4 and 5). The boundary-bulk propagator, given by the parentheses in (4.13), car-

rying the information of φ(η,x) from ∂M to a point inside M, is represented as a wavy

line. The cubic interaction (4.9) maps to three wavy lines meeting at a point. Higher

order λ corrections involve bulk-bulk propagators joining bulk vertices which can also be

represented by wavy lines. The colored wavy lines (red/blue) emphasize dependence on the

initial/final states. By construction (see (1.3)), only connected tree level diagrams should

be considered.

As a general rule, the λk corrections to the n-th correlation function arise from: (i)

attaching n dots to the Lorentzian boundary ∂ML, denoted by (t,x), (t̃, x̃), . . ., (ii) placing

k vertices in the bulk and (iii) considering all possible tree level connected diagrams reaching

the Lorentzian dots. Vertex legs which do not reach the Lorentzian dots should be attached

to the Euclidean cups and manifest dependence on the initial/final states. To first order

in λ we have depicted in figures 4 and 5 some sample diagrams.

It is easy to understand why no Euclidean sources appear in the 3-pt function correc-

tion (4.20) as no vertices legs are available to reach the Euclidean regions from a single

bulk vertex point. This also gives a alternative way for understanding the result in [11]

showing that (4.8) was independent of the euclidean sources at 0-th order in λ.

5 Analysis of the results

5.1 Squeezed states

Generically the AdS/CFT correspondence in the large N limit amounts to consider classical

bulk dynamics at leading order. This manifests in the full fledged quantum theory in

terms of coherent states as discussed in [11]. In the present section we will consider the

consequences of turning on bulk interactions of the form (4.9) on the quantum states and

show that the coherent states (1.2) deform into squeezed ones.
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To this end, we take profit of the BDHM prescription [18, 27]. The equivalence be-

tween the boundary sources technique (GKPW) developed in [2, 3, 9] and the Fock space

construction (BDHM) [18, 27] was shown in [28]. The BDHM framework consists in canon-

ically quantizing AdS bulk fields and obtaining dual CFT operator through the relation10

O(t,x) ≡ Nν lim
z→0

z−∆ Φ̂(z, t,x) . (5.1)

The normalization factor Nν ≡ 2ν is required for a precise match between the prescrip-

tions [11, 28, 30].

From the action (2.1), one builds an interacting quantized field Φ̂ as a perturbative λ-

expansion. The free field Φ̂0 is a linear combination of the orthonormal set of eigenfunctions

of the KG equation with ladder operators as coefficients, i.e. [14–16]

Φ̂0(z, t,x) ≡
√
π

∫
+

dωdk

(2π)d/2
Θ
(
ω2−k2

) (
aωke

−iωt+ikx + a†ωke
iωt−ikx

)
z
d
2Jν

(√
ω2 − k2z

)
.

(5.2)

From this last expression and (5.1) we obtain the 0-th order CFT operator,

O0(t,x) ≡ Nν lim
z→0

z−∆Φ̂0(z, t,x)

=

√
π

2ν−1Γ(ν)

∫
+

dωdk

(2π)d/2
Θ
(
ω2 − k2

) (
ω2 − k2

) ν
2

(
aωke

−iωt+ik x + a†ωke
iωt−ik x

)
.

(5.3)

The first order quantum correction to the quantum field which follows from (2.4) is

Φ̂1(z, t,x) =

∫
M
dt̃dx̃dz̃

√
g̃ G(z, t,x; z̃, t̃, x̃) :

(
Φ̂0(z̃, t̃, x̃)

)2
:

where G(z, t,x; z̃, t̃, x̃) is the (standard) bulk-bulk AdS propagator [49] and : Â : denotes

normal ordering of the operator Â [31]. Using the relation [25]

lim
z→0

G(z, t,x; z̃, t̃, x̃) = −z
∆

2ν
K(t,x; z̃, t̃, x̃) = −z

∆

2ν

(
Γ (∆)

πd/2Γ(ν)

z̃∆

(|xµ − x̃µ|2 + z̃2)∆

)
,

the first λ correction to the CFT operator becomes

O1(t,x) ≡ Nν lim
z→0

z−∆Φ̂1(z, t,x) = −
∫
M
dt̃dx̃dz̃

√
g̃K(t,x; z̃, t̃, x̃) :

(
Φ̂0(z̃, t̃, x̃)

)2
: .

(5.4)

To first order we therefore get

O(t,x) ≈ O0(t,x) + λO1(t,x) , (5.5)

showing that the correction O1 leads to quadratic terms in the ladder operators.

10Here we work in Poincaré coordinates. We refer the reader interested in the implementation of (5.1) in

other coordinate systems to the nice discussion in [27].
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The final step is to notice that the path ordered exponential in (1.2) can be

thought, for computational purposes, as a time evolution operator with Hamiltonian∫
dx O(τ,x)φ−(τ,x), evolving in Euclidean time the ground state to our initial excited

state (1.2). From (5.5) we see that the “time evolution” is quadratic in the ladder oper-

ators. We now make use of the results in [32] where, by use of disentangling theorems, it

was shown that a generic quadratic operator

H(t) =
∑
ωk

ωωk(t)

(
a†ωkaωk +

1

2

)
+
∑
ωk;ω̃k̃

(
fωk;ω̃k̃(t)a†ωka

†
ω̃k̃

+ h.c.
)

+
∑

ωk 6=ω̃k̃

gωk;ω̃k̃(t)

(
a†ωkaω̃k̃ +

1

2
δωk;ω̃k̃

)
+
∑
ωk

(
hωk(t)a†ωk + h.c.

