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abstract Optimization in engineering is the search for the optimal solution, taking into
account the de�ned design objective and the imposed constraints. There is
a wide scope of applications in engineering, ranging from management and
planning to structural design problems. The development of computers and
programming has boosted this technology by enabling a faster and more e�-
cient search for optimal solutions through computational methods. Topology
optimization combines the Finite Element Method (FEM) with optimization
methods, in order to obtain the best distribution of material within a given
domain. In this work, two distinct design objectives were analyzed in the
scope of evaluation of non-linear structural problems: (i) minimization of
compliance and (ii) minimization of complementary work. The material of
the structure is described by a multi-linear behaviour (nonlinear elasticity)
and a Solid Isotropic Material with Penalization (SIMP) approach. In order
to solve the problem of topology optimization, a computational tool, enclos-
ing a FEM analysis and a topology optimization algorithm, was developed
using Matlab programming. The validation of the FEM was done using
the numerical simulation program Abaqus as a reference, and, for the topo-
logy optimization problems, simulations were performed for several boundary
conditions.





palavras-chave Otimização topológica, elasticidade não-linear, método dos elementos �ni-
tos, Matlab

resumo A otimização em engenharia é a busca pela solução ótima tendo em consid-
eração o objetivo de projeto e as restrições impostas. Existe uma panóplia
de aplicações desta temática em engenharia, que vão desde problemas de
gestão e planeamento até problemas de projeto de estruturas. O desenvolvi-
mento dos computadores e da programação impulsionaram esta tecnologia
permitindo uma procura mais rápida e e�caz de soluções ótimas através de
métodos computacionais. A otimização topológica combina o Método dos
Elementos Finitos (MEF) com métodos de otimização, de forma a obter a
melhor distribuição de material para um determinado domínio. Neste tra-
balho foram analisados dois objetivos distintos no contexto de problemas es-
truturais não-lineares: (i) minimização do trabalho das forças externas e (ii)
minimização do trabalho complementar. O material da estrutura é descrito
por um comportamento isotrópico multilinear (elasticidade não-linear). De
modo a solucionar o problema de otimização topológica foi desenvolvida uma
ferramenta computacional, que engloba um código de análise pelo MEF e um
algoritmo de otimização topológica, usando o Matlab como plataforma de
programação. A validação do método dos elementos �nitos foi feita usando
o programa de simulação numérica Abaqus como referência, e, para o prob-
lema de otimização topológica, foram realizadas simulações para diversas
condições de fronteira.
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Chapter 1

Introduction

1.1 Theoretical Framework

Optimization means �nding an optimal solution with the most cost-e�ective or highest
achievable performance under the given constraints. It is achieved by maximizing desired
factors and minimizing undesired ones. Thus, it is important to de�ne what is intended
to be optimized and what are the constraints to take into account. For instance, to
maximize the number of objects inside a container it is essential to know aspects like the
size or shape of the container and objects because these will limit the variable that is
being optimized in order to �nd a possible solution. In a technical sense, optimization
is the process of maximizing or minimizing the required objective function respecting a
set of constraints. Optimization can be applied to many engineering areas such thermo-
dynamics, �uid mechanics or electronics, in problems such as design of aerospace and
aeronautic structures, design of structures (bridges, towers, dams) with minimum cost,
inventory and stock control, design of control systems, planning market strategies, pump
and turbine design with maximum performance, and many others. [1]

The optimization of a structure with the objective of �nding the maximum sti�ness
with minimum weight or cost is called Structural Optimization (SO). The basic idea of
Topology Optimization (TO) is to �nd the optimal layout of a given amount of material
within a prescribed design domain in order to obtain the best design performance. Typ-
ically, TO is carried out using the numerical framework of �nite element analysis (FEA),
with the FEA model parametrized by design variables [2]. Commonly the variables used
are density or magnitude of the material properties. They can vary between di�erent
phases of the material or merely empty, assuming values between 1 and 0, respectively.
It was �rst discussed in problems of civil engineering by Maxwell [3] with the object-
ive of reducing the material used in a bridge. Years later Michell [4] studied optimum
structures with the minimum possible material, naming the structure called Michell truss
that is the optimum structure for a cantilever beam with a point load at the end. In this
structure, the elements are subject to nominal stress with zero shear stress. Since its
introduction a decade ago, the topology optimization method [5] has gained popularity
in academia and industry. The increased use of SO is also a consequence of the advances
in computational mechanics. The conventional topology optimization method is con-
cerned in �nding the best design of a linear structure that yields the sti�est structure by
minimizing the compliance. In linear analysis, the abnormal deformation is not a critical
matter because the consequence of the analysis, i.e., deformation, is never further used.

