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Abstract 23 

Membrane proteins (MP) constitute 20-30 % of all proteins encoded by the genome of 24 

various organisms and perform a wide range of essential biological functions. However, despite 25 

they represent the largest class of protein drug targets, a relatively small number high-resolution 26 

3D structures have been obtained yet. Membrane protein biogenesis is more complex than that 27 

of the soluble proteins and its recombinant biosynthesis has been a major drawback, thus 28 

delaying their further structural characterization. Indeed, the major limitation in structure 29 

determination of MP is the low yield achieved in recombinant expression, usually coupled to 30 

low functionality, pinpointing the optimization target in recombinant MP research. Recently, the 31 

growing attention that have been dedicated to the upstream stage of MP bioprocesses allowed 32 

great advances, permitting the evolution of the number of MP solved structures. In this review, 33 

we analyse and discuss effective solutions and technical advances at the level of the upstream 34 

stage using prokaryotic and eukaryotic organisms foreseeing an increase in expression yields of 35 

correctly folded MP and that may facilitate the determination of their three-dimensional 36 

structure. A section on techniques used to protein quality control and further structure 37 

determination of MP is also included. Lastly, a critical assessment of major factors contributing 38 

for a good decision-making process related to the upstream stage of MP is presented. 39 

 40 

41 
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1. Recombinant membrane protein biosynthesis 42 

Membrane proteins (MP) constitute 20-30 % of all proteins encoded by the genome of 43 

various organisms (Lantez et al 2015) and perform a wide range of essential biological 44 

functions, thus representing the largest class of protein drug targets (Bernaudat et al 2011). 45 

However and despite their biological relevance, most of these targets still do not have any 46 

assigned function (Bernaudat et al 2011), as reflected by the relatively low number of MP 47 

structures recorded in Stephen White’s laboratory database 48 

(http://blanco.biomol.uci.edu/mpstruc/) - 876 unique MP structures in March 2019. Indeed, 49 

determining the structure of a MP is quite complex, mostly due to problems arising from MP 50 

low natural abundance, their toxicity when overexpressed in heterologous systems, and 51 

difficulties in purifying stable functional proteins and obtaining well-diffracting crystals (Gul et 52 

al 2014; Lantez et al 2015). To cope with MP low natural abundance that limits subsequent 53 

structural and functional studies, four different approaches have been proposed (Popot 2018), 54 

namely: 1) overexpression in vivo and in situ; 2) overexpression in vivo in inclusion bodies; 3) 55 

cell-free expression (CFE) in vitro; 4) chemical synthesis for short MP or MP fragments. Here, 56 

we will generally address the first two approaches based on the following host cells: 57 

Escherichia coli (E. coli), Pichia pastoris (P. pastoris), also known as Komagataella phaffii, 58 

mammalian cell lines. The process to obtain a recombinant protein involves the synergy of three 59 

key elements – a gene, a vector and an expression host – (Bernaudat et al 2011) and, at least at 60 

the theoretical level, is straightforward (Rosano et al 2014). In practice, many things can go 61 

wrong, and distinct problems can be found including poor growth of the host, inclusion body 62 

formation or lack of protein biological activity (Rosano et al 2014). Indeed, targeting an 63 

overexpressed MP to a membrane in such a way they can insert and achieve its native structure 64 

is far from being an easy task, once they tend to be toxic, leading to low expression yields of 65 

often misfolded and aggregated MP (Popot 2018; Rajesh et al 2011). Moreover, the high 66 

diversity of structures and physico-chemical properties displayed by MP makes unfeasible to 67 

accurately predict if a protein of interest will express well, be easy to purify, be biologically 68 

active or crystallize in any given experimental protocol (Bernaudat et al 2011). Based on the 69 

exposed, the development of improved strategies in the recombinant MP production pipeline 70 

foreseeing to increase their expression yields in a correctly folded form is crucial in MP 71 

research. The evaluation of purified protein quality is crucial in any protein production process 72 

and should be accurately performed to avoid irreproducible and misleading observations in the 73 

subsequent studies (Raynal et al 2014). After production, MP need to be efficiently solubilized 74 

(recently reviewed by Hardy et al 2018 and Popot 2018) and purified (Pandey et al 2016), from 75 

which their quality in terms of purity, homogeneity, activity and structural conformity should be 76 

assessed (Oliveira and Domingues et al 2018; Raynal et al 2014). In this review, generic 77 

http://blanco.biomol.uci.edu/mpstruc/
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guidelines and host characteristics aiming an accurate choice of the host expression system that 78 

better suits particular needs will be initially overviewed in this review, and then we discuss 79 

important advances reported at the level of the upstream stage of recombinant MP production 80 

processes using E. coli, P. pastoris and mammalian cell lines, representative of major 81 

expression systems used for protein expression. Subsequently, general techniques to perform the 82 

quality control of the target protein are presented and at the end, insights and directions for a 83 

successful MP production pipeline are shown. 84 

 85 

1.1. Economics vs complexity: guidelines to choose the right host 86 

The most common systems for MP overexpression are microbial (bacteria or yeasts) or 87 

higher eukaryotes (insect or mammalian cells) [reviewed in (Bernadaut et al 2011; Fernández 88 

and Vega 2016; He et al 2014; Midgett et al 2007; Wagner et al 2006)]. There is no such a 89 

perfect host that suits all MP expression projects once they all have advantages and limitations, 90 

as highlighted in Table 1. Moreover, the reasons why some MP are overexpressed but others are 91 

expressed at low levels are not fully known, although it can be related to how difficult is to fold 92 

MP into a functional state (Andréll and Tate 2013).  93 

In terms of increasing complexity, the expression systems can be grouped as follows: 94 

bacteria < yeasts < insect cells < mammalian cell lines. With an increasing complexity, there is 95 

generally an increase in the ability of the host cell to perform native post-translational 96 

modifications (PTM). As such, heavily glycosylated proteins are expected to be produced in a 97 

more native and folded form from mammalian cell lines, and those obtained from yeasts may 98 

not present the native glycosylation profile. On the other hand, simpler hosts such as bacteria 99 

allow high productivities, and combine the speed with easiness of operation at a lower cost. 100 

Requirements in terms of specific PTM or a near-native-like environment for some 101 

mammalian MP are usually the factors dictating the choice of mammalian cell lines, which 102 

usually makes use of human embryo kidney (HEK) and Chinese hamster ovary (CHO) cell lines 103 

and both cell lines can be applied in stable and transient transfections (He et al 2014; Lyons et al 104 

2016). The process of recombinant protein production by transient expression involves the 105 

generation of plasmid, transfection in log phase, optional feeds from 24h onwards and then 106 

harvest from 48h to 14 days, depending on the target protein, cell line and culture conditions 107 

applied (McKenzie et al 2018). Contrasting with transient expression, stably transfected cell 108 

lines takes more time (months) and usually requires the stable integration of the recombinant 109 

DNA into the host cell genome. Since the expression vector has a gene conferring resistance to 110 

an antibiotic, stable integrants can be identified by antibiotic selection; moreover, the integration 111 

of the gene into the host genome may be random or the host cell can be engineered to contain a 112 

specific sequence recognized by a recombinase that allows targeted integration. Selection of 113 
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clonal cells is additionally required to identify highly expressing cell lines that are stable under 114 

prolonged culture (Andréll and Tate 2013). Transient transfection is quick but after scaling-up, 115 

batch-to-batch variability in the amount of protein expressed is often observed; on the other 116 

hand, although stable gene expression is initially slower and more technically challenging once 117 

a clonal cell line is generated, long-term overexpression can be much more consistent, and the 118 

purification of large quantities of supercoiled plasmid DNA for transient-expression is not 119 

required (Chaudhary et al 2012; Andréll and Tate 2013). Despite the slow growth rate and 120 

usually higher cost, the number of MP structures generated based on such systems has 121 

considerably increased, being foreseeable that with the increasing use of cryo electron 122 

microscopy for structure determination wherein lesser amount of sample is required (e.g. in 123 

comparison with crystallographic studies), mammalian systems will be more frequently used 124 

(Lyons et al 2016).  125 

Other interesting features to be considered when selecting a host: 1) native intracellular 126 

localization of the target protein; proteins that function in specific eukaryotic organelles such as 127 

mitochondria, chloroplasts and peroxisomes will generally benefit from expression hosts that 128 

possess such organelles (Fernández and Vega 2016); 2) types of lipids of host membranes; 129 

hydrophobic mismatch may occur due to differences in lipid bilayer composition and thickness 130 

between hosts, as highlighted for the overexpression of eukaryotic MP in bacteria, where the 131 

absence of sterols, sphingolipids and poly-unsaturated fatty acids in E. coli bilayers poses 132 

additional challenges to their proper folding (Snijder and Hakulinen 2016); 3) Construct size; 133 

proteins larger than 120 kDa are difficult to be efficiently expressed in E. coli, and are typically 134 

obtained in very low yields, as inclusion bodies or proteolytically degraded (Fernández and 135 

