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Abstract

The intertidal snail Nucella lapillus generally has thicker shells at sites sheltered from wave action, where crabs are abundant
and pose a high risk of predation, than at exposed sites where crabs are rare. We studied two populations showing the
opposite trend. We reciprocally transplanted snails between field sites and measured shell length, width and lip thickness of
those recaptured 12 months later. Snails transplanted to the sheltered site grew larger than sheltered-site residents, which
in turn grew larger than transplants to the exposed site. Relative shell-lip thickness was greater in residents at the exposed
site than at the sheltered site. Transplants from shelter to exposure developed relatively thicker shells than their controls
and relatively thinner shells from exposure to shelter. Progeny of the two populations were reared for 12 months in a
common garden experiment presenting effluent from crabs feeding on broken conspecifics as the treatment and fresh sea-
water as the control. The crab-effluent treatment decreased foraging activity, concomitantly reducing cumulative somatic
growth and reproductive output. Juveniles receiving crab-effluent grew slower in shell length while developing relatively
thicker shell lips than controls, the level of response being similar between lineages. F2 progeny of the exposed-site lineage
showed similar trends to the F1s; sheltered-site F2s were too few for statistical analysis. At sexual maturity, shell-lip thickness
was greater in snails receiving crab-effluent than in controls, indicating plasticity, but was also greater in the exposed-site
than in the sheltered-site lineage, indicating heritable variation, probably in degree of sexual thickening of the shell lip.
Results corroborate hypotheses that ‘defensive’ shell thickening is a passive consequence of starvation and that heritable
and plastic control of defensive shell morphology act synergistically. Shell thickening of juveniles was similar between
lineages, contrary to hypotheses predicting differential strengths of plasticity in populations from low- or high-risk habitats.
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Introduction

It is widely reported that certain rocky shore gastropods develop

thicker-walled shells at sites sheltered from wave action, where

crabs are often abundant and pose a high risk of predation, than at

exposed sites where crabs tend to be scarce (e.g. [1–3]). Shell-wall

thickness, often measured at the aperture lip (e.g. [4]), has been

experimentally demonstrated to increase in response to olfactory

cues associated with risk of crab predation [5–7] possibly directly

[8,9], or indirectly through starvation resulting from inhibited

foraging [10,11]. Not only shell-wall thickness but also shell shape

is known to influence vulnerability to crab predation [1,12–15].

Whereas in some cases resistance to crab attack is gained by

reduced aperture area, often correlated with narrowing of the

aperture and elongation of the shell spiral [1,8,12,13,15–18], in

other cases resistance is increased by globosity that hinders grip on

the shell-body whorl [19,20]. Because crabs tend to be more

numerous at sites sheltered from wave action, or forage

throughout the longer periods of tidal immersion at lower shore

levels, defensive shell morphology tends to be more pronounced in

such environments. At sites exposed to wave action or at higher

shore levels, adaptive shell morphology increases resistance to

dislodgement or to physiological stressors while trading-off

defensive attributes [1,3,15]. Shell morphology has been shown

to be under both heritable and plastic control, which may act

synergistically [17,18,20,21]. In some cases, induced defensive

shell morphology is more pronounced in populations from crab-

infested habitats than in those from crab-free habitats [21], but the

opposite may be true of other cases [8]. Furthermore in certain

taxa, sexual maturation may involve thickening of the aperture lip

[22], confounded with any relationship between risk of crab

predation and lip thickness of the adult shell. Evidently, the

induction of defensive shell morphology involves a complex of

factors requiring investigation over a range of populations within

and among taxa in order to reach better understanding.
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Accordingly, we combined a reciprocal transplant experiment

in the field with common garden experiments deploying labora-

tory-hatched progeny to examine plastic and heritable compo-

nents of variation in shell morphology in two populations of Nucella

lapillus (L.) that contravene the general trend by having thicker

shells at a site exposed to heavy wave action and free of crabs than

at a more sheltered site infested with crabs. In contrast to shell

thickness, shell shape in the two populations follows the normal

trend for N. lapillus in which shells at exposed sites have relatively

shorter spires and larger, wider apertures than shells at sheltered

sites.

The reciprocal transplant and common garden experiments

were designed to examine the roles of inheritance and plasticity on

adaptive shell morphology and to yield samples for studying

associated gene expression. Because of the large volume of data,

effects of reciprocal transplantation and common garden condi-

tions lacking wave action or crab-effluent on shell shape are

presented elsewhere [18]. Here, we examine the effects of crab-

effluent, presumed to signal predation risk, on thickness and shape

of the shell. While focussing on the common garden experiment,

we also present data on shell thickness from the reciprocal

transplant experiment to aid interpretation of results.