)
(5.6)

takes the vacuum state into a squeezed state

exp

∑
ωk

αωk(t)a†ωk +
∑
ωk;ω̃k̃

ζωk;ω̃k̃(t)a†ωka
†
ω̃k̃

 |0〉 . (5.7)

with the parameters αωk(t) and ζωk;ω̃k̃(t) determined by the coefficients in (5.6) [32]. In

short, to linear order in λ, the states (1.2) can be dissentangled as squeezed states. In the

present case we get

fωk;ω̃k̃(τ) ≡ λ π

(2π)d

∫
dxφ−(τ,x)

∫
M

√
g̃K(τ,x; z̃, t̃, x̃) z̃d

× Jν
(√

ω2 − k2z̃
)
Jν

(√
ω̃2 − k̃

2
z̃

)
ei(ω̃+ω)t̃−i(k̃+k)x̃ ;

gωk;ω̃k̃(τ) ≡ λ 2π

(2π)d

∫
dxφ−(τ,x)

∫
M

√
g̃K(τ,x; z̃, t̃, x̃) z̃d

× Jν
(√

ω2 − k2z̃
)
Jν

(√
ω̃2 − k̃

2
z̃

)
e−i(ω̃−ω)t̃+i(k̃−k)x̃ ;

hωk(τ) ≡ 21−ν√π
(2π)d/2Γ(ν)

∫
dxφ−(τ,x)

(
ω2 − k2

) ν
2 eiωτ−ik x ; ωωk(τ) ≡ gωk;ωk(τ)

The “time” dependence in (5.7) is understood to be evaluated at Euclidean time τ = 0

corresponding to an evolution along the whole M− manifold.

5.2 Multiple scalar fields and entanglement

Through this work we have consistently worked with a single scalar field. Neverthe-

less, the formalism can straightforwardly be generalized to the case of many fields by

using (4.13).11 We show below that generically, interactions among bulk fields lead to

entangled CFT states.

As a simple example, let us consider three scalar fields ΦI , I = 1,2,3 with an interac-

tion term given by

−λIJK
∫
M

√
g ΦIΦJΦK .

Therefore, the states space can be expressed as H1 ⊗H2 ⊗H3.

11A thoroughly discussion considering many fields can be found in [18].
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The BDHM prescription [18, 27] gives us the operator

OI(t,x) ≈ OI;0(t,x)− λIJK
∫
M

√
g̃K(t,x; z̃, t̃, x̃) :

(
Φ̂J ;0(z̃, t̃, x̃) Φ̂K;0(z̃, t̃, x̃)

)
:

≈ OI;0(t,x)− λIJK OJK;1(t,x) . (5.8)

By expressing Φ̂I;0(z, t,x) in terms of the ladder operators aI , the λ correction OJK;1

becomes a linear combination of the operators

a†Ja
†
K , aJaK , a†JaK (5.9)

So for instance, the excited states associated only to sources φ1 6= 0 read as

|φ1〉 = P
{

exp

[
−
∫
∂M−

φ1(τx,x) (O1;0(τx,x)− λ1JK OJK;0(τx,x))

]}
|0〉 (5.10)

thus the second term in the exponent, proportional to the coupling λ1JK , involves products

a†J a
†
K that typically characterize maximally entangled states in the space HJ ⊗ HK . As

an aside, notice that thermal states in the TFD formalism also have this form [33–36].

This result suggests a possible connection with some recent ideas and results pointing

that (emergent) classical geometry, and field configurations on it, should be intimately

related to entangled states in the boundary quantum field theory [37–42]. More recently

these ideas have been developed in the context of MERA networks [43–45].

6 Conclusions

In a previous article [11] it was argued that the states (1.2), prescribed by the SvR set up

for a free bulk theory are coherent states. This can be understood by the fact that the

large-N approximation describes the semiclassical regime of the bulk theory, such that only

semiclassical states should make sense. Moreover, these states are strictly coherent in the

bulk representation of the Hilbert space, since the N → ∞ limit of supergravity reduces

to a free theory, in the sense that, with a suitable normalization [22], only two point

correlation functions remain non-vanishing. In the present work, motivated by previous

literature [4, 18], we have considered the simplest toy model for an interacting bulk theory.12

We have analyzed the nature of these excited states and explicitly shown in section 5 that

the bulk interaction slightly deviates the in/out states from coherent to squeezed states.