Vega 2016). 136 

To overcome the limitations displayed by these in vivo expression systems – toxicity, 137 

limited membrane space for MP functional folding and inefficient transport and membrane 138 

insertion mechanisms -, CFE systems have been reported, which rely on the use of prokaryotic 139 

and eukaryotic protein synthesis machinery and related elements to direct protein synthesis from 140 

added DNA or mRNA templates (He et al 2011; Henrich et al 2015; Zheng et al 2014). In a 141 

different way, the preparation of highly hydrophobic peptides representing functional parts of 142 

MPs foreseeing their application onto structural and functional studies can be attained via 143 

chemical synthesis (Baumruck et al, 2018). Previously, Fernández and Vega (2016) reported 144 

some recommendations on which expression host use for a particular protein.  145 

 146 

1.2. Upstream strategies to improve membrane protein expression levels and/or 147 

folding 148 
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Membrane protein research strongly rely on recombinant production, which is vital for 149 

obtaining high quantities of properly folded proteins for further biophysical and functional 150 

testing. While it is difficult to define a set of guidelines generally applicable to all MP,, here we 151 

review distinct strategies (according Figure 1) that have been used to increase MP expression 152 

and/or folding using E. coli, P. pastoris and mammalian cell-based systems (Summarized in 153 

Tables S1, S2 and S3 in Electronic Supplementary Information). 154 

 1.2.1. Escherichia coli 155 

 Escherichia coli expression systems have been largely investigated for recombinant 156 

protein production processes, although with a lower success rate for membrane proteins than for 157 

soluble proteins. Aiming to reverse this trend, researchers have driven their efforts to develop 158 

enhanced upstream stages encompassing optimizations at the genetic-level, strain engineering or 159 

culture conditions, which are reviewed in Table S1 (Electronic Supplementary Information). 160 

1.2.1.1. Genetic-level strategies 161 

 The expression of proteins outside their original context can pose additional constraints 162 

since they might contain codons that are rarely used in the desired host, come from organisms 163 

that use non-canonical code or contain expression-limiting regulatory elements within their 164 

coding sequence. The genetic code contains 61 nucleotide triplets (codons) to encode 20 amino 165 

acids and 3 codons to terminate translation, and such degeneracy enables many alternative 166 

nucleic acid sequences to encode the same protein. Moreover, the frequencies with which 167 

different codons are used vary significantly between different organisms, between proteins 168 

expressed at high or low levels within the same organism, and sometimes even within the same 169 

operon (Gustafsson et al 2004). Indeed, each organism seems to prefer a different set of codons 170 

over others, a phenomenon termed as codon bias (Quax et al 2015). Based on these 171 

observations, metrics for the frequency of optimal codons were proposed, such as the 172 

commonlly used codon adaptation index (CAI). The CAI for a certain organism is based on the 173 

codon usage frequency in a reference set of highly expressed genes, such as the ones encoding 174 

ribosomal proteins and the CAI for a specific gene can be determined by comparing its codon 175 

usage frequency with this reference set (Sharp and Li 1986; Quax et al 2015).  176 

Different codon biases are also correlated with the amount of the corresponding tRNAs, 177 

which vary between organisms; for example, eukaryotes commonly use the AGG codon for 178 

arginine, although it is rarely used in E. coli (Gustafsson et al 2004). If this exerts a negative 179 

effect on heterologous gene expression, then the use of the use of E. coli strains over-expressing 180 

rare tRNAs (which are commercially available) can improve the yields of target proteins, as 181 

previously shown for different constructs of connexin carboxyl-terminal domains attached to 182 

their 4th transmembrane domain (Kopanic et al 2013). 183 
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 Moreover, the more codons that a gene contains that are rarely used in the expression 184 

host, the less likely it is that the heterologous protein will be expressed at reasonable levels and 185 

low levels are exacerbated if the rare codons appear in clusters or in the N-terminal. A strategy 186 

to overcome this problem involves sequence re-design by changing the rare codons to codons 187 

that more closely reflect the codon usage of the host without modifying the amino acid sequence 188 

of the encoded protein (Gustafsson et al 2004). Automated codon optimization algorithms have 189 

been developed to design coding sequences optimized for increased expression in certain hosts 190 

and codon optimization services are currently offered by DNA synthesis companies, which 191 

often rely on confidential algorithms. These algorithms optimize codon usage by maximizing a 192 

gene’s CAI to match that of the expression host, along with optimizing for some sequence 193 

features such as GC content and avoidance of repeats and motifs such as ribonuclease 194 

recognition sites, transcriptional terminator sites, Shine-Dalgarno-like sequenes, and sequences 195 

that lead to strong mRNA secondary structures (Quax et al 2015). On-line tools to gene design 196 

such as the OPTIMIZER (http://genomes.urv.es/OPTIMIZER/) (Puigbo et al 2007) or to 197 

analyze codon usage including the CAIcal (http://genomes.urv.cat/CAIcal/) (Puigbo et al 2008) 198 

are currently available, among many others which make use of distinct optimization parameters 199 

(reviewed by Angov 2011; Gould et al 2014; Parret et al 2016). 200 

 Based on the rationale that changes in protein structure and function can occur after 201 

synonymous codon replacement and that protein structure is DNA sequence-dependent, 202 

alternative approaches for synonymous codon design such as the “codon harmonization 203 

algorithm” have been proposed, which adapts the codons in a way that the original codon 204 

landscape of the gene in the original host is maintained in the expression hosts (Angov et al 205 

2008; Quax et al 2015). The authors considered that protein synthesis and folding in E. coli is 206 

co-translational and that nucleotide sequence-dependent modulation of translational kinetics 207 

might influence nascent polypeptide folding. Therefore, in this approach, synonymous codons 208 

from E. coli were selected that match as closely as possible the codon usage frequency used in 209 

the native gene, unless empirical structure calculations show that the codons are associated with 210 

putative link/end segments which therefore should be translated slowly (Angov et al 2008). 211 

Claassens et al (2017) studied the performance of this codon harmonization algorithm and 212 

compared with the wild-type variant and optimized gene variants (resorting to proprietary 213 

GeneOptimizer algorithm from GeneArt) using different proton-pumping rhodopsins and 214 

enzymes from archaea, bacteria and eukarya. Codon harmonization was performed using a 215 

codon harmonizer tool (http://codonharmonizer.systemsbiology.nl) based on the harmonization 216 

algorithm initially proposed by Angov et al (2008), and uses the codon usage frequency tables 217 

for the native and expression hosts, based on all codons in the protein-coding genes annotated in 218 

NCBI genome assemblies as inputs. The “codon frequency landscapes” were generated and 219 

http://genomes.urv.cat/CAIcal/
http://codonharmonizer.systemsbiology.nl/
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were evaluated quantitatively based upon a proposed Codon Harmonization Index (CHI), in 220 

which a value close to 0 indicates a well-harmonized gene; all harmonized variants have a CHI 221 

< 0.1 while all codon-optimized and wild-type variants deviate further from the native codon 222 

landscape and consequently present CHI higher than that of harmonized variants (> 0.183). It 223 

was additionally observed that transcriptional tuning (in this case by changing the concentration 224 

of L-rhamnose) generally improves heterologous production of the distinct variants, although 225 

the concentration of rhamnose frequently differs among different codon usage variants of the 226 

same protein. In general, harmonization is beneficial for increasing membrane-embedded 227 

production compared to wild-type variants for some proteins, for which in this study the wild-228 

type CHI score is also highest (as in the case of leptosphaeria rhodopsin, CHI = 0.279). 229 

Moreover, when the codon landscape of the wild-type gene in E. coli largely deviates from the 230 

landscape in the native hosts, harmonization seems to be a promising approach for increasing 231 

