Fitness voter model: damped oscillations and anomalous consensus
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We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph,
in which each agent is endowed with an integer fitness parameter £ > 0, in addition to its + or —
opinion state. The evolution of the distribution of k—values and the opinion dynamics are coupled
together, so as to allow the system to dynamically develop heterogeneity and memory in a simple
way. When two agents with different opinions interact, their k—values are compared and, with
probability p the agent with the lower value adopts the opinion of the one with the higher value,
while with probability 1 —p the opposite happens. The agent that keeps its opinion (winning agent)
increments its k—value by one. We study the dynamics of the system in the entire 0 < p < 1 range
and compare with the case p = 1/2, in which opinions are decoupled from the k-values and the
dynamics is equivalent to that of the standard voter model. When 0 < p < 1/2, agents with higher
k—values are less persuasive, and the system approaches exponentially fast to the consensus state
of the initial majority opinion. The mean consensus time 7 appears to grow logarithmically with
the number of agents IV, and it is greatly decreased relative to the linear behavior 7 ~ N found in
the standard voter model. When 1/2 < p < 1, agents with higher k—values are more persuasive,
and the system initially relaxes to a state with an even coexistence of opinions, but eventually
reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic
for 1/2 < p < po ~ 0.8, while for p, < p < 1 there are damped oscillations around the coexistence
value. The final approach to coexistence is approximately a power law t=%®) in both regimes, where
the exponent b increases with p. Also, 7 increases respect to the standard voter model, although it
still scales linearly with N. The p = 1 case is special, with a relaxation to coexistence that scales

as t~27 and a consensus time that scales as 7 ~ N?, with 8 ~ 1.45.

PACS numbers: 89.65.-8,89.75.-k,05.10.Gg

I. INTRODUCTION AND MOTIVATION

Simple agent-based models of social interactions have
attracted a lot of interest from statistical physicists in re-
cent times. See the review [1] and the references therein.
From the social sciences perspective such models can pro-
vide a controlled testing ground for more qualitative the-
ories of social interaction. See, for example, the discus-
sion in [2]. For physicists, these models are intellectually
stimulating because they exhibit a rich range of dynam-
ical and statistical phenomena. Furthermore, as quan-
titative data become increasingly available, particularly
from online social networks [3] and search engine data
[4], there is the possibility that social modelling could
become predictive [5].

The statistics of consensus formation in opinion dy-
namics models is a problem which has proven to be par-
ticularly amenable to analysis using tools from statistical
physics, such as the theory of coarsening and first-passage
phenomena (see [6, chap. 8]). The primary question of
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interest is whether the population will eventually reach
consensus or a coexistence of both opinions will persist
indefinitely. In principle, both outcomes are possible de-
pending on the assumptions made about the mechanism
of social influence [7]. The voter model [8-10] is the most
basic opinion dynamics model that allows to explore the
consensus problem in great detail. It is a simple interact-
ing particle system consisting of a graph with an agent
at each node possessing a single degree of freedom, its
opinion s, taking two possible values. The dynamics is
as follows: an agent is picked at random who then adopts
the opinion of a randomly selected neighbour. Social in-
fluence is therefore represented as an entirely mindless
process whereby agents just adopt the opinions of their
neighbours at random. The model has different inter-
pretations aside from opinion dynamics, including catal-
ysis [11] and population dynamics [8]. Also, different
extensions of the model have been proposed in the lit-
erature, including constrained interactions [12, 13], non-
equivalent states [14], asymmetric transitions or bias [15],
noise [16], and memory effects [17]. It is also known that
several models presenting a coarsening process without
surface tension belong to the voter model universality
class [18-20].

On a finite graph, the voter model always eventually



reaches a consensus state in which all opinions are the
same. The consensus states are absorbing. This means
that once the system randomly enters such a configura-
tion, it stays there forever. The average time it takes a
system containing /N agents to reach consensus is called
the mean consensus time, 7. The dependence of 7 on
N depends on the spatial dimension [21]: 7 ~ N2 on a
regular 1D lattice, 7 ~ N In N on a regular 2D lattice,
and 7 ~ N in 3D and above, including on the complete
graph (in which every agent is connected to every other).

It is natural to ask how robust are the results described
above. Research has shown that changes to the voter
model, which at first sight might seem innocuous, can
lead to significant changes in the statistics of consensus
times. In particular, the introduction of various forms of
heterogeneity can have far-reaching consequences. Het-
erogeneity here means that not all agents are equivalent.
The introduction of even a single “zealot” [22] — an agent
with a finite probability to unilaterally change opinion
back to a preset preference — greatly increases the con-
sensus time. Also, if all agents are assigned flip rates
which are sampled from a probability distribution then,
by choosing this distribution appropriately, one can make
the approach to consensus arbitrarily slow [23]. This
model is called the Heterogeneous Voter Model. On the
complete graph, one can have 7 ~ N? with 8 > 1 arbi-
trarily large. This occurs because 7 is dominated by the
(slowest) flip rates of the “stubbornest” agents. A related
model is the Partisan Voter Model [23], in which hetero-
geneity is introduced by randomly endowing all agents
with a preferred opinion. The interaction rules are mod-
ified so that agents have a higher rate for switching to
their preferred opinion. The consensus time on the com-
plete graph was then found to be even longer and grow
exponentially with V. Heterogeneity can also be intro-
duced via the underlying network structure. If the under-
lying graph is replaced by a random, scale-free network,
then depending on the properties of the degree distri-
bution of this network, 7 can scale sub-linearly with N
and can even become logarithmic or independent of N
[24-26]. This latter effect is known as “fast consensus”.