After setting notations in sections 2 and 3 we computed in section 4.1 the 0-th order

contributions to the inner product, 1- and 2-pt function. In section 4.2 we analyzed the

first order corrections arising from the self interacting (bulk) contribution to the on-shell

action, in particular we gave a (Witten) diagrammatic representation for the contributions

to correlation functions in the SvR framework in figures 4 and 5, matching the intuition

one has from classical perturbation theory. It is important to stress that Euclidean and

12We would like to mention that our work may have some applications also to the context of rigid

holography [46], this is non-gravitational field theory on AdS space which are dual to a sector of the CFT

dual to the full string theory background.
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Lorentzian sources stand in different footing. Euclidean sources are never turned off and

prescribe the in/out states, concomitantly fixing the normalizable modes propagating into

the Lorentzian bulk. On the other hand, Lorentzian sources serve as tools to obtain the

correlation functions and are set to zero at the end of computations.

From the results in section 4.2, we can infer some general properties of the CFT n-pt

correlation functions arising from a self interacting λΦm bulk dual: up to linear order in

λ, the correction to the n-pt correlation function will arise from the on-shell action term

involving m−n Euclidean sources. These can be pictured as diagrams analogous to figures 4

and 5. Therefore, up to leading order in λ we can conclude that n-pt functions with n < m

will depend on the excited states profile, while the (connected) m-pt function will be non-

zero but independent of the excited states. It is worth noticing that the squeezed character

of states (1.2) only follows for a cubic interaction.

In a future work, we aim to study a more realistic set up based on supergravity models

that captures the space-time back-reaction and how the coupling with the spin 2 field hαβ
would affect the form of excited states (1.2). Typically, the bulk interaction between many

SUGRA fields should produce entangled states as pointed out in section 5.
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A Holographic renormalization in ε-prescription

In this appendix we pursue two objectives: first, we show explicitly the vanishing of the

second term in (2.6), which leads to the first order correction to the on-shell action arising

solely from (4.9); secondly, we construct the adequate counter-terms needed to take care

of the contact terms in (4.2). The Holographic Renormalization method in the regularized

space (i.e. ε-prescription), which we will review in what follows, will take care of both

issues. We start by ignoring the N modes in the solutions, thus considering only the NN

solutions involving the bulk-boundary propagator Kε defined in (3.6). We then show that

considering the N modes leaves the results unaffected. For the sake of self-consistency, we

present some formulae that will become useful in what follows. The first order solution

to (2.2) disregarding the N modes is

Φ(z, t,x) = Φ0(z, t,x) + λ

∫
ML

dz̃dt̃dx̃
√
g̃ Gε(z, t,x; z̃, t̃, x̃) (Φ0(z̃, t̃, x̃))2 +O(λ2) . (A.1)

with Φ0 given only by the first line in by (3.5) and Gε the Feynman bulk-bulk Green function

in the regularized space, i.e.13

(
�−m2

)
Gε(z, t,x; z̃, t̃, x̃) =

1
√
g
δ(x− x̃)δ(t− t̃)δ(z − z̃) Gε(ε, t,x; z̃, t̃, x̃) = 0 .

13See section 3.2.1 in [25] a more thorough study.
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The relevant property of Gε we will use in what follows is the relation between the bulk-bulk

and boundary-bulk propagators

z∂z(Gε(z, t,x; z̃, t̃, x̃))|z=ε = −ε∆Kε(z̃, t̃, x̃; t,x) . (A.2)

The on-shell action (4.1) involves radial derivatives of the boundary-bulk propagator

Kε, which lead to divergences (see (4.2)) upon taking the ε→ 0 limit. The expansion that

will become useful below is

ε
d
2Kν(qε) = (−1)ν

1

2

(q
2

)ν
ε
d
2

+ν
∞∑
k=0

ψ(k + 1) + ψ(k + ν + 1)− 2 log
( qε

2

)
(ν + k)!k!

(qε
2

)2k

+
1

2

(q
2

)−ν
ε
d
2
−ν

ν−1∑
k=0

(−1)k
(ν − k − 1)!

k!

(qε
2

)2k
, ν ∈ N (A.3)

where ψ(x) is the DiGamma function. The divergent terms in the on-shell action will

mainly come form the second line above, containing integer powers of q2 that lead to

contact terms in configuration space and an additional logarithmic divergence arise from

the first line for k = 0 that leads to a matter conformal anomaly [50]. We build below

appropriate counter-terms for each of these divergent terms.

Inserting (A.1) in (2.5) we find to first order in λ

S =
1

2

∫
∂ML

ε−∆φL (z∂zΦ0) |z=ε +
λ

2

∫
∂ML

ε−∆φL (z∂zΦ1) |z=ε

+
λ

2

∫
ML

√
g̃ (Φ0)3 − λ

3

∫
ML

√
g̃ (Φ0)3 +O(λ2) , (A.4)

where the outward normal is nµ∂µ = −z∂z. The cancellation between the second and third

term in (A.4) follows by using (A.2) in the second term in (A.4), giving [25]

λ

2

∫
∂ML

ε−∆φL (z∂zΦ1) |z=ε = −λ
2

∫
ML

√
g̃ (Φ0)2

(∫
∂ML

Kε(z̃, t̃, x̃; t,x)φL(t,x)

)
= −λ

2

∫
ML

√
g̃ (Φ0)3 . (A.5)

which exactly cancels the third term in (A.4). One may worry that in the presence of

N-modes, the integral in parentheses no longer gives Φ0, since the second line in (3.5)

is missing. Nevertheless, the cancellation persists upon considering the S± contributions

in (2.1). A nice outcome of the SvR construction is that one can write, on the complete

manifold M, the field solution to (2.2) as (4.13) packaging both the NN- and N-modes

information in terms of a boundary-bulk propagator. Therefore (A.5) remains valid as long

as we integrate over the whole manifold M.

