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Abstract. In this paper, we study some properties of a class of integral operators that depends on the cosine and sine Fourier trans-
forms. In particular, we will exhibit properties related with their invertibility, the spectrum, Parseval type identities and involutions.
Moreover, a new convolution will be proposed and consequent integral equations will be also studied in detail. Namely, we will
characterize the solvability of two integral equations which are associated with the integral operator under study. Moreover, under
appropriate conditions, the unique solutions of those two equations are also obtained in a constructive way.

INTRODUCTION AND BASIC PROPERTIES

Integral operators have a great importance in applications due to their potential use in modeling a huge variety of
applied problems. Most of the time this is done by constructing equations or systems of equations characterized
by such operators. Among the integral operators we may classify a great variety of different types of operators,
cf. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In some cases, there are convolutions somehow associated with the integral operators
and allow the consideration of consequent convolution type equations.

In the present paper we will be concerned with a class of integral operators which is generated by the Fourier
sine and cosine transforms (as well as the identity operator). Namely, we will study the operator

T = aI + bTc + cTs, (1)

with b , ±c and bc , 0, in the framework of L2(Rn). In order to interpret in a complete way (1), let us recall the
cosine and sine Fourier transforms Tc and Ts, defined by

(Tc f )(x) :=
1

(2π)
n
2

∫
Rn

cos(xy) f (y)dy

and
(Ts f )(x) :=

1
(2π)

n
2

∫
Rn

sin(xy) f (y)dy.

We shall also recall the concept of algebraic operators. For this matter, let X be a linear space over the complex
field C, and let L(X) be the set of all linear operators with domain and range in X.

Definition 1 (see [11, 12]) An operator K ∈ L(X) is said to be algebraic if there exists a normed (non-zero)
polynomial

PK(t) = tm + α1tm−1 + · · · + αm−1t + αm,

α j ∈ C, j = 1, 2, . . . ,m such that PK(K) = 0 on X.
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We say that an algebraic operator K ∈ L(X) is of order m if there does not exist a normed polynomial Q(t) of
degree k < m such that Q(K) = 0 on X. In this case, PK(t) is called the characteristic polynomial of K, and the roots
of this polynomial are called the characteristic roots of K. Algebraic operators with a characteristic polynomial tm − 1
or tm + 1 (m ≥ 2) are called involutions or anti-involutions of order m, respectively. An involution (or anti-involution)
of order 2 is called, in brief, involution (or anti-involution).

We know that Tc and Ts are algebraic operators in L2(Rn) and T 3
c = Tc and T 3

s = Ts, so

PTc (t) = PTs (t) = t3 − t,

which roots are 0,−1, 1 (see [11, 12]). In this way, we have three projectors for each one of those operators. Therefore,
based on that information, we are able to consider three projectors corresponding to Tc:

P1 = I − T 2
c ,

P2 =
T 2

c−Tc

2 ,

P3 =
T 2

c +Tc

2 ,

(2)

which satisfy the following identities:
P jPk = δ jkPk, for j, k = 1, 2, 3,
P1 + P2 + P3 = I,
Tc = −P2 + P3,

(3)

and three projectors corresponding to Ts: 

Q1 = I − T 2
s ,

Q2 =
T 2

s −Ts

2 ,

Q3 =
T 2

s +Ts

2 ,

(4)

which satisfy the following identities:
Q jQk = δ jkPk, for j, k = 1, 2, 3,
Q1 + Q2 + Q3 = I,
Ts = −Q2 + Q3

(5)

(see [11, 12]). So, we can write our operator in terms of these projectors as follows:

T = (a − b) P2 + (a + b) P3 + (a − c) Q2 + (a + c) Q3

=: [0; a − b; a + b; 0; a − c; a + c] . (6)

Proposition 2 The characteristic polynomial associated with this operator is

PT (t) = t4 − 4at3 + (6a2 − b2 − c2)t2 − 2(2a3 − ab2 − ac2)t + (a2 − c2)(a2 − b2), (7)

whose characteristic roots are t1 = a − b, t2 = a + b, t3 = a − c and t4 = a + c.