A final relevant variation on the theme of heteroge-
neous voter models is the study of temporal heterogene-
ity. Temporally heterogeneous models introduce mem-
ory. That is, interaction rates depend on the time elapsed
since the last interaction. In [27, 28] it was found that
if agents’ flip rates decrease with the time they spend
in a given state then, depending on the strength of this
decrease, the scaling exponent of 7 with N can decrease.
Thus, consensus can be reached faster than in the stan-
dard voter model. However, detailed study of a set of
related models [29-31] indicates that temporal hetero-
geneity can also slow the approach to consensus depend-
ing on the details of how the update rules are specified
and, under certain conditions, can lead to a synchronized
coexistence, or diverging mean consensus time or failure
to reach consensus at all.

In this paper, we study a variant of the voter model in

which, unlike most of the examples given above, hetero-
geneity is allowed to develop dynamically as a result of
the interactions between agents. There are many ways
in which one could imagine doing this. Our approach is
one of the simplest in the sense that we have a single
control parameter. Each agent is endowed with a fitness
parameter, k, in addition to its opinion. Initially this
parameter is set to zero for all agents. When two agents
with different opinions interact, k—values are compared.
Then, with probability p the agent with the lower value
adopts the opinion of the one with the higher value and,
with the complementary probability 1 — p the opposite
happens. We refer to the agent that maintains its opin-
ion as the “winning” agent and to the agent that changes
its opinion as the “losing” agent. After each interaction,
the winning agent then increments its k—value by one.
This competitive aspect was motivated by the study of
the evolution of competitive societies presented in [32]
and the formation of competitive hierarchies studied in
[33, 34]. The only parameter in the model is the proba-
bility p. As time passes, heterogeneity develops as a dis-
tribution of different k-values evolves in the population.
The opinion group exchange dynamics has memory since
the transition rates depend on the past history through
the k-values, although the model can obviously be for-
mulated in a Markovian way in the extended (s, k) state
space. We find that the dynamics of this model is sur-
prisingly rich as the parameter p is varied. In particular,
it can exhibit both fast and slow consensus for different
values of p, and the dynamics of the group sizes exhibits
interesting oscillations in time.

The layout of the paper is as follows. In Sec. II we
specify the model and explain some of the basic proper-
ties. Sec. IIT then presents some numerical measurements
of the consensus time on a complete graph as a function
of p and N. We find that for p > 1/2 the time to reach
consensus is very large, whereas for p < 1/2 consensus
is very fast. In Sec. IV we study the rate equations for
the model and discover that when p > 1/2 the system
is attracted to a coexistence state in which two equal
sized populations of oppositely—opinioned agents reach a
dynamic equilibrium. The approach to this state could
be either monotonic or oscillatory. When p < 1/2, the
coexistence state is unstable and the system is driven
quickly to consensus. An insight on these results is given
in Sec. V by means of a reduced model. We finish in
Sec. VI with a short summary and conclusions.

II. DEFINITION OF THE MODEL

We now define the model in more detail. Two groups,
labeled (+£), compete for membership in a population of
N agents. The interaction network is a complete graph
so any agent can interact with any other. In addition to
its group designation, or opinion s = 4, each agent has
an integer fitness k. In a single time step At = 2/N, two
agents are selected at random. If both have the same



opinion nothing happens. If not, they interact as follows.
Agents compare their respective k-values. With prob-
ability p, the agent with the lower k—value adopts the
opinion of the agent with the higher value. With proba-
bility 1 — p, the opposite happens and the agent with the
higher k—value adopts the opinion of the agent with the
lower value. If both k-values are equal then one agent
adopts the opinion of the other with equal probability
1/2. The winning agent then increments its k—value by
one. Assuming that the chosen agents have opinions s;
and sy (with s1 # s2), and fitness k1 and ko, the interac-
tion rules can be summarized schematically as:
If k1 > ko then

(s1,k1 +1) @ (s1,ke) Prob. p

(s1,k1) @ (s2,k2) — { (s2,k1) @ (s2,ko +1) Prob. 1 —p.

If k&1 = ko = k then

Shk 1) Sl,k
(51,k) @® (s2,k) —>{ 2827]6)29 ()82756+ 1%

The only parameter in this model is the probability p.
When p = 1/2, the k—values of the agents play no role
in the opinion dynamics since each agent has a 50-50
chance of adopting the opinion of the other. Thus for
p = 1/2, the evolution of the k—values decouple from
the opinion dynamics which is therefore equivalent to
the standard voter model. If p > 1/2, a higher value
of k makes an agent less likely to change opinion during
an interaction. Thus, in this regime, one could inter-
pret the above rules as saying that agents become more
confident of their opinion each time they succeed in con-
vincing other agents to switch groups. As p gets close
to one, agents which reach high k—values become highly
unlikely to change their opinion. Thus “zealots” emerge
dynamically in this model. If p < 1/2, the opposite is
true: agents with high k—values are more likely to change
opinion frequently.