MP production (Claassens et al 2017). Recent developments point out that irrespective the 232 

algorithm used, using a bicistronic design (in comparison with a monocistronic design) does 233 

improve protein production in E. coli as it may eliminate the translation initiation as the rate-234 

limiting step of the translation process (Nieuwkoop et al 2019). It should also be also remarked 235 

the importance of using updated codon usage tables. In this way, Athey et al (2017) reported a 236 

database (available at hive.biochemistry.gwu.edu/review/codon) aiming to present and analyse 237 

codon usage tables for every organism with public available sequencing data, and which is 238 

being routinely updated to keep up with the continuous flow of new data. 239 

Instead of whole sequence optimization, synonymous codon substitutions in the region 240 

adjacent to the AUG start may lead to significant improvements in expression, thus 241 

circumventing the need to consider whole sequence optimization (Nørholm et al 2013). Indeed, 242 

codon usage optimization of the N-terminal guarantee an efficient translation start, which have 243 

been proved to enhance human tetraspan vesicle protein /TVP) Synaptogyrin 1 expression in E. 244 

coli (Löw et al 2012). Recently, Saladi et al (2018) developed a data-driven statistical predictor 245 

named “IMProve”, which combines a set of sequence derived features resulting in an IMProve 246 

score. As this value increases, there is also an increase in the probability of success, i. e. 247 

selecting a MP that expresses in E. coli. Currently, the characterization of an integral MP 248 

involves the identification and testing of multiple homologs or variants for expression and the 249 

predictive power of “IMProve” enables to enrich for positive outcomes by 2-fold by providing a 250 

low-barrier-to-entry (Saladi et al 2018).  251 

Throughout the years, codon optimizations have been performed on a first screening 252 

basis aiming an increase in the yields of properly folded MP, and with much success without 253 

noticeable changes in protein structure and function. However, the increasing understanding of 254 

the principles of codon bias and mechanisms of translation have been unveiling yet unknown 255 
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features. In fact, synonymous codons are known to potentially affect protein expression at 256 

various levels and increasing evidences have been showing that translation is affected, leading 257 

to dramatic alterations in the conformation and processing of some proteins (Mauro 2018). 258 

Overall, codon optimization seems appropriate for some applications, e.g. protein evolution and 259 

increasing the expression and/or activity of industrial enzymes; however, for recombinant 260 

expression of proteins for therapeutics, we should also aim to maintain the conformation and 261 

processing of the natural protein sequences (Mauro 2018). 262 

In E. coli and due to the higher copy number of the target gene usually achieved with 263 

plasmid-based systems, recombinant proteins are typically expressed in E. coli from medium to 264 

high plasmid copy number (PCN) based on a Col1E derived origin of replication, (Baneyx 265 

1999). The PCN is correlated with the recombinant gene dosage and can be accurately 266 

determined by quantitative Polymerase-Chain Reaction (qPCR) procedures (Lee et al 2006; 267 

Martins et al 2015). A recent study by Jensen et al (2017) provided a systematic approach to 268 

identify gene disruptions that increase MP expression in E. coli and can be used to improve 269 

expression of any protein that poses a cellular burden. 270 

Based on the combination of some the above-mentioned strategies, namely “codon 271 

harmonization”, use of low copy number vectors with moderate strength, suitable leader 272 

sequences, and optimization of cell culture conditions, increased targeting to E. coli outer 273 

membrane of Chlamydia trachomatis major outer membrane protein was observed and the 274 

formation of inclusion bodies avoided (Wen et al 2016). On the other hand, prokaryotic 275 

expression vectors using the rhaB promoter which are almost completely repressed until 276 

induced can be suitable for the expression of toxic proteins (Giacalone et al 2006).  277 

 278 

1.2.1.2. Strain engineering 279 

Remarkable enhancements in MP expression from E. coli-based systems have been 280 

achieved with engineered strains due to their improved ability to cope with MP-induced 281 

toxicity, more efficient chaperone pathways, different substrate uptake rates or reinforced 282 

integrity of intracellular structures, e.g. periplasmic space. Earlier observations have shown that 283 

protein (including but not limited to MP) overexpression driven by the T7 RNA polymerase in 284 

E. coli BL21 (DE3) cells can be limited or prevented by cell death (Miroux and Walker 1996). 285 

In this regard, by plating E. coli BL21(DE3) cells expressing toxic proteins (oxoglutarate-286 

malate carrier protein from mitochondrial membranes and subunit b of bacterial F-ATPase) in 287 

agar plates containing IPTG (for a review of these methods, please refer to Schlegel et al 2017), 288 

Miroux and Walker (1996) were able to isolate two isolate two survivors, the mutant host 289 

strains C41 (DE3) and C43 (DE3), which have become known as the “Walker strains” and 290 

widely used for MP overexpression. Latter studies showed that mutations in the lacUV5 291 
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promoter governing expression of T7 RNA polymerase are the key to improved MP 292 

overexpression characteristics of C41 (DE3) and C43 (DE3) strains (Wagner et al 2008). The 293 

rationale behind the application of BL21 (DE3) for protein production was that T7 RNA 294 

polymerase transcribes faster than E. coli RNA polymerase and more mRNA results in more 295 

overexpressed protein. However, for most MP, strong overexpression leads to the production of 296 

more protein than the Sec translocon can process, thus impairing their insertion into the 297 

membrane, which thereby highlights the need to tune MP expression aiming to avoid Sec 298 

saturation (Wagner et al 2008). Based on these observations, Wagner et al (2008) engineered a 299 

new BL21 (DE3) derivative strain designated Lemo21 (DE3) wherein the activity of the T7 300 

RNA polymerase can be precisely controlled by its natural inhibitor T7 lysozyme, which 301 

plasmid was under the control of the well-titratable rhamnose promoter (Wagner et al 2008; 302 

Schlegel et al 2012). The expression of insertase YidC fused to GFP in the cytoplasmic 303 

membrane of Lemo21 (DE3) strain was maximal at 1000 µM rhamnose, and was additionally 304 

demonstrated that this strain is compatible with auto-induction media (Schlegel et al 2012). 305 

More recently, Baumgarten et al (2017) isolated the mutant56 (DE3) [Mt56 (DE3)] from 306 

BL21(DE3) expressing YidC C-terminally fused to GFP, which allows to evaluate if the 307 

produced proteins are being targeted to the cytoplasmic membrane. The authors found that this 308 

strain produced several MP in higher levels than C41 (DE3), C43 (DE3) or BL21 (DE3), and its 309 

improved performance is attributed a mutation in the gene encoding T7 RNA polymerase in 310 

position 305 (C:G – A:T transversion), leading to a single amino acid exchange in T7 RNA 311 

polymerase (A102D). Rather than lowering T7 RNA polymerase levels [as with C41 (DE3) and 312 

C43 (DE3)], the A102D mutation weakens the binding of the T7 RNA polymerase to the T7 313 

promoter governing target gene expression (Baumgarten et al 2017).  314 

Envisaging an increase in the amount of membrane-embedded and correctly folded 315 

mammalian GPCRs (G protein-coupled receptor), Skretas et al (2012) screened libraries of 316 

genomic fragments using two different flow cytometric assays, namely by monitoring the 317 

binding of a fluorescently labeled ligand to active GPCR and the fluorescence of GPCR-GFP 318 

fusions. These screens allowed the isolation of the genes nagD (encoding the ribonucleotide 319 

phosphatase NagD), nlpDΔ (encoding a C-terminal truncation of the putative outer membrane 320 

lipoprotein NlpD) and the three-gene cluster ptsN-yhbJ-npr (encoding three proteins of the 321 

nitrogen phosphotransferase system) and was additionally proved that their co-expression leads 322 

to a marked increase of membrane-integrated and well-folded GPCR and also a prokaryotic MP 323 

(Skretas et al 2012). In general, it seems that the enhanced effect is not due to a direct 324 

interaction of these genes with the target proteins, but instead by indirect effects, namely 325 

induction of stress responses or changes in the composition of the bacterial periplasm (Skretas 326 

et al 2012). Foreseeing the identification of genes whose coexpression can supress MP-induced 327 
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toxicity, a genome wide screen identified two potent suppressors, namely djlA (encoding the 328 

membrane-bound DNAk cochaperone DjlA) and rraA (encoding RRaA), an inhibitor of the 329 

mRNA-degrading activity of the E. coli RNase E (Gialama et al 2017). E. coli strains 330 

coexpressing djlA or rrA, referred as SuptoxD and SuptoxR, respectively, strains were found to 331 

have a consistent behavior regarding an enhancement production of distinct MP, namely from 332 

mammalian and bacterial origin and with different topologies, and perform better than other 333 

commercially available strains (Gialama et al 2017). 334 

Another method to mitigate the toxic effect of overexpression is “restrained 335 

expression”, in which the production of T7 RNA polymerase and the target gene are controlled 336 

by distinct promoters, respectively the arabinose promoter and T7lac promoter (Narayanan et al 337 

2011). Under “restrained expression” conditions, namely addition of minimal quantities of 338 

arabinose (0.01 %) to produce low levels of T7 RNA polymerase and omission of IPTG, aiming 339 

to explore the occasional derepression ocurring at the lac operator site of T7lac promoter, an 340 

increase of 5 to 25-fold in the expression of homologs of cardiac Na+/Ca2+ exchanger were 341 

obtained, in comparison with IPTG-induction. Moreover, improvements were also found per 342 

unit of OD600 nm of cells, indicating that “restrained expression” is associated with decreased 343 

cellular toxicity. In general, by reducing the frequency of transcription initiation, protein 344 

production is slower, which is unlikely to saturate the biogenesis machinery, thereby providing 345 

the explanation for the decreased cytoplasmic aggregation and the attendant cytotoxicity when 346 

comparing “restrained” and “rapid” (induction with arabinose and IPTG) expression (Narayanan 347 

et al 2011). Nannenga and Baneyx (2011) reported the expression of MP in Δtig strains 348 

