
VARIABLE EXPONENT TRIEBEL-LIZORKIN-MORREY SPACES
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Abstract. We introduce variable exponent versions of Morreyfied Triebel-

Lizorkin spaces. To that end, we prove an important convolution inequality

which is a replacement for the Hardy-Littlewood maximal inequality in the
fully variable setting.

Using it we obtain characterizations by means of Peetre maximal functions

and use them to show the independence of the introduced spaces from the
admissible system used.

1. Introduction

In this paper we introduce and present some properties of spaces which mix two
recent trends in the literature: starting from the Besov and Triebel-Lizorkin spaces
Bsp,q(Rn) and F sp,q(Rn),

(I) on one hand, one Morreyfies them in some way, that is, replace the Lp(Rn)
spaces in their construction by Morrey spaces Mu

p (Rn);
(II) on the other hand, one makes the parameters s, p, q and u variable.

The first trend started with Kozono and Yamazaki [KY94] for the Besov scale in
connection with the study of Navier-Stokes equations, giving rise to spaces which we
denote by N s,u

p,q (Rn). The corresponding Triebel-Lizorkin scale with spaces denoted
here by Es,up,q (Rn) was introduced by Tang and Xu [TaXu05], with Sobolev-Morrey
spaces being already considered by S. Campanato [Cam63] as early as 1963. Related
so-called Besov-type and Triebel-Lizorkin-type spaces Bs,τp,q (Rn) and F s,τp,q (Rn) were
introduced by El Baraka [ElBar02, ElBar06], at least in the Banach case, and Yang
and Yuan [YY08, YY10], at least in the homogeneous case. For more details on
these spaces and corresponding literature see [YSY10], the surveys [Sic12, Sic13]
and also [Ros13]. Be aware, as stressed in [Sic12, Sic13], that the order in which the
parameters show in the notation for the N and E spaces above can change with the
authors. Also, usually only the smoothness s is written as superscript, so here we
add a little bit to the chaos by moving another parameter to superscript. But our
idea is the following: as subscripts we have only left the parameters with the roles
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corresponding to p and q in the — let us say — standard Besov and Triebel-Lizorkin
scales; as superscripts we start by writing the smoothness parameter s and then
join in the new parameter. We followed the same philosophy as for the Besov-type
and Triebel-Lizorkin-type spaces, though the roles of the new parameters τ and u
differ.

The second trend is more difficult to trace, so we opt to mention [DHR09, AH10]

— where the spaces F
s(·)
p(·),q(·)(R

n) and B
s(·)
p(·),q(·)(R

n), with all the three parameters

variable were introduced — and refer to those papers for some history on the
subject and its connection with the study of PDEs. These spaces are build up for
variable p(·) on the variable Lebesgue spaces Lp(·), which can be traced back to
Orlicz [Orl31] and Kováčik and Rákosńık [KoRa91].

Since our results in this paper are only concerned with a Morreyfication of the
variable Triebel-Lizorkin scale, from now on we will omit references to possible ways

of Morreyfying the variable Besov scale. As in the case of B
s(·)
p(·),q(·)(R

n), this poses

different challenges, see [AC18].

Once Morrey spaces M
u(·)
p(·) (Rn) with variable exponents were introduced by

Almeida, Hasanov and Samko [AHS08], Kokilashvili and Meskhi [KM08] and Mizuta
and Shimomura [MS08], the way was open to try to mix the two trends mentioned
above. A first step was done by Fu and Xu [FX11] by considering Triebel-Lizorkin-

Morrey spaces Es,u(·)
p(·),q (Rn) — so, still keeping s and q fixed. However, there are

some flaws in the proofs of some results in that paper. We point out one in Remark
3.4 below, but for a more detailed analysis see [Ros13, Remarks 3.12 and 4.20].

Later Ho [Ho12] considered Es(·),u(·)
p(·),q(·) (Rn) as a particular case of a more general

framework. Although Ho considered all four parameters variable, he has imposed
on the other hand some not so natural technical restrictions on s, p and u, e.g.

(1) sup
x∈Rn

( 1

p(x)
− 1

u(x)

)
<

1

sup p

(see [Ho12, Definition 6.6]). Variable exponent versions of the Triebel-Lizorkin-type
spaces F s,τp,q (Rn) were also recently considered by Yang, Yuan and Zhuo [YYZ15]
and Drihem [Dri]. It is not clear how they compare with each other, but the former
is closer to our intentions here. Actually, Yang, Yuan and Zhuo replaced the τ(·) by
some more general structure, but under suitable conditions, in particular (1) above
(see [YYZ15, Theorem 3.12(i)]), their spaces cover the Triebel-Lizorkin-Morrey

spaces Es(·),u(·)
p(·),q(·) (Rn).

In the present paper we get rid of the restriction (1), our other conditions on
p and u are quite natural (for u we don’t even impose any smoothness property)
and we are able to prove characterization of the spaces by Peetre maximal func-

tions. Actually, we even consider 2-microlocal versions Ew,u(·)
p(·),q(·)(R

n), building on

the knowledge we have acquired in [Ke09] and [AC16] in the non-Morrey situation.
After this work was essentially complete, we learned that 2-microlocal versions of
the variable exponent Triebel-Lizorkin-type spaces mentioned above were also re-
cently considered in [WYYZ18]. However, in the part that covers our 2-microlocal
variable exponent Triebel-Lizorkin-Morrey spaces the undesirable restrictions men-
tioned above are still assumed, see [WYYZ18, Theorem 4.7(iii)].

Our main results are the convolution inequality in Theorem 3.3 and the Peetre

maximal function characterization of Ew,u(·)
p(·),q(·)(R

n) in Theorem 4.5.
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In a forthcoming paper [CK19] we also use the obtained results to present atomic
and molecular representations for these spaces.

We have already advised the reader to check carefully the notation before com-
paring results coming from different sources. In the comparison made above we
have translated everything into our notation. The reader should also be aware that
even the very notion of Morrey space with variable exponents, and not only its
notation, might differ from work to work.