Prob. 1/2
Prob. 1/2.

III. CONSENSUS TIMES

We performed Monte Carlo simulations of the dynam-
ics defined in Sec. IT above on complete graphs of various
sizes N and for several values of p in the interval [0, 1],
and measured the time to reach opinion consensus. Ini-
tially, each agent takes opinion + or — with the same
probability 1/2, and all agents have fitness k¥ = 0. Re-
sults are shown in Figs. 1 and 2. As discussed above, the
basis for comparison is the p = 1/2 case where the opin-
ion dynamics is equivalent to the standard voter model
for which the consensus time scales as 7 = 2In(2)N on
the complete graph, when the initial state consists on
N/2 agents in each opinion state [21].

In Fig. 1 we plot the mean consensus time 7 measured
from simulations, as a function of the probability p. The
average was done over 10* independent realizations of
the dynamics. The error bars resulting from statistical
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FIG. 1. (Color online) Linear-log plot of the mean consen-
sus time 7 vs the probability p that the fitter agent wins in
an interaction, for systems of N = 250 (crosses), N = 1000
(squares) and N = 4000 (circles) agents. The inset shows a
zoom on the transition at p = 1/2 for the case N = 4000.

fluctuations are comparable in size to the symbols and
have been omitted for clarity. We observe that 7 in-
creases rapidly with p, and becomes very large when p
overcomes the value 1/2. This is an indication that the
behaviour for p > 1/2 is strikingly different from that of
p < 1/2. Figure 2(A) shows 7 as a function of N for a
range of values of p between 1/2 and 1. With the excep-
tion of the curve for p = 1, all curves grow as N for large
N (lower straight line). This can be seen in the inset of
Fig. 2(A), where 7 is compensated by N. All curves for
p < 1 reach a plateau as N grows, although the satu-
ration level increases with p. Thus, the consensus time
grows with p although it still scales linearly with N as in
the standard voter model. The case p = 1 seems quanti-
tatively different. A closer analysis of the data indicates
that for p = 1, 7 ~ N” with 8 ~ 1.45 (upper straight
line). Simulations with values of p very close to 1 (see
p = 0.99 curve) suggest that the case p = 1 really is
uniquely different. As best as we have been able to tell
from the numerics, the scaling exponent jumps at p = 1.
As we see in Fig. 2(B), the behaviour of 7 for p < 1/2 is
quite different. We observe that 7 grows very slowly with
the system size, as 7 ~ In IV, indicating that the system
goes to a “fast consensus”.

In summary, the consensus is slow for p > 1/2 and very
fast for p < 1/2. In an attempt to get some insight into
these behaviours, we shall now study the rate equations
corresponding to this model.
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FIG. 2. (A) Mean consensus time 7 as a function of the

number of agents N on a log-log scale, for p in the range
é < p < 1. Upper and lower straight lines have slope 1.45
and 1.0, respectively. Inset: 7 is compensated by N. The
horizontal line is the prefactor 21n(2) of the standard voter
I;ﬂOdel (p=1/2). (B) 7 vs N on a log-linear scale for 0 < p <
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IV. MEAN FIELD DYNAMICS
A. Rate equations

Let us now write down the mean-field (MF) rate equa-
tions for the stochastic dynamics described in Sec. II.
Adopting some of the notation from [32], the time evolu-
tion of the fraction of agents with opinion + and fitness
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FIG. 3. Comparison between the evolution of p4(t) obtained
from the numerical solution of Egs. (1) (solid line) with that
obtained from an ensemble average of 1000 Monte Carlo real-
izations (circles) of the stochastic process described in Sec. IT
with N = 6400 agents. The value of p is 1.0 and the initial
condition is p4+(0) = 0.75. Three different individual real-
izations of the stochastic dynamics are also shown in dashed
lines.

k, f,j, is given by

d +
% =p (LB~ FTE) + (1-p) (FL G — 1 Gy)
+p (fr Gy = 17 Gy) + (=p) (fi B = fi7 Fy)
1
+ 5 hha =) (1)
df;,. B
7]; - H_ & _]u
where

k—1 o)
FE=Y ff and Gf= ) f* (2)

=0 i=k+1

The corresponding equation for f, is obtained by switch-
ing the + and — labels in Eq. (1). This occurs frequently
in the analysis which follows. For the sake of conciseness,
we shall not explicitly write out the symmetric partner
of each equation unless it is necessary. All terms appear
in pair of positive and negative terms describing the gain
and loss of agents having opinion + and k—value, k. The
first pair of terms accounts for interactions of + agents
with — agents having a lower k—value, with the result
that the original agent remains +. The second pair of
terms accounts for interactions of + agents with — agents
having a higher k—value, with the result that the original
agent remains +. The third pair of terms accounts for the



interactions of — agents with 4+ agents having a higher
k—value, with the result that the original agent switches
opinion to +. The fourth pair of terms accounts for the
interactions of — agents with + agents having a lower
k—value, with the result that the original agent switches
opinion to 4. The final pair of terms accounts for the
cases when two interacting agents have equal k—values.
The fraction of the total population in each group is

pe(t) = fir- 3)
k=0
The mean k—value of each group is
ne(t) =D K fii- (4)
k=0

Since fif are proportions, we must have p (t)+p_(t) = 1.
We shall denote the mean k—value across the entire popu-
lation by p(t) = p4(t)+p—(t). By summing Eqgs. (1) over
k, we obtain the following equations for the populations
of each group:

W (op—1) S (fFF - f7F),
0

E
I

=l (5)

It is clear from these formulae that the sum of the pop-
ulations is conserved. Furthermore, when p = % we see
that the two populations are conserved individually. This
is to be expected since for p = % the dynamics of the
k—counter is entirely decoupled from the dynamics of ex-
change between the two opinion groups. Then, the com-
petition between the groups is described by the simple
voter model, for which we know that the individual popu-
lations are conserved on average. By multiplying Egs. (1)
by k and summing over k, we obtain the following less
elegant equations for the mean k—value of each group:

dp
o = =D o+ (prpe = popis)
+@2p—1)> k(£ F; — £ BY)
k=0
o0 3 1 o0 B
H2p=1) Y R+ 521 Y S fe
k=0 k=0
dpu—
—_— — . 6
= = [+ o ] (6)
The average k—value of the whole population satisfies
dp _ - TR -t
o7 —(217_1)2 fi By + ka Jo +Je B
k=0
+2(1 = p) p1p-
= p4 P, (7)

where some careful algebra is required to establish sim-
plify the sums. Equation (7) shows that the mean of the

total fitness grows at a rate p;p_, which is time depen-
dent. This equation can also be derived by considering
the mean change of p, Ay, in a single time step At = 2/N
of the dynamics. An update occurs only when a + and
a — agents are chosen, which happens with probability
2p4+p—. Then, one of the agents increases its fitness by
one, changing by 1/N (Ap = 1/N). Then we can write

dp  Ap 2pip-(y)
iAo N P (8)

as in Eq. (7). It is difficult to tell a-priori how the total
k—value in the system will behave since it depends on the
fraction of the population in the two groups. We note,
however, that when p = 1/2, u(t) grows linearly since p4
are constant and given by their initial values. We can also
check that for p = 1/2 and initial densities p4(0) = 3/4
and p_(0) = 1/4, Egs. (6) are reduced to

d,u+ _ 3 1
o = 35 T gBu- —m),
dp— 3 1
i 32 §(3M— = [4),

whose solutions with initial mean k—values u4(0) =
p#—(0) =0 are

_ 3 (3 —t/2
i) = g (e e 1)),

b (t) = 332 <;t _et2 g 1) . )

Equations (9) show that the mean k—values increase lin-
early at large times, as iy (t) ~ 9¢/64 and p—_(t) ~ 3t/64,
as we can also see in the inset of Fig. 5(A).

B. Numerical solutions of the rate equations

On a complete graph, Eqgs. (1) exactly describe the
ensemble averaged behaviour of the system. This is il-
lustrated in Fig. 3 which compares the evolution of p (¢)
(solid line) obtained from a numerical solution of Egs. (1)
with the evolution of the ensemble average of p4 () (cir-
cles) obtained from 1000 realisations of the stochastic
model described in Sec. II. Results correspond to p = 1.0
and initial condition p4(0) = 0.75. Two features of the
dynamics are striking. Firstly, we notice that starting
from an asymmetric initial state that favors the + opin-
ion group (p4(0) = 0.75 and p_(0) = 0.25), the dynam-
ics drives the system towards a coexistence state com-
posed by even fractions of agents with + and — opinions
(p+(t) = p_(t) = 1/2). Secondly, we notice that the
approach to the coexistence state is not monotonic: the
dynamics have a damped oscillatory character. This sug-
gests that the state in which both populations are equal
is a fixed point. Figure 3 also shows three independent
realisations (dashed lines), as compared to the ensemble
average. This illustrates the importance of fluctuations
which are ultimately responsible for the system reaching
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FIG. 4. (Color online) MF dynamics from Egs. (1) for p =
1/4. (A) Time evolution of the fraction of agents in the two
opinion groups p+(t). Inset: Evolution of the mean fitness
values £+ (t). (B) Snapshots of the k-value distributions f;"
(empty symbols) and f, (filled symbols) at different times.

consensus as found in Sec. III, despite the fact that the
dynamics drives the system towards coexistence.