[Transcription factor (TF) deficient] which due to TF inactivation, the signal recognition 349 

particle (SRP) has unimpeded access to the nascent transmembrane segment, thus resulting in 350 

targeting of MP to the inner membrane, while Yidc overproduction promotes MP insertion and 351 

folding in the lipid bilayer.  352 

A distinct approach aiming an enhancement in the production of soluble integral 353 

membrane spanning proteins relied on engineering E. coli wild type AF1000 to reduce the 354 

growth rate/substrate uptake rate, accomplished by deletions in the phosphoenolpyruvate 355 

carbohydrate:phosphotransferase system (PTS), which is responsible for the uptake of various 356 

sugars in E. coli (Backlund et al 2011). Distinct mutant strains unable to take up glucose were 357 

obtained, and characterized as follows: a defective enzyme IIABMan, which unspecifically 358 

controls the uptake of mannose but also allows glucose passage (ptsM); a defective enzyme 359 

IIBCGlc (ptsG), specific for glucose uptake, and the double mutant (ptsG, ptsM). As a result of 360 

the removal of ptsG, these mutants display a reduced growth rate at high glucose concentrations 361 

but they can grow to high cell densities [although more slowly than BL21(DE3)] since they 362 

produce no acetic acid. In general, these strains were able to produce some of the MP in study in 363 
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relatively larger quantities than BL21 (DE3) but whether this enhanced ability is due to the low 364 

growth rate or the lack of acetic acid production was not totally clarified (Backlund et al 2011). 365 

Finally, based on the previously published protocols used for MP structure 366 

determination, Bruno Miroux research group (Hattab et al 2015) revealed the preferences of E. 367 

coli strain-vector combinations for an optimal use of this expression system and successful 368 

production of MP. At that time (June 2014), they found that for the determination of 141 unique 369 

non E. coli MP structures, 163 expression vector/bacterial hosts were applied, from which T7 370 

promoter was dominant (63 %), followed by the arabinose, tac and T5 promoter based 371 

expression systems (17 %, 9% and 7%, respectively). Moreover, within T7 based expression 372 

systems, the host BL21 (DE3) was the most employed, followed by the mutants C43 (DE3) and 373 

C41 (DE3), accounting with 40, 18 and 16 MP structures, respectively. Overall, this study 374 

shows that C41 (DE3) and C43 (DE3) mutants together with the parental host BL21 (DE3) have 375 

contributed significantly for the success of bacterial expression systems in structural biology of 376 

MP, in which the mutants have been preferably applied for the production of difficult to express 377 

MP. Additional remarks show that IPTG concentration and growth temperature are important 378 

parameters complementary to the choice of a bacterial host, and that a high copy number vector 379 

should be used with C41 (DE3) to take advantage of the strength of the T7 based expression 380 

system, whereas for more difficult MP, the mutant C43 (DE3), especially with low copy number 381 

plasmids allows to attenuate the transcription of the target gene (Hattab et al 2015). 382 

 383 

1.2.1.3. Protein fusion methodologies 384 

Aiming to increase MP solubility and folding or to easily track their expression levels, 385 

MP have been expressed with distinct fusion partners (tags) such as SUMO (small ubiquitin-386 

related modified, MBP (maltose-binding protein) or GFP (green fluorescent protein), 387 

synthesized either as translational (Zuo et al 2005; Liu et al 2012) or transcriptional fusions 388 

(Marino et al 2015). In translational fusions, the N-terminal fusion partners are part of the same 389 

protein chain of the membrane protein and can be cleaved off after protein production if any 390 

proteolytic cleavage site is introduced. On the other hand, transcriptional fusions exploit the 391 

presence of an additional RNA sequence upstream of the mRNA sequence of the target MP, 392 

leading to a bicistronic mRNA (Marino et al 2017). As a result, the ribosome produces two 393 

distinct protein products during translation, thereby eliminating the need to enzimatically 394 

remove the fusion protein during purification (Marino et al 2015). As opposed to translational 395 

fusions, transcriptional fusions do not lead to a physical linkage of the fusion protein and MP, 396 

which eliminates potential interference of the fusion partner in proper folding and functionality 397 

of the target protein (Marino et al 2015; Marino et al 2017). Distinct solubility enhancer tags 398 

such as SUMO, MBP, TrxA (thioredoxin) or GST (glutathione-S-transferase) with sizes ranging 399 
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from 7 to 495 amino acids have been reported (Costa et al 2014). Based on the knowledge that 400 

ubiquitin exerts chaperoning properties on fused proteins, translational fusions with the 401 

ubiquitin-like protein SUMO were successfully explored towards an enhancement of the 402 

solubility and biological activity of the severe acute respiratory syndrome coronavirus (SARS-403 

CoV) MP and 5-lipoxygenase-activating protein (FLAP) (Zuo et al 2005). An additional 404 

advantage is that SUMO fusion can be cleaved with high specificity by SUMO protease 1 and 405 

generates a protein with the native N-terminal (Zuo et al 2005). On the other hand, Liu et al 406 

(2012) evaluated different constructs resorting translational fusions of selenoprotein K 407 

envisaging its overexpression in E. coli better results were achieved with cytoplasmic MBP over 408 

periplasmic MBP and SUMO (Liu et al 2012). In addition to the chaperoning properties 409 

displayed by MBP and SUMO, these fusion partners also protect the target proteins from 410 

degradation by promoting their translocation from the cytosol to the cell membrane (MBP) and 411 

nucleus (SUMO) where less protease content exists (Costa et al 2014). Noteworthy, beyond an 412 

increase in the target protein solubility – solubility enhancer -, the natural affinity of MBP 413 

towards immobilized amylose resins can also be explored as a purification tool; however, this 414 

binding is highly dependent on the nature of the target protein as it can block or reduce the 415 

amylose interaction (Costa et al 2014). Translational fusions encompassing a solubility 416 

enhancer tag – MBP – and an affinity tag – His-tag – to accomplish the dual purpose of 417 

increasing the solubility of MP while exploring their high affinity onto specific affinity 418 

chromatographic matrices for purification are feasible, as previously reported for selenoprotein 419 

K (Liu et al 2012). A distinct strategy envisaging to target proteins to E. coli inner membrane 420 

reported by Luo et al (2009) is based on the fusion of a novel partner (P8CBD) to prokaryotic 421 

and eukaryotic MP. P8CBD was carefully designed and the DNA encoding 58 amino acid 422 

residues of E. coli Signal peptidase to provide a second transmembrane segment aiming to 423 

extend the protein fusion junction into the periplasmic space, which was selected based on its 424 

ability to efficiently establish the desired orientation within the inner membrane (Luo et al 425 

2009). A chitin binding domain was also engineered to act as an optional affinity tag or 426 

detection epitope while at the fusion junction an enterokinase cleavage site and corresponding 427 

FLAG epitope were also incorporated. Overall, by making use of the Signal Recognition 428 

Particle (SRP) membrane targeting pathway, the expression and membrane translocation of 429 

P8CBD fusion proteins is enhanced (Luo et al 2009). The location of translational fusions is an 430 

important factor since they can promote different effects when placed at the N-terminus or C-431 

terminus (Costa et al. 2014). This is better exemplified by the attachment of affinity 432 

oligohistidine tags to the periplasmic terminus of E. coli transporters, which is detrimental for 433 

their expression (Rahman et al 2007). A possible explanation for this relies on a possible 434 

interference of oligohistidine sequences with the proper translocation of the adjacent segments 435 
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of the protein across the membrane during biosynthesis once the charge distribution across 436 

transmembrane segments is known to have a profound effect on their orientation (Rahman et al 437 

2007). The optimum location of the tag is also influenced by the topology of MP. Although Nin-438 

Cin topologies dominate the membrane proteomes of most organisms, one or both termini of a 439 

substantial fraction of MP are located on the extracellular or periplasmic side of the membrane, 440 

for which tandem Strep-tag II sequences or oligohistidine tags fused to MBP and a signal 441 

sequence should be applied (Ma et al 2015). 442 

Unlike translational fusions, there is no need to proceed to the enzymatic removal of 443 

transcriptional tags once there is no physical linkage between the target MP and the fusion tag 444 

(Marino et al 2017). Marino et al (2015) compared the expression of different proteins using 445 

translational and transcriptional fusions of genes coding for the fusion proteins Mistic 446 

