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Abstract

In this paper, we study the fundamental solution for natural powers of the n-parameter fractional Laplace

and Dirac operators de�ned via Riemann-Liouville fractional derivatives. To do this we use iteration through

the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace ∆α
a+ and

Dirac Dα
a+ operators, admitting a summable fractional derivative. The family of fundamental solutions of

the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form

using the Mittag-Le�er function.
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1 Introduction

During the last decades, the study of the so-called fractional Laplace operator has received the attention of

several authors (see for example [1,14] and references therein indicated). This operator is de�ned as a singular

integral operator or as a Fourier multiplier in Fourier domain and has the purpose of extending the harmonic

function theory of the Laplace operator by taking into account the long-range interactions that occur in a

number of applications. Motivated by fractional calculus and fractional derivatives it appeared recently new

de�nitions for fractional Laplace operators (see [6, 7]).

In this paper we consider a n-parameter fractional Laplace operator de�ned in n-dimensional space and the

associated n-parameter fractional Dirac operator over a Cli�ord algebra, both de�ned via Riemann-Liouville

fractional derivatives with di�erent fractional order of di�erentiation for each direction. Previous approaches
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for this type of operators can be found in [6,7]. There the authors studied eigenfunctions and fundamental solu-

tions for the three-parameter fractional Laplace operator de�ned with Caputo and Riemann-Liouville fractional

derivatives, and derived also fundamental solutions for the corresponding fractional Dirac operator which fac-

torizes the fractional Laplace operator. In both cases, the authors applied an operational approach via Laplace

transform to construct general families of fundamental solutions.

The aim of this paper is to present an expression for the family of fundamental solutions for the natural

powers of the n-parameter fractional Laplace operator, as well as a family of fundamental solutions for the

natural powers of the fractional Dirac operator. To do this, we use the fundamental solution of the Laplace

operator ∆α
a+ and the fundamental solution of the Dirac operator Dα

a+ and the iteration process using the

fractional Poisson equation in order to get the families of fundamental solutions expressed in operator form

using the Mittag-Le�er function.

We explain now how this paper is organized. In Section 2 we recall some basic knowledge about fractional

calculus and Cli�ord analysis. In Section 3 we solve the Poisson equation for the n-parameter fractional Laplace

operator, being this the key for the paper, because it connects the fundamental solution of previous order of the

powers of the operator with the next order. In Section 4 are presented the fundamental solutions for natural

powers of the n-parameter fractional Laplace operator together with a detailed discussion for the integer case.

To �nish, in Section 5 we present the fundamental solutions for natural powers of the n-parameter fractional

Dirac operator.

2 Preliminaries

2.1 Fractional Calculus

Let
(
Dα
a+f

)
(x) denote the fractional Riemann-Liouville derivative of order α > 0 (see [11])

(Dα
a+f) (x) =

(
d

dx

)m
1

Γ(m− α)

∫ x

a

f(t)

(x− t)α−m+1
dt, m = [α] + 1, x > a, (1)

where [α] means the integer part of α. When 0 < α < 1 then (1) takes the form

(Dα
a+f) (x) =

d

dx

1

Γ(1− α)

∫ x

a

f(t)

(x− t)α
dt. (2)

The Riemann-Liouville fractional integral of order α > 0 is given by (see [11])

(Iαa+f) (x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt, x > a. (3)

We denote by Iαa+(L1) the class of functions f represented by the fractional integral (3) of a summable function,

that is f = Iαa+ϕ, ϕ ∈ L1(a, b). A description of this class of functions was given in [13].

Theorem 2.1 A function f ∈ Iαa+(L1), α > 0 if and only if Im−αa+ f ∈ ACm([a, b]), m = [α]+1 and (Im−αa+ f)(k)(a) =

0, k = 0, . . . ,m− 1.

In Theorem 2.1 ACm([a, b]) denotes the class of functions f , which are continuously di�erentiable on the segment

[a, b] up to order m− 1 and f (m−1) is absolutely continuous on [a, b]. Removing the last condition in Theorem

2.1 we obtain the class of functions that admits a summable fractional derivative.

De�nition 2.2 (see [13]) A function f ∈ L1(a, b) has a summable fractional derivative
(
Dα
a+f

)
(x) if

(
Im−αa+

)
(x) ∈

ACm([a, b]), where m = [α] + 1.

