
Research Article
NOESIS: A Framework for Complex Network Data Analysis

Vı́ctor Martı́nez , Fernando Berzal , and Juan-Carlos Cubero

Department of Computer Science and Arti
cial Intelligence & Research Center for Information and Communications
Technologies (CITIC), University of Granada, Granada, Spain

Correspondence should be addressed to Fernando Berzal; berzal@acm.org

Received 28 June 2019; Accepted 9 September 2019; Published 31 October 2019

Academic Editor: Giulio Cimini

Copyright © 2019 Vı́ctor Mart́ınez et al. ­is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Network data mining has attracted a lot of attention since a large number of real-world problems have to deal with complex
network data. In this paper, we present NOESIS, an open-source framework for network-based data mining. NOESIS features a
large number of techniques and methods for the analysis of structural network properties, network visualization, community
detection, link scoring, and link prediction. ­e proposed framework has been designed following solid design principles and
exploits parallel computing using structured parallel programming. NOESIS also provides a stand-alone graphical user interface
allowing the use of advanced software analysis techniques to users without prior programming experience. ­is framework is
available under a BSD open-source software license.

1. Introduction

Data mining, an interdisciplinary sub�eld of computer
science, studies the process of extracting valuable in-
formation from data by discovering patterns or relation-
ships. Data mining includes classi�cation, regression,
clustering, or anomaly detection, among other tasks [1]. A
large number of tools and techniques are available for
tabular data, where all data examples can be represented as
tuples in a relation and they share the same set of attributes.
However, many problems involve dealing with relational
data, where instances are explicitly related through semantic
relations. Classic data mining techniques designed for
tabular data have severe limitations when we try to fully
exploit the relationships available in relational data. ­e
scienti�c community has focused on the development of
data mining techniques for relational data, leading to the
availability of a large collection of techniques for the analysis
of the structural properties of networks [2], their pleasant
visualization [3], the detection of existing communities [4],
and scoring existing or potential links to rank existing ones
or predict their existence [5, 6]. Network data mining in-
volves di�erent problems. Some examples include the
prediction of previously unknown protein interactions in

protein-protein interaction networks [7], the prediction of
collaborations and tendencies in coauthorship networks [8],
or ranking the most relevant websites according to a user
query [9].

Di�erent software tools for analyzing relational data
have been developed, according to their main goal and the
type of user they are directed to. Several tools provide their
functionality to end users through closed graphical user
interfaces, leading to improved usability but also neglecting
the possibility of using the provided techniques in ways
unforeseen by their software developers and integrating
them in other software projects. Other tools were designed as
software libraries that can be used in di�erent software
projects, providing more functionality at the cost of limiting
their usage to users with prior programming experience.

Most existing frameworks are focused towards a speci�c
user community or task, as shown in Table 1. For example,
Graphviz [10] and Cytoscape [11] are two popular alter-
natives for network visualization. On the contrary, igraph
[12], NetworkX [13], and SNAP [14] are mainly focused on
providing reusable collections of algorithms for network
manipulation and analysis. Pajek [15], NodeXL [16], Gephi
[17], and UCINET [18] are some of the most widely used
tools for social network analysis (SNA) (a more
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comprehensive and up-to-date list of available software tools
for network analysis can be found at Wikipedia: https://en.
wikipedia.org/wiki/Social_network_analysis_software).

In this paper, we introduce NOESIS (Network-Oriented
Exploration, Simulation, and Induction System), a software
framework released under a permissive BSD open-source
license for analyzing and mining complex networks.
NOESIS is built on top of a structured parallel programming
suite of design patterns, providing a large number of net-
work mining techniques that are able to exploit multiple
processing cores available in current microprocessors for a
more efficient computation. Our framework is fully written
in Java, which means it is portable across different hardware
and software platforms, provided they include a Java virtual
machine. In addition, we provide an API binding for Python,
which enables the use of NOESIS from the Python scripting
language, often used by data scientists.

Our paper is structured as follows: In Section 2, we
describe and discuss the NOESIS architecture and design. In
Sections 3 and 4, the network analysis and network mining
techniques available in NOESIS are presented. In Section 5,
NOESIS performance is compared to that of other popular
network analysis tools. Finally, our project’s current status
and future directions are described in Section 6.

2. Design of the NOESIS Framework

NOESIS has been designed to be an easily extensible
framework whose architecture provides the basis for the
implementation of network data mining techniques. In
order to achieve this, NOESIS is designed around abstract
interfaces and a set of core classes that provide essential
functions, which allows the implementation of different
features as independent components with strong cohesion
and loose coupling. NOESIS components are designed to be
maintainable and reusable, yet highly efficient.

2.1. System Architecture. ,e NOESIS framework architec-
ture and its core subsystems are displayed in Figure 1. ,ese
subsystems are described below.

,e lowest-level component is the hardware abstraction
layer (HAL), which provides support for the execution of
algorithms in a parallel environment and hides imple-
mentation details and much of the underlying technical
complexity. ,is component provides different building
blocks for implementing well-studied parallel programming
design patterns, such as MapReduce [19]. For example, we
would just write result� (double) Parallel.reduce(index ->x
[index]∗ y[index], ADD, 0, SIZE-1) to compute the dot
product of two vectors in parallel. ,e HAL not only im-
plements structured parallel programming design patterns
but also is responsible for task scheduling and parallel ex-
ecution. It allows the adjustment of parallel execution pa-
rameters, including the task scheduling algorithm.

,e reflective kernel is at the core of NOESIS and
provides its main features. ,e reflective kernel provides the
base models (data structures) and tasks (algorithms) needed
to perform network data mining, as well as the

corresponding metaobjects and metamodels, which can be
manipulated at run time. It is the underlying layer that
supports a large collection of network analysis algorithms
and data mining techniques, which are described in the
following section. Different types of networks are dealt with
using a unified interface, allowing us to choose the particular
implementation that is the most adequate for the spatial and
computational requirements of each application. Algorithms
provided by this subsystem are built on top of the HAL
building blocks, allowing the parallelized execution of al-
gorithms whenever possible.