Materials and Methods

Source populations of N. lapillus were obtained from two sites in

North Wales, U.K. (for a map see Pascoal et al. [18]). One site,

Cable Bay (53u 18.3579 N, 04u 08.2939 W) is exposed to strong

wave action generated by prevailing south-westerly winds from the

Southwestern Approaches and across the Irish Sea, while the

other, Llanfairfechan (53u 15.4569 N, 03u 58.0859 W), is sheltered

in the lee of the prevailing winds. Adults were collected in

February 2008 and maintained in site-dedicated 126-litre aquaria

supplied with running seawater closely tracking ambient outdoor

temperature. Barnacles were supplied as prey and replenished as

needed. Spawning aggregations were formed and egg masses

deposited on the walls of the aquaria. Once hatched juveniles (F1s)

had grown to a shell length of 8–12 mm (August 2008), they were

colour-coded with a waterproof pen according to lineage (exposed

or sheltered).

Reciprocal transplant experiment
Procedural details are given in Pascoal et al. [18]. Briefly,

juveniles 8–12 mm in shell length were labelled with a waterproof

pen according to provenance (exposed or sheltered site) and

treatment (transplant or control). In August 2008, snails were

transplanted from the exposed- to the sheltered-site and vice versa

while control snails were replanted at their native sites. In

September 2009 marked individuals were collected, photographed

and retained in the laboratory. tpsDig [23,24] was used to place

landmarks on photographic images (Fig. 1) and MODICOS [25]

was used to derive absolute measures of length and width (Fig. 1).

Shell-lip thickness was measured to 0.01 mm using digital callipers

at three points along the lip-margin while avoiding any labial teeth

[4].

Common garden experiment
A ‘control garden’ and a ‘treatment garden’, each with two

replicates, were established in four 25-litre aquaria. The control

garden presented an artificial environment lacking most natural

characteristics including the effects of wave exposure typical of the

exposed field site and of crab predation characterizing the

sheltered field site. The treatment garden presented an olfactory

cue signaling risk of crab predation. Seawater was supplied via two

constant-head cisterns at a rate of 3 ml s21with permanent

aeration supplied from air-diffusion stones. Ambient temperature

fluctuated seasonally between 8–16uC. Twenty-five F1s of

sheltered site ancestry and 90 of exposed site ancestry were

allocated per tank (fewer juveniles of sheltered site ancestry were

obtained from the brood stock, causing imbalance in numbers per

treatment). After allowing snails to acclimatize for 1 wk, two tanks

were left unchanged as controls and two were supplied with water-

borne olfactory cues assumed to be perceived by N. lapillus as risk

of crab predation [26]. To generate the olfactory cues, four

Carcinus maenas, carapace width 8–12 cm, collected from the Menai

Strait, were placed in the 25-litre cistern supplying the treatment-

tanks and fed cracked adult N. lapillus. Crabs that died were

replaced within 48 h. Tanks were spatially transposed at monthly

intervals to avoid incidental position effects. Barnacles attached to

stones were renewed as needed to maintain an unlimited supply of

food for the N. lapillus in each tank.

At 6 months and again at 12 months from the beginning of the

experiment, snails were photographed and their shell-lip thickness

measured as above. Shell length and width were measured using

tpsDig and MODICOS software, as above.

At 12 months, tissue and shell mass were measured (60.0001 g)

after breaking the shell, extracting the tissue and drying for 24 h at

Figure 1. Shell shape of Nucella lapillus: position of landmarks.
A) Shell shape a) shell collected from the site relatively sheltered from
wave action, b) shell collected from the site exposed to strong wave
action; shell length was represented by distance between landmarks1
and 11, shell width between landmarks 4 and 6, aperture external
length between landmarks 5 and 11, aperture external width between
landmarks 7 and 8, aperture internal length between landmarks 13 and
18, aperture internal width between landmarks 14 and 15; B) aperture
shape a) external aperture, b) internal aperture.
doi:10.1371/journal.pone.0052134.g001
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80uC. This procedure could be applied only to snails of exposed-

site ancestry, as destructive sampling for a parallel study had

depleted the sheltered-site lineage.