If a function f admits a summable fractional derivative, then the composition of (1) and (3) can be written in

the form (see [13, Thm. 2.4])

(Iαa+D
α
a+f) (x) = f(x)−

m−1∑
k=0

(x− a)α−k−1

Γ(α− k)

(
Im−αa+ f

)(m−k−1)
(a), m = [α] + 1. (4)
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We remark that if f ∈ Iαa+(L1) then (4) reduces to
(
Iαa+D

α
a+f

)
(x) = f(x). Nevertheless we note thatDα

a+ I
α
a+f =

f in both cases. This is a particular case of a more general property (cf. [12, (2.114)])

Dα
a+

(
Iγa+f

)
= Dα−γ

a+ f, α ≥ γ > 0. (5)

It is important to remark that the semigroup property for the composition of fractional derivatives does not

hold in general (see [12, Sect. 2.3.6]). In fact, the property

Dβ
a+ (Dα

a+f) = Dβ+α
a+ f (6)

holds whenever

f (j)(a+) = 0, j = 0, 1, . . . ,m− 1, (7)

and f ∈ ACm−1([a, b]), f (m) ∈ L1(a, b) and m = [α] + 1. There are other su�cient conditions that ensure the

semigroup property (see [7]).

One important function used in this paper is the two-parameter Mittag-Le�er function Eµ,ν(z) [9], which

is de�ned in terms of the power series by

Eµ,ν(z) =

∞∑
k=0

zk

Γ(µk + ν)
, µ > 0, ν > 0, z ∈ C. (8)

In particular, the function Eµ,ν(z) is entire of order ρ = 1
µ and type σ = 1. Two important fractional integral

and di�erential formulae involving the two-parametric Mittag-Le�er function are the following (see [9, pp.

87-88]

Iαa+
(
(x− a)ν−1Eµ,ν (k(x− a)µ)

)
= (x− a)α+ν−1Eµ,ν+α (k(x− a)µ) (9)

for all α > 0, k ∈ C, x > a, µ > 0, ν > 0, and

Dα
a+

(
(x− a)ν−1Eµ,ν (k(x− a)µ)

)
= (x− a)ν−α−1Eµ,ν−α (k(x− a)µ) (10)

for all α > 0, k ∈ C, x > a, µ > 0, ν > 0, ν 6= α− p, with p = 0, . . . ,m− 1, and m = [α] + 1.

Remark 2.3 For ν = α − p, with p = 0, . . . ,m − 1 and m = [α] + 1 we have that Dα
a+((x − a)α−p−1) = 0,

which implies that the �rst term in the series expansion of (x− a)ν−1Eµ,ν (k(x− a)µ) vanishes. Therefore, the

derivation rule (10) must be replaced in these cases by the following derivation rule:

Dα
a+

(
(x− a)α−p−1Eµ,α−p (k(x− a)µ)

)
= (x− a)µ−p−1k Eµ,µ−p (k(x− a)µ) , p = 0, . . . , n− 1. (11)

The approach presented in this paper is based on the Laplace transform and leads to the solution of a linear

Abel integral equation of the second kind.

Theorem 2.4 ( [9, Thm. 4.2]) Let f ∈ L1[a, b], α > 0 and λ ∈ C. Then the integral equation

u(x) = f(x) +
λ

Γ(α)

∫ x

a

(x− t)α−1u(t) dt, x ∈ [a, b]

has a unique solution

u(x) = f(x) + λ

∫ x

a

(x− t)α−1Eα,α(λ(x− t)α)f(t) dt. (12)

2.2 Cli�ord analysis

Let {e1, · · · , en} be the standard basis of the Euclidean vector space in Rn. The associated Cli�ord algebra

R0,n is the free algebra generated by Rn modulo x2 = −||x||2 e0, where x ∈ Rn and e0 is the neutral element

with respect to the multiplication operation in the Cli�ord algebra R0,n. The de�ning relation induces the

multiplication rules

eiej + ejei = −2δij , (13)
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where δij denotes the Kronecker's delta. In particular, e2i = −1 for all i = 1, . . . , n. The standard basis vectors

thus operate as imaginary units. A vector space basis for R0,n is given by the set {eA : A ⊆ {1, . . . , n}} with
eA = el1el2 . . . elr , where 1 ≤ l1 < . . . < lr ≤ n, 0 ≤ r ≤ n, e∅ := e0 := 1. Each a ∈ R0,n can be written in the

form a =
∑
A aA eA, with aA ∈ R. The conjugation in the Cli�ord algebra R0,n is de�ned by a =

∑
A aA eA,

where eA = elr elr−1
. . . el1 , and ej = −ej for j = 1, . . . , n, e0 = e0 = 1.

Cli�ord analysis can be regarded as a higher-dimensional generalization of complex function theory in the

sense of the Riemann approach. An R0,n−valued function f over Ω ⊂ Rn1 has the representation f =
∑
A eAfA,

with components fA : Ω→ R0,n. Properties such as continuity or di�erentiability have to be understood com-

ponentwise. Next, we recall the Euclidean Dirac operator D =
∑n
j=1 ej ∂xj , which factorizes the n-dimensional

Euclidean Laplace, i.e., D2 = −∆ = −
∑n
j=1 ∂x

2
j . An R0,n-valued function f is called left-monogenic if it

satis�es Du = 0 on Ω (resp. right-monogenic if it satis�es uD = 0 on Ω).