We now devote ourselves to build the counter-terms needed to obtain a finite on shell

action. The ε-divergences in (A.4) arise from the first term.14 Each of these divergences

take the form of boundary terms, and as such, can be subtracted without altering the

14The bulk terms do not contain ε-divergences, see [4].
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equations of motion. We will work out the ν = 1 example, the general ν ∈ N case

follows the same procedure. For completeness we mention that the treatment of the ν =

0 case, corresponding to the Breitenlohner-Freedman lower mass bound [23, 24], differs

slightly from the general integer case. The reason being a logarithmic decay in the field

when approaching the boundary. The boundary condition (3.4) modifies to Φ(ε, t,x) =

ε∆ ln(ε)φ(t,x) and an interesting outcome to point out is that the coefficient in (4.8)

changes to Γ(∆)/(2π∆), which can be readily seen to be necessary since ν/Γ(ν) would

make the result trivial otherwise [4].

Counter-terms for ν = 1. By using the expansion (A.3) for ν = 1, the leading ε-terms

for the normal derivative in the first term on (A.4) turn into

(z∂zΦ0) |z=ε(t,x)

=

∫
dωdk

(2π)d

∫
∂ML

φL(t̃, x̃)e−iω(t−t̃)+ik(x−x̃)ε
d
2
−1z∂z

(
z
d
2K1(qz)

ε
d
2K1(qε)

)
z=ε

≈
∫
dωdk

(2π)d

∫
∂ML

φL(t̃, x̃)e−iω(t−t̃)+ik(x−x̃)ε
d
2
−1

×
((

d

2
− 1

)
+ q2ε2 ln

(
eγε

2

)
+ q2ε2 ln(q)

)
≈
(
d

2
− 1

)
Φ0|z=ε − ln (ε̃) (�γΦ0)|z=ε

+ ε
d
2

+1

∫
dωdk

(2π)d

∫
∂ML

φL(t̃, x̃)q2 ln(q)e−iω(t−t̃)+ik(x−x̃) (A.6)

where we used the relation (3.4), ε̃ ≡ 1
2εe

γ , γ is the Euler-Gamma number and �γ ≡
ε2ηij∂i∂j , with i, j = 1, . . . , d is the induced D’Alambertian on the boundary. The first

term of (A.4) can therefore be written as

1

2

∫
∂ML

φLε−∆ (z∂zΦ0) |z=ε

=
1

2

(
d

2
− 1

)∫
∂ML

√
γ (Φ0)2 − 1

2
ln (ε̃)

∫
∂ML

√
γ Φ0�γΦ0

+
1

2

∫
∂ML

φL(t,x)

∫
∂ML

φL(t̃, x̃)

∫
dωdk

(2π)d
q2 ln(q)e−iω(t−t̃)+ik(x−x̃) (A.7)

The first line of (A.7) shows that the divergent terms of the on shell action (in the ε→ 0

limit) can be written as local functions of the boundary values Φ0|ε = εd−∆φL, therefore

they can be removed by adding identical terms with opposite signs. The second line

in (A.7) is the relevant term in (4.2) and gives rise to the expected 2-pt function for a

conformal operator with conformal weight ∆, as we show in appendix C. We would like to

mention that in the ε-prescription we follow in the present work, the relationship between

the boundary condition for the field at the radial boundary and the CFT source is simply

Φ0|ε = εd−∆φL as compared to Φ0 = zd−∆φL+. . . for z � 1 in the Asymptotic prescription.

The simple boundary condition (3.4) avoids the iterative procedure one finds in determining
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the counter-terms in [50]. The second term in the first line of (A.7) involving ln ε gives rise

to the matter conformal anomaly of the dual CFT [25, 50]. Notice that this term appears

as a consequence of ν being a positive integer.

The counter-term action to be added, for ν = 1, can be written as

Sct;ν=1 = −1

2
(d−∆)

∫
∂M

√
γ (Φ0)2 +

1

2

∫
∂M

√
γ ln (ε̃) Φ0(�γ)νΦ0 . (A.8)

Counter-terms for general ν. Carrying the same procedure for general ν ∈ N one

finds: (i) ν divergent (local) terms of the form Φ0(�γ)iΦ0 with i = 0, . . . , (ν − 1), (ii) a

single logarithmic divergent term of the form (−1)ν ln(ε)Φ0(�γ)νΦ0 leading to the matter

conformal anomaly and (iii) a ln(p)p2ν term that gives rise to the expected 2-pt function

∼ |x− y|−2∆. For non integer ν the ln ε term is absent.