The F1 generation fortuitously laid eggs in all tanks. Hatchlings

(F2s) were grown for 10 months, then genetically assigned to

exposed- or sheltered-site ancestry (for details see Pascoal et al.

[18]) and subjected to measurement as above. Again, tissue and

shell mass were measured only for the exposed-site lineage, as too

few snails of sheltered-site ancestry were represented by the F2

generation.

Statistical analysis
Mean shell-lip thickness, shell mass and tissue mass were

adjusted to appropriate covariates by ANCOVA of log10-

transformed data. Heterogeneity of slopes was always non-

significant (Treatment*Covariate P.0.05) and comparison of

adjusted means was based on models lacking the interaction term.

Shape of the shell and of the external and internal rims of the

aperture was quantified by using tpsRelwto generate relative

warps. After confirming their independence of centroid size, scores

on the first three relative warps were subjected to MANOVA

(SPSS 11.3). To aid interpretation of relative warp analysis, width

adjusted to length was compared among treatments by ANCOVA

of log10-transformed data.

Permissions
No specific permits were required for the described field studies,

which took place on shores with public right-of-way and did not

involve endangered or protected species. The location is not

privately-owned or protected in any way.

Results

Reciprocal transplant experiment
Statistical comparison of mean log(shell-lip thickness) adjusted

to the geometric mean of shell length and width, hereafter referred

to as shell size, between transplants and controls within lineages

was invalidated by disparate covariate values (Fig. 2); other

comparisons were unaffected. Relative shell-lip thickness was

similar between snails transplanted to the sheltered site and those

transplanted to the exposed site, greater in controls remaining at

the exposed site than in transplants to the exposed site, but less in

controls remaining at the sheltered site than transplants to the

sheltered site (ANCOVA: Levene’s test, P = 0.395, Bonferroni-

corrected post-hoc comparisons P,0.001, except ST v. EC,

P = 0.006 and ET v. ST, P.0.999. Back-transformed means with

standard errors: ET = 2.1560.06 mm, EC = 2.6760.08 mm, ST

= 2.1260.14 mm, SC = 1.3660.03 mm, adjusted to shell size

17.03 mm).

Unadjusted mean log(shell-lip thickness) was similar between

controls and transplants within each lineage (ANOVA, Levene’s

test, P = 0.670, Bonferroni-corrected post-hoc comparisons: ET v.

EC, P.0.999, ST v. SC, P = 0.319, all other comparisons

P,0.001).

Common garden experiment
Foraging behaviour and reproductive output. Within 12h

of exposure to crab-effluent, snails tended to crawl up the sides of

the tanks and were less frequently seen than controls among stones

bearing the food supply of barnacles. Snails receiving crab-effluent

produced fewer egg capsules than controls (means and standard

errors: crab-effluent 5468.0, control 247.5627.5; t = 6.75,

P = 0.021), but there was no difference in the size of egg capsules

produced (crab-effluent 6.760.2 mm, control 7.160.1 mm,

t = 1.56, P = 0.126) or in the number of eggs per capsule (crab-

effluent 14.463.7; control 12.161.9; t = 1.90, P = 0.198).

Growth in shell length. At 6 months from the beginning of

the experiment (F1 generation) mean shell length was ranked

higher in controls than in snails receiving crab-effluent (Fig. 3), but

the contrast was statistically significant only for sheltered-site snails

(ANOVA, Levene’s test, P = 0.029, Treatment F3,33 = 2.159,

P = 0.112, planned comparisons ST v. SC, P = 0.132; ET v. EC,

P = 0.051). At 12 months from the beginning of the experiment,

mean shell length was not significantly different among categories

(Fig. 3, ANOVA, Levene’s test, P = 0.132, Treatment

F3,109 = 0.909, P = 0.439), whereas in the F2 generation (exposed-

site only) mean shell length was greater for control than for

treatment snails (treatment 19.160.5 mm, control 17.860.4 mm,

t = 2.079, P = 0.043).

Growth in shell and tissue mass of exposed-site

snails. Log(shell mass) adjusted to log(tissue mass) was greater

in snails exposed to crab-effluent than in controls, but within those

categories there was no difference between generations (Fig. 4A,

Table 1). Log(tissue mass) adjusted to log(shell length) of snails

exposed to crab-effluent was less than that of controls and within

both of those categories was less in F2 than in F1 snails (Fig. 4B,

Table 1).