For more details about Cli�ord algebras and basic concepts of its associated function theory we refer the

interested reader for example to [3,8]. Connections between Cli�ord analysis and fractional calculus were studied

in [6, 7, 10,15].

3 The Poisson problem

Let Ω =
∏n
j=1[aj , bj ] be any bounded open rectangular domain, let α = (α1, . . . , αn), with αi ∈]0, 1], i = 1, . . . , n,

and let us consider the n-parameter fractional Laplace operator ∆α
a+ de�ned over Ω by means of the Riemann-

Liouville fractional derivative given by

∆α
a+ =

n∑
j=1

∂
1+αj

x+
j

. (14)

The previous fractional operator is associated to the corresponding fractional Dirac operator de�ned by

Dα
a+ =

n∑
j=1

ej ∂
1+αj

2

x+
j

. (15)

For j = 1, . . . , n the partial derivatives ∂
1+αj

x+
j

and ∂
1+αj

2

x+
j

are the Riemann-Liouville fractional derivatives (2) of

orders 1 + αj and
1+αj

2 , with respect to the variable xj ∈ [aj , bj ]. Like in the three-dimensional case (see [7]),

under certain conditions we have ∆α
a+ = −Dα

a+ D
α
a+ . Due to the nature of the fundamental solutions of these

operators we additionally need to consider the variable x̂ = (x2, . , xn) ∈ Ω̂ =
∏n
j=2[aj , bj ], and the fractional

Laplace and Dirac operators acting on x̂ de�ned by:

∆̂α
a+ =

n∑
j=2

∂
1+αj

x+
j

, D̂α
a+ =

n∑
j=2

∂
1+αj

2

x+
j

. (16)

Consider the following Poisson problem

∆α
a+v(x) = u(x), (17)

where we suppose that v(x) = v(x1, . . . , xn) admits summable fractional derivative ∂1+α1

x+
1

v(x) in the variable

x1 and belongs to I
1+αj

a+j
(L1) in the variables xj , for j = 2, . . . , n. Starting to apply the fractional integral I1+α1

a+1

to both sides of the previous equation and taking into account (4) we get

v(x)− (x1 − a1)α1

Γ(α1 + 1)

(
∂α1

x+
1

v
)

(a1, x̂)− (x1 − a1)α1−1

Γ(α1)

(
I1−α1

a+1
v
)

(a1, x̂) +

n∑
k=2

(
I1+α1

a+1
∂1+αk
x+
k

v
)

(x) =
(
I1+α1

a+1
u
)

(x).

Applying successively the fractional integrals I
1+αj

a+j
, with j = 2, . . . , n, to both sides of the previous equation,

recalling that we supposed that v belongs to I
1+αj

a+j
(L1) in the variables xj , applying Fubini's theorem, and

4



rearranging the terms, we obtain:I1+α1

a+1

n∑
k=2

n∏
j=2
j 6=k

I
1+αj

a+j
v

 (x) +

 n∏
j=2

I
1+αj

a+j
v

 (x)−

 n∏
j=1

I
1+αj

a+j
u

 (x)

=
(x1 − a1)α1

Γ(α1 + 1)

 n∏
j=2

I
1+αj

a+j
f1

 (x̂) +
(x1 − a1)α1−1

Γ(α1)

 n∏
j=2

I
1+αj

a+j
f0

 (x̂), (18)

where f0 and f1 are fractional initial conditions given by

f0(x̂) =
(
I1−α1

a+1
v
)

(a1, x̂), f1(x̂) =
(
∂α1

x+
1

v
)

(a1, x̂). (19)

We observe that the fractional integrals in (18) are Laplace-transformable functions. Therefore, we may apply

the n-dimensional Laplace transform with respect to x2, . . . , xn, which we de�ne by

F(ŝ) = F(s2, . . . , sn) = L{f}(s2, . . . , sn) =

∫ +∞

a2

. . .

∫ +∞

an

exp

(
−

n∑
p=2

spxp

)
f(x2, . . . , xn) dxn · · · dx2.

