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Abstract: Closed-cell aluminium foams were fabricated and characterised at different strain rates.
Quasi-static and high strain rate experimental compression testing was performed using a universal
servo-hydraulic testing machine and powder gun. The experimental results show a large influence
of strain rate hardening on mechanical properties, which contributes to significant quasi-linear
enhancement of energy absorption capabilities at high strain rates. The results of experimental
testing were further used for the determination of critical deformation velocities and validation of
the proposed computational model. A simple computational model with homogenised crushable
foam material model shows good correlation between the experimental and computational results at
analysed strain rates. The computational model offers efficient (simple, fast and accurate) analysis of
high strain rate deformation behaviour of a closed-cell aluminium foam at different loading velocities.

Keywords: cellular materials; closed-cell aluminium foam; quasi-static; high strain rate; powder gun;
computational simulations; crushable foam

1. Introduction

Metal foams and cellular structures are being widely studied in different aspects and considered
for use in modern applications in engineering, medicine, fashion and others recently [1,2]. They are
one of the most promising building materials for future products due to their attractive combination of
low density, high energy absorption capability, damping and thermal insulation [3].

Different fabrication procedures were developed in the last decades and most of them are briefly
presented in [4]. Their significant cost is still the most important limitation for the mass production of
foam and cellular structures. The additive manufacturing technologies are an increasingly powerful tool
for fabrication of different types of cellular structures with exactly predefined and controlled geometry
on different scales in recent years [5–7]. Some cheaper ways to produce cellular structures with additive
manufacturing techniques have been developed recently [8]. Alternatively, a powder metallurgy
is already a well-established procedure for the fabrication of closed-cell foams [9,10]. The foams
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fabricated this way have a characteristic dense material surface layer completely surrounding the inner
closed-foam structure. Despite such foams showing a ductile behaviour appropriate for structural
applications, this process does not allow for a rigorous control of the cell structure in terms of pore
shape and size [4]. This is mainly due to the difficulty of coordination between the mechanisms of
metal melting and thermal decomposition of the blowing agent [4]. The problems associated with the
quality of these foams and the manufacturing reproducibility has been studied and discussed [11–13].

The metallic foams can be divided into two major groups when considering the morphology of the
cells: the open- and the closed-cell foams [7]. The open-cell foams are used for functional applications
(e.g., filtration, catalysis, heat transfer and biomedical applications), while closed-cell foams are mostly
being used for structural applications, typically as weight-saving and impact-absorbing structures
in vehicles.

Since this work is concerned only with the closed-cell foams, the following review of work
done previously only on this topic is given briefly in the following. The mechanical behaviour of
closed-cell aluminium foams was thoroughly characterised under unconstrained and constrained
compression loading conditions [14]. The same foams were also inserted in tubes (ex-situ foam filled
tubes) and tested under compression and bending loading conditions [15,16]. The powder metallurgy
foam fabrication enables also fabrication of closed-cell foams inside the tubes (in-situ foam filled
tubes) to achieve increased stiffness by better bonding between the foam filler and the outer tube [17].
The behaviour of closed-cell foams under different loading conditions was also studied in some
detail [18], with micro computed tomography (µCT) applied to track the changes of internal structure
during the deformation of closed-cell aluminium foam [19].

The influence of the loading velocity up to 150 m/s on the mechanical response of additively
manufactured lattice materials [20] and closed-cell aluminium foams [21] was analysed with the Split
Hopkinson Pressure Bar (SHPB) apparatus. High strain rate compressive behaviour of aluminium
alloy foams was also studied and discussed in [22,23]. Authors in [24] studied the effect of porosity and
differences in the deformation pattern of closed-cell aluminium foam under quasi-static and dynamic
(SHPB) loading. All mentioned studies point out that the failure modes under quasi-static and dynamic
(high strain rate) loading are different. This is attributed to the inertial effect and material strain-rate
sensitivity [22,25,26].