Proof. By (6) and some computations, we have that

T 4 − 4aT 3 + (6a2 − b2 − c2)T 2 − 2(2a3 − ab2 − ac2)T + (a2 − c2)(a2 − b2)I

=
[
0; (a − b)4; (a + b)4; 0; (a − c)4; (a + c)4

]
−4a

[
0; (a − b)3; (a + b)3; 0; (a − c)3; (a + c)3

]
+(6a2 − b2 − c2)

[
0; (a − b)2; (a + b)2; 0; (a − c)2; (a + c)2

]
−2(2a3 − ab2 − ac2) [0; a − b; a + b; 0; a − c; a + c]
+(a2 − c2)(a2 − b2) [0; 1; 1; 0; 1; 1]

= [0; 0; 0; 0; 0; 0] = 0.
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Now, we will prove that there does not exist any polynomial Q, with deg(Q) < 4, such that Q(T ) = 0. For that,
suppose that there is a such polynomial

Q(t) = t3 + mt2 + nt + p.

This is equivalent to 
(a − b)3 + (a − b)2m + (a − b)n + p = 0
(a + b)3 + (a + b)2m + (a + b)n + p = 0
(a − c)3 + (a − c)2m + (a − c)n + p = 0
(a + c)3 + (a + c)2m + (a + c)n + p = 0

whose solutions are b = c = 0 or b = ±c and c , 0 or b = 0 and c , 0 or b = 0 and c , 0. Any solution is not under
the conditions b , ±c and bc , 0. So, such polynomial Q does not exist.

A NEW CONVOLUTION AND STRUCTURAL PROPERTIES OF THE OPERATOR T

In this section we will consider invertibility properties of T as well as other structural properties. This is the case of
a Parseval-type identity and an involution property. Moreover, a new convolution operation will be introduced which
will allow a factorization property with T .

Proposition 3 The spectrum of the operator T is given by {a − b, a + b, a − c, a + c}.

Proof. Let ϕk denote the multi-dimensional Hermite functions (see [13]). Namely, we have (see [14, 15])

(Tcϕk)(x) =


ϕk(x), if |k| ≡ 0 (mod 4)

0, if |k| ≡ 1, 3 (mod 4)
−ϕk(x), if |k| ≡ 2 (mod 4)

(8)

and

(Tsϕk)(x) =


0, if |k| ≡ 0, 2 (mod 4)

ϕk(x), if |k| ≡ 1 (mod 4)
−ϕk(x), if |k| ≡ 3 (mod 4).

(9)

By (8)–(9), we obtain

(Tϕk) (x) =


(a + b)ϕk(x), if |k| ≡ 0 (mod 4)
(a + c)ϕk(x), if |k| ≡ 1 (mod 4)
(a − b)ϕk(x), if |k| ≡ 2 (mod 4)
(a − c)ϕk(x), if |k| ≡ 3 (mod 4)

(10)

Therefore, the Hermite functions are eigenfunctions of T with the eigenvalues a ± b and a ± c. By using (10), we
deduce that {a − b, a + b, a − c, a + c} ⊂ σ(T ). On the other hand, for any λ ∈ C, we have

t4 − 4at3 + (6a2 − b2 − c2)t2 − 2(2a3 − ab2 − ac2)t + (a2 − c2)(a2 − b2)

= (t − λ)
[
t3 + (λ − 4a) t2 +

(
λ2 − 4aλ + 6a2 − b2 − c2

)
t

+
(
λ3 − 4aλ2 + (6a2 − b2 − c2)λ − 2(2a3 − ab2 − ac2)

)]
+ PT (λ).

Suppose that λ < {a − b, a + b, a − c, a + c} . This implies that

PT (λ) = λ4 − 4aλ3 + (6a2 − b2 − c2)λ2 − 2(2a3 − ab2 − ac2)λ + (a2 − c2)(a2 − b2) , 0. (11)

Then, the operator T − λI is invertible, and the inverse operator is defined by

(T − λI)−1 = −
1

PT (λ)

[
T 3 + (λ − 4a) T 2 +

(
λ2 − 4aλ + 6a2 − b2 − c2

)
T

+
(
λ3 − 4aλ2 + (6a2 − b2 − c2)λ + (a2 − c2)(a2 − b2)

)
I
]
.

Thus, we have σ(T ) = {a − b + d, a + b + d, a − c, a + c}.