,e data access layer (DAL) provides a unified interface
to access external data sources. ,is subsystem allows
reading and writing networks in different file formats,
providing implementations for some of the most important
standardized network file formats. ,is module also enables
the development of data access components for other kinds
of data sources, such as network streaming.

Finally, an application generator is used to build a
complete graphical user interface following a model-driven
software development (MDSD) approach. ,is component
provides a user-friendly interface that allows users without
programming skills to use most of the NOESIS framework
features.

2.2. Core Classes. ,e core classes and interfaces shown in
Figure 2 provide the foundation for the implementation of
different types of networks with specific spatial and com-
putational requirements. Basic network operations include
adding and removing nodes, adding and removing links, or
querying a node neighborhood. More complex operations
are provided through specialized components.

An object-oriented purist might be surprised that nodes
and links do not explicitly appear as Node and Link classes
among the NOESIS core classes. ,is apparent violation of
OO design principles has a technical reason—the perfor-
mance degradation of garbage-collected programming
languages (such as Java, C#, or Python) due to increased
memory fragmentation. When dealing with large networks,
the presence of millions of individual objects in the heap
would significantly increase memory fragmentation and
degrade the performance of the garbage collector. ,erefore,
nodes and links are not considered to be core classes in
NOESIS, although they can be certainly used when needed
(as lightweight facades to the underlying network data
structure encapsulated within particular Network
subclasses).

NOESIS supports networks with attributes in both their
nodes and their links. ,ese attributes are defined according
to predefined data models, including categorical and nu-
merical values, among others.

2.3. Supported Data Formats. Different file formats have
been proposed for network datasets. Some data formats are
more space efficient, whereas others are more easily
parseable.

NOESIS supports reading and writing network datasets
using the most common data formats. For example, the GDF
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file format is a CSV-like format used by some software tools
such as GUESS and Gephi. It supports attributes in both
nodes and links. Another supported file format is GML,
which stands for Graph Modeling Language. GML is a
hierarchical ASCII-based file format. GraphML is another
hierarchical file format based on XML, the ubiquitous eX-
tensible Markup Language developed by the W3C.

Other file formats are supported by NOESIS, such as the
Pajek file format, which is similar to GDF, or the file format
of the datasets from the Stanford Network Analysis Platform
(SNAP) [20].

2.4.GraphicalUser Interface. In order to allow users without
programming knowledge to use most of the NOESIS fea-
tures, a lightweight easy-to-use graphical user interface is
included with the standard NOESIS framework distribution.
,e NOESIS GUI allows loading of nontechnical end users,
visualizing them, and analyzing their own network datasets
by applying all the techniques provided with NOESIS.

Some screenshots of this GUI are shown in Figure 3. A
canvas is used to display the network in every moment. ,e
network can be manipulated by clicking or dragging nodes.
At the top of the window, a menu gives access to different
options and data mining algorithms. ,e Network menu
allows loading a network from an external source and

exporting the results using different file formats, as well as
creating images of the current network visualization as both
raster graphics (a bitmap in the PNG or JPEG file format)
and vector graphics (in the SVG format). ,e View menu
allows the customization of the network appearance by
setting specific layout algorithms and custom visualization
styles. In addition, this menu allows binding the visual
properties of nodes and links to their attributes. ,e Data
menu allows the exploration of attributes for each node and
link. Finally, the Analysis menu gives access to most of the
techniques that will be described in the following sections.

3. Network Analysis Tools

NOESIS is designed to ease the implementation of network
analysis tools. It also includes reusable implementations of a
large collection of popular network-related techniques, from
graph visualization [3] and common graph algorithms to
network structural properties [21] and network formation
models [22]. ,e network analysis tools included in NOESIS
and the modules that implement them are introduced in this
section.

3.1. Network Models. NOESIS implements a number of
popular random network generation models, which are
described by probability distributions or random processes.
Such models have been found to be useful in the study and
understanding of certain properties or behaviors observed in
real-world networks. Some examples of these models are
shown in Figure 4.

Among the models included in NOESIS, the Erdös–
Rényi model [23] is one of the simplest ones. ,e Gilbert
model [24] is similar to the Erdös–Rényi model, but a
probability of existence is given for links instead. ,e an-
chored network model is also similar to the two previous
models, with the advantage of reducing the occurrence of
isolated nodes, but at the cost of being less than perfectly
random. ,e connected random model is a variation of the
anchored model that avoids isolated nodes.

Other models included in NOESIS exhibit specific
properties often found in real-world networks. For example,
the Watts–Strogatz model [25] generates networks with
small-world properties, that is, low diameter and high

Table 1: Feature comparison of some popular network analysis software packages.

Tool name Software license Software platform User interface Programming library Parallelization support Extensibility
UCINET Commercial Pascal ✓
Pajek Closed Delphi ✓
Cytoscape LGPL Java/JavaScript ✓ ✓
NodeXL MPL Excel (.NET) ✓
Gephi GPL Java ✓ ✓
igraph GPL C/Python/R ✓ ✓
NetworkX BSD Python ✓ ✓
Graphviz EPL C ✓
SNAP BSD C++/Python ✓ ✓ ✓
NOESIS BSD Java/Python ✓ ✓ ✓ ✓
GPL: GNU Public License; LGPL: GNU Lesser General Public License; MPL: Microsoft Public License; BSD: Berkeley Software Distribution; EPL: Eclipse
Public License.

3rd party
applications

Graphical user interface

HAL: hardware abstraction layer

NOESIS API
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sources

Application
generator

DAL:
data access layer
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Figure 1: NOESIS framework architecture and its core subsystems.