2. Preliminaries

2.1. General notation. Here we introduce some of the general notation we use
throughout the paper. N, N0, Z, R and C have the usual meaning as sets of numbers,
as well as their n-th powers for n ∈ N. The Euclidean norm in Rn is denoted by | · |,
though this notation is also used for the norm of a multi-index, and for Lebesgue
measure when it is being applied to (measurable) subsets of Rn.

The symbol S(Rn) stands for the usual Schwartz space of infinitely differentiable

rapidly decreasing complex-valued functions on Rn. By φ̂ we denote the Fourier
transform of φ ∈ S(Rn) in the version

φ̂(x) :=
1

(2π)n/2

∫
Rn
e−ix·ξφ(ξ) dξ, x ∈ Rn,

and by φ∨ we denote the inverse Fourier transform of φ. These transforms are
topological isomorphisms in S(Rn) which extend in the usual way to the space
S ′(Rn) of tempered distributions, the dual space of S(Rn).

For two complex or extended real-valued measurable functions f, g on Rn the
convolution f ∗ g is given, whenever it makes sense a.e., by

(f ∗ g)(x) :=

∫
Rn
f(x− y)g(y)dy, for x ∈ Rn.

By c, c1, cφ, ... > 0 we denote constants which may change their value from one line
to another. Further, f . g means that there exists a constant c > 0 such that
f ≤ cg holds for a set of variables on which f and g may depend on and which shall
be clear from the context. If we write f ≈ g then there exists constants c1, c2 > 0
with c1f ≤ g ≤ c2f . And we shall then say that the expressions f and g are
equivalent (across the considered set of variables).

By Qr(x) ⊂ Rn we denote the open cube in Rn with center x ∈ Rn and sides
parallel to the axes and of length 2r > 0. Further, Br(x) ⊂ Rn is the open ball in
Rn with center x ∈ Rn and radius r > 0 and by χA we denote the characteristic
function of any subset A of Rn.

Given topological vector spaces A and B, the notation A ↪→ B will be used to
mean that the space A is continuously embedded into the space B.

2.2. Variable exponent Lebesgue spaces. The set of variable exponents P(Rn)
is the collection of all measurable functions p : Rn → (0,∞] with p− := ess-infx∈Rn p(x) >
0. Further, we set p+ := ess-supx∈Rn p(x). For exponents with p(x) ≥ 1 and com-
plex or extended real-valued measurable functions f on Rn a semimodular is defined
by

%p(·)(f) :=

∫
Rn
φp(x)(|f(x)|) dx,
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where

φp(x)(t) :=


tp(x) if p(x) ∈ (0,∞),

0 if p(x) =∞ and t ∈ [0, 1],

∞ if p(x) =∞ and t ∈ (1,∞],

and the variable exponent Lebesgue space Lp(·)(Rn) is given by

Lp(·)(Rn) := {f : there exists a λ > 0 with %p(·) (f/λ) <∞},
with their elements being taken in the usual sense of equivalence classes of a.e.
coincident functions. This space is complete and normed, hence a Banach space,
with the norm ∥∥f |Lp(·)(Rn)

∥∥ := inf{λ > 0 : %p(·)(f/λ) ≤ 1}.
It shares many properties with the usual Lebesgue spaces, see for a wide overview
[KoRa91], [DHHR11], [CUFi13], but there are also some differences, e.g. it is not
translation invariant. By the property

(2)
∥∥f |Lp(·)(Rn)

∥∥ =
∥∥∥ |f |t∣∣L p(·)

t
(Rn)

∥∥∥1/t

for any t > 0

it is also possible to extend the definition of the spaces Lp(·)(Rn) to all exponents

p ∈ P(Rn). In such more general setting the functional
∥∥ · |Lp(·)(Rn)

∥∥ need not be
a norm, although it is always a quasi-norm.
Many theorems for variable Lebesgue spaces Lp(·)(Rn) are only valid for exponents
p(·) within a subclass of P(Rn) where they satisfy certain regularity conditions. An
appropriate subclass in this sense is the set P log(Rn) defined below.

Definition 2.1. Let g : Rn → R.

(i) We say that g is locally log Hölder continuous, g ∈ C log
loc (Rn), if there exists

a constant clog(g) > 0 with

|g(x)− g(y)| ≤ clog(g)

log(e+ 1
|x−y| )

for all x, y ∈ Rn.

(ii) We say that g is globally log Hölder continuous, g ∈ C log, if it is locally log
Hölder continuous and there exist a g∞ ∈ R and a constant c∞(g) > 0 with

|g(x)− g∞| ≤
c∞(g)

log(e+ |x|)
for all x ∈ Rn.(3)

(iii) We write g ∈ P log(Rn) if 0 < g− ≤ g(x) ≤ g+ ≤ ∞ with 1/g ∈ C log(Rn).

Since a control of the quasi-norms of characteristic functions of balls in variable
exponent spaces will be crucial for our estimates, we present below a result in that
direction and which is an adapted version of [DHHR11, Corollary 4.5.9] to the case
0 < p− ≤ p+ ≤ ∞. It can easily be obtained from that result by exploring the
property (2) above.

Lemma 2.2. Let p ∈ P log(Rn). Then for all x0 ∈ Rn and all r > 0 we have that∥∥χBr(x0)

∣∣Lp(·)(Rn)
∥∥ ≈ ∥∥χQr(x0)

∣∣Lp(·)(Rn)
∥∥

≈

{
r

n
p(x) , if r ≤ 1 and x ∈ Br(x0)

r
n
p∞ , if r ≥ 1

.

Here we denote 1
p∞

:=
(

1
p

)
∞

which is given by (3).



VARIABLE EXPONENT TRIEBEL-LIZORKIN-MORREY SPACES 5

3. Variable exponents Morrey spaces

Now, we can define the Morrey spaces which we are interested in.

Definition 3.1. Let p, u ∈ P(Rn) with p ≤ u. Then the Morrey space M
u(·)
p(·) (Rn)

is the collection of all (complex or extended real-valued) measurable functions f on
Rn with (quasi-norm given by)∥∥∥f |Mu(·)

p(·) (Rn)
∥∥∥ := sup

x∈Rn,r>0
rn( 1

u(x)
− 1
p(x) )

∥∥f |Lp(·)(Br(x))
∥∥ <∞.