Taking into account its convolution and operational properties (see [4,11]), we obtain the following relations for

each term in (18):

L

I1+α1

a+1

n∑
k=2

n∏
j=2
j 6=k

I
1+αj

a+j
v

 (x1, ŝ) =

n∑
k=2

n∏
p=2
p 6=k

s−1−αpp

(
I1+α1

a+1
V
)

(x1, ŝ), k = 2, . . . , n,

L


n∏
j=2

I
1+αj

a+j
v

 (x1, ŝ) =

n∏
p=2

s−1−αpp V(x1, ŝ),

L


n∏
j=1

I
1+αj

a+j
u

 (x1, ŝ) =

n∏
p=2

s−1−αpp

(
I1+α1

a+1
U
)

(x1, ŝ),

L

 (x1 − a1)α1−1

Γ(α1)

 n∏
j=2

I
1+αj

a+j
f0

 (x1, ŝ) =
(x1 − a1)α1−1

Γ(α1)

n∏
p=2

s−1−αpp F0(ŝ),

L

 (x1 − a1)α1

Γ(α1 + 1)

 n∏
j=2

I
1+αj

a+j
f1

 (x1, ŝ) =
(x1 − a1)α1

Γ(α1 + 1)

n∏
p=2

s−1−αpp F1(ŝ).

Combining all the resulting terms and multiplying by
∏n
p=2 s

1+αp
p we obtain the following second kind homo-

geneous integral equation of Volterra type:

V(x1, ŝ) +
1

Γ(α1 + 1)

n∑
p=2

s1+αpp

∫ x1

a1

(x1 − t)α1 V(t, ŝ) dt =
(
F (x1, ŝ) +

(
I1+α1

a+1
U
)

(x1, ŝ)
)
, (20)

where

F (x1, ŝ) =
(x1 − a1)α1−1

Γ(α1)
F0(ŝ) +

(x1 − a1)α1

Γ(α1 + 1)
F1(ŝ)

and Fk(ŝ) = L{f} (s), with k = 0, 1. Using (12), we have that the unique solution of (20) in the class of

summable functions is:

V(x1, ŝ) = F (x1, ŝ) +
(
I1+α1

a+1
U
)

(x1, ŝ)

−
n∑
p=2

s1+αpp

∫ x1

a1

(x1 − t)αE1+α1,1+α1

(
−(x1 − t)α1+1

n∑
p=2

s1+αpp

) (
F (t, ŝ) +

(
I1+α1

a+1
U
)

(x1, ŝ)
)
dt, (21)
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which involves the two-parameter Mittag-Le�er function. Due the convergence of the integrals and the series

that appear in (21), we can interchange them and rewrite (21) in the following way:

V(x1, ŝ) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)α1+1

n∑
p=2

s1+αpp

)
F0(s)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)α1+1

n∑
p=2

s1+αpp

)
F1(s)

+

+∞∑
n=0

(
−
( n∑
p=2

s1+αpp

))n
I
(1+α1)(n+1)

a+1
U(x1, ŝ). (22)

In order to cancel the Laplace transform, we need to take into account its distributional form in Zemanian's

space (for more details about generalized integral transforms see [16]) and the following relation:

lim
r2,...,rn→+∞

∫ σ1+ir2

σ1−ir2
. . .

∫ σn+irn

σn−irn

n∏
p=2

sn(1+αp)p Fk(s) exp

(
n∑
p=2

spxp

)
dsn . . . ds2 =

 n∏
j=2

∂
n(1+αj)

x+
j

fk

 (x̂),

where k = 0, 1. Therefore, applying the multinomial theorem and after straightforward calculations we get the

following solution of (17):

v(x) =

+∞∑
k=0

(−1)k
(x1 − a1)k(1+α1)+α1−1

Γ((1 + α1)k + α1)

(
∆̂α
a+

)k
f0(x̂) +

+∞∑
k=0

(−1)k
(x1 − a1)k(1+α1)+α1

Γ((1 + α1)k + (1 + α1))

(
∆̂α
a+

)k
f1(x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
u(x). (23)

From the previous calculations we obtain the following theorem, where we describe the solution of the Poisson

equation in a operator form using the Mittag-Le�er function (8).

Theorem 3.1 The solution v(x) of the Poisson equation (17) is given in the operator form by

v(x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)α1+1 ∆̂α

a+

)
f0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)α1+1 ∆̂α

a+

)
f1(x̂),

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
u(x), (24)

where the functions f0 and f1 are the Cauchy's fractional conditions given by (19).

Proof: We give a direct proof of the theorem. Since ∂1+α1

x+
1

(x1 − a1)α1−1 = 0 and ∂1+α1

x+
1

(x1 − a1)α1 = 0 we

need to use the derivation rule (11) with respect to x1 for the �rst two terms of (24). Concerning the third

term in (24) we take into account that ∂1+α1

x+
1

I1+α1

a+1
= I. Therefore, applying the operator ∆α

a+ = ∂1+α1

x+
1

+ ∆̂α
a+

6



to (24) we obtain

∆α
a+v(x) = −∆̂α

a+(x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)α1+1 ∆̂α

a+

)
f0(x̂)

+ ∆̂α
a+(x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)α1+1 ∆̂α

a+

)
f0(x̂)

− ∆̂α
a+(x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)α1+1 ∆̂α

a+

)
f1(x̂)

+ ∆̂α
a+(x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)α1+1 ∆̂α

a+

)
f1(x̂)

+ u(x)− ∆̂α
a+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
u(x)

+ ∆̂α
a+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
u(x)

= u(x).