Complexity 3



clustering. ,is model starts by creating a ring lattice with a
given number of nodes and a given mean degree, where each
node is connected to its nearest neighbors on both sides. In
the following steps, each link is rewired to a new target node
with a given probability, avoiding self-loops and link
duplication.

Despite that the small-world properties exhibited by
networks generated by the Watts–Strogatz model are closer
to properties of real-world networks than those generated by
models based on the Erdös–Rényi approach, they still lack
some important properties observed in real networks. ,e
Barabási–Albert model [26] is another well-known model

Figure 3: Different screenshots of the NOESIS graphical user interface.

(a) (b) (c)

Figure 4: Random networks generated using the Erdös–Rényi model (a), the Watts–Strogatz model (b), and the Barabási–Albert model (c).

AttributeNetwork

Attribute

LinkAttribute

Network

NetworkReaderNetworkWriter NetworkRenderer

Figure 2: UML class diagram depicting some of the NOESIS core classes and interfaces.
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that generates networks whose node degree distribution
follows a power law, which leads to scale-free networks. ,is
model is driven by a preferential attachment process, where
new nodes are added and connected to existing nodes with a
probability proportional to their current degree. Another
model with very similar properties to the Barabási–Albert
model is Price’s citation model [27].

In addition to random network models, a number of
regular network models are included in NOESIS. ,ese
models generate synthetic networks that are useful in the
process of testing new algorithms. ,e regular network
models include complete networks, where all nodes are
interconnected; star networks, where all nodes are con-
nected to a single hub node; ring networks, where each node
is connected to its closest two neighbors along a ring;
tandem networks, like the ring model but without closing
the loop; mesh networks, where nodes are arranged in rows
and columns and connected only to their adjacent nodes;
toruses; meshes, where nodes in the extremes of themesh are
connected; hypercubes; binary trees; and isolates, a network
without links.

3.2. Network Structural Properties. Network structural
properties allow the quantification of features or behaviors
present in the network. ,ey can be used, for instance, to
measure network robustness or reveal important nodes and
links. NOESIS considers three types of structural properties:
node properties, node pair properties (for pairs both with
and without links among them), and global properties.

NOESIS provides a large number of techniques for
analyzing network structural properties. Many structural
properties can be computed for nodes. For example, in-
degree and out-degree indicate the number of incoming and
outgoing links, respectively. Related to the node degree, two
techniques to measure node degree assortativity have been
included: biased [28] and unbiased [29] node degree
assortativity. Node assortativity is a score between − 1 and 1
that measures the degree correlation between pairs of
connected nodes. ,e clustering coefficient can also be
computed for nodes. ,e clustering coefficient of a node is
the fraction of its neighbors that are also connected among
them.

Reachability scores are centrality measures that allow the
analysis of how easy it is to reach a node from other nodes.
,e eccentricity of a node is defined as the maximum
distance to any other node [30]. ,e closeness, however, is
the inverse of the sum of the distance from a given node to all
other nodes [31]. An adjusted closeness value that nor-
malizes the closeness according to the number of reachable
nodes can also be used. Inversely to closeness, the average
path length is defined as the mean distance of all shortest
paths to any other node. Decay is yet another reachability
score, computed as the summation of a delta factor powered
by the path length to any other node [22]. It is interesting to
note that, with a delta factor close to 0, the measure becomes
the degree of the node, whereas with a delta close to 1, the
measure becomes the size of the component the node is
located at. A normalized decay score is also available.

Betweenness, as reachability, is another way to measure
node centrality. Betweenness, also known as Freeman’s be-
tweenness, is a score computed as the count of shortest paths
the node is involved in [32]. Since this score ranges from 2n − 1
to n2 − (n − 1) for the number of nodes n in strongly con-
nected networks, a normalized variant is typically used.

Influence algorithms provide a different perspective on
node centrality.,ese techniques measure the power of each
node to affect others. ,e most popular influence algorithm
is PageRank [9] since it is used by the Google search engine.
PageRank computes a probability distribution based on the
likelihood of reaching a node starting from any other node.
,e algorithm works by iteratively updating node proba-
bility based on direct neighbor probabilities, which leads to
convergence if the network satisfies certain properties. A
similar algorithm is HITS [33], which stands for hyperlink-
induced topic search. It follows an iterative approach, as
PageRank, but computes two scores per node: the hub,
which is a score related to howmany nodes a particular node
links, and the authority, which is a score related to howmany
hubs link a particular node. Both scores are connected by an
iterative updating process: authority is updated according to
the hub scores of nodes connected by incoming links, and
hub is updated according to authority scores of nodes
connected by outgoing links. Eigenvector centrality is an-
other iterative method closely related to PageRank, where
nodes are assigned a centrality score based on the sum-
mation of the centrality of their neighbor nodes. Katz
centrality considers all possible paths but penalizes long ones
using a given damping factor [34]. Diffusion centrality [35]
is another influence algorithm based on Katz centrality. ,e
main difference is that while Katz considers infinite-length
paths, diffusion centrality considers only paths of a given
limited length.

In the following Java example, we show how to load a
network from a data file and compute its structural prop-
erties using NOESIS, in particular its PageRank scores:

FileReader fileReader� new FileReader
("karate.gml");

NetworkReader reader� new GMLNetworkReader
(fileReader);

Network network� reader.read();

PageRank task� new PageRank(network);

NodeScore score� task.call();

We also show how to implement this example using the
NOESIS API for Python:

ns� Noesis()

network_reader� ns.create_network_reader
("GML")

network� network_reader.read("karate.gml")

pagerank_scorer� ns.create_node_scorer
("PageRank")

scores� pagerank_scorer.compute(network)

ns.end()
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Apart from the aforementioned centrality measures,
NOESIS also provides ready-to-use implementations of
percolation centrality [36] and cross-clique connectivity
[37], ensuring that all mainstream centrality measures are
provided by our software platform. Beyond common cen-
trality measures, NOESIS can compute a robustness co-
efficient [38] to analyze the structural robustness of complex
networks, which is specifically useful for evaluating sce-
narios of targeted attacks.