Next we state the convolution inequality from [DHR09], which is heavily used as
a replacement of the Hardy-Littlewood maximal inequality in the variable setting,
where Lp(·)(`q(·)) stands for the set of all sequences (fν)ν∈N0 of (complex or extended

real-valued) measurable functions on Rn such that
∥∥∥(∑∞ν=0 |fν(·)|q(·)

)1/q(·)∣∣∣Lp(·)(Rn)
∥∥∥

is finite.

Lemma 3.2. Let ην,m(x) := 2νn(1 + 2ν |x|)−m for ν ∈ N0 and m > 0. Let p, q ∈
P log(Rn) with 1 < p− ≤ p+ < ∞ and 1 < q− ≤ q+ < ∞. Then for every m > n
there exists a constant c > 0 such that for all sequences (fν)ν ∈ Lp(·)(`q(·))∥∥∥∥∥∥
( ∞∑
ν=0

|ην,m ∗ fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ ≤ c
∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ .
Now, we are able to formulate and prove the corresponding result with Morrey

spaces instead of Lebesgue spaces, where M
u(·)
p(·) (`q(·)) shall stand for the set of all

sequences (fν)ν∈N0
of (complex or extended real-valued) measurable functions on

Rn such that
∥∥∥(∑∞ν=0 |fν(·)|q(·)

)1/q(·)∣∣∣Mu(·)
p(·) (Rn)

∥∥∥ is finite.

Such a result will be the main tool for these variable spaces and will be used in
further results to be presented in this paper.

Theorem 3.3. Let ην,m be as in the preceding lemma. Let p, q ∈ P log(Rn) and
u ∈ P(Rn) with 1 < p− ≤ p(x) ≤ u(x) ≤ supu < ∞ and q−, q+ ∈ (1,∞). For
every

m > n+ nmax

(
0, sup
x∈Rn

(
1

p(x)
− 1

u(x)

)
− 1

p∞

)
(4)

there exists a c > 0 such that for all (fν)ν ⊂Mu(·)
p(·) (`q(·))∥∥∥∥∥∥

( ∞∑
ν=0

|ην,m ∗ fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥ ≤ c
∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥ .
Proof. First step: We take an arbitrary x0 ∈ Rn and r > 0 and decompose for every
ν ∈ N0

fν(x) = f0
ν (x) +

∞∑
i=1

f iν(x),
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where f0
ν := fνχB2r(x0) and f iν := fνχB2i+1r(x0)\B2ir(x0). Now, we have using

triangle inequalities∥∥∥∥∥∥
( ∞∑
ν=0

|ην,m ∗ fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Lp(·)(Br(x0))

∥∥∥∥∥∥(5)

≤

∥∥∥∥∥∥
( ∞∑
ν=0

(
ην,m ∗

∞∑
i=0

|f iν(·)|
)q(·))1/q(·)

∣∣∣∣∣∣Lp(·)(Br(x0))

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∞∑
i=0

( ∞∑
ν=0

(
ην,m ∗ |f iν(·)|

)q(·))1/q(·)
∣∣∣∣∣∣Lp(·)(Br(x0))

∥∥∥∥∥∥ ≤ I + II,

where

I :=

∥∥∥∥∥∥
( ∞∑
ν=0

(
ην,m ∗ |f0

ν (·)|
)q(·))1/q(·)

∣∣∣∣∣∣Lp(·)(Br(x0))

∥∥∥∥∥∥ ,
II :=

∥∥∥∥∥∥
∞∑
i=1

( ∞∑
ν=0

(
ην,m ∗ |f iν(·)|

)q(·))1/q(·)
∣∣∣∣∣∣Lp(·)(Br(x0))

∥∥∥∥∥∥ .
We shall show, under the given hypotheses, that both terms I and II above can be
estimated by

(6) ≤ c rn
(

1
p(x0)

− 1
u(x0)

) ∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥
with c > 0 independent of the (fν)ν , x0 and r considered. So that dividing (5)

by r
n
(

1
p(x0)

− 1
u(x0)

)
and taking the supremum over all x0 ∈ Rn and r > 0 gives the

desired inequality and finishes the proof.

Second step: We get the estimate (6) for I with the help of Lemma 3.2 (using
the hypothesis m > n):

I ≤

∥∥∥∥∥∥
( ∞∑
ν=0

(
ην,m ∗ |f0

ν (·)|
)q(·))1/q(·)

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ .
∥∥∥∥∥∥
( ∞∑
ν=0

|f0
ν (·)|q(·)

)1/q(·)
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
= (2r)

n
(

1
p(x0)

− 1
u(x0)

)
(2r)

n
(

1
u(x0)

− 1
p(x0)

) ∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Lp(·)(B2r(x0))

∥∥∥∥∥∥
≤ 2

n

p− r
n
(

1
p(x0)

− 1
u(x0)

) ∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥ .
Third step: First, we show a size estimate to tackle II. We observe that for

x ∈ Br(x0) and y ∈ B2i+1r(x0) \B2ir(x0) we have the following inequality:

|x− y| ≥ ||x− x0| − |y − x0|| ≥ |y − x0| − |x− x0| ≥ 2ir − r ≥ c2ir.

Now, we can use this and estimate with x ∈ Br(x0) for every i ∈ N
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ν=0

(
ην,m ∗ |f iν(x)|

)q(x)

) 1
q(x)

.

( ∞∑
ν=0

∫
Rn

2νn(1 + 2ν2ir)−m|f iν(y)| dy

)

=

∫
B2i+1r(x0)

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m
∣∣f iν(y)

∣∣) dy,(7)

where we have used `1 ↪→ `q(x) and Beppo-Levi’s theorem.