The change of the deformation mode and high strain rate hardening was also observed in
computational simulations of metallic foams. Mesoscopic computational simulations were performed
using µCT scan based geometrical models [24,27]. The Arbitrary Lagrange Eulerian (ALE) method was
also applied to take into account the entrapped air inside the closed-cell foam [28]. A cell-based approach
also confirmed deformation localisation at higher strain rates [29]. Computational studies of closed-cell
aluminium foam and cell-based Voronoi lattice dynamic behaviour showed relationships between the
cell geometry and loading rate [30,31]. The behaviour of closed-cell foams can be successfully described
by homogenised computational models, i.e., crushable foam material models, which were successfully
applied for polymeric, auxetic and aluminium foam core of composite panels under different loading
conditions [32–34]. Besides closed-cell foams, similar work was done in the field of open-cell foams in
terms of multiaxial loading [35] and impact response [36,37].

All mentioned studies observe that the high strain rate hardening appears above certain (limiting)
loading velocity, which is mostly a consequence of inertia effects. An extensive review of dynamic
compressive behaviour of cellular materials is given in [38]. As proven many times before, the
deformation mode of a given cellular material or structure changes with increasing loading velocity
(strain rate). The deformation behaviour of cellular materials at different loading velocities can be
in general divided into three deformation modes: homogeneous, transition and shock deformation
mode [23,39–41]. These three deformation modes are separated by two critical loading velocities.

This work focuses on experimental and computational evaluation of high strain rate behaviour of
closed-cell aluminium foam. The results of experiments and validated computational models present
the basis for high strain rate deformation and hardening analysis in combination with the analytical
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approach. The deformation modes and critical velocities of the closed-cell aluminium foam were
determined, evaluated and are discussed herein. There is limited experimental and computational
work done in the field of analysis of the deformation modes of closed-cell aluminium foams. Therefore,
this work provides insight into the deformation behaviour of interesting lightweight materials which
will be used in modern constructions.

2. Fabrication of Specimens and Experimental Methods

The base closed-cell aluminium foam was fabricated using the powder metallurgy method [10],
which consisted of heating extruded foamable precursor material placed into a cylindrical stainless
steel mould in a pre-heated furnace (MJAmaral, Vale Cambra, Portugal, Figure 1a) at 700 ◦C for
12 min. The cavity of the cylindrical mould with inner diameter of ~25 mm and length of ~150 mm
was fully filled by the formed liquid metallic foam in the process by foaming the precursor material
(Figure 1b) with mass of 61 g and made of aluminium, silicon (7 wt.%) and titanium hydride (0.5 wt.%).
The precursor material was prepared by cold isostatic pressing (Schunk Sintermetalltechnik GmbH,
Gießen, Germany) of the powder mixture, followed by extrusion through a horizontal 25 MN direct
extrusion machine (Honsel AG, Meschede, Germany), resulting in a rectangular bar of 20 mm × 5 mm
in cross-section [9]. The mould with formed foam was extracted from the furnace and cooled down to
room temperature after heating time. The cylindrical aluminium foam (Figure 1c) was then removed
from the mould made of S235JR carbon steel (0.17% C, 1.40% Mn, 0.045% P, 0.045% S, 0.009% N) and
cut longitudinally to six equal pieces to prepare the cylindrical specimens (Figure 1d) for mechanical
testing. The average pore diameter of the resulting closed-cell foams is approximately 2.65 mm
(standard deviation: ~0.87 mm). The specimen’s data are given in Table 1.

Table 1. Physical properties of the specimens (standard deviation is given in brackets).

Diameter Length Weight Density Porosity Number of Specimens

d [mm] l [mm] m [g] ρ [kg/m3] p [%] Q-S Testing HSR Testing

25.32 (0.15) 23.08 (0.23) 7.9 (0.39) 681 (0.03) 75 5 3
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Figure 1. The foaming furnace (a) and precursor material (b) used in this work, as well as the visual 
aspect of the resulting cylindrical aluminium foam (c) and the closed-cell foam specimens for 
mechanical testing (d). 