Different structural properties for links can also be
computed by NOESIS, for example, link betweenness, which
is the count of shortest paths the link is involved in, or link
rays, which is the number of possible paths between two
nodes that cross a given link. Some of these properties are
used by different network data mining algorithms.

3.3. Network Visualization Techniques. Humans are still
better than machines at recognizing certain patterns when
analyzing data in a visual way. Network visualization is a
complex task since networks tend to be huge, with thousands
of nodes and links. NOESIS enables the visualization of
networks by providing the functionality needed to render
the network and export the resulting visualization using
different image file formats.

NOESIS provides different automatic graph layout tech-
niques, such as the well-known Fruchterman–Reingold [39]
and Kamada–Kawai [40] force-based layout algorithms (see
Figure 5). Force-based layout algorithms assign forces among
pairs of nodes and solve the system to reach an equilibrium
point, which usually leads to an aesthetic visualization.

Hierarchical layouts [3], which arrange nodes in layers
trying to minimize edge crossing, are also included. Dif-
ferent radial layout algorithms are included as well [42].
,ese layouts are similar to the hierarchical ones but arrange
nodes in concentric circles. Several regular layouts are
provided too since they are common for visualizing regular
networks, such as meshes or stars.

NOESIS allows tuning the network visualization look
and feel. ,e visual properties of nodes and links can be
customized, including color, size, and borders. In addition,
visual properties can be bound to static or dynamic prop-
erties of the network. For example, node sizes can be bound
to a specific centrality score, allowing the visual display of
quantitative information.

NOESIS provides an interactive graphical user interface
that can be used to explore modest-sized networks and test
the results different methods provide using an easy-to-use
drag-and-drop interface. ,is complementary tool can be
useful for analyzing small datasets and also for teaching
courses on the subject. ,e current version of NOESIS
includes a JavaFX network renderer that makes use of
hardware acceleration, the same kind of technology
employed by other network analysis tools with a strong focus
on network visualization, such as Gephi or Cytoscape. ,e
NOESIS JavaFX-based network renderer offers the same
performance gains that can be obtained by other tools that
also make use of hardware acceleration (e.g., Gephi). It
should be noted, however, that the complementary UI tool

included within the NOESIS distribution was not designed
to handle large networks since it is often impractical to
visualize networks with thousands or millions of nodes and
edges in a million-pixel computer screen. NOESIS offers
Gephi-like performance, and for visually navigating truly
large networks, specialized solutions, such as Cytoscape, are
recommended. In such situations, for network data analysis,
the programmatic NOESIS API should be used instead of the
interactive exploration tool.

4. Network Data Mining Techniques

Network data mining techniques exist for both unsupervised
and supervised settings. NOESIS includes a wide array of
community detection methods [4] and link prediction
techniques [43]. ,ese algorithms are briefly described below.

4.1. Community Detection. Community detection can be
defined as the task of finding groups of densely connected
nodes. A wide range of community detection algorithms
have been proposed, exhibiting different pros and cons.
NOESIS features different families of community detection
techniques and implements more than ten popular com-
munity detection algorithms. Some examples of these
community detection techniques are shown in Figure 6. ,e
included algorithms, their time complexity, and their bib-
liographic references are shown in Table 2.

NOESIS provides hierarchical clustering algorithms.
Agglomerative hierarchical clustering treats each node as a
cluster and then iteratively merges clusters until all nodes are
in the same cluster [56]. Different strategies for the selection
of clusters to merge have been implemented, including the
single-link method [45], which selects the two clusters with
the smallest minimum pairwise distance; the complete-link
method [46], which selects the two clusters with the smallest
maximum pairwise distance; and the average-link method
[47], which selects the two clusters with the smallest average
pairwise distance.

Modularity-based techniques are also available in our
framework.Modularity is a score thatmeasures the strength of
particular division into modules of a given network. Modu-
larity-based techniques search for communities by attempting
to maximize their modularity scores [57]. Different greedy
strategies, including fast greedy [48] andmultistep greedy [49],
are available. ,ese greedy algorithms merge pairs of clusters
that maximize the resulting modularity, until all possible
merges would reduce the network modularity.

Partitional clustering is another common approach.
Partitioning clustering decomposes the network and per-
forms an iterative relocation of nodes between clusters. For
example, Kernighan–Lin bipartitioning [50] starts with an
arbitrary partition into two clusters. ,en, nodes are iter-
atively exchanged between both clusters to minimize the
number of links between them.,is approach can be applied
multiple times to subdivide the obtained clusters. K-means
community detection [51] is an application of the traditional
K-means clustering algorithm to networks and another
prominent example of partitioning community detection.
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Spectral community detection [56] is another family of
community detection techniques included in NOESIS.
,ese techniques use the Laplacian representation of the
network, which is a network representation computed by
subtracting the adjacency matrix of the network from a
diagonal matrix where each diagonal element is equal to the
degree of the corresponding node. ,en, the eigenvectors
of the Laplacian representation of the network are com-
puted. NOESIS includes the ratio cut (EIG1) algorithm
[52], Jordan and Weiss NG (KNSC1) algorithm [53], and
spectral K-means [54].

,e BigClam overlapping community detector is also
available in NOESIS [55]. In this algorithm, each node has a
profile, which consists in a score between 0 and 1 for each
cluster that is proportional to the likelihood of the node
belonging to that cluster. Also, a score between pairs of nodes
is defined yielding values proportional to their clustering
assignment overlap. ,e algorithm iteratively optimizes each
node profile to maximize the value between connected nodes
and minimize the value among unconnected nodes.