Forth step: We use (7) to handle II. By applying Hölder’s inequality in the
integral with p(·) > 1 we get

II .
∥∥χBr(x0)

∣∣Lp(·)(Rn)
∥∥ ∞∑
i=1

∫
B2i+1r(x0)

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m
∣∣f iν(y)

∣∣) dy
.
∥∥χBr(x0)

∣∣Lp(·)(Rn)
∥∥ ∞∑
i=1

∥∥∥χB2i+1r(x0)

∣∣∣Lp′(·)(Rn)
∥∥∥

×

∥∥∥∥∥
( ∞∑
ν=0

2νn(1 + 2ν2ir)−m
∣∣f iν(·)

∣∣)∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥ .(8)

We estimate the last norm with Hölder’s inequality in the sum with q(·) > 1 and
use afterwards `1 ↪→ `q′(·) to obtain

∥∥∥∥∥
( ∞∑
ν=0

2νn(1 + 2ν2ir)−m
∣∣f iν(·)

∣∣)∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
≤

∥∥∥∥∥∥
( ∞∑
ν=0

2νnq
′(·)(1 + 2ν2ir)−mq

′(·)

)1/q′(·)( ∞∑
ν=0

∣∣f iν(·)
∣∣q(·))1/q(·)

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
≤

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m

)∥∥∥∥∥∥
( ∞∑
ν=0

∣∣f iν(·)
∣∣q(·))1/q(·)

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
≤

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m

)
(2i+1r)

(
n

p(x0)
− n
u(x0)

)

× (2i+1r)

(
n

u(x0)
− n
p(x0)

) ∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Lp(·)(B2i+1r(x0))

∥∥∥∥∥∥

≤

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m

)
(2i+1r)

(
n

p(x0)
− n
u(x0)

)

×

∥∥∥∥∥∥
( ∞∑
ν=0

|fν(·)|q(·)
)1/q(·)

∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥ .(9)
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Therefore, connecting (8) and (9), we obtain (6) for the term II if we can show that

III :=
∥∥χBr(x0)

∣∣Lp(·)(Rn)
∥∥ ∞∑
i=1

∥∥∥χB2i+1r(x0)

∣∣∣Lp′(·)(Rn)
∥∥∥

×

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m

)
(2i+1r)

(
n

p(x0)
− n
u(x0)

)
≤ c r

(
n

p(x0)
− n
u(x0)

)
,(10)

with c > 0 independent of r > 0 and x0 ∈ Rn.

In order to show (10) we concentrate on two cases.
Case 0 < r < 1: We choose J ∈ N so that 2Jr ≤ 1 < 2J+1r if such a J exists, choose

J = 1 otherwise and split the summation with respect to i ∈ N in two sums
∑J−1
i=1

and
∑∞
i=J . Of course, when J = 1 the sum

∑J−1
i=1 does not exist. Denote by III1

and III2 the corresponding splitting of III. We obtain with Lemma 2.2 that

III1 . r
n

p(x0)

J−1∑
i=1

(2i+1r)
n

p′(x0) (2i+1r)
n
(

1
p(x0)

− 1
u(x0)

)( ∞∑
ν=0

2νn(1 + 2ν2ir)−m

)

= r
n
(

1
p(x0)

− 1
u(x0)

) J−1∑
i=1

2
−(i+1) n

u(x0) (2i+1r)
n
(

1
p(x0)

+ 1
p′(x0)

)

×

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m

)

. r
n
(

1
p(x0)

− 1
u(x0)

) J−1∑
i=1

2−i
n

supu (2ir)n

( ∞∑
ν=0

2νn(1 + 2ν2ir)−m

)
.(11)

Now, we look at the last term in (11). We denote by V ∈ N the unique number
with 2V ≤ (2ir)−1 < 2V+1 and get with m > n( ∞∑

ν=0

2νn(1 + 2ν2ir)−m

)
=

V∑
ν=0

2νn(1 + 2ν2ir)−m +

∞∑
ν=V+1

2νn(1 + 2ν2ir)−m

≤
V∑
ν=0

2νn +

∞∑
ν=V+1

2ν(n−m)(2ir)−m

= 2V n
V∑
ν=0

2−(V−ν)n + (2ir)−m
∞∑

ν=V+1

2ν(n−m)

≤ (2ir)−n
∞∑
k=0

2−kn + (2ir)−m2(V+1)(n−m)
∞∑
k=0

2−k(m−n)

≤ (2ir)−n
1

1− 2−n
+ (2ir)−m(2ir)m−n

1

1− 2n−m

= c (2ir)−n,

where c > 0 only depends on m and n. Plugging this now into (11) we obtain (10)
for the term III1 of III.
Now, we handle the term III2, where it holds 2i+1r > 1 for i ≥ J . We get, using
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Lemma 2.2, the estimate 2νn(1 + 2ν2ir)−m ≤ 2ν(n−m)(2ir)−m and the hypothesis
(4) on m, that

III2 . r
n
(

1
p(x0)

− 1
u(x0)

) ∞∑
i=J

r
n

p(x0) (2i+1r)
n
p′∞ (2i+1)

n
(

1
p(x0)

− 1
u(x0)

)
(2ir)−m

≈ rn
(

1
p(x0)

− 1
u(x0)

)
r

(
n
p′∞

+ n
p(x0)

−m
) ∞∑
i=J

2
(i+1)

(
n
p′∞

+ n
p(x0)

− n
u(x0)

−m
)

= r
n
(

1
p(x0)

− 1
u(x0)

)
r

(
n− n

p∞+ n
p(x0)

−m
) ∞∑
i=J

2
(i+1)

(
n− n

p∞+ n
p(x0)

− n
u(x0)

−m
)

≈ rn
(

1
p(x0)

− 1
u(x0)

)
r

(
n− n

p∞+ n
p(x0)

−m
)
2

(J+1)
(
n− n

p∞+ n
p(x0)

− n
u(x0)

−m
)

= r
n
(

1
p(x0)

− 1
u(x0)

)
(2J+1r)

(
n− n

p∞+ n
p(x0)

− n
u(x0)

−m
)
r

n
u(x0)

. r
n
(

1
p(x0)

− 1
u(x0)

)
,

so the estimate (10) also holds for the term III2 of III, and this finishes the case
0 < r < 1.
Case r ≥ 1: To ensure that (10) holds we use again Lemma 2.2, the estimate 2νn(1+

2ν2ir)−m ≤ 2ν(n−m)(2ir)−m and the hypothesis (4) on m and get

III . r
n
(

1
p(x0)

− 1
u(x0)

) ∞∑
i=1

r
n
p∞ (2i+1r)

n
p′∞ (2i+1)

n
(

1
p(x0)

− 1
u(x0)

)
(2ir)−m

≈ rn
(

1
p(x0)

− 1
u(x0)

)
r
n
p∞+ n

p′∞
−m

∞∑
i=1

2
(i+1)

(
n
p′∞

+ n
p(x0)

− n
u(x0)

−m
)

= r
n
(

1
p(x0)

− 1
u(x0)

)
rn−m

∞∑
i=1

2
(i+1)

(
n− n

p∞+ n
p(x0)

− n
u(x0)

−m
)
. r

n
(

1
p(x0)

− 1
u(x0)

)
.