020013-3



Theorem 4 (Inversion theorem) The operator T is an invertible operator if and only if

a , ±b, and a , ±c. (12)

In case of (12) holds, the inverse operator is defined by

T−1 :=
1

(c2 − a2)(a2 − b2)

[
a
(
−a2 + b2 + c2

)
I + b2 (a − c) Tc + c

(
a2 − b2

)
Ts − ab2T 2

c − ac2T 2
s

]
. (13)

Proof. If T is invertible, then it is injective. Taking into account the Hermite functions ϕk, we have already ob-
served that (8)–(9) holds true. Indeed, by (10), we see that the Hermite functions are eigenfunctions of T with eigen-
values a ± b and a ± c. So, we deduce that

(c2 − a2)(a2 − b2) , 0,

which is equivalent to (12).
Conversely, suppose that (c2 − a2)(a2 − b2) , 0. Hence, it is possible to consider the operator defined in (13) and,

by a straightforward computation, verify that this is the inverse of T .

We will denote by<{x} the real part of the complex number x.

Theorem 5 (Parseval-type identity) For any f , g ∈ L2(Rn), the identities

〈T f ,Tg〉2 = |a|2〈 f , g〉2 + 2<
{
ab̄

}
〈 f ,Tcg〉2 + 2<{ac̄} 〈 f ,Tsg〉2 + |b|2〈 f ,T 2

c g〉2 + |c|2〈 f ,T 2
s 〉2 (14)

〈T−1 f ,T−1g〉2 =

∣∣∣∣∣ 1
(c2 − a2)(a2 − b2)

∣∣∣∣∣2 {
|a(−a2 + b2 + c2)|2〈 f , g〉2

+2
[
<

{
a(−a2 + b2 + c2)b2(a − c)

}
−<

{
b2(a − c)ab2

}]
〈 f ,Tcg〉2

+2
[
<

{
a(−a2 + b2 + c2)c(a2 − b2)

}
−<

{
c(a2 − b2)ac2

}]
〈 f ,Tsg〉2

+
[
|b2(a − c)|2 + | − ab2|2 − 2<

{
a(−a2 + b2 + c2)ab2

}]
〈 f ,T 2

c g〉2

+
[
−2<

{
a(−a2 + b2 + c2)ac2

}
+|c(a2 − b2)|2 + | − ac2|2

]
〈 f ,T 2

s g〉2
}

(15)

〈T f ,T−1g〉2 =
1

(c2 − a2)(a2 − b2)

{
aa(−a2 + b2 + c2)〈 f , g〉2

+
[
a(b2(a − c)) + ba(−a2 + b2 + c2) − bab2

]
〈 f ,Tcg〉2

+
[
ac(a2 − b2) + ca(−a2 + b2 + c2) − cac2

]
〈 f ,Tsg〉2

+
[
−aab2 + bb2(a − c)

]
〈 f ,T 2

c g〉2

+
[
−aac2 + cc(a2 − b2)

]
〈 f ,T 2

s g〉2
}

(16)

hold.

Proof. For any f , g ∈ L2(Rn), a direct computation yields 〈Ts f , g〉2 = 〈 f ,Tsg〉2, 〈Tc f , g〉2 = 〈 f ,Tcg〉2. Thus,
(14)–(16) appears from a straightforward computation when having in mind the definition of T and the just presented
identities.

Theorem 6 (Unitary property) T is not a unitary operator.

Proof. Let T ∗ be the adjoint operator of T , this is, the operator satisfying

〈T f , g〉2 = 〈 f ,T ∗g〉2,
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for any f , g ∈ L2(Rn). From the last identity, we obtain

T ∗ = āI + b̄Tc + c̄Ts

and we know that T is a unitary operator if T is bijective and T ∗ = T−1. In this way, taking into account (13), we have

ā =
a(−a2+b2+c2)
(c2−a2)(a2−b2)

b̄ =
b2(a−c)

(c2−a2)(a2−b2)

c̄ =
c(a2−c2)

(c2−a2)(a2−b2)

0 = −ab2

(c2−a2)(a2−b2)

0 = −ac2

(c2−a2)(a2−b2) ,

which implies that b = 0 or c = 0, which is not under the conditions of the definition of the operator T .

Remark 7 For any n ∈ N, we have

T n = anI +

 n∑
j=0

Cn
2 j+1an−(2 j+1)b2 j+1

 Tc +

 n∑
j=0

Cn
2 j+1an−(2 j+1)c2 j+1

 Ts

+

 n∑
j=1

Cn
2 ja

n−2 jb2 j

 T 2
c +

 n∑
j=1

Cn
2 ja

n−2 jc2 j

 T 2
s . (17)

Let us consider the operator written in terms of projectors (6) and
a − b = ei 2k1π

n ,

a + b = ei 2k2π
n ,

a − c = ei 2k3π
n ,

a + c = ei 2k4π
n ,

(18)

with k1, k2, k3, k4 = 0, 1, . . . , n − 1.