In the following example, we show how to load a net-
work from a data file and detect communities with the
KNSC1 algorithm using NOESIS:

FileReader fileReader� new FileReader
("mynetwork.net");

NetworkReader reader� new PajekNetwork
Reader(fileReader);

Network network� reader.read();

CommunityDetector task� new NJWCommunity
Detector(network);

Matrix results� task.call();

,e same example can also be coded in Python using the
NOESIS API for Python:

ns� Noesis()

network_reader� ns.create_network_reader
("Pajek")

network� network_reader.read("mynetwork.
net")

(a) (b)

(c) (d)

Figure 5: ,e same dolphin social network [41] represented using different network visualization algorithms: random layout (a);
Kamada–Kawai layout (b); Fruchterman–Reingold layout (c); circular layout using the average path length (d).
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community_detector� ns.create_community_
detector("NJW")
communities� community_detector.compute
(network)

ns.end()

4.2. Link Scoring and Prediction. Link scoring and link
prediction are two closely related tasks. On the one hand,
link scoring aims to compute a value or weight for a link
according to a specific criterion. Most link scoring tech-
niques obtain this value by considering the overlap or

(a) (b)

(c) (d)

Figure 6: Different community detection methods applied to Zachary’s karate club network [44]: fast greedy partitioning (a);
Kernighan–Lin bipartitioning (b); average-link hierarchical partitioning (c); complete-link hierarchical partitioning (d).

Table 2: Computational time complexity and bibliographic references for the community detection techniques provided by NOESIS.

Type Name Complexity Reference

Hierarchical
Single link (SLINK) O(v2) [45]

Complete link (CLINK) O(v2log v) [46]
Average link (UPGMA) O(v2log v) [47]

Modularity Fast greedy O(kvd log v) [48]
Multistep greedy O(kvd log v) [49]

Partitional Kernighan–Lin bipartitioning O(v2log v) [50]
K-means O(kvd) [51]

Spectral
Ratio cut (EIG1) O(v3) [52]

Jordan–Weiss NG (KNSC1) O(v3) [53]
Spectral K-means O(v3) [54]

Overlapping BigClam O(v2) [55]
In the time complexity analysis, v is the number of nodes in the network, d is the maximum node degree, and k is the desired number of clusters.
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relationship between the neighborhood of the nodes at both
ends of the link. On the other hand, link prediction com-
putes a value, weight, or probability proportional to the
likelihood of the existence of a certain link according to a
given model of link formation.

,e NOESIS framework provides a large collection of
methods for link scoring and link prediction, from local
methods, which only consider the direct neighborhood of
nodes, to global methods, which consider the whole network
topology. Some examples are shown in Figure 7. As the
amount of information considered is increased, the com-
putational and spatial complexity of the techniques also
increases. ,e link scoring and prediction methods available
in NOESIS are shown in Table 3.

Among local methods, the most basic technique is the
common neighbors score [59], which is equal to the number
of shared neighbors between a pair of nodes. Most tech-
niques are variations of the common neighbors score. For
example, the Adamic–Adar score [60] is the sum of one
divided by the logarithm of the degree of each shared node.
,e resource-allocation index [61] follows the same ex-
pression but directly considers the degree instead of the
logarithm of the degree. ,e adaptive degree penalization
score [62] also follows the same approach but automatically
determines an adequate degree penalization by considering
properties of the network topology. Other local measures
consider the number of shared neighbors but normalize
their value according to certain criteria. For example, the
Jaccard score [63] normalizes the number of shared
neighbors by the total number of neighbors. ,e local
Leicht–Holme–Newman score [64] normalizes the count of
shared neighbors by the product of both neighborhoods’
sizes. ,e Salton score [65] also normalizes similarly but this
time using the square root of the product of both node
degrees.,e Sorensen score [66] considers twice the count of
shared neighbors normalized by the sum of both neighbors’
sizes. ,e hub promoted and hub depressed scores [67]
normalize the count of shared neighbors by the minimum
and the maximum of both node degrees, respectively. ,e
preferential attachment score [68] only considers the
product of both node degrees.

Global link scoring and prediction methods are more
complex than local methods. For example, the Katz score [34]
sums the influence of all possible paths between two nodes,
incrementally penalizing paths by their length according to a
given damping factor. ,e global Leicht–Holme–Newman
score [64] is quite similar to the Katz score but resorts to the
dominant eigenvalue to compute the final result.

Random walk techniques simulate a Markov chain of
randomly selected nodes [69].,e idea is that starting from a
seed node and randomly moving through links, we can
obtain a probability vector where each element corresponds
to the probability of reaching each node. ,e classical
random walk iteratively multiplies the probability vector by
the transition matrix, which is the row-normalized version
of the adjacency matrix, until convergence. An interesting
variant is the random walk with restart [70], which models
the possibility of returning to the seed node with a given
probability. Flow propagation is another variant of random

walk [71], where the transition matrix is computed by
performing both row and column normalization of the
adjacency matrix.

Some spectral techniques are also available in NOESIS.
Spectral techniques, as we mentioned when discussing
community detection methods, are based on the Laplacian
matrix. ,e pseudoinverse Laplacian score [72] is the inner
product of the rows of the corresponding pair of nodes from
the Laplacian matrix. Another spectral technique is the
average commute time [72], which is defined as the average
number of steps that a random walker starting from a
particular node takes to reach another node for the first time
and go back to the initial node. Despite that it models a
random walk process, it is considered to be a spectral
technique because it is usually computed in terms of the
Laplacian matrix. Given the Laplacian matrix, it can be
computed as the diagonal element of the starting node plus
the diagonal element of the ending node, minus two times
the element located in the row of the first node and the
column of the second one.