(membrane-integrating sequence for translation of inner membrane proteins from Bacillus 447 

subtilis), SUMO and a shorter version of YBeL respectively, mstX, sumo and ybeL. They 448 

created bicistronic mRNA cassettes where the stop codon of the preceding gene (mstX, sumo, 449 

or ybeL) overlaps with the start codon of the target protein, thereby mimicking a common 450 

genetic organization observed for bacterial operons (Marino et al 2015). They observed an 451 

enhanced expression of MP via transcriptional fusions with mstX and ybeL, and the cause of this 452 

effect cannot be atributted to re-initiation of ribosomes, but instead is most likely atributted to 453 

the enhanced translation initiation by a more favorable secondary structure in the transcript 454 

(Marino et al 2015).  455 

Another major breakthrough within this field in many expression systems was made 456 

through fusion of fluorescent reporters such as GFP to the target MP (Drew et al 2001; 457 

Goehring et al 2014; Gul et al 2014), which behaves as a folding indicator of the target MP and 458 

allowing to infer on their expression levels. This process usually relies on fusing GFP to the C-459 

terminal of proteins; since GFP only becomes fluorescent if the MP integrates in the 460 

cytoplasmic membrane, it allows to distinguish between MP overexpression in the cytoplasmic 461 

membrane and in inclusion bodies at any stage during overexpression, solubilization and 462 

purification (Drew et al 2001; Drew et al 2006). In addition, GFP will only become fluorescent 463 

if the MP has a Cin topology, i. e. the C-terminus is cytoplasmic (Drew et al 2006). Noteworthy, 464 

fluorescence in whole cells can be detected with a detection limit as low as 10 µg of GFP per 465 

liter of culture, and can also be determined in standard SDS polyacrylamide gels with a 466 

detection limit of less than 5 ng of GFP per protein band (Drew et al 2006). Also based on the 467 

use of GFP as a fusion partner, Nji et al (2018) recently reported a fluorescence detection size-468 

exclusion chromatography-based thermostability assay (FSEC-TS) that allows measuring 469 

apparent melting temperatures (Tm) of MP in the absence and presence of distinct lipids, which 470 

can be helful to identify which lipids can have a stabilizing effect for a particular target.  471 



15 

 

In addition to GFP, Gul et al (2014) reported the translational fusion of the 472 

erythromycin resistance protein (23 S ribosomal RNA adenine N-6 methyltransferase, ErmC) 473 

(in tandem with GFP) to the C-terminus of different bacterial MP wherein GFP fluorescence 474 

was applied to report the folding state of the target protein and ErmC to select for increased 475 

expression. Evolved strains termed NG were selected in increasing concentrations of 476 

erythromycin which carry out a mutation in hns gene, and the degree of MP expression 477 

correlates with the severity of hns mutation, although its deletion resulted in an intermediate 478 

expression. Overall, in each NG strain, the amount of fluorescent (folded) protein and the ratio 479 

of folded over misfolded protein increased up to 10-fold relative to the parental strain 480 

BW25113B (Gul et al 2014). Another approach to easily detect the expression levels of MP was 481 

reported by Hsu et al (2013) which is based on the use of mutated bacteriorhodopsin from 482 

Haloarcula marismortui as a fusion partner, and which unlike GFP, MP overexpression can be 483 

detected by naked eye or by directy monitoring their optical absorption.  484 

Aiming to select mutants of E. coli that improve MP expression, Massey-Gendel et al 485 

(2009) reported an approach that relies on fusing the targeted MP to a C-terminal selectable 486 

marker that confers a drug resistance phenotype (Massey-Gendel et al 2009). The rationale 487 

behind this strategy is that the production of the selectable marker and survival on selective 488 

media is linked to expression of the targeted MP, namely when the c-terminus is in the 489 

cytoplasm. After the selection of the mutants, curing of isolated mutants is performed by in vivo 490 

digestion with the homing endonuclease I-CreI (Massey-Gendel et al 2009). 491 

Recently, Mizrachi et al (2015) developed a technique called SIMPLEx (Solubilization 492 

of Integral MP with high Levels of Expression), which allows the direct expression of soluble 493 

products in living cells by fusing the target MP with the carboxyl terminal of apolipoprotein A-1 494 

(ApoAI*). In addition, a highly soluble “decoy” protein from Borrelia burgdorferi, namely the 495 

outer surface protein A (MBP lacking its N-terminal signal peptide can also be used) was fused 496 

to the N-terminus to prevent the E. coli secretory pathway to introduce the protein in inner 497 

membrane. Acting as an amphipatic proteic “shield” which sequester MP from water, ApoAI* 498 

promotes the solubilization of structurally diverse MP (bitopic α-helical, polytopic α-helical and 499 

polytopic β-barrel) and yields of EmrE-solubilized dimers and tetramers (EmrE basic functional 500 

units) ranged between 8 and 10 mg/L of culture after Nickel affinity chromatography. ApoAI*-501 

solubilized EmrE (E. coli ethidium multidrug resistance protein E) was amenable to structural 502 

characterization including negative staining electron microscopy, dynamic light scattering and 503 

SAXS (Small angle X-ray scattering) data collection (Mizrachi et al 2015). 504 

 505 

 1.2.2. Pichia pastoris 506 

1.2.2.1. Genetic-level strategies 507 
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 Yeasts and particularly P. pastoris are highly attractive alternatives for MP expression 508 

as they represent low-cost cultivation and high-quantity production platforms, meeting the 509 

demand for criteria of safety and authentically process proteins (Emmerstorfer-Augustin et al 510 

2019). Pichia pastoris systems usually rely on the use of integrative plasmids containing the 511 

gene of interest which are integrated into the yeast genome, generating stable production strains 512 

(Dilworth et al 2018). Moreover, protein production is usually accomplished resorting the 513 

alcohol oxidase promoter (AOX), which is inducible by methanol and depending on the 514 

functionality of 1 or both aox genes, recombinant strains may present a MutS or Mut+ phenotype 515 

exhibiting different growth behaviors (in methanol) and different methanol requirements for 516 

induction. Other commonly used promoter is the constitutive glyceraldehyde-3-phosphate 517 

(GAP) dehydrogenase promoter (Gonçalves et al 2013). 518 

In the last years, studies have shown that distinct recombinant gene dosages and codon 519 

usage optimizations greatly influence MP expression levels in P. pastoris. As mentioned above, 520 

P. pastoris expression systems usually rely on expression plasmids that are integrated into the 521 

yeast genome and multi-copy clones – the so-called “jackpot clones” –, can be selected 522 

experimentally by screening several colonies in increasing concentrations of antibiotic 523 

(Dilworth et al 2018). Nordén et al (2011) performed a two-step antibiotic selection, initially 524 

with 100µg/mL zeocin and then with higher concentrations, from which they isolated multi-525 

copy clones and observed that the expression of different aquaporins strongly respond to an 526 

increase in recombinant gene dosage, independently of the amount of protein expressed from a 527 

single gene copy clone. However, despite higher recombinant gene dosages can lead to higher 528 

titers of recombinant proteins, this correlation is not always linear and strains with low copy 529 

number may be preferred (Aw and Polizzi 2013, Dilworth et al 2018). Aiming to exclude 530 

possible false-positives while establishing accurate correlations, along with the levels of the 531 

target protein, the recombinant DNA levels must be evaluated, for which qPCR protocols have 532 

been reported using pPICZ vectors (Nordén et al 2011) and resorting to SYBR Green or 533 

TaqMan (Abad et al 2010). Another way to improve human aquaporins expression in P. 534 

pastoris is based on the optimization of the nucleotide sequence around the initial ATG based 535 

on the use of mammalian Kozak’s sequence consensus (Oberg et al 2009). The prevalence of a 536 

guanine at the first position of the second codon after ATG encodes small amino acids such as 537 

alanine (GCN) or on a smaller extent glycine (GGN), which are crucial to ensure an efficient 538 

cleavage of the initiator methionine (Oberg et al 2009). In most cases, this has a positive impact 539 

on aquaporins expression, while the opposite seems to be observed when a thymine is at 540 

position +6 (Oberg et al 2009). 541 

The codon bias problem in MP production from P. pastoris have also been addressed. 542 

Considering that the translation efficiency of more highly expressed genes may be especially 543 
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sensitive to codon usage, Bai et al (2011) generated a codon usage table specific for highly 544 

expressed genes in P. pastoris and adjusted the sequence of P-glycoprotein-encoding mdr3 545 

gene, taking into account relative codon frequencies for each amino acid, as well as optimizing 546 

GC content and controlling for mRNA instabilities. Using the optimized gene construction, the 547 

authors obtained an increase of three-fold in the expression yields in comparison with the wild-548 

type gene of P-glycoprotein and similar secondary and tertiary structures between the proteins 549 

from the different constructs, emphasizing the effectiveness of the gene optimization approach 550 

developed (Bai et al 2011). 551 

Expression resorting fusion partners has been applied since the early beginning of MP 552 

expression in P. pastoris. Talmont et al (1996) expressed the µ-opioid receptor fused with S. 553 

cerevisiae α-mating factor aiming to facilitate the translocation of the receptor to the membrane. 554 