Uniaxial compression tests were performed under quasi-static loading conditions using a servo-
hydraulic INSTRON 8801 testing machine with position controlled cross-head rate of 0.1 mm/s. The 
tests were carried out according to the standard ISO 13314: 2011 [42]. In order to reduce the friction 
and thus minimise the support/loading boundary effects on specimens, the loading plates of the 
testing machine were lubricated. The engineering stress-strain data were then calculated using the 
initial specimen’s dimensions from the recorded force-displacement data. 

Figure 1. The foaming furnace (a) and precursor material (b) used in this work, as well as the visual
aspect of the resulting cylindrical aluminium foam (c) and the closed-cell foam specimens for mechanical
testing (d).

Uniaxial compression tests were performed under quasi-static loading conditions using a
servo-hydraulic INSTRON 8801 testing machine with position controlled cross-head rate of 0.1 mm/s.
The tests were carried out according to the standard ISO 13314: 2011 [42]. In order to reduce the
friction and thus minimise the support/loading boundary effects on specimens, the loading plates of
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the testing machine were lubricated. The engineering stress-strain data were then calculated using the
initial specimen’s dimensions from the recorded force-displacement data.

The high strain rate behaviour of closed-cell foams was studied by using a one-stage powder
gun which is capable of accelerating a projectile up to velocity of 1.5 km/s. The projectile is, in the
case of the powder gun, accelerated by the combustion gas of gun powder detonation. This method
was already successfully used for the determination of high strain rate behaviour of other cellular
materials including auxetic cellular structures [20,43]. The powder gun device is assembled from two
chambers (explosion and target) which are connected with a barrel with an inner diameter of 40 mm.
Both chambers are decompressed with the vacuum pump to near vacuum, in order to minimise the
influence of the air resistance during the tests. In the target chamber, there is an optical observation
window, which enables the visual observation of the deformation procedure, and also an electrical
terminal, which enables processing of the signal during an impact. The rigid wall and shock are also
positioned in the target chamber, where the impact of cellular structure and sabot is happening, and
offers rigid support during the impact of cellular structure, absorbing the energy of the impacting
projectile afterwards. The projectile sabot was made from polyethylene (UHMWPE) with a brass
weight mounted to the front of the sabot as a projectile driver (total weight of the projectile was about
180 g). The closed-cell foam was positioned and glued with epoxy resin to the brass weight (Figure 2),
which enables control of the impact velocity. The projectile’s velocity for this testing was set to 270 m/s,
which resulted in the engineering strain rate of approximately 12,000 s−1.
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Figure 2. Closed-cell foam specimen mounted on projectile.

The impact velocity and the deformation behaviour of the closed-cell aluminium foam during
impact were captured by the HPV-1 high-speed video camera (produced by SHIMADZU corporation,
image capture number: 100, maximum resolution: 1 µs). The mechanical response of closed-cell foams
(impact pressure) of the closed-cell aluminium foam on the rigid wall was measured with the PVDF
gauge (Piezo film stress gauge, PVF2 11-, 125EK, Dynasen), which was already successfully used in
previous experiments [43].

3. Experimental Results

3.1. Quasi-Static Testing

The results of quasi-static (Q-S) compression testing in the form of observed engineering
stress-strain relationship show a characteristic compressive behaviour of cellular materials, Figure 3.
After an initial quasi-linear response, the cell walls start to bend and buckle resulting in the stress
plateau, which is typical for cellular materials [44]. The cell walls begin to fracture with further
deformation and the cells gradually collapse, finally leading to the densification of the cellular structure.
The resulting deviation is a consequence of the aluminium foam density variation throughout the
specimens (628–713 kg/m3), which strongly influences the mechanical behaviour. Studies have
demonstrated that these foams develop imperfections and structural defects (e.g., micropores) during
their fabrication, creating weaker regions where the foam starts to deform, developing one or more
visible deformation bands perpendicular to the loading direction [25,45]. The stiffness of the specimens
increases by increasing the foam density. Also, the plateau region of these specimens is slightly inclined.
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This agrees with our previous results [9,12] for these types of foams. As can be seen from Figure 4, the
deformation behaviour is uniform at lower strains, which is followed by crushing in shear planes that
are formed in the areas with less stiff cellular structure.Materials 2018, 12, x FOR PEER REVIEW  5 of 17 
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Figure 3. Engineering stress-strain relationship of closed-cell aluminium foam under quasi-static
loading conditions.
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Figure 4. Deformation sequence of closed-cell aluminium foam under quasi-static loading conditions.
Strain: (a) 0%; (b) 12%; (c) 24%; (d) 36%; (e) 48%; (f) 60%.