�

Remark 3.4. As stated before, this convolution inequality is the basis for all the
main results on the Triebel-Lizorkin-Morrey spaces which we prove in this paper, as
a replacement for the vector valued Hardy-Littlewood maximal inequality [FeSt71].
Part of the proof relies on ideas used in [TaXu05] and [FX11] to deal with a cor-
responding maximal inequality in the context of Triebel-Lizorkin-Morrey spaces,
respectively with constant exponents or with variable p and u, keeping the other
exponents fixed. There is, however, a problem with the proof in [FX11, Theorem

2.2]: the authors always used
∥∥χBr(x)

∣∣Lp(·)(Rn)
∥∥ ≈ r n

p(x) . Although this is correct
in the case 0 < r ≤ 1, for r > 1 one has to use the second case in Lemma 2.2.
Which in the end means that the mentioned maximal inequality was not proved.
Here we also do not prove such an inequality, but were able to correctly use Lemma
2.2 in order to prove the convolution inequality in the above Theorem. Moreover,
we could allow all exponents to vary.

Remark 3.5. We would like to discuss the somewhat complicated condition (4) on
m, namely

m > n+ nmax

(
0, sup
x∈Rn

(
1

p(x)
− 1

u(x)

)
− 1

p∞

)
.
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The theorem above holds also with the shorter condition

m > n(1 + c∞(1/p))(12)

instead, where c∞(1/p) is the constant from (3) with g = 1/p. It is easily seen
that condition (4) is sharper than (12). Both conditions on m seem to have their
advantages and disadvantages. It is clear that in the case of variable Lebesgue
spaces, i.e. when p(x) = u(x), condition (4) recovers the condition m > n of
Lemma 3.2. Condition (12) does not enjoy such a property.
On the other hand, (12) looks nicer and in the case p(·) = p constant it reduces to
m > n no matter how u(·) ≥ p is chosen. The same behaviour can also be observed
with condition (4).
To make our results more accessible we introduce the following abbreviation, which
we shall use in the rest of the paper:

c∞(1/p, 1/u) := max

(
0, sup
x∈Rn

(
1

p(x)
− 1

u(x)

)
− 1

p∞

)
.(13)

It is easily seen that c∞(1/p, 1/u) = 0 if p(·) = u(·) or when p(·) = p constant.

4. 2-microlocal Triebel-Lizorkin-Morrey spaces and their Peetre
maximal function characterization

We need admissible weight sequences and so called admissible pairs in order to
define the spaces under consideration.

Definition 4.1. A pair (ϕ̌, Φ̌) of functions in S(Rn) is called admissible if

suppϕ ⊂ {x ∈ Rn :
1

2
≤ |x| ≤ 2} and supp Φ ⊂ {x ∈ Rn : |x| ≤ 2} with

|ϕ(x)| ≥ c > 0 on {x ∈ Rn :
3

5
≤ |x| ≤ 5

3
} and |Φ(x)| ≥ c > 0 on {x ∈ Rn : |x| ≤ 5

3
}.

Further, we set ϕj(x) := ϕ(2−jx) for j ≥ 1 and ϕ0 := Φ. Then (ϕj)j∈N0
⊂ S(Rn)

and it holds suppϕj ⊂ {x ∈ Rn : 2j−1 ≤ |x| ≤ 2j+1}.

Definition 4.2. Let α1 ≤ α2 and α ≥ 0 be real numbers. The class of admissible
weight sequences Wα

α1,α2
(Rn) is the collection of all sequences w = (wj)j∈N0 of

measurable functions wj on Rn such that

(i) There exists a constant C > 0 such that

0 < wj(x) ≤ Cwj(y)(1 + 2j |x− y|)α for x, y ∈ Rn and j ∈ N0;

(ii) For all x ∈ Rn and j ∈ N0

2α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x).

Now, we can give the definition of 2-microlocal Triebel-Lizorkin-Morrey spaces.

Definition 4.3. Let (ϕj)j∈N0 be constructed as in Definition 4.1 and w ∈ Wα
α1,α2

(Rn)

be admissible weights. Let p, q ∈ P log(Rn) and u ∈ P(Rn) with 0 < p− ≤ p(x) ≤
u(x) ≤ supu <∞ and q−, q+ ∈ (0,∞). Then

Ew,u(·)
p(·),q(·)(R

n) :=
{
f ∈ S ′(Rn) :

∥∥∥f | Ew,u(·)
p(·),q(·)(R

n)
∥∥∥ <∞}
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where ∥∥∥f | Ew,u(·)
p(·),q(·)(R

n)
∥∥∥ :=

∥∥∥ (wj(ϕj f̂)∨)j

∣∣∣Mu(·)
p(·) (`q(·))

∥∥∥
:=

∥∥∥∥∥∥∥
 ∞∑
j=0

|wj(ϕj f̂)∨|q(·)
1/q(·)

∣∣∣∣∣∣∣Mu(·)
p(·) (Rn)

∥∥∥∥∥∥∥ .
Remark 4.4. (i) Some properties for Ew,u(·)

p(·),q(·)(R
n) directly carry over from the

spaces they are built up from. So it is easily seen that Ew,u(·)
p(·),q(·)(R

n) are

quasi-normed spaces. In particular, the verification that
∥∥∥f | Ew,u(·)

p(·),q(·)(R
n)
∥∥∥ =

0 implies f = 0 almost everywhere can be reduced to the observation that∥∥∥f | Ew,u(·)
p(·),q(·)(R

n)
∥∥∥ = 0⇔

∥∥∥f |Fw
p(·),q(·)(R

n)
∥∥∥ = 0⇔ f = 0 a.e..