In Figs. 4-7 we explore the behaviour of the system by
means of Egs. 1 in the entire range of p values: p = 1/4
(Fig. 4), p = 1/2 (Fig. 5), p = 3/4 (Fig. 6) and p = 1
(Fig. 7). Figures 4(A)-7(A) show the time evolution of
p+(t), while their insets show the dynamics of (). Fig-
ures 4(B)-7(B) show snapshots at various times of the
corresponding k-value distributions, fkjE (t). In Fig. 4 we
see that for p = 1/4 the system quickly reaches consensus
in the opinion of the initial majority, as p4 approaches
exponentially fast to 1.0. This is in agreement with the
fast consensus observed in Fig. 2(B) for p < 1/2. Thus,
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FIG. 5. (Color online) MF dynamics from Egs. (1) for p =
1/2. (A) Time evolution of the fraction of agents in the two
opinion groups p+(t). Inset: Evolution of the mean fitness
values £+ (t). (B) Snapshots of the k-value distributions f;"
(empty symbols) and f, (filled symbols) at different times.

the dynamics for p < 1/2 favors the opinion state of the
majority, creating a positive feedback in which the largest
opinion group permanently increases while the smallest
group shrinks and eventually disappear. This can also
be seen in Fig. 4(B), where f, (t) vanishes for long times
(filled symbols). Figure 5(A) shows that the fractions p4
are conserved for p = 1/2, and that the mean k—values
pu+ grow linearly with time, as discussed in Sec. IV A.
For both p = 3/4 and p = 1 the system quickly relaxes
to the coexistence state p. = p_ = 1/2, but in different
ways. Whereas for p = 3/4 densities p+ decay monoton-
ically towards the value 1/2, for p = 1 the approach to
coexistence exhibits damped oscillations. Finite-size fluc-
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FIG. 6. (Color online) MF dynamics from Egs. (1) for p =
3/4. (A) Time evolution of the fraction of agents in the two
opinion groups p+(t). Inset: Evolution of the mean fitness
values £+ (t). (B) Snapshots of the k-value distributions f;"
(empty symbols) and f, (filled symbols) at different times.
The inset shows the collapse of the data obtained from the
self-similar scaling, Eq. (14).

tuations —not captured by the MF equations— eventually
drive the system from the coexistence state to consensus,
which leads to the very long consensus times measured
for p > 1/2 [see Fig. 2(A)].

C. p> % : Self-similar solution for the coexistence
state

The above argument requires that for p > 1/2 the large
time solution of Egs. (1) converge to a coexistence state in
which both populations have the same fraction of agents
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FIG. 7. (Color online) MF dynamics from Egs. (1) for p = 1.
(A) Time evolution of the fraction of agents in the two opinion
groups p+(t). Inset: Evolution of the mean fitness values
p+(t). (B) Snapshots of the k—value distributions f;~ (empty
symbols) and f, (filled symbols) at different times.

(p+ = p—) and equivalent k—value distributions, as we
can see in Figs. 6 and 7. In this section we demonstrate
the existence of a self-similar solution of Eqs. (1) which
achieve this. Substituting f; (t) = f, (t) = fx(t) in these
equations and simplifying gives:

d
k= P (fe—1Fr—1 — fuli) + (L = p) (fem1Gr—1 — fxGr)
1
e, (10
Following Ben—Naim et al. [32] we rewrite this equation
using fk = Fk+1 —Fk and Gk = Foo_Fk—H = 1/2—Fk+1

(where the maximum group size is py = Ff = 1/2 or
p— = F_ = 1/2). This gives a closed equation for the



cumulative distribution:

d 1
—Fy = pFy_1(Fy—1 — F)) — 3 (Fy — Fr_1)®

dt
+ (1 =p)(1/2 = Fi)(Fi-1 — Fi). (11)

The boundary conditions are Fy = 0 and F,, = 1/2.
Taking the continuum limit of Eq. (11) and keeping only
the leading order term, we get

oF 1
—_— —(p—1 1-2p)F
5 [z(p )+ (1—2p) ]

oF
ok

(12)
We have observed already that p(t) grows linearly for

large times when p > 1/2, thus the mean value of the
distributions

1 o] [
ki:7§ki:7:2 =
(k) pr Ix PR bt =

also increase linearly with time. We can then take p(t)
as a characteristic fitness value and seek solutions of

Eq. (12) in which the cumulative distribution, F(k,t),
has the self-similar form:

F(k,t) ~®(&) with &= =k (13)

k__ k
n(t) at?

where o ~ 0.24 is twice the slope of the u4 vs t curves
for t > 60 in the inset of Figs. 6(A) and 7(A). This ansatz
is equivalent to the following self-similar form for the k-
value distribution itself

fe () = u(t)~ o(6)
In the scaling variables, Eq. (12) takes the form

a@ _
e

where ¢ = %. (14)

S0 = 1) +ag+ (1-2)2(0)

0, (15)
Solving Eq. (15) gives

sp=1) | ag
2p—1 2p—1°

®(§) =constant or P(§) =
Following [32], we use the boundary conditions ®(0) =0
and ®(o0) = 1/2, the monotonicity of Fj, d®/d§ > 0,
and the bounds 0 < & < 1, to assemble a sensible piece-
wise linear solution:

0 if0<g<é
BE) =4 4Dy o ife <e<g (16)
1/2 ife <€,
where £ = (1—p)/2a and {4 = p/2a. We remark that if
we keep the next order (diffusive) terms in the derivation
of Eq. (12), then the sharp corners in this solution would
be smoothed out. Differentiating this solution with re-

spect to & gives the corresponding scaling function for
the k—value distribution itself [see Eq. (14)]

0 ifo<&<é
pfE) =0€) =< 527 & << (17)
0 ifé <,

where ¢4 are the same as in Eq. (16) above. Note that
as p — 1/2, this solution tends to a d-function. This
case will be considered in the next section. The inset of
Figs. 6(B) and 7(B) shows the data collapse of some snap-
shots of the full k—value distributions obtained from nu-
merics (symbols) onto the curve given by Eq. (17) (solid
line).