3.2. High Strain Rate Testing

The results of high strain rate (HSR) testing in the form of observed engineering stress-strain
relationship are shown in Figure 5. Again, the response is typical for cellular structures with three
distinct differences due to high velocity loading: (i) initial stress peak, (ii) stress oscillations during
stress plateau region, and (iii) abrupt densification (no smooth transition between the plateau stress
region and densification region, as is usual at quasi-static loading).
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The deformation pattern captured with a high speed camera is shown on Figure 6, where it can
be observed that the deformation mode changed to shock mode in comparison to the quasi-static
response. Consequently, most of the deformation happens at the impact front between the rigid wall
and specimen until the specimen is completely compressed.
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The comparison between the quasi-static and high strain rate responses is shown in Figure 7.
A significant strain rate hardening effect can be observed in the case of high strain rate loading, which
is mostly the consequence of the changed deformation mode and micro-inertia effects. The change in
the deformation mode is further analysed in Section 4.3.
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Figure 7. Comparison of average quasi-static and high strain rate results of closed-cell aluminium foam.

3.3. The Specific Energy Absorption Analysis

The specific energy absorption (SEA) was analysed to evaluate the influence of the strain
rate hardening. The SEA was calculated by dividing the absorbed energy (integral under average
stress-strain curve) by crushed mass and results for both loading cases are given in Table 2. The high
strain rate SEA (evaluated at strains of 0.50 and 0.77) increased by 191.7% in comparison to the
quasi-static response at the strain of 0.77 (350% at strain of 0.50), which illustrates significant
enhancement potential in the energy absorption capabilities of tested foams for use in applications
characterised by high strain rate of deformation.

Table 2. Specific energy absorption of closed-cell aluminium foam at different strain rates.

Loading Velocity Regime SEA at 50% [J/g] SEA at 77% [J/g]

Quasi-static 13.04 29.27

High strain rate 58.74 85.39

The evolution of SEA and the discrepancy of all experimental results in the case of quasi-static
and high strain rate loading are shown in Figure 8a. Quasi-linear increase of SEA in the case of high
strain rate loading can be observed, while in the case of quasi-static loading the increase in the SEA at
larger deformations becomes progressively exponential. The discrepancy of the experimental results is
also shown in Figure 8a, which is smaller at lower strain rates. Figure 8 makes it possible to determine
the specific energy absorption capabilities of closed-cell aluminium foam at different strains and strain
rates. The comparison in terms of energy absorption between the experimental results and different
types of cellular metals given in the literature [3] is shown in Figure 8b. Good agreement in terms of
deformation energy can be observed for the density of cellular material used in this research.
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4. Computational Simulations

4.1. Computational Model

The computational model with applied homogenised material model (crushable foam) with
volumetric hardening was built in Abaqus Finite Element software, where the explicit solver was used
for analysis. The crushable foam model in Abaqus is based on the flow rule, which is non-associated [46].
The tensile hydrostatic stress is kept constant through the deformation process, while the compression
hydrostatic stress changes due to the densification and collapse of the cellular structure. Crushable foam
material model with volumetric hardening is based on the experimental observation with a significantly
different deformation behaviour under the tensile and compression loading conditions. In the case of
compression loading, the capability of volumetric deformation is much larger due to the buckling of
struts in the cellular structure [47]. The deformation of crushable foam is by default irreversible, so it
can be in most cases treated as plastic deformation. This allows us to define the hardening curve of
the material model only with the values of uniaxial compression loading in respect to uniaxial plastic
deformation. The hardening curve was determined using a genetic optimisation algorithm (OptiMax
software developed at University of Maribor) during the validation procedure [48], with the definition
of the material parameters provided in Tables 3 and 4.