Furthermore, since Lp(·)(Rn) are normed spaces for p ≥ 1, we have that

M
u(·)
p(·) (Rn) are normed spaces if p(·) ≥ 1. And since also `q(·) spaces are

normed in the case q(·) ≥ 1, we finally get that Ew,u(·)
p(·),q(·)(R

n) are normed

spaces when min(p−, q−) ≥ 1.

(ii) On the other hand, to show that

S(Rn) ↪→ Ew,u(·)
p(·),q(·)(R

n) ↪→ S ′(Rn)

we refer to our forthcoming paper [CK19] on this topic. The proofs come
from the arguments leading to the atomic and molecular characterizations

of the spaces Ew,u(·)
p(·),q(·)(R

n), constituting an approach different from the one

classically used, see e.g. the proof of [Tri83, (2.3.3/1)].
(iii) It is known that S(Rn) is not dense even in the constant exponents Morrey

space Mu
p (Rn) when p < u, see [Ros13, Proposition 2.7]. So we can not

expect S(Rn) to be dense in Ew,u(·)
p(·),q(·)(R

n) in general.

Our main results in this section are the Peetre maximal function characterization
of these spaces and the consequence that their definition does not depend on the
admissible pair considered, up to equivalent quasi-norms.

To that end, we start by defining the Peetre maximal function. It was introduced

by Jaak Peetre in [Pe75]. Given a system (ψj)j∈N0 ⊂ S(Rn) we set Ψj = ψ̂j ∈ S(Rn)
and define the Peetre maximal function of f ∈ S ′(Rn) for every j ∈ N0 and a > 0
as

(Ψ∗jf)a(x) := sup
y∈Rn

|(Ψj ∗ f)(y)|
1 + |2j(y − x)|a

, x ∈ Rn.

We start with two given functions ψ0, ψ1 ∈ S(Rn) and define ψj(x) := ψ1(2−j+1x),
for x ∈ Rn and j ∈ N \ {1}. Furthermore, for all j ∈ N0 we write, as mentioned,

Ψj = ψ̂j .
Now, we state the main theorem.

Theorem 4.5. Let w = (wj)j∈N0
∈ Wα

α1,α2
(Rn). Assume p, q ∈ P log(Rn) and

u ∈ P(Rn) with 0 < p− ≤ p(x) ≤ u(x) ≤ supu < ∞ and q−, q+ ∈ (0,∞). Let
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R ∈ N0 with R > α2 and let further ψ0, ψ1 belong to S(Rn) with

Dβψ1(0) = 0, for 0 ≤ |β| < R,(14)

and

|ψ0(x)| > 0 on {x ∈ Rn : |x| ≤ kε},(15)

|ψ1(x)| > 0 on {x ∈ Rn : ε ≤ |x| ≤ 2kε}(16)

for some ε > 0 and k ∈ (1, 2].

For a > n
(

1
min(p−,q−) + c∞(1/p, 1/u)

)
+ α we have that

∥∥∥f | Ew,u(·)
p(·),q(·)(R

n)
∥∥∥ ≈ ∥∥∥ ((Ψj ∗ f)wj)j |Mu(·)

p(·) (`q(·))
∥∥∥ ≈ ∥∥∥ ((Ψ∗jf)awj)j

∣∣Mu(·)
p(·) (`q(·))

∥∥∥(17)

holds for all f ∈ S ′(Rn).

The proof relies on [Ryc99] and [Ull12] and it will briefly be given after some
preparations. We outline the necessary changes to the proof in [Ke09] (cf. also
[AC16], where the version with the k was introduced), which are small, since the
proof technique works mainly with pointwise estimates.

Notice that Theorem 4.5 contains the conclusion that the 2-microlocal Morrey-
fied spaces of variable exponents given in Definition 4.3 are independent of the
admissible pair considered.

Before proving the theorem we state some useful lemmas.

The first one essentially states that the spaces M
u(·)
p(·) (Rn) satisfy the lattice prop-

erty, this being an easy consequence of the corresponding property for the spaces
Lp(·).

Lemma 4.6. Let f and g be two measurable functions with 0 ≤ f(x) ≤ g(x) for
a.e. x ∈ Rn. Then it holds∥∥∥f |Mu(·)

p(·) (Rn)
∥∥∥ ≤ ∥∥∥g|Mu(·)

p(·) (Rn)
∥∥∥ .

The next easy lemma shows some homogeneity in the exponents of the spaces.

Lemma 4.7. Let p, q, u ∈ P(Rn) with p ≤ u and 0 < t < ∞. Then for any
sequence (fν)ν∈N0

of measurable functions it holds∥∥∥∥ (|fν |t)ν
∣∣M u(·)

t
p(·)
t

(` q(·)
t

)

∥∥∥∥ =

∥∥∥∥∥∥
( ∞∑
ν=0

|fν |q(·)
)t/q(·)∣∣∣∣∣∣M

u(·)
t

p(·)
t

(Rn)

∥∥∥∥∥∥
=
∥∥∥ (fν)ν |Mu(·)

p(·) (`q(·))
∥∥∥t ,

with the usual modification every time q(x) =∞.

The proof of the next lemma works exactly as in [Ke09, Lemma 4.2] using now

the lattice property of M
u(·)
p(·) (Rn).

Lemma 4.8. Let p, q, u ∈ P(Rn) with p ≤ u. For any sequence (gj)j∈N0
of non

negative measurable functions we denote, for δ > 0,

Gk(x) =

∞∑
j=0

2−|k−j|δgj(x), x ∈ Rn, k ∈ N0.
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Then it holds∥∥∥ (Gk)k|Mu(·)
p(·) (`q(·))

∥∥∥ ≤ c(δ, q)∥∥∥ (gj)j |Mu(·)
p(·) (`q(·))

∥∥∥ , where

c(δ, q) = max

∑
j∈Z

2−|j|δ,

∑
j∈Z

2−|j|δq
−

1/q−
 .