D. p=3: Dynamics of k—value distribution

For completeness, let us look at what happens on
the boundary when p = 1/2. Many of the terms in
Egs. (1) are then absent due to the fact that FZ(t) +
fE(t) + GE(t) = pi(t). Further simplification follows
from Eq. (5) which tells us that p4 (t) are constant when
p = 1/2. This reflects the fact that the evolution of
the distribution of k—values decouples from the opin-
ion dynamics which are equivalent to the standard voter
model dynamics in which the average magnetization is
conserved. Egs. (1) become

e (1= 1) 4o ot
agif =+ -]
Taking the continuum limit we get
Ao o). 1s)

We should
also impose the zero-flux boundary conditions, agg =0
at k = 0 since the k—values cannot become negative.
Eqgs. (18) are a pair of coupled linear equations which
can be decoupled and solved in Fourier-space. The sym-
metric case py = p_ = 1/2 is particularly simple and
illustrative, in which both distributions are identical and
evolve according to the single advection-diffusion equa-
tion,

The initial conditions are ff = pi (k).

oft  10fF 10%f*
ot 4 0k 8 Ok

The solution of this equation on the whole of R is

(19)

2 _2k-t/9?
t

fi(kvt): 76

™

In order to satisfy the boundary condition at & = 0 we
can employ the method of images to obtain

fi(kﬂf) — % % <e_2(kg/4)2 n e_2(k+tf/4)2) . (20)

We see that the k—value distribution is a Gaussian which
propagates to the larger values of k£ with fixed speed v =



1/4, and whose width increases with time as o = v/t/2.
This remains true, although it is more difficult to show
analytically if py # p_ [see Fig. 5(B)]. Note that by
including the higher order derivative in taking the con-
tinuous limit in Eq. (18), the singular behaviour of the
scaling solution, Eq. (17), is regularized.

V. A REDUCED MODEL OF THE DYNAMICS

In order to better understand the dynamics described
in Sec. IV, we introduce a reduced model which captures
most of the essential features of Egs. (1) but is simple
enough to allow some insight to be obtained. If we think
of the f,f as being analogous to probability distributions,
then their specification is equivalent to the specification
of all their moments. We have already seen, however,
that even the first two moments, p* and u®, satisfy
complicated equations, Egs. (5) and (6) involving cross-
correlations between f,:r and f, . In principle, one could
use the dynamical equations to write evolution equations
for these cross-correlations but such equations would in-
volve triple correlations and so on. Such an approach is
unlikely to lead anywhere. Instead, in the spirit of mo-
ment closures and single point closures in turbulence, we
suggest to close the system at the level of the first order
(in f,;t) quantities p* and p+. That is to say, we attempt
to "approximate” the RHS of Egs. (5) and (6) with func-
tions of p+ and p4 only. This would yield a simple three
dimensional dynamical system (not four dimensional be-
cause p4 + p— = 1) in place of the infinite hierarchy of
equations in (1). Of course, this cannot be done exactly
and the trick in obtaining useful closures is to come up
with a reasonable proposal for these functions should be.

Inspired by the k—value distributions in Fig. 6(C) and
aiming to build the simplest possible model, we introduce
the following model for the k—value distributions:

e Pzi (2Mﬂ: _ )
fE-g=oeme(LE-k). @
where O(z) is the Heaviside theta function. We therefore
treat the distributions f,;t as being uniform on an interval
[0, K]. The width, K, of this interval and the value of
the function on the interval are chosen such that we have
the following properties:

OON
| Fear=p.
0

0 ~
/ kf dk = pa,
0

where, in order to simplify things, we shall treat the k-
value as a continuous variable from this point on. We can
now integrate Eq. (21) to get a model for the cumulative
distribution, F, ki:

2
~ L= ; 2pg
Fki:{%ik f0<k< pt

22)
. s (
px k2SR

We now substitute Egs. (21) and (22) into Egs. (5) and
(6) and perform the integrations on the RHS in order to
obtain expressions which depend only on pi and pi.
This is a surprisingly tedious process given the deceptive
simplicity of Eq. (21). Using Mathematica and massaging
the output a little, we obtained the following dynamical
system

b+ _ 9y 1) RY, (23a)
dt
dp_
dp— _ _ 2
o =le- (23b)
d
% =1 —p)p+p- +p (p+h- — p-p+)
+ (2p—1) (R3 + R + R}), (23c)
dp—
dp— _ _ 2
prainliad B (23d)
where
RY — / (Fi B~ 7o EY) dk (24a)
0
= (usp— — p-ps) R,
R%%’Mﬁﬁ—ﬁﬁwk (24b)
0
_ (W3p% —p2py) RY
p+p- ’
Rf = / FrF- dk (24c)
0
1
= 207 p°
4u+u—{ *

—(u+p—-—u—p+)Ku+p—-—u—p+)+¢u+p—-—u—p+H},
p-R*

1 [ =
Rjzf/mjjﬁdk:p+ : (24d)
with
Rf = [(t4p— + p—py) = lpp— — p—p+|].
2p0q -

(25)
When performing the integrals we considered separately
the two cases puyp— > p_py and pypp_ < p_p4, which
leaded to expressions defined by parts. Then, we used the
absolute value function | e | to rewrite these expressions.
For instance

R+_{ﬁﬁuw>upﬂ
+=

: (26)
Rf if pyp < popy,

with R = p2p_/4ps and R} = pyp? /4p_, was rewrit-
ten as
(Ri +Ry) | (RE—RY) [pep- — pp+]

2 2 (Hip— = p—pis)’

Rf =

which is reduced to Eq. (24d) after some algebra.