For concreteness we quote the ν = 2 case,

Sct;ν=2 = − 1

2
(d−∆)

∫
∂M

√
γ (Φ0)2 +

1

2

∫
∂M

√
γ Φ0�γΦ0

− 1

4

∫
∂M

√
γ ln (ε̃) Φ0(�γ)2Φ0 (A.9)

B Solutions near Σ±

In this appendix we derive the equations (3.9) from the continuity conditions (3.8). We

start by reminding the reader that the continuity condition following from the path integral

formulation is imposed on the field and its conjugated momentum. Starting from the

definition,

Π(z, η,x) ≡ δL
δ(∂ηΦ(z, η,x))

and using the complex time variable η defined in (4.4), it follows from the action (2.1) that

(ΠL(z, t,x)−Π±(z, τ,x))|Σ± = 0 ⇐⇒ (∂tΦ
L(z, t,x)− i∂τΦ±(z, τ,x))|Σ± = 0 ,

which is the second equation in (3.8).

The continuity conditions (3.8) on Σ± give linear relations between L± and E± which

determine them uniquely in terms of the Euclidean sources φ±. To compute the relations

we can safely take the ε→ 0 limit from the outset. This is allowed because the sources φL,±

turn off at the vicinity of Σ±. The absence of sources guarantee that the field configuration

can be expanded in terms of N-modes, for which the ε regularization is superfluous. From

a mathematical point of view, this manifests in (4.3) where one sees that the leading ε∆ in

front only requires the ε0 information of the coefficients L±, see discussion below (4.3).

We will transform to momentum space via

Θ
(
ω2 − k2

) ∫
dx e−ikx

∫ ∞
0

dz z1− d
2Jν

(√
ω2 − k2z

)
× lim
ε→0

(3.8) , (B.1)
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and make use of the following properties [51, 52]

Θ (ω̃) δ
(
k− k̃

)∫ ∞
0

dz zJν

(√
ω2 − k2z

)
Jν

(√
ω̃2 − k̃

2
z

)
=
δ(ω̃ − |ω|)
|ω|

, (B.2)

δ
(
k− k̃

)∫ ∞
0

dz zJν

(√
ω2 − k2z

)
Kν(q̃z)

=

(
ω2 − k2

) ν
2 q̃−ν

(ω̃ − (|ω| − i0+)) (ω̃ + (|ω| − i0+))
. (B.3)

with q defined in (3.6). We will now find the behavior of (B.1) near the surfaces Σ± for

the Lorentzian and Euclidean solutions (3.5) and (3.7) in the ε→ 0 limit.

Lorentz section: we will analyze the NN- and N-pieces in Φ separately. The momentum

components of the NN-piece in (3.5) read

Θ
(
ω2 − k2

) ∫ dω̃dk̃
(2π)d

φL
ω̃,k̃

2ν−1Γ(ν)

(
ω2 − k2

) ν
2 e−iω̃t

×
(∫

dx e−ix(k−k̃)

)(∫
dz zJν

(√
ω2 − k2z

)
Kν(q̃z)

)
= Θ

(
ω2 − k2

) (ω2 − k2)
ν
2

2νπΓ(ν)

(∫
dω̃

φLω̃,k e
−iω̃t

(ω̃ − (|ω| − i0+)) (ω̃ + (|ω| − i0+))

)
(B.4)

with the Fourier Transform of the source φLωk given by

φLωk ≡
∫
∂ML

dt̃dx̃ φL(t̃, x̃) eiωt̃−ikx̃ . (B.5)

The ω̃ integral in (B.4) is solved by the Residue theorem, with the integration contour

closing in the upper/lower half plane depending on Σ±. As an example, taking into account

that the CFT sources φL(t̃, x̃) lie before Σ+, for t close to Σ+ it follows that (t − t̃) ∼
(T+− t̃) > 0, therefore the ω̃-path must be closed from below. For Σ− the opposite contour

is needed. Summarizing, the NN contribution to (B.1) gives

(B.4) =
Θ(ω2 − k2)

2πω

(
iχωk φ

L
±ωk

)
e∓iωt , t near Σ± ; χωk ≡

π
(
ω2 − k2

) ν
2

2ν−1Γ(ν)
(B.6)

where we dropped the i0+ and the absolute value since ω > 0 for N-modes. Notice that

only the time-like Fourier components of φL excite the normalizable modes (see [14–16]).

The momentum components of the N-modes are

Θ(ω2 − k2)

∫
+

dω̃dk̃

(2π)d
Θ
(
ω̃2 − k̃

2
)(

L+

ω̃,k̃
e−iω̃t + L−

ω̃,k̃
eiω̃t
)

×
(∫

dxei(k̃−k)x

)(∫
dz zJν(

√
ω2 − k2z)Jν

(√
ω̃2 − k̃

2
z

))
=

Θ(ω2 − k2)

2πω

(
L+
ωke
−iωt + L−ωke

iωt
)
, (B.7)
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where we have used (B.2). Notice that one of the Θ functions can be thrown away as it

becomes redundant.