3



4 1.Introduction

On the other hand, in a nonlinear incremental analysis, the results from the previous
load step are again used to proceed to the next load step [6].

Due to a large number of variables in this type of problems, it is necessary to do
some simpli�cation regarding the constraints and formulation. For example, in the Solid
Isotropic Material with Penalization (SIMP) or �power-law approach�, introduced by
Bendsøe [7] and then presented by Rozvany et al. [8], the material properties are assumed
constant within each �nite element used to discretize the design domain and the variables
are the element relative densities. This approach is one of the most used methods in
topology optimization.

Most of the research in TO focus on linear problems like linear elasticity and only a
few research take into consideration non-linear elasticity. The �rst attempt to incorpor-
ate inelasticity into topology optimization was in 1995 made by Yuge and Kikuchi [9],
who optimized the layout of frame structures subject to plastic deformation and used
a direct sensitivity analysis. Maute et al. [10] extended the density-based topology op-
timization method to elastoplastic materials by utilizing a sensitivity analysis in which
simpli�cations were made by neglecting several derivative terms. An alternative sens-
itivity analysis method was proposed by Kato et al. [11] for elastoplastic multiphase
composite topology optimization and was also demonstrated to be accurate as well as
e�cient. However, this method is not general and is limited to speci�c individual cases.

1.2 Objectives

The main objective of this work is to develop a computational tool capable of solving
topology optimization problems for materials with nonlinear behaviour. In order to do
that it is essential to know the physics behind this material behaviour, its mathematical
interpretation and the use of numerical methods to implement it using computational
resources. The programming platform used was Matlab, once that is a very �exible tool
with a lot of potential in matrix computations that is helpful in the realization of this
work. To simulate a nonlinear material behaviour it is necessary to develop a function
with the implementation of the Finite Element Method (FEM). Once the material beha-
viour is implemented is used a common methodology for topology optimization problems.
This methodology consist in doing a Finite Element Analysis (FEA), compute the object-
ive function and sensitivities, use a speci�c methods to solve the optimization problem
(e.g. Optimality Criteria (OC), Sequential Linear Programming (SLP) or the Method of
Moving Asymptotes (MMA)) and also the use of �ltering techniques for the sensitivities.
Having the computational tool developed, it can be used to solve di�erent objectives for
various boundary conditions and parameters.

1.3 Layout

This document is divided in three di�erent parts. The present one is Introduction and

Backgroud, where a theoretical framework is presented along with essential concepts
to understand the basics and methods used for the realization of this assignment. It is
divided in the following chapters:

� Chapter 1 - Is introduced the problematic, the state of the art and also the main
goals to achieve with its realization.

Riccardo Oliveira Master Degree



1.Introduction 5

� Chapter 2 - Basic concepts of the material behaviour are approached.

� Chapter 3 - Some concepts of the �nite element method are discussed.

� Chapter 4 - Some types of structural optimization are presented, focusing on the
topology optimization problem and its methodology.

In the second part, Methodology and Implementation, it is described the meth-
ods used and its implementation using Matlab, presenting all the practical work done in
this assignment and the �nal structure of the computational tool developed.

� Chapter 5 - The methodology used in this assignment is discussed.

� Chapter 6 - Is presented some implementation details and the �nal structure of
the developed tool.

Finally, in the last part, Results and Discussion, it is shown all the topologies
resulting from the implementation of various problems using the �nal computational
tool, the validation of the developed functions and the discussion of this results ending
with some �nal remarks.

� Chapter 7 - Validation of the developed functions and results obtain with the �nal
computational tool.

� Chapter 8 - Conclusion and some suggested future works.

Riccardo Oliveira Master Degree
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Chapter 2

Material Behaviour

2.1 Plane Stress and Plane Strain

In two-dimensional structural problems there are two di�erent states that can be con-
sidered, the plane stress assumption in which one of the dimensions of the body in analysis
(the thickness) is much smaller than the others and is subjected to loads that generate
dominant stresses in the plane Oxy (σzz = 0) and the plane strain assumption in which
has to be considered contributions from the thickness (σzz 6= 0). In the plane strain
assumption the strain perpendicular to the plane Oxy can be considered null (εzz = 0),
in the plane stress assumption this strain is not zero (εzz 6= 0). In this last case the strain
εzz has to be calculated using the stress �eld (table 2.1) [12]. In engineering the plane
stress assumption is applicable in the analysis of plates subjected to in plane loads and
thin membranes with negligible sti�ness in bending and transverse shear. To analyse a
gas pipeline, the strain variation in the length direction is very small and negligible when
compared to its strain variation in radial direction (�gure 2.1). The constitutive relation
between the stress and the strain can be represented as