This reduced model reproduces all the qualitative fea-
tures of the full MF equations, (1). In particular, the
absorbing states in Eqgs. (1) correspond to lines of fixed
points in the reduced model. We refer to these as the
+ and — consensus fixed points Py and P_. They are
parameterized by a single parameter, p > 0:

Py (pss p—s g =) = (1,0, 12, 0)
p_: (p+ap—7,u+nu—) = (07 1a Oa /.L)
That these points are zeroes of the right-hand side of
Egs. (23)—(25) for any value of p can be verified by direct
substitution.
Replacing p_ = 1 — p4 throughout, it is convenient

to rewrite Eqgs. (23)—(25) in terms of the three variables
(X(t),Y(t), Z(t)) defined as

X =py
Y = pipp- — p-ps (27)
Z = (pp-+p-ps)~"

In terms of these variables, we have the system

% _ %xufﬁc)m(lﬂm) (28a)

‘% _ %X(l ~X)(1-2X)— (1—p)Y (28D)
+ﬁZFy(X7Y,Z)

2fzﬁww§§22%ﬂ—ﬂl (28¢)

where Fy(X,Y,Z) and Fz(X,Y,Z) are complicated
multivariate polynomials which are written out at the
end of this section [Egs. (37) and (38)]. The advantage
of this system is that it is obvious that it has a new fixed
point,

1
Py (X,Y,2) = (2,0,0),

which corresponds to the self-similar solution of the full
MF equations, Eqgs. (1), found in Sec. IV. To interpret
this in terms of Eqs. (27) recall that the self-similar ba-
haviour corresponds to p; — p— — % and py — p_ —
00. We refer to Py as the coexistence fixed point since
it describes the situation in which both populations have
size one half. Note that the consensus fixed points, P_
and P, are both mapped to Z = oo in these variables.
Using the system of Egs. (28) we can try to probe the
stability of the coexistence fixed point. The dynamical
system given by Eqgs. (28) cannot be linearized about Py.
Notice, for example, that the lowest power of Z in the
third equation is Z?2 so there is no linearization around
Z = 0. Standard methods of linear stability analysis are
therefore not applicable here. Instead, let us shift the X
variable, X = X + %, and look for a scaling solution near

10

P()Z

X(t) ~ Xot™®

Y(t) ~Yot™?

Z(t) ~ Zot™“.
The powers a, b and ¢ must be all positive if the coex-
istence fixed point is to be attractive as t — co. Some
trial and error is required to identify the leading order
terms on the RHS of Egs. (28) due to the large num-
ber of terms. However, this work is greatly simplified
when we note that all terms that appear in the functions
Fy and Fz [Egs. (37) and (38)] are subleading in the
neighbourhood of the coexistence fixed point. Then, the
leading terms on the two sides of Eq. (28¢) are

1
—cZot ™~ = 2272
8
so that
c=1 and Z, =8. (29)
With ¢ = 1, the leading terms on the two sides of
Eq. (28a) are

1
S (2p=1)Yy Zot "¢ =4(2p-1) Yot ",
which leads us to conclude that
X 4(2p—1
a=b and 72:—%. (30)
Finally, with ¢ = 1 and a = b, the leading terms in
Eq. (28b) are

—a Xo tiail ~

~X
hYyt Tl ~ (40 +(p-1) YO) b,

This is impossible unless the coefficient of ¢ ~° vanishes on
the RHS of Eq. (28b) (there is a subleading term of order
t~%=1 which could then balance the LHS). Therefore we
must have

Xo
— =4(p-1). 1
2 —4p-1) (31)
Combining Eqgs. (30) and (31) we find
_2p-—1
p= 221 (32)

which is positive for % < p < 1. Thus all three exponents
are determined along with the amplitude Zy. The ampli-
tudes Xy and Yy are arbitrary but their ratio is fixed and
given by Eq. (31). To summarise, the reduced model pre-
dicts the following behaviour near the coexistence fixed
point:

X(t) ~ Xot—o® (33)
Y (t) ~ Yot ~o® (34)
Z(t) ~ 8t " (35)

20—, (36)
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FIG. 8. (Color online) Numerical investigation of the behaviour of the reduced model, Egs. (28), near the coexistence fixed
point, Py, for p = ;5. Panels (A), (B) and (C) show X (t), Y(t) and Z(t) respectively for three different generic initial conditions.
To make the agreement with theory clear, the data have been compensated by the t-scalings predicted by Egs. (33)-(35) with
b(p) given by Eq. (32). Panel (D) shows that the ratio Y (t)/X(t) asymptotically approaches the theoretical prediction 5/6