Euclidean section: we perform similar calculation for the Euclidean solution (3.7). The

NN piece gives

Θ(ω2 − k2)

∫
dω̃dk̃

(2π)d

φ±
ω̃,k̃

(
ω̃2 + k̃

2
) ν

2

2ν−1Γ(ν)
eiω̃τ

×
(∫

dxe−ix(k−k̃)

)(∫
dz zJν

(√
ω2 − k2z

)
Kν

(√
ω̃2 + k̃

2
z

))
= Θ(ω2 − k2)

(ω2 − k2)
ν
2

2νπΓ(ν)

(∫
dω̃

φ+
ω̃,k e

iω̃τ

(ω̃ − i|ω|) (ω̃ + i|ω|)

)
(B.8)

where we defined the Euclidean Fourier transform of the source as

φ±ωk ≡
∫
±
dτ̃dx̃ φ±(τ̃ , x̃)e−iωτ̃−ikx̃ , (B.9)

The ω̃ integral follows from similar arguments as the lorentzian case. Near Σ+, (τ− τ̃) < 0,

so eiω̃(τ−τ̃) requires the path to be closed from below, picking up the pole at ω̃ = −i|ω|.
For M− one closes in the upper half plane. We can summarize both cases as

(B.8) =
Θ(ω2 − k2)

2πω
χωk φ

±
∓iωke

±ωτ , τ near Σ± . (B.10)

Notice from (B.9) that φ±∓iωk have the appropriate imaginary frequency sign to give a

convergent integral.

The Euclidean N modes contribute as

Θ(ω2 − k2)

2πω
E±ωke

∓ωτ , τ near Σ± (B.11)

Finally, adding up (B.6), (B.7), (B.10) and (B.11) one can write (B.1) as the set of

linear equations

L−ωke
iωT+ +

(
iχωk φ

L
ωk + L+

ωk

)
e−iωT+ = χωk φ

+
−iωk + E+

ωk

L−ωke
iωT+ −

(
iχωk φ

L
ωk + L+

ωk

)
e−iωT+ = χωk φ

+
−iωk − E

+
ωk(

iχωk φ
L
−ωk + L−ωk

)
eiωT− + L+

ωke
−iωT− = E−ωk + χωk φ

−
iωk(

iχωk φ
L
−ωk + L−ωk

)
eiωT− − L+

ωke
−iωT− = E−ωk − χωk φ

−
iωk

which lead to the solution given by (3.9).

C Useful mathematical results

For completeness, we devote this appendix to carry out some sample integrals that lead to

the results (4.6)–(4.8).
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Example 1: the present paper considers theories for which ν =
√

(d/2)2 +m2 is a posi-

tive integer. This leads to the appearance of logarithms in the Bessel functions expansions,

see (4.2), which we must transform back to configuration space. As an example, (4.8) is

obtained from (4.1) by performing

lim
ε→0

ε−∆
(
z∂zΦ

L
0

)
|z=ε =

∫
dt̃ x̃ φL(t̃, x̃)

(
(−4)1−ν

Γ(ν)2

∫
dωdk

(2π)d
q2ν ln(q)e−iω(t−t̃)+ik(x−x̃)

)
.

(C.1)

The momentum integral in parenthesis is not convergent in the traditional sense and should

be understood in the sense of distributions. We make sense of the momentum integral

in (C.1) by defining∫
dωdk

(2π)d
q2ν ln(q)e−iωt+ikx ≡ lim

ν→N

1

2
∂ν

(∫
dωdk

(2π)d
q2νe−iωt+ikx

)
(C.2)

with ν in the right hand side understood as a continuum parameter. In what follows, both

d and ν are understood as continuous parameters. The integrals are done within a domain

where they converge in the traditional sense, and the desired integral is defined as the

analytic continuation of the regular result. We refer the reader to [53, 54] for a complete

formalization of these concepts.

We are interested in showing∫
dωdk

(2π)d
q2νe−iωt+ikx = i

C(d, ν)

(x2 − t2 + i0+)∆
, C(d, ν) ≡ 4ν

π
d
2

Γ
(
d
2 + ν

)
Γ(−ν)

, (C.3)

where q2 = k2 − ω2 − i0+. We will make use of Lorentz invariance to simplify our calcula-

tions, computing the above integral first for a space-like interval (xµ)2 = X2 > 0 and then

in a purely time-like (xµ)2 = −T 2 < 0, from where the general result can be recovered.

Space-like frame: a Lorentz transformation allows to go to the frame xµ = (0,X).

Writing k in spherical coordinates and using 3.915 5. in [51] leads to ω and k =
√

k2

integrals that can be explicitly computed.∫
dωdk

(2π)d
(
−ω2 + k2 − i0+

)ν
eikX

=
1

X
d−3
2

∫ ∞
0

dk k
d−1
2

(2π)
d+1
2

J d−3
2

(kX)

∫ ∞
−∞

dω
(
−ω2 + k2 − i0+

)ν
= i

√
πΓ
(
−ν − 1

2

)
(1− i0+)

X
d−3
2 (2π)

d+1
2 Γ(−ν)

∫ ∞
0

dk k
1+d+4ν

2 J d−3
2

(kX)

= i
C(d, ν)

X2∆
(1− i0+) .

where only leading terms in i0+ were kept. Turning back to the original frame, one gets∫
dωdk

(2π)d
q2νe−iωt+ikx = i

C(d, ν)