Shell-lip thickness. At 6 months from the beginning of the

experiment, log(shell-lip thickness) adjusted to shell size was

greater in snails receiving crab-effluent than in controls, but within

those categories there was no difference between lineages (Fig. 5A,

Table 2). At 12 months from the beginning of the experiment

(Fig. 5B, Table 3), shell-lip thickness was greater by 85.4% in

exposed-site snails experimentally exposed to crab-effluent than in

controls and by 48.7% in sheltered-site snails. Control shells of

both lineages had thinner shell lips than samples taken from the

field at the end of the experiment, the difference being much more

pronounced in the exposed-site lineage. Shell-lip thickness of snails

receiving crab-effluent exceeded that of field samples in both

lineages.

Figure 2. Thickness of the shell lip after 12 months growth in
the field, plotted as a function of shell size (geometric mean of
width and length). ET = exposed-site snails transplanted to the
sheltered site (n = 46), EC = exposed-site snails replanted at the
exposed site (n = 36), ST = sheltered-site snails transplanted to the
exposed site (n = 7), SC = sheltered-site snails replanted at the
sheltered site (n = 56).
doi:10.1371/journal.pone.0052134.g002
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Shell morphology. Shape of the shell Mean scores on RW3

differed between treatment and control snails of exposed-site

ancestry, all other comparisons being statistically non-significant

(Fig. 6, Table 4). Relative width (ANCOVA) was greater in shells

of exposed-site snails receiving crab-effluent than in controls, but

there was no difference between treatment and control shells of

sheltered-site snails (Table 5).

Shape of the aperture external rim Mean scores on RW1 and RW3

differed between treatment and control snails of exposed-site

ancestry, but not of sheltered-site ancestry (Table 4). Relative

width (ANCOVA) was not influenced by treatment (Table 5).

Shape of the aperture-internal rim Mean scores on RW1 and RW3

differed between treatment and control snails of exposed-site

ancestry, but no other comparisons were statistically significant

(Table 4). Relative width (ANCOVA) in exposed-site snails

receiving crab-effluent was less than that of controls, but the

qualitatively similar contrast in sheltered-site snails was statistically

non-significant (Table 5).

Discussion

Reciprocal transplant experiment
Shells of incoming transplants reached a comparable size to

shells of resident controls, becoming larger at the sheltered than at

the exposed site in accordance with expected foraging opportunity

[18]. Correspondingly, transplants from the exposed to the

sheltered site grew larger shells than controls remaining at the

Figure 3. Common garden experiment: Shell length of F1 snails
after 6 and 12 months growth. ET = snails of exposed-site ancestry
subjected to crab-effluent (6 mo, N = 13; 12 mo, N = 38), EC = control
snails of exposed-site ancestry (6 mo, N = 14; 12 mo, N = 51), ST = snails
of sheltered-site ancestry subjected to crab-predation odour (6 mo,
N = 4; 12 mo, N = 8), SC = control snails of sheltered-site ancestry (6 mo,
N = 6; 12 mo, N = 16).
doi:10.1371/journal.pone.0052134.g003

Figure 4. Common garden experiment, exposed-site snails at 12 months from the beginning of the experiment. (A) shell mass plotted
as a function of dry tissue mass. (B) tissue mass plotted as a function of shell length. F1T = F1 snails subjected to crab-effluent (n = 29), F1C = F1

control snails (n = 41), F2T = F2 snails subjected to crab-effluent (n = 23), F2C = F2 control snails (n = 25).
doi:10.1371/journal.pone.0052134.g004

Table 1. Shell and tissue mass at 12 months from the
beginning of the experiment.

Shell F1C F2T F2C Mean (g)

F1T ,0.001 0.130 ,0.001 2.244 +0.094
20.091

F1C ,0.001 0.070 0.933 +0.042
20.041

F2T ,0.001 1.892 +0.108
20.102

F2C 0.767 +0.040
20.038

Tissue F1C F2T F2C

F1T ,0.001 ,0.001 ..0999 0.128 +0.007
20.006

F1C ,0.001 ,0.001 0.194 +0.008
20.008

F2T ,0.001 0.088 +0.005
20.005

F2C 0.125 +0.008
20.007

Log(shell mass) adjusted to log(dry tissue mass): ANCOVA, Levene’s test,
P = 0.934, means adjusted to back-transformed covariate value of 0.137 g.
Log(tissue mass) adjusted to log(shell length): ANCOVA, Levene’s test, P = 0.775,
means adjusted to back-transformed covariate value of 20.0 mm. Probabilities
for Bonferroni-corrected post-hoc comparisons and back-transformed adjusted
means and standard errors are tabulated. F1T = snails of the F1 generation
receiving the crab-effluent treatment, F1C = F1 controls, F2T = snails of the F2

generation receiving the crab-effluent treatment, F2C = F2 controls.
doi:10.1371/journal.pone.0052134.t001
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exposed site and transplants from the sheltered to the exposed site

grew smaller shells than controls remaining at the sheltered site.