Distinctly, it was shown that the presence of the α-mating factor can be detrimental for the 555 

expression of human histamine H1 receptor in P. pastoris (Shiroishi et al 2011), which can be 556 

due to incomplete processing by the endogenous Kex2 protease, leading to a heterogenous 557 

population. A way to overcome this problem is by introducing a proteolytic cleavage site 558 

upstream of the gene (Byrne 2015). 559 

The application of GFP as a fusion partner has been extensively used to screen for high-560 

yield expressing clones spanning the most popular hosts for MP production including P. 561 

pastoris. Brooks et al (2013) reported a fluorescent-based induction plate assay aiming the 562 

simultaneously screening of P. pastoris clones for the expression of aquaporin 4 and 563 

homologues of ER associated MP phosphatidylethanolamine N-methyltransferase in which 50 564 

and 48 clones were respectively screened. The plates were imaged under blue light and the 565 

colony fluorescence quantified using Mean Gray Values and revealed a distribution of 566 

fluorescence related to protein expression, ranging from background to high, being additionally 567 

demonstrated that there is a good correlation between plate expression and liquid culture 568 

expression (Brooks et al 2013).  569 

In addition to secreted proteins, MP can also enter the secretory pathway but unlike 570 

them, MP remain in the ER, Golgi or the plasma membrane (Vogl et al 2014). Due to MP 571 

overexpression, unfolded and misfolded proteins can accumulate in the ER, thereby triggering 572 

the unfolded protein response (UPR). The UPR signaling pathway involves the kinase/RNase 573 

Ire1 that when activated initiates an unconventional splicing reaction of the HAC1 mRNA that 574 

ends with the removal of the intron and subsequent translocation of Hac1p to the nucleus 575 

(Guerfal et al 2010). Guerfal et al (2010) showed for the first time the beneficial effect of co-576 

expressing Hac1p with the adenosine A2A receptor, namely in terms of a better processing of 577 

the alpha-mating factor, thus improving the homogeneity of the obtained MP fractions. Later, 578 

Vogl et al (2014) performed a transcriptomic analysis of P. pastoris CBS 7435 overexpressing 579 
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different classes of MP (mitochondrial, ER/Golgi and plasma-membrane localized) and found 580 

that proteins targeted to the mitochondrial membrane mainly alter the energy metabolism while 581 

the gene coding for Hac1p was upregulated in strains expressing the CMP-Sialic acid 582 

transporter, which localizes to ER and Golgi. Interestingly, they found that the overexpression 583 

of the spliced variant of Hac1 led to an increase of 1.5-fold to 2.1-fold in the expression of ER-584 

resident MP tested (Vogl et al 2014) 585 

 586 

1.2.2.2. Strain engineering and improved processing conditions 587 

Pichia pastoris expression strains are derivatives of NRRL-Y 11430 (Northern 588 

Regional Research Laboratories, Peoria, IL, USA) (Cregg et al 2000) encompassing distinct 589 

genotypes/phenotypes, and generally most of them have been applied for MP production, 590 

namely X33 (wild-type/Mut+) (Oberg et al 2009), KM71H (arg4aox1::ARG4/MutS Arg+) (Bai 591 

et al 2011), GS115 (his4/Mut+ His-) (Guerfal et al 2010) and also protease defficient strains such 592 

as SMD1163 (pep4 prb1 his4/Mut+ His-) (André et al 2006). 593 

The requirement of association with cellular membranes and the type of membranous 594 

lipids can be critical for successfully achieving the goal of producing a recombinant MP in a 595 

functional active form, given their close spatial interactions (Emmerstorfer-Augustin et al 596 

2019). Plasma membranes are generally constituted by a mixture of lipids including 597 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, 598 

phosphatidic acid, sphingolipids and sterols (van der Rest 1995). As the composition and 599 

molecular properties of the lipids differ from lower to higher eukaryotes, the distinct type of 600 

sterols in yeasts and mammalians, respectively ergosterol and cholesterol, can represent a 601 

bottleneck for the heterologous expression of mammalian proteins in yeasts (Emmerstorfer-602 

Augustin et al 2019; Hirz et al 2013). Therefore, aiming an improvement in the functional 603 

expression, stability and translocation of Na+/K+ ATPases α3β1 isoform, Hirz et al (2013) 604 

reprogrammed P. pastoris (strain CBS7435 Δhis4 Δku70) to mainly produce cholesterol instead 605 

of ergosterol. This was accomplished by replacing ERG6 (encodes the sterol C-24 methyl 606 

transferase) and ERG5 (encodes the sterol C-22 desaturase) by constitutive DHCR7 and 607 

DHCR24 (dehydrocholesterol reductases) overexpression cassetes, envisaging an efficient 608 

conversion of cholesta-5,7,24(25)-trienol to cholesterol (Hirz et al 2013; Emmerstorfer-609 

Augustin et al 2019). The authors found that the expression levels of the target ATPase 610 

significantly increased with induction time in the cholesterol-forming strain compared to the 611 

wild-type strain, indicating a positive influence of the altered sterol composition on the stability 612 

of the synthesized MP (Hirz et al 2013). Another example of “humanizing” P. pastoris for the 613 

expression of human proteins consists of the disruption of an endogenous glycosyltransferase 614 

gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes, envisaging 615 
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to largely eliminate the fungal N-type N-glycosylation while avoiding a considerable 616 

heterogeneity in the produced protein and their rapid clearance if therapeutics is the main goal 617 

(Jacobs et al 2009; Laukens et al 2015). This strategy is generally referred as GlycoSwitch® and 618 

can be applied in wild-type strains (e.g. GS115) or GlycoSwitch® Man 5 strain wherein the first 619 

glyco-engineering step was already introduced, and encompasses distinct glyco-engineering 620 

steps based on the transformation of P. pastoris with GlycoSwitch® vectors under previously 621 

reported protocols (Jacobs et al 2009; Laukens et al 2015). Currently, these vectors are 622 

commercially available from BioGrammatics (Carlsbad, USA) under the licence from Research 623 

Corporation Technology (RCT). 624 

Envisaging to prevent a possible inhibition of the AOX promoter by glycerol, Pichia 625 

pastoris AOX-based bioprocesses usually encompass an initial stage of growth in glycerol 626 

followed by methanol induction, which is often cumbersome specially when glycerol 627 

consumption cannot be monitored (Lee et al 2017). Earlier observations with KM71H strains 628 

demonstrating that leaky expression is not a critical factor once the target expression per cell 629 

mass is mostly dependent on the starting glycerol concentration of the media and to a lesser 630 

degree by yeast nitrogen base (YNB) and biotin concentrations. Moreover, as even in the 631 

presence of a methanol concentration higher than the glycerol concentration no target 632 

expression was detected until about 24 h of incubation, Lee et al (2017) developed the Buffered 633 

extra-YNB Glycerol Methanol (BYGM) auto-induction media (100 mM potassium phosphate 634 

pH 6.0, 2.68 % w/v YNB, 0.4 % v/v glycerol, 0.5 % v/v methanol and 8 x 10-5 % w/v biotin). 635 

This auto-induction method avoids the traditional media-swabbing step and it is additionally 636 

claimed that it can be applied to MutS and Mut+ strains and distinct MP without compromising 637 

their expression yields (Lee et al 2017). The use of additives in culture media have also been 638 

reported to increase MP expression levels. André et al (2006) reported increased expression 639 

levels of functional GPCR resorting the optimization of growth temperature and 640 

supplementation of culture media with specific GPCR ligands, histidine, and dimethylsulfoxide 641 

(DMSO). As DMSO can modify the physical properties of membranes and upregulates genes 642 

involved in lipid synthesis (Murata et al 2003), it can have a positive effect on MP in yeast and 643 

is additionally pointed out that by permeabilizing membranes, it can have an indirect effect by 644 

facilitating the entry of other ligands to intracellular compartments where they reach the 645 

receptor populations (André et al 2006). The beneficial effect of DMSO is not restricted to 646 

GPCR as Pedro et al (2015) reported an increase of 1.8-fold in the enzymatic activity of human 647 

membrane-bound catechol-O-methyltransferase (MBCOMT), achieved by adding 5% v/v 648 

DMSO. Subsequently, the artificial neural network modelling of the methanol induction phase, 649 

accomplished by tailoring the temperature, DMSO concentration and methanol constant flow-650 

rate allowed an improvement of 1.53 fold in the enzyme activity over the best conditions 651 
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performed in the DoE step (Pedro et al 2015). In addition, the direct solubilization of MP whole 652 

cells (yeasts protoplasts) may help to decrease the amount of misfolded and/or aggregated 653 

proteins that are co-extracted with the properly folded protein (Hartmann et al 2017). 654 