Axial symmetry with axisymmetric boundary conditions could be applied in the computational
model due to the axial symmetry of the specimens (Figure 9). The loading (top) and support (bottom)
plates were modelled with interaction, where all boundary nodes on the top and bottom edge were
connected to two reference points using kinematic coupling, respectively. Boundary conditions were
then prescribed to these two reference points. The loading plate was prescribed with a constant velocity
of 1 m/s (quasi-static testing) and 270 m/s (high strain rate testing). The higher computational loading
velocity in respect to the experimental quasi-static velocity was determined by comparing the reaction
forces at the loading and support plates, which should be identical if there are no inertia effects present.
The support plate has constrained displacement in y-direction and constrained rotation around z-axis,
while the loading plate has constrained only the rotation around z-axis.

The finite element mesh consists of 299 linear quadrilateral elements (type CAX4R), with average
global size of 1 mm. The appropriate size of the finite elements was determined during the convergence
study with three different finite element sizes.
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4.2. Computational Results and Comparison with the Experimental Observations

The crushable foam constitutive model parameters were determined by using an optimisation
algorithm, initially comparing the quasi-static experiment and computational responses (Figure 10).
The material parameters are given in Table 3, where ρ is density, E is Young’s modulus, ν is Poisson’s
ratio, k is compression yield stress ratio and kt is hydrostatic yield stress ratio. After optimisation of the
material parameters, the same material model was used for the high strain rate loading. Good agreement
can be observed for both quasi-static and high strain rate testing. Thus, the computational model was
successfully validated.

Table 3. Parameters for crushable foam material model.

ρ [kg/m3] E [MPa] ν [–] k [–] kt [–]

681 5023.8 0.11 1.53 0.45

Table 4. Hardening curve definition.

Pl. Strain [–] 0 0.03 0.12 0.15 0.25 0.42 0.51 0.60 0.9 1.07 1.8

Stress [MPa] 11 11.9 15.35 16.12 18.39 20.93 23.05 25.18 29.70 69.82 2100

The agreement between the experimental and computational responses is very good at both
analysed strain rates (Figure 10). A discrepancy can be observed only at lower strains of the HSR
response, and only the first stress peak could not be observed in the computational model due to initial
boundary conditions. The stress peak is a consequence of collision in the experiments and represents
a typical response of structures during the initial phase of the impact, but does not affect the global
behaviour afterwards [20].

Additionally, the SEA capabilities from experimental results and computational simulations
were compared. The SEA values from experimental tests are given in Table 2, while the SEA values
from computational simulations are 32.19 J/g in the case of Q-S loading and 95.11 J/g in the case of
HSR loading. This results in 10% overestimation of the energy absorption capabilities calculated by
computational simulations, which is caused mainly by a discrepancy in the densification region in the
case of Q-S loading and due to the oscillations (no filer has been used) at the plateau stress region in
the case of HSR loading.
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Figure 10. Comparison of experimental and computational results of closed-cell aluminium foam
behaviour at quasi-static (Q-S) and high strain rate loading (HSR).

The deformation behaviour in the case of quasi-static and high strain rate loading conditions is
shown in Figure 11. In the case of quasi-static loading, a uniform deformation of the specimen can be
noted. The change in the deformation mode can be observed in the case of high strain rate loading,
where the deformation is localised at the impact front between loading plate and specimen. This is a
consequence of inertia effects and is analysed in detail in Section 4.3.
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Figure 11. Equivalent plastic strain (PEEQ) evolution in closed-cell aluminium foam during quasi-static
(a) and high strain rate (b) loading (strain increment: 15%).
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4.3. High Strain Rate Behaviour Analysis

The change of the deformation mode is a consequence of the inertia effect and is triggered at
so-called critical velocities. The deformation mode is homogeneous at loading velocities below the
first critical velocity. A transition deformation mode is observed between the first and the second
critical velocity. The deformation mode changes to shock mode above the second critical velocity, and
is characterised by concentrated deformation at the impact front [40,41,49]. Herein, the critical loading
velocities of the analysed closed-cell aluminium foam were determined from experimental testing and
computational simulation results, described in the previous section.