�

We remark that if u(x) = 0 then (24) reduces to the fundamental solution of the fractional Laplace operator.

Moreover, in the special case α = (1, . . . , 1), considering f0(x̂) = ‖x̂− â‖2−n and f1(x̂) = 0, the solution of the

Poisson problem ∆u = v has the following representation

v(x) = ‖x− a‖2−n +

+∞∑
n=0

(
−∆̂

)n
I
2(n+1)

a+1
u(x), (25)

where ∆̂ =
∑n
j=2 ∂

2
xj .

4 Fundamental solution for natural powers of the fractional Laplace

operator

Consider a function Gα1 be a fundamental solution of ∆α
a+ and a function Gα2 such that ∆α

a+G
α
2 = Gα1 . Then

Gα2 is a fundamental solution of
(
∆α
a+

)2
, since

(
∆α
a+

)2
Gα2 = ∆α

a+

(
∆α
a+G

α
2

)
= ∆α

a+G
α
1 = δ. In a similar way, if

Gα3 is such that ∆α
a+G

α
3 = Gα2 then Gα3 is a fundamental solution of

(
∆α
a+

)3
. Hence we can deduce by induction

the following theorem.

Theorem 4.1 Let Gαi , with i ∈ N, a fundamental solution of
(
∆α
a+

)i
. Then the function Gαi+1 such that

∆α
a+G

α
i+1 = Gαi is a fundamental solution of

(
∆α
a+

)i+1
.

Using Theorem 4.1 we can deduce an expression for Gαi . First we need the expression for the fundamental

solution of ∆α
a+ , which can be obtained putting u = 0 in Theorem 3.1.

Theorem 4.2 A family of fundamental solutions for the fractional Laplace operator ∆α
a+ is given by

Gα1 (x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f1,0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f1,1(x̂), (26)

where

f1,0(x̂) =
(
I1−α1

a+1
Gα1

)
(a1, x̂), f1,1(x̂) =

(
∂α1

x+
1

Gα1

)
(a1, x̂). (27)
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Taking into account Theorem 3.1, Theorem 4.2, and the transition relation ∆α
a+G

α
2 = Gα1 , we can deduce the

following expression for Gα2 , which is the fundamental solution of
(
∆α
a+

)2
, in terms of Gα1 :

Gα2 (x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f2,0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f2,1(x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
Gα1 (x), (28)

where f2,0(x̂) =
(
I1−α1

a+1
Gα2

)
(a1, x̂) and f2,1(x̂) =

(
∂α1

x+
1

Gα2

)
(a1, x̂). By induction and using the transition

relation ∆α
a+G

α
i+1 = Gαi we obtain the following result:

Theorem 4.3 For i ∈ N, a family of fundamental solutions Gαi+1 for the operator
(
∆α
a+

)i+1
is given by

Gαi+1(x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
fi+1,0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
fi+1,1(x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
Gαi (x) (29)

where fi+1,0(x̂) =
(
I1−α1

a+1
Gαi+1

)
(a1, x̂), fi+1,1(x̂) =

(
∂α1

x+
1

Gαi+1

)
(a1, x̂), and Gαi is a fundamental solution of(

∆α
a+

)i
.

Example 4.4 Here we present another expression for Gα2 . Substituting (26) into (28) we have

Gα2 (x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f2,0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f2,1(x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1

[
(x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f1,0(x̂)

]

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1

[
(x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f1,1(x̂)

]
.

Making use of the integral formula (9) to calculate the fractional integrals that appear in the last two terms, we

obtain

Gα2 (x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f2,0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f2,1(x̂)

+ (x1 − a1)2α1

+∞∑
k=0

(x1 − a1)(1+α1)k
(
−∆̂α

a+

)k
E1+α1,1+2α1+(1+α1)k

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f1,0(x̂)

+ (x1 − a1)1+2α1

+∞∑
k=0

(x1 − a1)(1+α1)k
(
−∆̂α

a+

)k
E1+α1,(1+α1)(k+2)

(
−(x1 − a1)1+α1 ∆̂α

a+

)
f1,1(x̂).

(30)
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Concerning the integer case, i.e. α = (1, . . . , 1), the fundamental solution of the equation ∆lu = 0 which is

polyharmonic of least degree l in Rn \ {a} is given by (cf. [2]):

ul(x) =
‖x− a‖2l−n

γl−1
for odd n and l = 1, 2, . . . (31)

ul(x) =


‖x− a‖2l−n

γ′l−1
, for even n and l = 1, 2, . . . ,

n

2
− 1

−‖x− a‖
2l−n ln (‖x− a‖)
γ′l−1

, for even n and l =
n

2
,
n

2
+ 1, . . .