 655 

 656 

 657 

 1.2.3. Mammalian cell lines 658 

General approaches and factors for successful optimization of mammalian-based 659 

systems for recombinant protein production have been reviewed elsewhere (Andréll and Tate 660 

2013; Almo and Love 2014; Hacker and Balasubramanian 2016; McKenzie 2018). In this sub-661 

section, we will generally focus our attention in strategies that have been proved to be 662 

particularly useful for MP, foreseeing improved expression and/or folding and also those 663 

enabling biochemical and functional studies of these relevant drug targets (summarized in Table 664 

S3). 665 

Distinct mammalian cell lines have been applied for MP production such as HEK293, 666 

baby hamster kidney cells (BHK-21), monkey kidney fibroblast cells (COS-7) and CHO 667 

(Andréll and Tate 2013), but HEK293 and CHO are more commonly applied, either in transient 668 

or stable transfection (Lyons et al 2016).  669 

The levels of expression of MP in transiently transfected mammalian cell lines are 670 

affected by the plasmid size, the amount of plasmid used per transfection, the strength of the 671 

promoter, the cell type, the efficiency of the transfection and potentially the toxicity of the 672 

transfection reagent (Andréll and Tate 2013). Using design of experiments, Bollin et al (2011) 673 

optimized the yields of an antibody resorting to transient gene expression and found that the 674 

DNA concentration can be maintained at relatively low concentrations (1 mg/L range). Indeed, 675 

envisaging functional expression of a MP in the plasma membrane, the ratio of plasmid DNA 676 

added per reaction can be a crucial factor (particularly if a strong promoter is used), once too 677 

much plasmid can lead to intracellular accumulation of the protein and potentially misfolded 678 

(Andréll and Tate 2013). Both CHO and HEK cell lines have been extensively used in transient 679 

transfection, advances in serum free media formulations allow their growth to high-cell 680 

densities, which can greatly facilitate the purification of target proteins (Almo and Love 2014; 681 

McKenzie et al 2018). An alternative approach increasingly applied as a gene delivery 682 

methodology for protein production is based on the use of lentivirus, owing to their ability to 683 

transduce a broad range of cell types (Bandaranayake and Almo 2014). Aiming to combine the 684 

ease and speed of transient transfection with the robust expression of stable cell lines, Elegheert 685 

et al (2018) constructed a lentiviral plasmid suite around the transfer plasmid pHR-CMV-TetO2 686 

that is designed for large-scale protein expression from HEK293 cell lines and allows 687 
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subcloning of cDNA from the plasmid PHLsec usually applied for transient transfection. This 688 

approach was tested in both soluble and MP, and in general, the typical lead time for protein 689 

production using this strategy is of 3-4 weeks and approximately three- to tenfold improvement 690 

in protein production yield per cell was obtained, in comparison with transient transfection 691 

(Elegheert et al 2018). 692 

Unlike transient transfection, stable gene expression requires the screening of clonal cell 693 

lines, which is typically achieved through limited dilution involving serial dilution of recently 694 

transfected cells and seeding on tissue culture plates with antibiotic-resistance media. 695 

Subsequently, different colonies are individually transferred to 24-well plates and scaled-up 696 

(Andréll and Tate 2013). For a review of selection methodologies, please refer to Browne and 697 

Al-Rubeai (2007).  698 

Along the years, aiming to easily ascertain the quality and level of expression of target 699 

MP, methodologies resorting to GFP fusions have been reported. Particularly, the expression of 700 

GFP fused to the termini of MP have been applied to directly monitor in whole cells for their 701 

subcellular locations by fluorescence microscopy (Goehring et al 2014). A slightly different 702 

approach was reported by Mancia et al (2004), where the production of the target MP and GFP 703 

is based on a bicistronic mRNA, thus leading to the production of two separate proteins wherein 704 

the high-yielding clones are selected based on a fluorescence-activated cell sorting procedure. 705 

Given the relevance of MP as drug targets for a variety of human diseases, advances in 706 

mammalian cell-based systems have allowed performing functional studies that otherwise could 707 

be highly hampered. Baculovirus mediated gene transduction of mammalian cells (BacMam) 708 

has been widely used due to its compatibility with a variety of mammalian cell lines and the 709 

possibility of co-infecting with multiple BacMam viruses to express protein complexes (Lyons 710 

et al 2014). Shukla et al (2012) exploited this strategy towards the development of a transient 711 

expression system for co-expression of two drug transporters (ABCB1 – P-glycoprotein – and 712 

ABCG2) in mammalian cells, which is useful to determine their contribution to the transport of 713 

a common anticancer drug substrate. Moreover, both transporters were functionally active when 714 

co-expressed (Shuka et al 2012). A distinct approach involves the codon-optimization of the 715 

sequence of the human sodium/iodide symporter (NIS) based on the highest usage frequencies 716 

in humans, while RNA instability motifs, very high (>80%) or very low (<30%) GC content 717 

regions and cis-acting motifs were also removed (Kim et al 2015). As a result, the CAI was 718 

highly improved (0.79 vs 0.97 for wild-type and optimized sequences) and from transfected 719 

cancer cells, it was found that the levels of NIS were enhanced as well as the radioiodine 720 

uptake. These results show the importance of codon usage optimizations in the development of 721 

more efficient reporters and efficient therapeutic genes, distinct goals than improving MP 722 

heterologous expression (Kim et al 2015). 723 
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To facilitate MP production for structural analysis relies on the use of HEK293S GnTI- 724 

(lacking the gene N-acetylglucosaminyl transferase I - GnTI-) and a tetracycline-inducible 725 

promoter (Chaudhary et al 2012). If on one hand, the lack of GnTI restricts N-linked glycans to 726 

a homogeneous Man5-GlcNac2, since N-linked glycosylation is often regarded as a barrier 727 

toward structure determination via X-ray crystallography due to the heterogeneity and 728 

conformational flexibility of these glycans, the inducible promoter allows the establishment of 729 

high-density cell cultures which are not always achieved if the target protein tends to be 730 

cytotoxic (Chaudhary et al 2012). Alternative approaches have been suggested to overcome 731 

toxicity issues associated with MP overexpression. Ohsfelt et al (2012) designed an anti-732 

apoptosis strategy involving co-expression of Bcl-xL gene (encodes for an anti-apoptotic 733 

protein) aiming to prevent cell death by bioreactor stresses, nutrient depletion, toxin 734 

accumulation, and stresses due to folding and processing requirements for complex proteins 735 

such as MP. The authors observed that cell death are diminished due to the co-expression of the 736 

anti-apoptotic gene and transient production of two different receptors were improved (Ohsfeldt 737 

et al 2012).  738 

 739 
1.3. Protein Quality Control: 740 

 The purity and integrity of purified protein samples are usually evaluated by 741 

electrophoresis (native or denaturant) coupled with detection methods with varying sensitivities 742 

(Oliveira and Domingues et al 2018; Raynal et al 2014). On the other hand, isoelectric focusing 743 

and capillary electrophoresis have also been used to distinguish the protein of interest from 744 

closely related undesired subproducts or contaminants (Raynal et al 2014), while UV-Visible 745 

spectroscopy is useful to detect nucleic acid contamination (Oliveira and Domingues et al 746 

2018).  747 

Mass spectrometry (MS) has been widely applied to measure molecular weights of 748 

proteins while allowing protein identification by peptide mass fingerprinting (PMF) and based 749 

on MS/MS spectra (Zhang et al 2010). By detecting mass changes introduced by post-750 

translational modifications, MS can also be used analyze these modifications (Zhang et al 751 

2010). MS-compatible detection methods enable MS analysis after electrophoresis (Raynal et al 752 

2014). Despite such analysis are usually performed after purification, Gan et al (2017) reported 753 

a native MS approach that allows the characterization of overexpressed recombinant proteins 754 

directly in crude E. coli lysates, allowing obtaining information on its identity, solubility, 755 

oligomeric state, overall structure and stability without purification. Cells were lysed in a buffer 756 

supplemented with 1M ammonium acetate to ensure compatibility with MS. Spectra were 757 

acquired for distinct proteins with molecular weights ranging from 19 to 47 kDa, and revealed 758 

highly resolved peaks, narrow charge state distributions and the anticipated stoichiometry, 759 
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thereby confirming that at least for these proteins, purification is not a prerequisite (Gan et al 760 

2017). 761 

In addition to the integrity and purity of the protein sample, homogeneity is also crucial 762 

to infer on the correct oligomeric structure of the protein. Dynamic light scattering (DLS) and 763 

more accurately analytical size exclusion chromatography (SEC) are useful to these 764 

determinations (Oliveira and Domingues et al 2018; Raynal et al 2014). In quality control 765 

methodologies, studying the secondary and tertiary structure of proteins is important to infer 766 

about their folding and monitor protein conformational changes. A range of spectroscopic 767 

techniques have been developed for such task, being circular dichroism particularly useful to 768 

determine the secondary structures and folding properties of recombinant proteins (Oliveira and 769 