(solid line) from Eq. (36).

with b(p) given by Eq. (32). These predictions are vali-
dated against numerical solutions of Egs. (28) in Figs. 8
and 9. We find that b > 0 for 1 < p < 1 [see the in-
set of Fig. 9(b)]. The coexistence fixed point is therefore
attractive for values of p in this range and repulsive oth-
erwise. An interesting observation is that the approach
of X to the fixed point X = 1/2 shows damped oscil-
lations for p £ 0.66, while for p < 0.66 the approach is
monotonic, as we can see in Fig. 10(a). This transition

between the monotonic and the oscillatory regimes is also
found in the full MF model [Egs. (1)] at a value p, ~ 0.8
[see Fig. 10(b)]. In Fig. 10(b) we also compare the theo-
retical decay t~°(®) from Eq. (32) (dashed lines) with the
one from the MF Eqs. (1) (solid curves), for three differ-
ent values of p. We observe that the agreement improves
as p gets larger.

Below we provide for completeness the explicit formu-
lae for the multivariate polynomials appearing on the
right hand side of Eqs. (28) defining the reduced model.
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FIG. 9. (Color online) Numerical investigation of the behaviour of the reduced model, Egs. (28), near the coexistence fixed

point, Py, for a range of values of p for which the fixed point is attractive. Panel (A) shows X (t) for p taking the values
13 (crosses), 3 (squares) and 2 (circles). The data have been compensated by the t-scaling predicted by Eq. (33) with b(p) given

by Eq. (32). Panel (B) shows that the ratios Y (¢)/X (t) are in agreement with Eq. (36) for each value of p. The inset graphs

the dependence of b(p) on p expressed in Eq. (32).

Fy(X,Y,Z) = —2X° + 5X* —4X? —2X°Y + X? —4XY? 4+ 2XY +2Y3Z + 2Y? + (4XY?Z - 2Y?Z +2X?Y Z
—2XYZ —2Y +2X°Z —5X'Z+4X°Z — X*Z) |Y|. (37)

Fz(X,Y,Z) = —X?Y?Z> +2XY?Z% —2XY —Y?Z> + Y + (2p— 1) [2XY? 2> - Y3Z? + 2Y*Z — 4X*Y Z
+6X°YZ —2XYZ +10XY —5Y — X'Z +2X°Z — X*Z + (X'Z? +4X°Y Z*? — 2X* 7% — 6X°Y Z?
+X2Z2 + XY Z* - 12XYZ - 2Y?Z? + 6Y Z) |Y]] . (38)

VI. CONCLUSIONS

To conclude, we have studied a variant of the voter
model in which each agent is endowed with a fitness pa-
rameter, k, in addition to its opinion variable. Agents
interact by pairs, and a single parameter p determines
the probability that the agent with the higher k—value
wins. When an agent wins an interaction, its k—value
is increased by 1, and the looser agent changes opinion.
The distribution of k—values in the population therefore
co-evolves with the opinion dynamics. The rates of opin-
ion change therefore depend on the past history of the
agents. Our model has aspects in common with several
models which have been studied in the literature, par-
ticularly the competitive population dynamics studied in
[32], the Partisan Voter Model [23], the non-Markovian
voter model studied in [27], and the two-sate interact-
ing particle model with age-dependent transition rates
[30]. Through a combination of numerical simulations
and analysis we showed that there is a coexistence state
in which both populations have a size similar to N/2, and
their mean k-value increases linearly in time. This coex-

(

istence state is attractive on average when p > 1/2 and
repulsive on average when p < 1/2. As a consequence,
the consensus time is increased relative to the standard
voter model when p > 1/2; whereas the system is driven
to fast consensus when p < 1/2. The dynamics in the
p > 1/2 case exhibits interesting properties, including a
monotonic approach to the coexistence state, as well as
damped oscillations that decay as a power law in time
with a non-universal exponent. A quantitative expla-
nation of these stability properties was provided in the
context of a reduced 3-D dynamical system based on the
full rate equations of the model. One of the outstanding
mysteries at this point is that there is little real indica-
tion in any of our analysis of why the model with p =1
has a larger scaling exponent 5 ~ 1.45 for the consensus
time, compared to the exponent § ~ 1.0 for 1/2 < p <1
(see Sec. III). This is a topic for future investigation. An-
other obvious avenue for further investigation would be
to study the spatial coarsening properties of the model on
regular lattices, since we already know that for p = 1/2
the coarsening dynamics is equivalent to those in the reg-
ular voter model.
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FIG. 10. (Color online) Convergence of p; to the coexistence state p; = 1/2 for p > 1/2. (A) Reduced model, Egs. (23)—
(25). The final approach to coexistence is a power law with an exponent given approximately by the theoretical expression
b(p) = (2p—1)/(p—1) (dashed lines). Inset: the decay for p = 1.0 seems to be oscillatory for all times, with an amplitude that
decays as 7% (dashed line). (B) Full MF equations (1). The approach to coexistence is approximately power law. Dashed
lines indicate theoretical exponents b(p). Inset: the p = 1.0 case is special, where the decay seems to be a pure power law with

exponent close to 2.73 (dashed line).
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