Now, we are ready to prove Theorem 4.5. As with the non-Morreyfied spaces,
we divide the proof into two separate assertions, from which we can then conclude.
The first one compares two different Peetre maximal functions with two sets of start
functions ψ0, ψ1 ∈ S(Rn) and φ0, φ1 ∈ S(Rn). As before we introduce the dilations

ψj(x) = ψ1(2−j+1x) and φj(x) = φ1(2−j+1x), x ∈ Rn, j ∈ N \ {1},

as well as Ψj = ψ̂j and Φj = φ̂j for all j ∈ N0.

Theorem 4.9. Let w = (wj)j∈N0 ∈ Wα
α1,α2

(Rn) and p, q, u ∈ P(Rn) with p ≤ u.
Let a > 0 and R ∈ N0 with R > α2. Let further ψ0, ψ1 belong to S(Rn) with

Dβψ1(0) = 0, 0 ≤ |β| < R

and φ0, φ1 belong to S(Rn) with

|φ0(x)| > 0 on {x ∈ Rn : |x| ≤ kε},
|φ1(x)| > 0 on {x ∈ Rn : ε ≤ |x| ≤ 2kε}

for some ε > 0 and k ∈ (1, 2]. Then∥∥∥ ((Ψ∗jf)awj)j
∣∣Mu(·)

p(·) (`q(·))
∥∥∥ ≤ c∥∥∥ ((Φ∗jf)awj)j

∣∣Mu(·)
p(·) (`q(·))

∥∥∥ .
holds for every f ∈ S ′(Rn).

Proof. The proof follows the lines of the proof of [Ke09, Theorem 3.6] up to equation
(21) of that paper, except that, because of the k considered above, a different
sequence (λj)j∈N0

should be used there, similarly as in the proof of [AC16, Theorem
3.1]. Since this was not detailed in the latter paper, for the convenience of the
reader we explain here how the modified (λj)j∈N0

to be used in the proof of [Ke09,
Theorem 3.6] is constructed.

Consider a function Θ0 ∈ S(Rn) such that for some fixed δ1 ∈ [0, 1)

Θ0(x) = 1 if |x| ≤ 1 + δ1 and

Θ0(x) = 0 if |x| ≥ 1 + δ2

for some fixed δ2 ∈ (δ1, 1], which is radially strictly decreasing for |x| ∈ [1+δ1, 1+δ2].
Defining

Θ1(x) := Θ0(2−1x)−Θ0(x), for x ∈ Rn,
one has that supp Θ1 ⊂ {x ∈ Rn : 1 + δ1 ≤ |x| ≤ 2(1 + δ2)} (actually, Θ1(x) = 0
iff |x| ≤ 1 + δ1 or |x| ≥ 2(1 + δ2)). Further, we set

Θj(x) := Θ1(2−j+1x) = Θ0(2−jx)−Θ0(2−j+1x), x ∈ Rn, j ∈ N \ {1}

and obtain

∞∑
j=0

Θj(x) = 1 for all x ∈ Rn.
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For each k ∈ (1, 2], we are going to consider such a function Θ0 for δ1 and δ2
above chosen in such a way that k = 1+δ2

1+δ1
(notice that the range of 1+δ2

1+δ1
, for δ1, δ2

as mentioned, is precisely the set (1, 2]) and then define the sequence of functions
λj ∈ S(Rn) in the following way:

j = 0 : λ0(x) := 0 if |x| ≥ kε;

λ0(x) :=
Θ0( 1+δ1

ε x)
φ0(x) if |x| < kε.

j ∈ N : λj(x) := 0 if |2−j+1x| ≤ ε or |2−j+1x| ≥ 2kε;

λj(x) :=
Θj( 1+δ1

ε x)
φj(x) if ε < |2−j+1x| < 2kε.

Notice that this makes sense, in view of the hypotheses on φ0, φ1. Notice also that,
by construction,

(18) suppλ0 ⊂ {x ∈ Rn : |x| ≤ kε}, suppλ1 ⊂ {x ∈ Rn : ε ≤ |x| ≤ 2kε},

(19) λj(x) = λ1(2−j+1x), x ∈ Rn, j ∈ N,

and

(20)

∞∑
j=0

λj(x)φj(x) = 1, x ∈ Rn.

This corresponds to (17), (16) and (15) in the proof of [Ke09, Theorem 3.6].
One gets exactly the mentioned expressions in that paper by particularizing k to
2 and by making our ε > 0 here equal to half the ε > 0 used there. We can then
essentially follow the remainder of the proof of [Ke09, Theorem 3.6], with the more
general sequence (λj)j∈N0

considered above, up to the derivation of formula (21) in
that paper, namely

(Ψ∗νf)a(x)wν(x) ≤ c
∞∑
j=0

2−|j−ν|δ(Φ∗jf)a(x)wj(x), x ∈ Rn,

with δ := min(1, R−α2). Now, we apply Lemma 4.8 and the theorem is proved. �

Now for the second assertion needed in order to prove Theorem 4.5. We use the
same notation introduced before.

Theorem 4.10. Let w = (wj)j∈N0
∈ Wα

α1,α2
(Rn). Assume p, q ∈ P log(Rn) and

u ∈ P(Rn) with 0 < p− ≤ p(x) ≤ u(x) ≤ supu < ∞ and q−, q+ ∈ (0,∞). Let
ψ0, ψ1 belong to S(Rn) with

|ψ0(x)| > 0 on {x ∈ Rn : |x| ≤ kε},
|ψ1(x)| > 0 on {x ∈ Rn : ε ≤ |x| ≤ 2kε}

for some ε > 0 and k ∈ (1, 2].

If a > n
(

1
min(p−,q−) + c∞(1/p, 1/u)

)
+ α, then∥∥∥ ((Ψ∗jf)awj)j

∣∣Mu(·)
p(·) (`q(·))

∥∥∥ ≤ c∥∥∥ ((Ψj ∗ f)wj)j |Mu(·)
p(·) (`q(·))

∥∥∥(21)

holds for all f ∈ S ′(Rn).
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Proof. As in the last proof, we find functions λj ∈ S(Rn), j ∈ N0, satisfying (18),
(19) and (instead of (20))

∞∑
j=0

λj(x)ψj(x) = 1, x ∈ Rn.