,e random forest kernel score [73] is a global technique
based on the concept of spanning tree, i.e., a connected
undirected subnetwork with no cycles that includes all the
nodes and some or all the links of the network. ,e matrix-
tree theorem states that the number of spanning trees in the
network is equal to any cofactor, which is a determinant
obtained by removing the row and column of the given
node, of an entry of its Laplacian representation. As a result
of this, the inverse of the sum of the identity matrix and the
Laplacian matrix gives us a matrix that can be interpreted as
a measure of accessibility between pairs of nodes.

Using network data mining algorithms in NOESIS is
simple. In the following code snippet, we show how to
generate a Barabási―Albert preferential attachment net-
work with 100 nodes and 10 links per node and then
compute the resource-allocation score for each pair of nodes
using NOESIS:

Network network� new BarabasiAlbertNet-
work(100, 10);

LinkPredictionScore method� new Resource
AllocationScore(network);

Matrix result� method.call();

In Python, the previous example would be implemented
as follows:

ns� Noesis()

network� ns.create_network_from_model
("Barabasi-Albert", 100, 10)

predictor� ns.create_link_predictor
("ResourceAlloca-tion")

result� predictor.compute(network)

ns.end()

5. Performance Comparison

NOESIS is designed to manage large complex networks
comprising thousands or even millions of nodes. It provides
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Figure 7: Different link scoring techniques applied to the Les Miserables coappearance network [58]: common neighbors (a); preferential
attachment score (b); Sorensen score (c); Katz index (d). Link width in the figure is proportional to the link score.

Table 3: Computational time complexity and bibliographic references for the link scoring and prediction methods provided by NOESIS.

Type Name Complexity Reference

Local

Common neighbors count O(vd3) [59]
Adamic–Adar score O(vd3) [60]

Resource-allocation index O(vd3) [61]
Adaptive degree penalization score O(vd3) [62]

Jaccard score O(vd3) [63]
Leicht–Holme–Newman score O(vd3) [64]

Salton score O(vd3) [65]
Sorensen score O(vd3) [66]

Hub promoted index O(vd3) [67]
Hub depressed index O(vd3) [67]

Preferential attachment score O(vd2) [68]

Global

Katz index O(v3) [34]
Leicht–Holme–Newman score O(cv2d) [64]

Random walk O(cv2d) [69]
Random walk with restart O(cv2d) [70]

Flow propagation O(cv2d) [71]
Pseudoinverse Laplacian score O(v3) [72]
Average commute time score O(v3) [72]
Random forest kernel index O(v3) [73]

In the time complexity analysis, v is the number of nodes in the network, d is the maximum node degree, and c refers to the number of iterations required by
iterative global link prediction methods.
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structures to efficiently represent and deal with relational
data. While these features are often offered by other network
analysis frameworks, they often lack the parallel computing
features NOESIS includes.

In this section, we perform an empirical comparison of
the performance of different popular network analysis
frameworks for some common data analysis tasks. ,e
igraph, SNAP, and NetworkX frameworks have been chosen
for their comparison with NOESIS because they offer a
programmatic API. Software developers can use them as
libraries in their own software projects within the constraints
imposed by their corresponding software licenses (virtually
none in the BSD licenses of NetworkX, SNAP, and NOESIS).
Closed-source tools, such as Pajek, offer no API, whereas
other tools strongly focus on particular areas (e.g., Cytoscape
on interactive network visualization). We restricted the
comparison of NOESIS to those tools with the most similar
use cases (i.e., igraph, SNAP, and NetworkX).

For NOESIS, different CPU scheduling techniques were
tested: a work-stealing scheduler (WSS), a future scheduler
(FS), and a conventional thread pool scheduler (TPS). Our
experiments were performed in an Intel Core i7-3630QM
processor (8 cores at 2.40GHz) with 16GB of RAM under
Windows 10 (64 bits).

,ree datasets were used in our experiments: a network
extracted fromWikipedia with 27475 nodes and 85729 links
(the Wikipedia dataset can be downloaded from http://
spark-public.s3.amazonaws.com/sna/other/wikipedia.gml),
a peer-to-peer Gnutella file-sharing network from August
2002 with 6301 nodes and 20777 edges [74], and a Facebook
ego network with 4039 nodes and 88234 edges [75].

,e experimentation carried out in this section consists
of computing different computationally expensive network
metrics that are commonly used in network mining: be-
tweenness centrality (BC), link betweenness (LB), closeness
(CN), and all shortest paths from every node using Dijkstra’s
algorithm (APSP).,e APSP task could not be implemented
using SNAP because of support limitations. We performed 5
runs for each measure and reported the average execution
time required to complete the task for each software tool and
network dataset.

,e average execution time for each task/dataset/tool
triplet is shown in Table 4. It should be noted that NOESIS is
consistently faster that well-known existing frameworks.,e
superior performance of the NOESIS framework can be
attributed to different factors. First of all, NOESIS is written
in pure Java, which can be orders of magnitude faster than
the Python implementation of igraph and NetworkX. ,e
NOESIS Java code is highly optimized taking into account
the peculiarities of the Java virtual machine (e.g., trying to
minimize memory fragmentation and using a properly
tuned cost model for different operations). As a conse-
quence, the NOESIS Java implementation is surprisingly
faster than the C++ implementation of SNAP, which should
be expected to be more efficient since highly optimized C++
applications are usually more efficient than their Java
counterparts. NOESIS parallel programming design patterns
let algorithm designers easily exploit the parallelism in
multicore processors and multiprocessor systems. ,e

combination of these features allows NOESIS to complete
tasks associated with computing important network-related
structural properties faster than some popular software
packages, even orders of magnitude faster.