Transplants from the exposed to the sheltered site developed

markedly thicker shell-lips, adjusted for size, than controls resident

at the sheltered site, whereas transplants from the sheltered to the

exposed site developed thicker shell lips than controls remaining at

the sheltered site but not as thick as controls resident at the

exposed site. Differences in size-range invalidated statistical

comparison of adjusted means between transplants and controls

within lineages. Nevertheless it is clear from Fig. 2 that although

within each lineage transplants and controls grew to different sizes,

they attained similar shell-lip thickness. Such trait-constancy is

potentially explicable by heritable control of variation, compen-

satory plasticity, or both.

Common garden experiment
Risk of crab-predation perceived via water-borne cues partially

inhibited foraging, with consequent reduction in tissue growth

(Fig. 4B) and reproductive output. While fewer egg capsules were

produced under risk of crab predation, the size of the capsules and

the number of eggs they contained remained unaffected,

suggesting that reduction in fitness caused by predation risk

involves the quantity rather than quality of progeny, as might be

expected if the response is simply a result of starvation.

Reduction in linear shell growth was evident at 6 months from

the beginning of the experiment, but not at 12 months when shell

length had approached an asymptote common to all groups

(Fig. 3). Except for the lack of a treatment effect on asymptotic

shell length, the above results corroborate previous studies

demonstrating the negative influence of perceived risk of crab

predation on growth and reproduction [5,8,11,27]. Faster growing

snails would approach asymptote relatively early, allowing others

to catch up toward the end of the experiment, obscuring the

earlier effect of starvation on growth in shell length. The common

asymptote indicates a lack of heritable variation in shell length and

implies that the smaller mean length of exposed-compared with

sheltered-site controls recorded in the reciprocal transplant

Figure 5. Common garden experiment: shell-lip thickness plotted as a function of shell size (geometric mean of length and width),
(A) at 6 months from the beginning of the experiment, (B) at 12 months. EF = exposed-site controls snails (n = 36), SF = sheltered-site
control snails (n = 56), other symbols and sample sizes as in Fig. 2.
doi:10.1371/journal.pone.0052134.g005

Table 2. Shell-lip thickness at 6 months.

Category EC ST SC

ET ,0.001 0.637 ,0.001

EC ,0.001 0.675

ST ,0.001

ANCOVA was used to adjust log(shell-lip thickness) to size expressed as the
geometric mean of length and width of the shell. Probabilities for Bonferroni-
corrected post-hoc comparisons are tabulated. Levene’s test, P = 0.038. Back-
transformed means (adjusted to shell size 14.5 mm) and standard errors:
ET 1.95 +0.08

20.08 mm, EC 0.911 +0.04
20.11 mm, ST 1.72 +0.12

20.11 mm,
SC 0.82 +0.05

20.05 mm. Labels are as in Table 1.
doi:10.1371/journal.pone.0052134.t002

Table 3. Shell-lip thickness at 12 months.

Category ET EC SF ST SC

EF 0.057 ,0.001 ,0.001 ,0.001 ,0.001

ET ,0.001 ,0.001 ,0.001 ,0.001

EC ,0.001 .0.999 ,0.001

SF ,0.001 0.014

ST ,0.001

ANCOVA as in Table 4, Levene’s test, P = 0.007. Back-transformed means
(adjusted to shell size 16.4 mm) and standard errors: EF 2.64 +0.08

20.08 mm,
ET 2.96 +0.09

20.09 mm, EC 1.59 +0.03
20.03 mm, SF 1.29 +0.03

20.03 mm, ST 1.65
+0.10

20.09 mm, SC 1.11 +0.04
20.04 mm. EF = exposed-site field sample, SF =

sheltered-site field sample.
doi:10.1371/journal.pone.0052134.t003
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experiment was environmentally induced, probably through

constrained foraging opportunity [28].

Relative shell-lip thickness of juveniles at 6 months was

markedly greater in snails receiving crab-effluent than in controls.