So, now we are using ψj in place of φj of the preceding theorem, observing that
ψ0, ψ1 now satisfy the conditions assumed for φ0, φ1 there. With the λj ’s above
replacing the functions with the same names in the proof of [Ke09, Theorem 3.8],
we can essentially follow that proof up to the derivation of formula (27) of that
paper, where we can also replace the a by the M at our disposal.

For the next key estimate in this proof we prefer to follow now [Ull12], as the
original approach of Rychkov [Ryc99], followed in [Ke09], is known to have some
issues solved in subsequent papers by the same author. This is well reported by
Ullrich [Ull12], to which we refer the reader. So, adapting Subset 1.2 in the proof
[Ull12, Theorem 2.6] to our context, we get, for every t > 0 and every N ∈ N0,

|(Ψν ∗ f)(y)|t ≤ c
∞∑
j=0

2−jNt 2(j+ν)n

∫
Rn

|(Ψj+ν ∗ f)(z)|t

(1 + |2ν(y − z)|N )t
dz,

for all y ∈ Rn, where c is independent of f ∈ S ′(Rn), ν ∈ N0 and y ∈ Rn. This
corresponds to [Ull12, (2.48)]. Then we can get, similarly as [Ull12, (2.66)], for
0 < a ≤ N , that

(22) ((Ψ∗νf)a(x))t ≤ c
∞∑
j=0

2−jNt 2(j+ν)n

∫
Rn

|(Ψj+ν ∗ f)(z)|t

(1 + |2ν(x− z)|a)t
dz,

for all x ∈ Rn, where here c is independent of f ∈ S ′(Rn), ν ∈ N0 and x ∈ Rn.
Now we proceed as in the proof of [AC16, Theorem 3.1]. However, since the

details are not given in the latter paper, for the convenience of the reader we write
them down here: multiplying formula (22) by (wν(x))t and using the easy estimate

1

1 + |2ν(x− z)|a
≤ 2ja

1 + |2j+ν(x− z)|a
≈ 2ja

(1 + |2j+ν(x− z)|)a

and the estimate wν(x) . 2−jα1wj+ν(z)(1 + |2j+ν(x − z)|)α, which is an easy
consequence of Definition 4.2, we obtain for a > α that

((Ψ∗νf)a(x))t(wν(x))t

.
∞∑
j=0

2−j(N−a+α1)t 2(j+ν)n

∫
Rn

|(Ψj+ν ∗ f)(z)|t(wj+ν(z))t

(1 + |2j+ν(x− z)|)(a−α)t
dz

=

∞∑
j=ν

2−(j−ν)(N−a+α1)t
(
ηj,(a−α)t ∗ (|Ψj ∗ f |wj)t

)
(x),(23)

where the constant involved in the estimate above is independent of f ∈ S ′(Rn),
ν ∈ N0 and x ∈ Rn.

So, up to now we obtained pointwise estimates which have nothing to do with
the consideration of the parameters p, q, u. Consider now

a > α + n
(

1
min(p−,q−) + c∞(1/p, 1/u)

)
, N > a + |α1| and t ∈ (0,min(p−, q−))

such that still a > α + n
(

1
t + c∞(1/p, 1/u)

)
. Then applying first Lemma 4.8 with
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δ := (N − a + α1)t and afterwards Theorem 3.3 with m := (a − α)t we get from
(23)∥∥∥∥(((Ψ∗νf)awν)t

)
ν

∣∣M u(·)
t

p(·)
t

(` q(·)
t

)

∥∥∥∥ . ∥∥∥∥(ηj,(a−α)t ∗ (|(Ψj ∗ f)|wj)t
)
j

∣∣∣M u(·)
t

p(·)
t

(` q(·)
t

)

∥∥∥∥
.

∥∥∥∥((|(Ψj ∗ f)|wj)t
)
j

∣∣∣M u(·)
t

p(·)
t

(` q(·)
t

)

∥∥∥∥ .
The conclusion (21) now follows by application of Lemma 4.7. �

Proof of Theorem 4.5. Assume the hypotheses stated. The second estimate in
(17) comes immediately from Theorem 4.10 and the easy estimate (Ψ∗jf)a(x) ≥
|(Ψj ∗ f)(x)|. Considering, besides ψ0, ψ1 as in Theorem 4.5, also φ0, φ1 satisfying
the formulas corresponding to (14), (15) and (16), possibly with different ε and k
than the ones used for ψ0, ψ1, the estimate∥∥∥ ((Ψj ∗ f)wj)j |Mu(·)

p(·) (`q(·))
∥∥∥ ≈ ∥∥∥ ((Φj ∗ f)wj)j |Mu(·)

p(·) (`q(·))
∥∥∥

follows easily by application of Theorems 4.9 and 4.10. So, the proof of Theorem 4.5
will be finished if one shows that each construction of (ϕ̌j)j∈N0

as in Definition 4.3
coincides with one of the possibilities for (Φj)j∈N0 above (for some choice of ε > 0

and k ∈ (1, 2]). This is indeed the case: given an admissible pair (ϕ̌, Φ̌) according
to Definition 4.1, define φ0 := ϕ0(− ·) := Φ(− ·) and φ1 := ϕ1(− ·) := ϕ(2−1(− ·));
it is easy to see that this produces Schwartz functions satisfying (14), (15) and (16)
with φ0, φ1 instead of ψ0, ψ1 and for ε = 6

5 > 0 and k = 25
18 ∈ (1, 2]; and that,

moreover, ϕ̌j = Φj for all j ∈ N0. �

The last proof gives that the definition of the spaces Ew,u(·)
p(·),q(·)(R

n) is independent

of the chosen admissible system, therefore the spaces are well defined. For further
properties we refer to our forthcoming paper [CK19] where decompositions with
atoms and molecules in this scale are treated.
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