In our parallelization experiments, we implemented dif-
ferent CPU scheduling techniques. NOESIS is faster than
existing tools regardless of which scheduler is employed. ,e
NOESIS conventional thread pool scheduler, which imple-
ments a common solution to the parallelization of software
with the help of a single thread pool, consistently obtains the
best results in the batch of experiments we have performed.
An alternative implementation using Java features is some-
what slower. Similar results were obtained using a work-
stealing CPU scheduler [76]. In a work-stealing scheduler,
each processor in a computer system has a queue of work
items (computational tasks (threads)) to perform. When a
processor runs out of work, it looks at the queues of other
processors and “steals” their work items. As a result, work
stealing distributes the scheduling work over idle processors,
and as long as all processors have work to do, no scheduling
overhead occurs. It is employed in the scheduler for the Cilk
programming language [77], the Java fork/join framework
[78], and the .NET Task Parallel Library [79]. For the tests we
performed, which involved a heavy work load for a single
multicore processor, the simplest strategy seemed to work
better, yet typical workloadsmight be different and alternative
CPU schedulers might be preferable.

Table 4: Performance of different network analysis tools in dif-
ferent tasks over several network datasets (time is shown in
milliseconds).

Dataset Framework BC LB CN APSP

Wikipedia

NOESIS-
WSS 14485 32748 23581 54374

NOESIS-FS 13837 33082 23657 57299
NOESIS-

TPS 10854 23424 23233 48005

igraph 43328 110681 73181 198568
SNAP 464055 579435 184254 —

NetworkX 2246487 2812940 409698 1598431

P2P
Gnutella

NOESIS-
WSS 576 1025 879 1971

NOESIS-FS 499 1097 868 1804
NOESIS-

TPS 331 717 865 1288

igraph 1576 2875 4046 8947
SNAP 18506 21854 8949 —

NetworkX 67631 81315 16719 60983

Facebook

NOESIS-
WSS 2267 6778 5087 1778

NOESIS-FS 2500 7937 4977 2140
NOESIS-

TPS 1841 5339 4874 1443

igraph 4677 26962 5302 15640
SNAP 15206 17604 15295 —

NetworkX 244842 291605 120558 481848
,e abbreviationsWSS, FS, TPS, BC, LB, CN, and APSP stand for the work-
stealing scheduler, future scheduler, thread pool scheduler, betweenness
centrality, link betweenness, closeness, and all-pairs shortest paths, re-
spectively. Best times for each dataset are shown in bold.
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6. Conclusion

In this paper, we have presented the NOESIS framework for
complex network data mining. NOESIS provides a large
collection of data analysis techniques for networks, in a
much more efficient way than competing alternatives, since
NOESIS exploits the parallelism available in existing
hardware using structured parallel programming design
patterns [80]. As shown in our experimentation, NOESIS is
significantly faster than other libraries, even orders of
magnitude faster, which is extremely important when
dealing with massive networks.

Currently, the NOESIS project has achieved a mature
status with more than thirty-five thousand lines of Java code,
hundreds of classes, and dozens of packages. In addition, the
production code is covered by automated unit tests to ensure
the correctness of the implemented algorithms. NOESIS
includes a custom library of reusable components with more
than forty thousand lines, providing different general
functionalities, such as customizable collections, structured
parallel programming building blocks, mathematical rou-
tines, and a model-driven application generator on top of
which the NOESIS graphical user interface is built. Since
Python has become a very popular programming language
for scientific computing, a complete API binding for Python
is provided so that NOESIS can be used from Python.

NOESIS is one of the most complete and efficient “out-
of-the-box” frameworks for analyzing and mining relational
data. Our framework can accelerate the development of
software that needs to analyse networks by providing effi-
cient and scalable techniques that cover different aspects of
network data mining. Our framework is open source and
freely available from its official website, http://noesis.ikor.
org, under a permissive Berkeley Software Distribution
license.
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[14] J. Leskovec and R. Sosič, “SNAP,” ACM Transactions on
Intelligent Systems and Technology, vol. 8, no. 1, pp. 1–20, 2016.

[15] V. Batagelj and A. Mrvar, “Pajek-program for large network
analysis,” Connections, vol. 21, no. 2, pp. 47–57, 1998.

[16] M. A. Smith, S. Ben, N. Milic-Frayling et al., “Analyzing
(social media) networks with NodeXL,” in Proceedings of the
Fourth International Conference on Communities and Tech-
nologies, pp. 255–264, ACM, University Park, PA, USA, June
2009.

[17] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open
source software for exploring and manipulating networks,”
International AAAI Conference on Weblogs and Social Media,
vol. 8, pp. 361-362, 2009.

[18] S. P. Borgatti, M. G. Everett, and L. C. Freeman, “UCINET for
windows: software for social network analysis,” Technical Re-
port, Analytic Technologies, Lexington, KY, USA, 2002.

12 Complexity

http://noesis.ikor.org
http://noesis.ikor.org
http://snap.stanford.edu/data
http://snap.stanford.edu/data


[19] J. Dean and S. Ghemawat, “MapReduce,” Communications of
the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[20] J. Leskovec and A. Krevl, SNAP Datasets: Stanford Large
Network Dataset Collection, Stanford University, Stanford,
CA, USA, 2014, http://snap.stanford.edu/data.

[21] M. E. J. Newman, Networks: An Introduction, Oxford Uni-
versity Press, Oxford, UK, 2010.

[22] M. O. Jackson, Social and Economic Networks, Princeton
University Press, Princeton, NJ, USA, 2008.

[23] P. Erdős and A. Rényi, “On random graphs,” Publicationes
Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.

[24] E. N. Gilbert, “Random graphs,” Ae Annals of Mathematical
Statistics, vol. 30, no. 4, pp. 1141–1144, 1959.

[25] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-
world” networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[26] R. Albert and A.-L. Barabási, “Statistical mechanics of
complex networks,” Reviews of Modern Physics, vol. 74, no. 1,
pp. 47–97, 2002.