Such an early ontogenetic response will be especially effective in

promote fitness because vulnerability to crab predation falls most

heavily upon juveniles whose shells have not yet reached a size-

refuge from predation [12]. Magnitude of response was similar

between lineages, with no evidence of heritable trait-variation

during the juvenile phase of development. As shape was only

slightly affected by predation risk in our experiment (see below),

shell mass standardized to length serves as a reliable index of

overall shell thickness, which again was markedly increased by

exposure to crab-effluent. Shell mass standardized to tissue mass

has been used as an index of resource allocation to defense [8].

Exposure to crab-effluent caused a marked increase in shell mass

per unit tissue mass in both F1 and F2 generations of exposed-site

snails (there were too few F2 sheltered-site snails for analysis).

Although the marked increase in shell mass per unit tissue mass of

snails experiencing crab-effluent is consistent with proposals that

increased shell thickness is an actively induced defensive response

to risk of crab predation [4,5,8,27,29,30], the same result could

derive passively from differential effects of starvation on shell

deposition and tissue production. Starvation itself may promote

thickening because calcium carbonate deposition continues

unabated while linear shell growth decelerates as a result of

reduced tissue growth [5]. By controlling food supply as well as

predation risk, Bourdeau [11] showed that starvation resulting

from constrained foraging behaviour was sufficient to explain the

predator-induced shell thickening he observed in Nucella lamellosa.

At 12 months, the difference in relative shell-lip thickness

between snails receiving crab-effluent and controls had become

much greater in the exposed-site than in the sheltered-site lineage.

Experimentally induced changes in shell shape were subtle and

statistically significant only for exposed-site snails. Snails exposed

to crab-effluent had slightly wider shells than controls, with

narrower aperture internal rims. Narrowing of the internal rim of

the aperture, with little change in the external rim, reflects

thickening of the rim itself. Thickening in response to crab-

effluent, however, may be confounded with thickening due to

sexual maturation [2]. Indeed, relative shell-lip thickness of snails

receiving crab-effluent exceeded not only that of controls, but also

that of field-collected snails, suggesting reinforcing effects of crab-

effluent and sexual maturation. As all experimental snails were

born under similar laboratory conditions, the above difference

between lineages indicates heritable variation expressed in later

ontogeny, probably associated with sexual maturation and perhaps

explaining the occurrence of thicker shells at the exposed site.

In conclusion, our common garden experiment corroborates

previous studies demonstrating a negative influence of crab-

Figure 6. Common garden experiment: ordination of scores on the first and second relative warps produced by morphometric
analysis. Symbols and sample sizes as in Fig. 2. Deformation grids correspond to individuals subjectively chosen to represent the central tendency in
each treatment.
doi:10.1371/journal.pone.0052134.g006
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effluent on prey foraging activity, tissue growth and shell growth,

and a corresponding positive influence on shell thickness. Our

results are consistent with, but do not critically test, the hypothesis

that shell thickening is a secondary consequence of starvation

rather than a direct response to predation risk. Further support of

the starvation hypothesis, however, may be adduced from the

slower growth and development of thicker shells by snails

transplanted from the sheltered to the exposed field-site where

feeding opportunities are more frequently constrained by weather

than at the sheltered site.

Whereas greater plasticity has been reported in Littorina saxatilis

[21] and Nucella lamellosa [20] from habitats with higher predation

risk, no such differential response was evident in our populations of

N. lapillus, at least during the vulnerable juvenile phase. Induction

of defensive phenotype might be expected to be stronger in

populations from habitats where risk of predation is high when

integrated over time, but which varies unpredictably in the shorter

term [31]. Alternatively, it could be argued that genetic control of

defensive morphology should assume greater importance where

generations consistently face high predation risk, in which case a

weaker plastic response would be expected than in populations

from low-risk habitats. Accordingly, Palmer [8] reported lesser

shell-thickening in response to crab-effluent by N. lapillus from a

sheltered than from an exposed site, situated within 14 km of our

sites. Development of secondary sexual characters such thickening

of the shell rim further complicates interpretation. Moreover, even

congeners may show contrasted morphological changes. Whereas

N. lapillus develops a narrower aperture correlated with an

elongated spire [1], N. lamellosa develops greater globosity in

response to crab-effluent [20]. Clearly, present knowledge is

insufficient to yield broad generalizations on population variation

in the relative strengths of heritable and plastic control of defensive

shell morphology, or even on the detail of morphological change

itself. In this regard, studies of populations within and among taxa

from a wider range of habits varying in predation risk are needed.
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