Theorem 8 The operator T is an involution if and only if

(i) n is odd and k1 , k2 and k3 , k4; or
(ii) n is even and k1 , k2, k3 , k4, k2 ,

n
2 + k1 and k4 ,

n
2 + k3

(where the notation of (18) is here used).

Proof. Let us consider the operator T written as (6). So, we can write

T n = (a − b)n P2 + (a + b)n P3 + (a − c)n Q2 + (a + c)n Q3. (19)

The operator T is an involution if T n = I, which is equivalent to
(a − b)n = 1
(a + b)n = 1
(a − c)n = 1

(a + c)n = 1.

So, we obtain (18) and, equivalently,
a = 1

2

(
ei 2k1π

n + ei 2k2π
n

)
= 1

2

(
ei 2k3π

n + ei 2k4π
n

)
b = 1

2

(
ei 2k2π

n − ei 2k1π
n

)
c = 1

2

(
ei 2k4π

n − ei 2k3π
n

)
,

wich is equivalent to (i) or (ii).
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Definition 9 Considering T and (12), we define the new multiplication (convolution), for any two elements f , g ∈
L2(Rn), as follows:

( f ∗ g)(x) =
1

(c2 − a2)(a2 − b2)

{
a3(−a2 + b2 + c2) f (x)g(x)

+
a2b(−a2 + b2 + c2)

(2π)
n
2

∫
Rn

cos(xu)
[
f (x)g(u) + f (u)g(x)

]
du

+
a2c(−a2 + b2 + c2)

(2π)
n
2

∫
Rn

sin(xu)
[
f (x)g(u) + f (u)g(x)

]
du

+
a2b2(a − c)

(2π)
n
2

∫
Rn

cos(xu) f (u)g(u) du +
a2c(a2 − b2)

(2π)
n
2

∫
Rn

sin(xu) f (u)g(u) du

+
ab2(−a2 + b2 + c2)

2(2π)n

∫
R2n

cos(xu) ( f (u + v) + f (u − v)) g(v) dudv

+
ac2(−a2 + b2 + c2)

2(2π)n

∫
R2n

cos(xu) ( f (u + v) − f (u − v)) g(v) dudv

+
abc(−a2 + b2 + c2)

2(2π)n

∫
R2n

sin(xu)
[
( f (v − u) + f (u − v)) g(v) + f (v) (g(v − u) + g(u − v))

]
dudv

+
ab3(a − c)

2(2π)n

∫
R2n

cos(vu)
[
f (v) (g(x − u) + g(u − x)) + ( f (x − u) + f (u − x)) g(v)

]
dudv

+
ab2c(a − c)

2(2π)n

∫
R2n

sin(vu)
[
f (v) (g(u + x) + g(u − x)) + ( f (u + x) + f (u − x)) g(v)

]
dudv

+
abc(a2 − b2)

2(2π)n

∫
R2n

sin(vu)
[
f (v) (g(x − u) + g(u − x)) + ( f (x − u) + f (u − x)) g(v)

]
dudv

+
ac2(a2 − b2)

2(2π)n

∫
R2n

cos(vu)
[
f (v) (g(x − u) − g(u − x)) + ( f (x − u) − f (u − x)) g(v)

]
dudv

−
a3b2

2(2π)n

∫
R2n

cos(vu) ( f (x − u)g(x − u) + f (u − x)g(u − x)) dudv

−
a3c2

2(2π)n

∫
R2n

cos(vu) ( f (x − u)g(x − u) − f (u − x)g(u − x)) dudv

+
b4(a − c)

2(2π)
3n
2

∫
R3n

cos(wu)
[
f (x − u + v) + f (x − u − v) + f (u − x + v) + f (u − x − v)

]
g(v) dudvdw

+
b3c(a − c)

4(2π)
3n
2

∫
R3n

sin(wu)
[
( f (v − u − x) + f (u + x − v) + f (v − u + x) + f (u − x − v)) g(v)

+ f (v) (g(v − u − x) + g(u + x − v) + g(v − u + x) + g(u − x − v))
]

dudvdw

+
b2c2(a − c)

4(2π)
3n
2

∫
R3n

cos(wu)
[
f (x − u + v) − f (x − u − v) + f (u − x + v) − f (u − x − v)