, (32)

where the constants γl and γ
′
l are presented in [2, p.8]. Let's examine �rst the case when n is odd. Considering

the binomial series

(1− x)−s =

+∞∑
k=0

(
s+ k − 1

k

)
xk, |x| < 1

we obtain the series expansion

ul(x) =
1

γl−1

(
(x1 − a1)2 + ‖x̂− â‖2

)−n−2l
2

=
1

γl−1
‖x̂− â‖−(n−l)

(
1 +

(x1 − a1)2

‖x̂− â‖2

)−n−2l
2

=
1

γl−1

+∞∑
k=0

(−1)k
(

n
2 − l + k − 1

k

)
(x1 − a1)2k

‖x̂− â‖n−2l+2k
, (33)

with ‖x̂− â‖2 =
∑n
i=2(xi−ai)2, and

(x1 − a1)2

‖x̂− â‖2
< 1. From (29) putting i+1 = l with l ≥ 2, fl,0(x̂) = ul(a1, x̂) =

‖x̂−â‖2l−n
γl−1

, fl,1(x̂) = (∂x1
ul) (a1, x̂) = 0, and Gl−1(x) = ‖x−a‖2l−n−2

γl−2
we obtain a new fundamental solution of

∆l given by

Gl(x) =
1

γl−1

+∞∑
k=0

(−1)k (x1 − a1)2k

Γ(2k + 1)

(
∆̂
)k
‖x̂− â‖2l−n +

1

γl−2

+∞∑
k=0

(
−∆̂

)k
I2k+2

a+1
‖x− a‖2l−n−2. (34)

From formula (1.5) in [2] we have that(
∆̂
)k
‖x̂− â‖2l−n =

22k Γ
(
l − n

2 + 1
)

Γ
(
l − 1

2

)
Γ
(
l − n

2 + 1− k
)

Γ
(
l − 1

2 − k
) ‖x̂− â‖2l−n−2k

=
22k Γ

(
l − n

2 + 1
)

Γ
(
1
2

)
Γ
(
l − n

2 + 1− k
)

Γ
(
1
2 − k

) Γ
(
1
2 − k

)
Γ
(
l − 1

2

)
Γ
(
1
2

)
Γ
(
l − 1

2 − k
) ‖x̂− â‖2l−n−2k

=
Γ
(
n
2 − l + k

)
Γ (2k + 1)

Γ
(
n
2 − l

)
Γ (k + 1)

Γ
(
1
2 − k

)
Γ
(
l − 1

2

)
Γ
(
1
2

)
Γ
(
l − 1

2 − k
) ‖x̂− â‖2l−n−2k

=

(
n
2 − l + k − 1

k

)
Γ(2k + 1)

(
1
2

)
l−1(

1
2 − k

)
l−1
‖x̂− â‖2l−n−2k, (35)

where the last identities follow from straightforward calculations involving the properties of the Gamma function

and the Pochhammer symbol. Putting (35) in (34) we obtain

Gl(x) =
1

γl−1

+∞∑
k=0

(−1)k

(
n
2 − l + k − 1

k

) (
1
2

)
l−1(

1
2 − k

)
l−1

(x1 − a1)2k

‖x̂− â‖n−2l+2k
+

1

γl−2

+∞∑
k=0

(
−∆̂

)k
I2k+2

a+1
‖x− a‖2l−n−2.

(36)

Comparing (33) with the �rst term of (36) we immediately see that they di�er from the factor
( 1

2 )
l−1

( 1
2−k)l−1

, which

is a constant under the action of the operator ∆l. Moreover, the restriction Gl(a1, x̂) is equal to ul(a1, x̂) =
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‖x̂−â‖2l−n
γl−1

. For the second term in (36) we observe that it could be omitted since the �rst term corresponds to the

characteristic singular solution of the equation ∆lu = 0. Since Gl(x) and ul(x) are fundamental solutions for the

equation ∆lu = 0 they di�er from a polyharmonic function of least degree l. In fact, putting F (x) = Gl(x)−ul(x)

we have that Gl(x) = ul(x) + F (x).

We proceed now with the case when n is even. For l ≤ n
2 − 1 the fundamental solution coincide with (36).