(x2 − t2)∆

(
1− i0+

)
, for (xµ)2 > 0 . (C.4)
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Time-like frame: we choose the frame xµ = (T,0), write k in spherical coordinates,

and perform the angular integral obtaining∫
dωdk

(2π)d
(
−ω2 + k2 − i0+

)ν
e−iωT

=
(4π)

1−d
2

πΓ
(
d−1

2

) ∫ ∞
0

dk kd−2

(∫ ∞
−∞

dω
(
−ω2 + k2 − i0+

)ν
e−iωT

)
= i

2
5
2
−d+ν(1− i0+)

π
d
2 Γ
(
d−1

2

)
Γ(−ν)

1

(−T 2)
ν
2

+ 1
4

∫ ∞
0

dk kd+ν− 3
2Kν+ 1

2

(
ikT (1− i0+)

)
= i

C(d, ν)

(x2 − t2)∆

(
1 + i0+

)
.

Notice the sign change of the i0+ displacement with respect to (C.4) as a result of negative

coefficient coming out from the last integral. Returning to the original frame one has∫
dωdk

(2π)d
q2νe−iωt+ikx = i

C(d, ν)

(x2 − t2)∆

(
1 + i0+

)
, for (xµ)2 < 0 . (C.5)

General frame and Feynman ordering: having carried i0+ up to the end in both (C.4)

and (C.5) we can summarize both results in terms of the Feynman propagator. Indeed,

expanding in i0+ the Feynman propagator [55]

1

(x2 − t2 + i0+)∆
≈ 1

(x2 − t2)∆

(
1− i0+ 2∆

x2 − t2

)
(C.6)

we check that it coincides with the i0+ prescriptions of (C.4) and (C.5), thus obtain-

ing (C.3).

Conclusion: from the definition (C.2) we find,∫
dωdk

(2π)d
q2ν ln(q)e−iωt+ikx ≡ lim

ν→N

1

2
∂ν

(∫
dωdk

(2π)d
q2νe−iωt+ikx

)
= lim

ν→N

i

2

∂νC(d, ν)

(x2 − t2 + i0+)∆
+ lim
ν→N

i

2

C(d, ν) ln
(
x2 − t2 + i0+

)
(x2 − t2 + i0+)∆

= i
2

πd/2
(−4)ν−1Γ(∆)Γ(ν + 1)(

(x− x̃)2 − (t− t̃)2 + i0+
)∆

where we used that C(d, ν) in the second line vanishes in the limit ν → N. Inserting

in (C.1) we finally find,∫
dt̃ x̃ φL(t̃, x̃)

(
(−4)1−ν

Γ(ν)2

∫
dωdk

(2π)d
q2ν ln(q)e−iω(t−t̃)+ik(x−x̃)

)
= i

2νΓ(∆)

πd/2Γ(ν)

∫
dt̃ x̃

φL(t̃, x̃)(
(x− x̃)2 − (t− t̃)2 + i0+

)∆ .
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Euclidean case: this case is completely similar to the spacelike case considered above,

now including ω as part of the vector to be written in spherical coordinates. As a result,

no i0+ is needed and no i factor appears in the front of the integral,∫
dωdk

(2π)d
(ω2 + k2)νeiω(τ−τ̃)+ik(x−x̃) =

C(d, ν)

((τ − τ̃)2 + (x− x̃)2)∆
.

Example 2: the momentum integrals leading to (4.7) are quite different in nature. The

integrand arises from expansion (4.3),

lim
ε→0

ε−∆(z∂zΦ
L
0 )|z=ε =

∫
+
dτ̃dx̃ φ+(τ̃ , x̃)

×
(
π

41−ν

Γ(ν)2

∫
+

dωdk

(2π)d
θ
(
ω2 − k2

)
e−iω((T+−iτ̃)−t)+ik(x̃−x)

(
ω2 − k2

)ν)
+ . . .

(C.7)

where we have only kept the integral overM+ term for concreteness, the integral overM−
is analogous. Two key points in (C.7) are: the Heaviside function restricts the integration

domain to timelike momenta and the ω integral has τ as a built in regulator e−ωτ̃ , since

τ̃ > 0. Using the notation (T+ − t)→ T and (x̃− x)→ X we write∫
+

dωdk

(2π)d
θ
(
ω2 − k2

)
e−ωτ̃e−iωT+ikX

(
ω2 − k2

)ν
=

1

X
d−3
2

∫
dωdk

(2π)
d+1
2

θ
(
ω2 − k2

)
e−ωτ̃e−iωTk

d−1
2
(
ω2 − k2

)ν
J d−3

2
(kX)

=
1

X
d−3
2

∫ ∞
0

dk

(2π)
d+1
2

k
d+1
2

+2νJ d−3
2

(kX)

(∫ ∞
1

dre−rkτ̃e−irkT
(
r2 − 1

)ν)

=
2ν−

d
2 Γ(ν + 1)

π
d
2

+1X
d−3
2 (i(T − iτ̃))ν+ 1

2

∫ ∞
0

dkk
d
2

+νJ d−3
2

(kX)Kν+ 1
2
(ik(T − iτ̃))

=
νΓ(ν)Γ(∆)