Dynamic deformation behaviour of cellular (porous) materials can be described by several
constitutive crushing foam models, which are presented in [38]. The Rigid-Power-Law Hardening
(R-PLH) model was chosen in this study since it enables high-precision predictions of shock-induced
stress also in the densification region. The first critical loading velocity can then be obtained as [23]:

vcr1 = [σ0/9K]
n+1
2n

√
K
ρ0

(1)

where σ0 is the initial yield stress (calculated as average stress between 0.2 and 0.4 of strain), K is the
strength index, n the strain hardening index and εd the densification strain. The second critical loading
velocity is defined as [23]:

vcr2 =

√
K
ρ0
ε

n+1
2

D (2)

The material parameters of R-PLH model (σ0, K, n and εd) were fitted according to the experimental
data from quasi-static closed-cell aluminium foam compression tests (Figure 12) and are given in
Table 5 together with computed critical velocities. The fitting was done in MS Excel software and
nonlinear GRG solving method [50].
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Figure 12. The Rigid-Power-Law Hardening (R-PLH) model fitting to average experimental results of
closed-cell aluminium foam behaviour under quasi-static loading conditions.



Materials 2019, 12, 4108 12 of 16

Table 5. Material parameters and critical loading velocities for closed-cell aluminium foam.

Porosityϕ [–] σ0 [MPa] K
[MPa] n [–] εd [–] vcr1 [m/s] vcr2 [m/s]

0.75 18.1 595.7 7.7 0.5 37.5 46.1

The parametric computational study of closed-cell aluminium foam behaviour at different loading
velocities (30, 40 and 50 m/s) was then performed to evaluate and additionally validate the developed
computational model. Figure 13 shows the mechanical response of closed-cell aluminium foam
calculated from computed reaction forces on loading (top) and support (bottom) loading plates.
Figure 13a shows the recorded response at loading velocity of 30 m/s (below first critical velocity)
where responses at top and bottom loading plates are very similar. This indicates the homogeneous
deformation mode under quasi-static loading where no significant inertia effects are observed, which
is manifested in similar reaction forces on top and bottom plates. In the case of loading velocity of
40 m/s (Figure 13b), the major discrepancy between the responses is already observed at larger strains,
while only a minor discrepancy is observed at strains up to 0.6. At a velocity of 50 m/s (higher than the
second critical velocity) (Figure 13c), the discrepancy between responses on the bottom and top plate is
even more significant. With further increase of the loading velocity, the discrepancy is progressively
increasing, which was clearly observed also at achieved velocities during experiments (Figure 11).
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Figure 13. Mechanical response of closed-cell aluminium foam observed on bottom and top plate at
different loading velocities. (a) 30 m/s, (b) 40 m/s and (c) 50 m/s.

The change in the reaction forces is a consequence of inertia and internal deformation of the foam,
which is concentrated in the area of the impact in the case of high strain rate loading. This can be
clearly seen in Figure 14, where detailed analysis of effective plastic strain evolution at different loading
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velocities is shown. In the case of loading velocity of 20 m/s (Figure 14a), the effective plastic strain
evolution is more or less homogeneous, while in the case of velocities larger than 30 m/s (Figure 14b–d),
the effective plastic strain is localised at the impact front.Materials 2018, 12, x FOR PEER REVIEW  13 of 16 
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Figure 14. Effective plastic strain evolution (PEEQ) in closed-cell aluminium foam at different loading
velocities (strain increment: 4%). Loading velocity: (a) 20 m/s; (b) 30 m/s; (c) 40 m/s; (d) 50 m/s.
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5. Conclusions

Cylindrical closed-cell aluminium foam specimens were fabricated with the powder metallurgy
method and subjected to experimental testing under quasi-static and dynamic loading conditions,
where significant strain rate hardening was observed. The high strain rate testing was performed at the
strain rates above 12,000 s−1, which results in shock deformation mode. The analysis of specific energy
absorption capabilities has shown that the energy absorption of the aluminium foam is almost 200%
larger at higher strain rates (impact) in comparison to quasi-static loading, which should be considered
in the design of modern products and structures incorporating closed-cell aluminium foam.