σ = C : ε, (2.1)

or using the Voigt notation, this relation can be written in the matrix form considering
the Cartesian components of the stress and strain states

σxx
σyy
τxy

 = C


εxx
εyy
γxy

 , (2.2)

where C represents the constitutive tensor and it is function of the material proprieties,
the Young's modulus (E) and the Poisson's ratio (ν)(linear isotropic material). For the
plane stress assumption the constitutive tensor is represented by

C =
E

(1 + ν2)

1 ν 0
ν 1 0

0 0 (1−ν)
2

 , (2.3)

and for the plane strain assumption the constitutive tensor is stated as

C =
E

(1 + ν)(1− 2ν)

(1− ν) ν 0
ν (1− ν) 0

0 0 (1−2ν)
2

 . (2.4)

7



8 2.Material Behaviour

Figure 2.1: Representation of a) plane stress assumption in the plane Oxy and b) plane
strain assumption in the plane Oxy.

Table 2.1: Di�erences between plane stress and plane strain assumption.

Plane Stress Plane Strain

Stress σzz = τxz = τyz = 0
τxz = τyz = 0
σzz 6= 0

Strain
γxz = γyz = 0

εzz 6= 0
εzz = γxz = γyz = 0

2.2 Nonlinear behavior

In order explain the nonlinear behavior the plasticity can be used. The theory of plasticity
is concerned with solids that, after being loaded may conserve a permanent (or plastic)
deformation when unloaded. Materials whose behaviour can be described by this theory
are called plastic (or rate-independent plastic) materials. In engineering, a vast number
of materials, such as metal, rocks, concrete, clays, and soils may be modelled using the
plastic theory under many circumstances of practical interest. The origins of the theory of
plasticity can be traced back to the middle of the nineteenth century, and nowadays there
are a lot of models that can mathematically describe the behaviour of plastic materials.
To understand the phenomenological behaviour of this type of materials the uniaxial (one-
dimensional) tension experiment with a metallic bar is commonly used. This experiment
with ductile metals produces a stress-strain curve that is used to describe the material's
behaviour (Figure 2.2). There the axial stress, σ, is plotted against the axial strain,
ε, the bar is subject to a load that increases the axial stress from zero to a prescribed
value, σ0. After the bar is unloaded back to an unstressed point and then reloaded to
a higher stress level, σ1, this can be translated by the path O0Y0Z0O1Y1Z1 shown. The
initial line segment O0Y0 is linear, meaning that if the bar is unloaded in the last point
or before, it returns to O0, this behavior is regarded as linear elastic. Beyond Y0, the
slope of the stress-strain curve changes dramatically and if the loading is reversed at,
say, point Z0, the bar returns to an unstressed state via path Z0O1. The new unstressed
state O1 di�ers from the original unstressed state O0 and a permanent change in the bar
is observed. This change represents the permanent (or plastic) axial strain εp. Reloading
the bar again to a stress level σ1 will follow the path O1Y1Z1 where still the O1Y1 line
segment is linear, similar to the initial elastic section O0Y0. Note that the points Y0 and
Y1 are di�erent. Thus, is essential to identify some proprieties of the uniaxial test:

1. The existence of an elastic domain or a range of stresses within which the behavior
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2.Material Behaviour 9

of the material can be considered as purely elastic, without the evolution of permanent
strains delimited by the yield stress. The portions O0Y0 and O1Y1 represent the elastic
domain at two di�erent states with the corresponding yield stresses Y0 and Y1.

2. Beyond the yield stress, the plastic yielding (or plastic �ow) takes place and
consequently evolution of plastic strains.

3. Accompanying the development of plastic strain evolution of the yield stress itself
is observed (growth from Y0 to Y1). This phenomenon is known as hardening [13].

Figure 2.2: Uniaxial tension experiment with ductile metals. Adapted from [13].
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Chapter 3

The Finite Element Method

Nowadays the Finite Element Method (FEM) is a widespread technique used in the
industry and analysis in engineering, with applications not only in solid and structure
analysis but also in �uid mechanics and heat transfer problems. This method appeared
in the 50's/60's and was boosted with the developments of computers and mathemat-
ical programming that permitted a quick and e�cient solution for algebraic equation
systems [14]. The development of the FEM was impulsed, initially, by scientists and
investigators of the Civil and Mechanical Engineering �eld. The application of the FEM
in structural analysis began with linear elastic problems, and later the non-linear e�ects
such as plasticity were included. Is important to emphasise that two major numerical
approximations are necessary for the �nite element solution:

1. A time discretization of the underlying constitutive initial value problem, where a
numerical integration scheme is introduced to solve the initial value problem de�ned
by the constitutive equations of the model that relate stresses to the history of
deformations (for nonlinear analysis).