Domingues et al 2018). Based on several generic or protein-specific functional assays which 770 

depend upon catalytic and binding properties of the protein of interest, it is also important to 771 

determine the activity of the target protein samples (Raynal et al 2014). Additional details of 772 

distinct analytical methods used for the characterization of therapeutic proteins including 773 

advantages and drawbacks as well as the type of information delivered from each technique can 774 

be found in the recent review by Fuh et al (2016).  775 

 776 

1.4. Insights for better decision-making processes in the upstream stage of 777 

membrane proteins: 778 

In this review, we addressed the first stage and, more specifically their (bio)synthesis by 779 

recombinant production processes. E. coli, P. pastoris and mammalian cell lines were selected, 780 

given their wide applicability and to cover hosts with different inherent complexities. Based on 781 

the information here reviewed, general insights to understand which host may better fit in a 782 

specific project are presented in the next paragraphs and summarized in Table 2 and Figure 2. E. 783 

coli is probably the better characterized host for which there are many genetic tools available. It 784 

is more suitable for low molecular weight MP and is capable to grow easily to high-cell 785 

densities at a relatively low cost. Unlike E. coli, and mammalian cell lines allow the production 786 

of larger MP and protein complexes with proper PTM including glycosylation patterns, 787 

although in this regard the performance of mammalian cell lines is best. However, obtaining 788 

recombinant proteins which better resemble their native counterparts comes with a cost and 789 

these systems are more technically challenging and this process can be lengthy. The 790 

methylotrophic P. pastoris gathers characteristics from both prokaryotic and the other higher 791 

eukaryotic hosts. Particularly, direct and indirect evidences point out the importance of P. 792 

pastoris host membranes wherein the type of lipids can influence the expression yields and 793 

overall folding of heterologous human MP while inducing membrane proliferation (HAC1 794 

overexpression and possibly the use of DMSO as an additive in culture media). The 795 
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identification of genes limiting MP overexpression resorting systems biology approaches based 796 

on -omics approaches may present additional contributions to improve recombinant MP 797 

production processes in P. pastoris. 798 

Aiming to overcome the cellular burden caused by MP overexpression, researchers have 799 

been driving their efforts towards the isolation and/or engineering of host cells, which have 800 

proven to be efficient in many cases. In addition, codon usage optimizations have been shown to 801 

be an effective strategy towards the improvement of MP expression but researchers should be 802 

aware that synonymous mutations can affect protein function. The application of fusion partners 803 

is helpful to increase MP solubility or to easily detect their expression levels and the advent of 804 

transcriptional fusions show that particularly for solubility-enhancing tags, it seems that a 805 

physical linkage between target MP and fusion may not be necessary for the desired effect, thus 806 

simplifying the overall process. 807 

Overall, the increasing understanding of MP biogenesis and the host physiological 808 

response to MP recombinant production has allowed important advances in this field. However, 809 

while it remains difficult to set general rules for a successful MP production process, the 810 

information gathered in this review can help researchers with their own MP targets. 811 
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Tables:  

Table 1 - Major advantages, limitations and general characteristics of recombinant membrane protein expression systems. 

Host Advantages Drawbacks Other characteristics References 

Escherichia coli 
Gram-negative bacterium 

Inexpensive; Rapid generation of expression 

plasmids; Fast growth; Easy scale up; Simple 

culture requirements. 

Endotoxin; Inclusion body formation; Inefficient 
protein secretion; Many MP do not fold properly; 

Lack of efficient PTM; Unable to efficiently 

express proteins larger than 120 kDa. 

Specific strains (e.g. Lemo21) or introduction of solubility tags 
may improve MP expression. Inner membrane and the inner leaflet 

of the outer membrane are mainly composed by 

phosphatidylethanolamine followed by phosphatidylglycerol and 
few cardiolipin and the outer leaflet of the outer membrane is 

highly enriched in Lipopolysaccharide. 

(Bernaudat et al 2011; 

Midgett et al 2007;  

McMorran et al 2014;  
Fernández and Vega, 2016) 

Pichia pastoris 
Methylotrophic yeast; GRAS 

organism 

Efficient protein secretion with low levels of 

endogenous proteins. Capable of performing 
many PTM; Low cost of culture media; 

Industry-scale fermentation. 

Glycosylation pattern different from mammalian; 

Intracellular recovery of large amount of cells 
may require specific equipment (French-press); 

High oxygen demand. 

Improved glyco-engineered strains obtained using the 

GlycoSwitch® technology; Wide range of genetic tools, plasmids, 
strains and promoters available; The preference for the respiratory 

growth allow to be cultivated at high cell densities. Plasma 

membrane composed of phospholipids, sterols (ergosterol) and 
sphingolipids (inositol). 

(Gonçalves et al 2013;  
Laukens et al 2015;  

Marredy et al 2011;  

Pedro et al 2015) 

Insect cells 
Baculovirus-infected cells 

More native environment than yeast; More 

compatible with eukaryotic MP because of 
similar codon usage rules than E. coli or P. 

pastoris; Well-established protocols; Good 

secretion. 

Cost; Non-native glycosylation and lipid 

environment; Cell lysis; Some of the PTM are 

not identical to those found in mammalian; Long 
production time; Relative high media costs. 

Used for MP expression as a compromise between bacterial and 
mammalian systems. Viral infection promote cell lysis and may 

lead to proteolysis of target protein. 

(Bernaudat et al 2013;  

Midgett et al 2007) 

Mammalian cells 
Stable integration and transient 

transfection 

Proper folding; Stable/transient folding;Native 
lipid environment and post-translational 

pathways. 

High media costs; Slow growth rates; Low 
expression; Viral infection; Cost; Higher 

technical requirements. 

For particular targets, may be the only expression system able to 

express a given MP in a functional and properly folded state. 

Cholesterol present in membranes may be essential for the 
functionality of certain MP. 

(Midgett et al 2007;  

Andréll et al 2013) 

Cell-Free expression 

Short time reaction; Manipulation of reaction 

conditions allow to control conveniently the 

PTM; Plasmid or DNA can be directly used for 
protein expression; Special proteins can be 

expressed with a composition of non-natural 

amino acids. 

High costs, Low protein production rates; 

Insufficiency of PTM is a bottleneck to obtain 

complex proteins in a functional form. 

May be based in prokaryotic or eukaryotic CF systems; MP may 

be produced co-translationally in artificial membrane 

environments. 

(Rajesh et al 2011;  

Proverbio et al 2013;  

Zheng et al 2014) 
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Table 2 – Critical assessment of major parameters affecting the upstream stage of recombinant MP structural biology projects for a good decision-making process. 

Parameter Escherichia coli Pichia pastoris 

Mammalian cell lines 
Baculovirus-infected Insect 

cells 
Transiently 

transfected 
Stable clones 

Gene Dosage 

Preference: Plasmid-based 

system with medium – high 

PCN 

Mixed results, screening is advisable; 

higher gene dosage can increase yield 
                  Usually favored by high gene dosage MOI affects expression yields 

Codon optimization Advisable testing for heterologous targets; “harmonized” codons often leads to outstanding improvements 

Cost Very low                       Low Very high       High 

Ease of manipulation/Labor intensive High/Low                    High/Low Low/High Low/Very High        Low/High 

Scalability Very Good                   Very Good                               Moderate        Moderate 

Timescale Days                       Week Days/Week Lengthy (Months)        Weeks 

Membrane 

Protein features 

Glycosylation Low/Absent                       High1                               Very High              High 

Other PTM Bad                       Good             Very Good                  Good 

Lipid composition Bad                    Good2                                                              Very Good                                   Good 

Specific organelles 

requirements (e.g. 

mitochondria) 

Bad                Bad                                                            Good                          Good 

Molecular Weight Limited               Good                                                           Good                                               Good 

Protein productivity Good                  Very Good                                                          Bad                       Bad 

Observations 
The source from which more 

MP structures were solved3 

Viable alternative to mammalian and 

insect cells for obtaining low cost and 

high yield of MP 

The most complete for human MP expression, 

greatly exemplified by SERT4 

Applied as a compromise between bacteria 

and mammalian cell lines 

Legend: − 1Using the GlycoSwitch® technology (Laukens et al 2015); 2Humanized pathway (Hirz et al 2013); 3Pandey et al 2016; 4Andréll et al 2013. 
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Figures: 

 

Figure 1 – Overview of the topics included in this review amenable to optimization and, thus, relevant for 

obtaining a successful strategy for recombinant MP biosynthesis. 

 

 

Figure 2 – Schematic diagram of MP structure determination pipeline focusing relevant parameters to 

optimize their upstream stage and techniques used to protein quality control. 