A homogenised crushable foam computational model was developed and validated with
experimental results. The developed axisymmetric homogenised computational model offers fast, robust
and accurate prediction of the mechanical response of closed-cell aluminium foam. The validation
of computational models enabled further relevant study of closed-cell aluminium foam behaviour at
different strain rates. First, the critical velocities separating different deformation modes (homogeneous,
intermediate and shock mode) were determined by using quasi-static experimental data and the
Rigid-Power-Law Hardening (R-PLH) model. It was computationally confirmed that the change of
the deformation mode appears at the same critical velocities, which were analytically determined.
Furthermore, study of the mechanical responses at the loading and support plates was also performed,
which proved that the discrepancy between the responses is getting more significant at higher loading
velocities above the first critical velocity, where inertia effects are more pronounced.

Results presented in this study clearly indicate the advantages of using closed-cell aluminium
foam in different dynamic and impact applications, e.g., crashworthiness, ballistic and blast protection,
due to the strain rate hardening and strain rate sensitivity. Their excellent energy absorption capabilities
allow absorption of more energy at larger strain rates due to the change in the deformation mode and
localised deformation. Furthermore, the proposed computational model is efficient (simple, fast and
accurate) and offers a possibility to study the behaviour of closed-cell foam in larger composite panels
or tubes in possible industrial applications.
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17. Duarte, I.; Vesenjak, M.; Krstulović-Opara, L.; Ren, Z. Static and dynamic axial crush performance of in-situ

foam-filled tubes. Compos. Struct. 2015, 124, 128–139. [CrossRef]
18. Peroni, L.; Avalle, M.; Peroni, M. The mechanical behaviour of aluminium foam structures in different

loading conditions. Int. J. Impact. Eng. 2008, 35, 644–658. [CrossRef]
19. Ulbin, M.; Vesenjak, M.; Borovinšek, M.; Duarte, I.; Higa, Y.; Shimojima, K.; Ren, Z. Detailed Analysis

of Closed-Cell Aluminum Alloy Foam Internal Structure Changes during Compressive Deformation.
Adv. Eng. Mater. 2018, 8, 1–8. [CrossRef]

20. Novak, N.; Hokamoto, K.; Vesenjak, M.; Ren, Z. Mechanical behaviour of auxetic cellular structures built
from inverted tetrapods at high strain rates. Int. J. Impact. Eng. 2018, 122, 83–90. [CrossRef]

21. Islam, M.A.; Brown, A.D.; Hazell, P.J.; Kader, M.A.; Escobedo, J.P.; Saadatfar, M.; Xu, S.; Ruan, D.; Turner, M.
Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under
dynamic loading. Int. J. Impact. Eng. 2018, 114, 111–122. [CrossRef]

22. Deshpande, V.S.; Fleck, N.A. High strain rate compressive behaviour of aluminium alloy foams. Int. J.
Impact. Eng. 2000, 24, 277–298. [CrossRef]

23. Zheng, Z.; Yu, J.; Wang, C.; Liao, S.; Liu, Y. Dynamic crushing of cellular materials: A unified framework of
plastic shock wave models. Int. J. Impact. Eng. 2013, 53, 29–43. [CrossRef]

24. Liu, X.; Zhang, J.; Fang, Q.; Wu, H.; Zhang, Y. Response of closed-cell aluminum foams under static and
impact loading: Experimental and mesoscopic numerical analysis. Int. J. Impact. Eng. 2017, 110, 382–394.
[CrossRef]
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