]
g(v) dudvdw

+
b2c(a2 − b2)

4(2π)
3n
2

∫
R3n

sin(wu)
[
f (x − u + v) + f (x − u − v) + f (u − x + v) + f (u − x − v)

]
g(v) dudvdw

+
bc2(a2 − b2)

4(2π)
3n
2

∫
R3n

cos(wu)
[
( f (v − x + u) + f (x − u − v) − f (v − u + x) − f (u − x − v)) g(v)

+ f (v) (g(v − x + u) + g(x − u − v) − g(v − u + x) − g(u − x − v))
]

dudvdw

+
c3(a2 − b2)

4(2π)
3n
2

∫
R3n

sin(wu)
[
f (x − u + v) − f (x − u − v) + f (u − x + v) − f (u − x − v)

]
g(v) dudvdw

−
a2b3

2(2π)
3n
2

∫
R3n

cos(xw) cos(vu)
[
f (v) (g(w − u) + g(u − w)) + ( f (w − u) + f (u − w)) g(v)

]
dudvdw

020013-6



−
a2b2c

2(2π)
3n
2

∫
R3n

cos(xw) sin(vu)
[
f (v) (g(u + w) + g(u − w)) + ( f (u + w) + f (u − w)) g(v)

]
dudvdw

−
a2bc2

2(2π)
3n
2

∫
R3n

sin(xw) sin(vu)
[
f (v) (g(w − u) + g(u − w)) + ( f (w − u) + f (u − w)) g(v)

]
dudvdw

−
a2c3

2(2π)
3n
2

∫
R3n

sin(xw) cos(vu)
[
f (v) (g(w − u) − g(u − w)) + ( f (w − u) − f (u − w)) g(v)

]
dudvdw

−
ab4

4(2π)2n

∫
R4n

cos(xt) cos(wu)
[
f (t − u + v) + f (t − u − v) + f (u − t + v) + f (u − t − v)

]
g(v) dudvdwdt

−
ab3c

4(2π)2n

∫
R4n

cos(xt) sin(wu)
[
( f (v − u − t) + f (u + t − v) + f (v − u + t) + f (u − t − v)) g(v)

+ f (v) (g(v − u − t) + g(u + t − v) + g(v − u + t) + g(u − t − v))
]

dudvdwdt

−
ab2c2

4(2π)2n

∫
R4n

cos(xt) cos(wu)
[
f (t − u + v) − f (t − u − v) + f (u − t + v) − f (u − t − v)

]
g(v) dudvdwdt

−
ab2c2

4(2π)2n

∫
R4n

sin(xt) sin(wu)
[
f (t − u + v) + f (t − u − v) + f (u − t + v) + f (u − t − v)

]
g(v) dudvdwdt

−
abc3

4(2π)2n

∫
R4n

sin(xt) cos(wu)
[
( f (v − t + u) + f (t − u − v) − f (v − u + t) − f (u − t − v)) g(v)

+ f (v) (g(v − t + u) + g(t − u − v) − g(v − u + t) − g(u − t − v))
]

dudvdwdt

−
ac4

4(2π)2n

∫
R4n

sin(xt) sin(wu)
[
f (t − u + v) − f (t − u − v) + f (u − t + v) − f (u − t − v)

]
g(v) dudvdwdt

}
.

(20)

Theorem 10 For the operator T and f , g ∈ L2(Rn), we have the following T–factorization:

T ( f ∗ g)(x) = (T f )(Tg). (21)

Proof. Using the definition of T and a straightforward computation, we obtain the equivalence between (20) and

f ∗ g =
1

(c2 − a2)(a2 − b2)

[
a
(
−a2 + b2 + c2

)
I + b2 (a − c) Tc + c

(
a2 − b2

)
Ts − ab2T 2

c − ac2T 2
s

]
[(T f )(Tg)]. (22)

Thus, having in mind (13), which provides the formula for the inverse of T , we identify the last identity with

f ∗ g = T−1 [
(T f )(Tg)

]
,

which is equivalent to (21), as desired.

SOLVABILITY OF INTEGRAL EQUATIONS GENERATED BY THE OPERATOR T

Within the framework of L2(Rn), we will consider integral equations of the type

αϕ + βTϕ + γT 2ϕ = g, (23)

where α, β, γ ∈ C, with |α| + |β| + |γ| , 0, and g ∈ L2(Rn) are the given data, and the operator T is defined, in L2(Rn),
by (1).