21−2νπ
d
2

+1

1

(−(T − iτ̃)2 +X2)∆
(C.8)

where we have written k in spherical coordinates, got rid of the Heaviside function in the

second line by introducing r = ωk−1 with r ∈ [1,∞). Returning to (C.7), we get

lim
ε→0

ε−∆(z∂zΦ
L
0 )|z=ε =

2νΓ(∆)

πd/2Γ(ν)

∫
+
dτ̃dx̃

φ+(τ̃ , x̃)

(−(t− (T+ − iτ̃))2 + (x− x̃)2)∆
. (C.9)

Note that this result can be obtained from the Lorentzian one with time interval (t− t̃) by

changing t̃ → (T± − iτ̃) for ∂M±. Concomitantly, this prescription is consistent with the

convergence of the momentum integrals carried out in (C.8). This motivates and justifies

the complex distance defined in (4.4).

Example 3: we now prove (4.11) which shows that the normalizable modes in the

Lorentzian section can be written in terms of a (comlpex valued) boundary-bulk prop-

agator convoluted against the Euclidean sources. We consider only the term containing φ−
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for concreteness

21−νπ

Γ(ν)

∫
+

dωdk

(2π)d
Θ
(
ω2 − k2

) (
ω2 − k2

) ν
2 e−iω(t−(T−−iτ̃))+ik(x−x̃)z

d
2Jν

(√
ω2 − k2 z

)
.

Profiting from the previous example, we first consider the Lorentzian case

21−νπ

Γ(ν)

∫
+

dωdk

(2π)d
Θ
(
ω2 − k2

) (
ω2 − k2

) ν
2 e−iω(t−t̃)+ik(x−x̃)z

d
2Jν

(√
ω2 − k2 z

)
.

and afterwards analytically continue to t̃→ (T± − iτ̃) for ∂M±.

Space-like frame: consider the frame xµ = (0,X)

21−νπ

Γ(ν)

∫
+

dωdk

(2π)d
Θ
(
ω2 − k2

)
(ω2 − k2)

ν
2 eikXz

d
2Jν

(√
ω2 − k2 z

)
. (C.10)

writing k in spherical coordinates and making a = kX and b = k−1
√
ω2 − k2 with a, b ∈

[0,∞), the integral becomes

(C.10) =
21−νπ

Γ(ν)

z
d
2

X
d−3
2

∫
+

dωdk

(2π)
d+1
2

(ω2 − k2)
ν
2 k

d+1
2 J d−3

2
(kX)Jν

(√
ω2 − k2 z

)
=

21−νπ

Γ(ν)

z
d
2X−d−ν

(2π)
d+1
2

∫ ∞
0

da a
d
2

+ν+ 1
2 J d−3

2
(a)

(∫ ∞
0

db
bν+1

√
b2 + 1

Jν

(
ba
z

X

))

=
21−νπ

Γ(ν)

√
2

π

√
X

z

z
d
2X−d−ν

(2π)
d+1
2

∫ ∞
0

da a
d
2

+ν J d−3
2

(a)Kν+ 1
2

(az
X

)
=

Γ(∆)

πd/2Γ(ν)

z∆

(X2 + z2)∆
.

Time-like frame: consider now xµ = (T, 0)

21−νπ

Γ(ν)

∫
+

dωdk

(2π)d
Θ
(
ω2 − k2

)
(ω2 − k2)

ν
2 e−iωT z

d
2Jν

(√
ω2 − k2 z

)
, (C.11)

We write k in spherical coordinates and we fulfill the Heaviside condition by defining

b̃ = ω−1
√
ω2 − k2 and integrating in b̃ ∈ [0, 1],

(C.11) =
21−ν

Γ(ν)

(4π)
1−d
2

Γ
(
d−1

2

)z d2 ∫ 1

0
db̃

b̃ν+1

(1− b̃2)
ν+3
2

(∫ ∞
0

dk e
−i kT√

1−b̃2 kd+ν−1 Jν

(
b̃kz√
1− b̃2

))

=
41−∆π

1−d
2 Γ(2∆)

ν Γ
(
d−1

2

)
Γ(ν)2

z∆

(−T 2)∆

∫ 1

0
db̃ b̃ν+1

(
1− b̃2

) d−3
2

2F1

(
∆,

1

2
+ ∆; 1 + ν; b̃2

z2

T 2

)
=

Γ(∆)

πd/2Γ(ν)

z∆

(−T 2 + z2)∆

Notice that the prescription for obtaining the mixed signature point result is the appropri-

ate one to give a convergent integral in the first line above. Using the prescription discussed

– 28 –



J
H
E
P
0
3
(
2
0
1
7
)
1
4
8

above we obtain

21−νπ

Γ(ν)

∫
+

dωdk

(2π)d
Θ
(
ω2 − k2

) (
ω2 − k2

) ν
2 e−iω(t−(T−−iτ̃))+ik(x−x̃)z

d
2Jν

(√
ω2 − k2 z

)
=

Γ (∆)

π
d
2 Γ(ν)

z∆

(−(t− (T− − iτ̃))2 + (x− x̃)2 + z2)∆
.

which, alongside an analogous integration for the φ+ piece, demonstrates (4.11).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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