For l ≥ n
2 , considering in (29) i + 1 = l with l ≥ 2, fl,0(x̂) = ul(a1, x̂) = −‖x̂−â‖

2l−n ln(‖x̂−â‖)
γ′l−1

, fl,1(x̂) =

(∂x1ul) (a1, x̂) = 0, and Gl−1(x) given by

Gl−1(x) =


‖x̂− â‖−2

γ′n
2−2

, l =
n

2

−‖x̂− â‖
2l−n−2 ln (‖x̂− â‖)

γ′l−2
, l >

n

2

(37)

we obtain a new fundamental solution of ∆l given by

Gl(x) = − 1

γ′l−2

+∞∑
k=0

(−1)k (x1 − a1)2k

Γ(2k + 1)

(
∆̂
)k (
‖x̂− â‖2l−n ln (‖x̂− â‖)

)
+

+∞∑
k=0

(
−∆̂

)k
I2k+2

a+1
Gl−1(x). (38)

From formula (1.7) in [2] we have that(
∆̂
)k (
‖x̂− â‖2l−n ln (‖x̂− â‖)

)
=

22k Γ
(
l − n

2 + 1
)

Γ
(
l − 1

2

)
Γ
(
l − n

2 + 1− k
)

Γ
(
l − 1

2 − k
) ‖x̂− â‖2l−n−2k [ln (‖x̂− â‖) +

k∑
i=1

(
1

2l − n− 2i+ 2
+

1

2l − 2i

)]

=

(
n
2 − l + k − 1

k

)
Γ(2k + 1)

(
1
2

)
l−1(

1
2 − k

)
l−1
‖x̂− â‖2l−n−2k

[
ln (‖x̂− â‖) +

k∑
i=1

(
1

2l − n− 2i+ 2
+

1

2l − 2i

)]
,

(39)

where the last identity follows from straightforward calculations involving the properties of the Gamma function

and the Pochhammer symbol. Putting (39) in (38) we obtain a new fundamental solution for the equation

∆lu = 0, as it was done in (36).

5 Fundamental solution for natural powers of the fractional Dirac

operator

The line or reasoning is similar to the case of the natural powers of the fractional Laplace operator, and we

assume the conditions indicated in [7] that ensure the semigroup property (6) .

For the even powers of the fractional Dirac operator we have that
(
Dα
a+

)2i
=
(
−∆α

a+

)i
= (−1)i

(
∆α
a+

)i
, with

i ∈ N, therefore the fundamental solution of
(
Dα
a+

)2i
coincide with the fundamental solution of

(
∆α
a+

)i
.

For the odd case, consider a function Gα1 be a fundamental solution of Dα
a+ and a function Gα2 such that

∆α
a+G

α
2 = Gα1 . Then Gα2 is a fundamental solution of

(
Dα
a+

)3
, since

(
Dα
a+

)3 Gα2 = Dα
a+

(
∆α
a+G

α
2

)
= Dα

a+G
α
1 = δ.

In a similar way, if Gα3 is such that ∆α
a+G

α
3 = Gα2 then Gα3 is a fundamental solution of

(
Dα
a+

)5
. Hence we can

deduce by induction the following theorem:

Theorem 5.1 Let Gαi , with i ∈ N, be a fundamental solution of
(
Dα
a+

)2i−1
. Then the function Gαi+1 such that

∆α
a+G

α
i+1 = Gαi is a fundamental solution of

(
Dα
a+

)2i+1
.

Using Theorem 5.1 we can deduce and expression for Gαi . We start recalling the expression for the fundamental

solution of Dα
a+ deduced in [5], which corresponds to the function Gα1 .

Theorem 5.2 A family of fundamental solutions of the fractional Dirac operator Dα
a+ is given by

Gα1 (x) =

n∑
j=1

ej (Gα1 )j (x),
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where the function components are given by

(Gα1 )1 (x) = (x1 − a1)
α1−3

2 E
1+α1,

α1−1
2

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f1,0)1(x̂)

+ (x1 − a1)
α1−1

2 E
1+α1,

1+α1
2

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f1,1)1(x̂), (40)

and for j = 2, . . . , n

(Gα1 )j (x) = (x1 − a1)α1−1
(
E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f1,0)j(x̂)

+ (x1 − a1)α1

(
E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f1,1)j(x̂), (41)

where (f1,0)j(x̂) =
(
I1−α1

a+1
(Gα1 )j

)
(a1, x̂), and (f1,1)j(x̂) =

(
∂α1

x+
1

(Gα1 )j

)
(a1, x̂) with j = 1, . . . , n.