The polynomial (7) has the single roots t1 := a − b, t2 := a + b, t3 := a − c and t4 = a + c. Having this in mind,
we are able to built projections, induced by T , in the sense of the Lagrange interpolation formula. Namely:

R1 :=
(T − t2I)(T − t3I)(T − t4I)

(t1 − t2)(t1 − t3)(t1 − t4)
;
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R2 :=
(T − t1I)(T − t3I)(T − t4I)

(t2 − t1)(t2 − t3)(t2 − t4)
;

R3 :=
(T − t1I)(T − t2I)(T − t4I)

(t3 − t1)(t3 − t2)(t3 − t4)
;

R4 :=
(T − t1I)(T − t2I)(T − t3I)

(t4 − t1)(t4 − t2)(t4 − t3)
;

Then, we have R jRk = δ jkRk, and
T ` = t`1R1 + t`2R2 + t`3R3 + t`4R4,

for any j, k = 1, 2, 3, 4 and ` = 0, 1, 2.
By using these projectors, we are in conditions to rewrite (23) in the following equivalent way:

m1R1ϕ + m2R2ϕ + m3R3ϕ + m4R4ϕ = g, with m j = α + βt j + γt2
j , j = 1, 2, 3, 4. (24)

Theorem 11 (i) The integral equation (24) (or (23)) has a unique solution if and only if m1m2m3m4 , 0.

(ii) If m1m2m3m4 , 0, then the unique solution of (24) is given by

ϕ = m−1
1 R1g + m−1

2 R2g + m−1
3 R3g + m−1

4 R4g. (25)

(iii) If m j = 0, for some j = 1, 2, 3, 4, then the equation (24) has solution if and only if R jg = 0.

(iv) If R jg = 0, for some j = 1, 2, 3, 4, then the equation (24) has an infinite number of solutions given by

ϕ =
∑

j≤4
m j,0

m−1
j R jg + z, where z ∈ ker


∑

j≤4
m j,0

R j

 . (26)

Proof. Suppose that the equation (23) has a solution ϕ ∈ L2(Rn). Applying P j to both sides of the equation (24),
we obtain a system of four equations

m jP jϕ = P jg,

j = 1, 2, 3, 4. In this way, if m1m2m3m4 , 0, then we have the following equivalent system of equations
R1ϕ = m−1

1 R1g
R2ϕ = m−1

2 R2g
R3ϕ = m−1

3 R3g
R4ϕ = m−1

4 R4g.

Using the identity
R1 + R2 + R3 + R4 = I,

we obtain (25). Conversely, we can directly verify, by substitution, that ϕ given by (25) fulfills (24).
If m1m2m3m4 = 0, then m j = 0, for some j ∈ {1, 2, 3, 4}. Therefore, it follows that R jg = 0. Then, we have∑

j≤4
m j,0

R jϕ =
∑

j≤4
m j,0

m−1
j R jg.

Using the fact that R jRk = δ jkRk, we get 
∑

j≤4
m j,0

R j

ϕ =


∑

j≤4
m j,0

R j



∑

j≤4
m j,0

m−1
j R jg
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or, equivalently, 
∑

j≤4
m j,0

R j


ϕ −

∑
j≤4

m j,0

m−1
j R jg

 = 0.

By this, we obtain the solution (26).
Conversely, we can directly verify that all the elements ϕ, with the form of (26), fulfill (24). As the Hermite

functions are eigenfunctions of T (cf. (8)–(9)), we conclude that the cardinality of all elements ϕ in (26) is infinite.

Now, let us consider the convolution type equation

λϕ(x) + (k ∗ ϕ)(x) = h(x), (27)

where 0 , λ ∈ C, k, h ∈ L2(Rn) are given functions and ϕ ∈ L2(Rn) is unknown.

Theorem 12 The equation (27) as a unique solution if and only if

λ + (Tk)(x) , 0,

for all x ∈ Rn. The solution is given by

ϕ(x) = T−1
[

(Th)(x)
λ + (Tk)(x)

]
(28)

Proof. Let us consider that the equation (27) has a solution ϕ ∈ L2(Rn). Applying T to both sides of the equation,
we obtain

(Tϕ)(x) =
(Th)(x)

λ + (Tk)(x)
. (29)

By Theorem 4, we obtain (28).
Conversely, by substitution, we can verify that ϕ given by (28) fulfills (27).
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