[27] M. E. J. Newman, “,e structure and function of complex
networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[28] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Local
assortativeness in scale-free networks,” EPL (Europhysics
Letters), vol. 84, no. 2, Article ID 28002, 2008.

[29] M. Piraveenan, M. Prokopenko, Y. Albert, and Zomaya,
“Classifying complex networks using unbiased local assor-
tativity,” in Proceedings of the Twelfth International Confer-
ence on the Synthesis and Simulation of Living Systems,
pp. 329–336, Odense, Denmark, August 2010.

[30] P. Hage and F. Harary, “Eccentricity and centrality in net-
works,” Social Networks, vol. 17, no. 1, pp. 57–63, 1995.

[31] A. Bavelas, “Communication patterns in task-oriented
groups,” Ae Journal of the Acoustical Society of America,
vol. 22, no. 6, pp. 725–730, 1950.

[32] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[33] J. M. Kleinberg, “Authoritative sources in a hyperlinked envi-
ronment,” Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

[34] L. Katz, “A new status index derived from sociometric
analysis,” Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[35] C. Kang, C. Molinaro, S. Kraus, Y. Shavitt, and
V. S. Subrahmanian, “Diffusion centrality in social networks,”
in Proceedings of the 2012 International Conference on Ad-
vances in Social Networks Analysis and Mining (ASONAM
2012), pp. 558–564, IEEE Computer Society, Istanbul Turkey,
August 2012.

[36] M. Piraveenan, M. Prokopenko, and L. Hossain, “Percolation
centrality: quantifying graph-theoretic impact of nodes dur-
ing percolation in networks,” PLoS One, vol. 8, no. 1, Article
ID e53095, 2013.

[37] M. R. Faghani and U. T. Nguyen, “A study of XSS worm
propagation and detection mechanisms in online social
networks,” IEEE Transactions on Information Forensics and
Security, vol. 8, no. 11, pp. 1815–1826, 2013.

[38] M. Piraveenan, G. ,edchanamoorthy, S. Uddin, and
K. S. K. Chung, “Quantifying topological robustness of net-
works under sustained targeted attacks,” Social Network
Analysis and Mining, vol. 3, no. 4, pp. 939–952, 2013.

[39] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Software: Practice and Experience,
vol. 21, no. 11, pp. 1129–1164, 1991.

[40] T. Kamada and S. Kawai, “An algorithm for drawing general
undirected graphs,” Information Processing Letters, vol. 31,
no. 1, pp. 7–15, 1989.

[41] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,
and S. M. Dawson, “,e bottlenose dolphin community of
doubtful sound features a large proportion of long-lasting
associations,” Behavioral Ecology and Sociobiology, vol. 54,
no. 4, pp. 396–405, 2003.

[42] G. J. Wills, “NicheWorks: interactive visualization of very
large graphs,” Journal of Computational and Graphical Sta-
tistics, vol. 8, no. 2, pp. 190–212, 1999.

[43] D. Liben-Nowell and J. Kleinberg, “,e link-prediction
problem for social networks,” Journal of the American Society
for Information Science and Technology, vol. 58, no. 7,
pp. 1019–1031, 2007.

[44] W. W. Zachary, “An information flow model for conflict and
fission in small groups,” Journal of Anthropological Research,
vol. 33, no. 4, pp. 452–473, 1977.

[45] R. Sibson, “Slink: an optimally efficient algorithm for the
single-link cluster method,” Ae Computer Journal, vol. 16,
no. 1, pp. 30–34, 1973.

[46] D. Defays, “An efficient algorithm for a complete link
method,” Ae Computer Journal, vol. 20, no. 4, pp. 364–366,
1977.

[47] B. Liu, Web Data Mining, Springer, Berlin, Germany, 2
edition, 2011.

[48] M. E. J. Newman, “Fast algorithm for detecting community
structure in networks,” Physical Review E, vol. 69, no. 6, 2004.

[49] P. Schuetz and A. Caflisch, “Efficient modularity optimization
by multistep greedy algorithm and vertex mover refinement,”
Physical Review E, vol. 77, no. 4, 2008.

[50] B. W. Kernighan and S. Lin, “An efficient heuristic procedure
for partitioning graphs,” Bell System Technical Journal, vol. 49,
no. 2, pp. 291–307, 1970.

[51] J. MacQueen, “Somemethods for classification and analysis of
multivariate observations,” in Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability,
pp. 281–297, Oakland, CA, USA, January 1967.

[52] L. Hagen and A. B. Kahng, “New spectral methods for ratio
cut partitioning and clustering,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 11, no. 9, pp. 1074–1085, 1992.

[53] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering:
analysis and an algorithm,” Advances in Neural Information
Processing Systems, vol. 2, pp. 849–856, 2002.

[54] J. Jianbo Shi and J. Malik, “Normalized cuts and image
segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[55] J. Yang and J. Leskovec, “Overlapping community detection at
scale: a nonnegative matrix factorization approach,” in Pro-
ceedings of the Sixth ACM International Conference on Web
Search and Data Mining, pp. 587–596, ACM, Rome, Italy,
February 2013.

[56] S. Fortunato, “Community detection in graphs,” Physics
Reports, vol. 486, no. 3–5, pp. 75–174, 2010.

[57] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, 2004.

[58] D. E. Knuth and S. GraphBase, A Platform for Combinatorial
Computing, Addison-Wesley, Boston, MA, USA, 1st edition,
2009.

[59] M. E. J. Newman, “Clustering and preferential attachment in
growing networks,” Physical Review E, vol. 64, no. 2, 2001.

[60] L. A. Adamic and E. Adar, “Friends and neighbors on the
web,” Social Networks, vol. 25, no. 3, pp. 211–230, 2003.

Complexity 13

http://snap.stanford.edu/data
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[63] J. Paul, “Étude comparative de la distribution florale dans une
portion des alpes et des jura,” Bulletin de la Société Vaudoise
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