Taking into account Theorem 3.1, Theorem 5.2, and the transition relation ∆α
a+G

α
2 = Gα1 , we can deduce the

following expression for Gα2 , which is the fundamental solution of
(
Dα
a+

)3
, in terms of Gα1 :

Gα2 (x) =

n∑
j=1

ej (Gα2 )j (x),

where

(Gα2 )1 (x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f2,0)1(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f2,1)1(x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+ 1

2 )
a+1

(Gα1 )1 (x), (42)

and for j = 2, . . . , n

(Gα2 )j (x) = (x1 − a1)α1−1
(
E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f2,0)j(x̂)

+ (x1 − a1)α1

(
E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f2,1)j(x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
∂

1+αj
2

x+
j

(Gα1 )j (x), (43)

where (f2,0)j(x̂) =
(
I1−α
a+1

(Gα2 )j

)
(a1, x̂), and (f2,1)j(x̂) =

(
∂α1

x+
1

(Gα2 )j

)
(a1, x̂), with j = 1, . . . , n. By induction

and using the transition relation ∆α
a+G

α
i+1 = Gαi we can deduce the following result:

Theorem 5.3 For i ∈ N, a family of fundamental solutions Gαi+1 for the operator
(
Dα
a+

)2i+1
is given by

Gαi+1(x) =

n∑
j=1

ej
(
Gαi+1

)
j

(x),

where (
Gαi+1

)
1

(x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(fi+1,0)1 (x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(fi+1,1)1 (x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+ 1

2 )
a+1

(Gαi )1 (x),
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and for j = 2, . . . , n

(
Gαi+1

)
j

(x) = (x1 − a1)α1−1
(
E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(fi+1,0)j (x̂)

+ (x1 − a1)α1

(
E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(fi+1,1)j (x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
∂

1+αj
2

x+
j

(Gαi )j (x),

with (fi+1,0)j (x̂) =
(
I1−α
a+1

(
Gαi+1

)
j

)
(a1, x̂), (fi+1,1)j (x̂) =

(
∂α1

x+
1

(
Gαi+1

)
j

)
(a1, x̂), for j = 1, . . . , n, and Gαi is a

fundamental solution of
(
Dα
a+

)2i−1
.

Example 5.4 Here we present another expression for Gα2 . Substituting (40) and (41) into (42) and (43),

respectively, they become equal to

(Gα2 )1 (x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f2,0)1 (x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f2,1)1 (x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+ 1

2 )
a+1

[
(x1 − a1)

α1−3
2 E

1+α1,
α1−1

2

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f1,0)1 (x̂)

]

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+ 1

2 )
a+1

[
(x1 − a1)

α1−1
2 E

1+α1,
1+α1

2

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f1,1)1 (x̂)

]
,

and for j = 2, . . . , n

(Gα2 )j (x) = (x1 − a1)α1−1
(
E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f2,0)j (x̂)

+ (x1 − a1)α1

(
E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f2,1)j (x̂)

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
∂

1+αj
2

x+
j

[
(x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

(f1,0)j (x̂)

]

+

+∞∑
k=0

(
−∆̂α

a+

)k
I
(1+α1)(k+1)

a+1
∂

1+αj
2

x+
j

[
(x1 − a1)α1E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

(f1,1)j (x̂)

]
.

(44)

Making use of the integral formula (9) to calculate the fractional integrals that appear in the last two terms of

the two previous expressions, we �nally obtain

Gα2,1(x) = (x1 − a1)α1−1E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f2,0)1 (x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f2,1)1 (x̂)

+ (x1 − a1)α1−1
+∞∑
k=0

(x1 − a1)(1+α1)k
(
−∆̂α

a+

)k
E1+α1,α1+(1+α1)k

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f1,0)1 (x̂)

(x1 − a1)α1

+∞∑
k=0

(x1 − a1)(1+α1)k
(
−∆̂α

a+

)k
E1+α1,(1+α1)(k+1)

(
−(x1 − a1)1+α1 ∆̂α

a+

)
(f1,1)1 (x̂),

12



and for j = 2, . . . , n

(Gα2 )j (x) = (x1 − a1)α1−1
(
E1+α1,α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f2,0)j (x̂)

+ (x1 − a1)α1

(
E1+α1,1+α1

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂

1+αj
2

x+
j

)
(f2,1)j (x̂)

+ (x1 − a1)2α1

+∞∑
k=0

(x1 − a1)(1+α1)k
(
−∆̂α

a+

)k
E1+α1,1+2α1+(1+α1)k

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂
1+αj

x+
j

(f1,0)j (x̂)

+ (x1 − a1)1+2α1

+∞∑
k=0

(x1 − a1)(1+α1)k
(
−∆̂α

a+

)k
E1+α1,(1+α1)(k+2)

(
−(x1 − a1)1+α1 ∆̂α

a+

)
∂
1+αj

x+
j

(f1,1)j (x̂).

(45)

6 Conclusions and Future Work

In this paper, we presented an expression for the family of fundamental solutions for the natural powers of the

n-parameter fractional Laplace operator, as well for the family of fundamental solutions for the natural powers

of the fractional Dirac operator. Moreover, it is desirable to �nd an explicit expression for the functions f0
and f1 in the Cauchy's fractional conditions (19), in order to obtain more explicit expressions for the results

obtained in Sections 4 and 5. This will be subject to future work.
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