2. A �nite element discretization, which comprises a standard �nite element approx-
imation of the virtual work statement where the domain of the body and the asso-
ciated functional sets are replaced with �nite-dimensional counterparts generated
by �nite element interpolation functions (�gure 3.1) [13].

Figure 3.1: Discretization of the domain: a) Domain Ω, b) Discretization of Ω.

The �nite elements can assume di�erent geometries with some examples shown in
�gure 3.2. To solve one-dimensional problem line segment elements are used. In two-

11



12 3.The Finite Element Method

dimensional problems are generally used triangular or quadrilateral elements. In three-
dimensional analyses are commonly used tetrahedrons, hexahedrons or pentahedrons,
but there are many more con�gurations for the elements in this method [12]. The basis
of the �nite element method is to assign nodes to the elements and to assume that shape
or interpolation functions can be determined to enable interpolation in order to obtain
values of displacement or temperature, depending on the analysis type, at any point
within the element in terms of nodal values. The shape functions are de�ned in the
natural coordinate system Oξη, and an important feature of the shape functions in the
�nite element method is that they take a value of 1 at their own node and zero at all
others, so the sum of all shape functions is equal to unity [15].

Figure 3.2: Some possible geometries for �nite elements to one, two and three-dimensional
problems.

3.1 Shape Functions and Jacobin Matrix

The shape functions used in the �nite element method for Lagrange quadrilateral ele-
ments are based in Lagrange polynomials de�ned in the natural coordinate system Oξη.
The generic equations for unidimensional Lagrange polynomials in therms of the natural
coordinates can be expressed as

Ni(ξ) =

nnodes∏
j=1(j 6=i)

(ξ − ξi)
ξi − ξj

, (3.1)

Ni(η) =

nnodes∏
j=1(j 6=i)

(η − ηi)
ηi − ηj

, (3.2)

with ξ ∈ [−1,+1] and η ∈ [−1,+1]. For a isoparametric four node quadrilateral element
the shape functions can be expressed by

N1(ξ, η) = 1
4(1− ξ)(1− η)

N2(ξ, η) = 1
4(1 + ξ)(1− η)

N3(ξ, η) = 1
4(1 + ξ)(1 + η)

N4(ξ, η) = 1
4(1− ξ)(1 + η)

. (3.3)
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3.The Finite Element Method 13

In order to calculate de derivatives of the shape function, the chain rule is used
∂Ni(ξ,η)

∂ξ = ∂Ni(ξ,η)
∂x

∂x
∂ξ + ∂Ni(ξ,η)

∂y
∂y
∂ξ

∂Ni(ξ,η)
∂η = ∂Ni(ξ,η)

∂x
∂x
∂η + ∂Ni(ξ,η)

∂y
∂y
∂η

, (3.4)

or, in the matrix form, ∂Ni(ξ,η)
∂ξ

∂Ni(ξ,η)
∂η

 = J

∂Ni(ξ,η)
∂x

∂Ni(ξ,η)
∂y

 , (3.5)

where J is the jacobian matrix of the element responsible for the �rst order partial de-
rivatives mapping from the global Oxy coordinate system to the natural Oξη coordinate
system (Figure 3.3), i.e.

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (3.6)

Finally, the inverse of the jacobian matrix is used to compute the derivatives present in
the strain-displacement matrix∂Ni(ξ,η)

∂x

∂Ni(ξ,η)
∂y

 = J−1

∂Ni(ξ,η)
∂ξ

∂Ni(ξ,η)
∂η

 . (3.7)

Figure 3.3: Transformation of isoparametric element from natural to cartesian coordin-
ates.

3.2 Strain-Displacement relation

Consider a domain Ω in a bi-dimensional plane with the global axis x, y. The variables
of the problem are the displacement, and the strain is obtained by deriving them, as

u(x, y) =

[
u(x, y)
v(x, y)

]
, (3.8)
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14 3.The Finite Element Method

and

ε(x, y) =


∂u
∂x

∂v
∂y

∂u
∂y + ∂v

∂x

 . (3.9)

The domain is discretized in elements where Ωe is de�ned for the element domain. The
generic �nite element with n nodes has 2n degrees of freedom that can be organized in
the form

ue =
[
u1 v1 u2 v2 ... un vn

]T
(3.10)

The relation between the displacements and the strain is expressed by

ε = Bue, (3.11)

where B represents the strain-displacement matrix with dimension 3× 2n, as

B =


∂Ne

1
∂x 0

∂Ne
2

∂x 0 ... ∂Ne
n

∂x 0

0
∂Ne

1
∂y 0

∂Ne
2

∂y 0 ... ∂Ne
n

∂y

∂Ne
1

∂y
∂Ne

1
∂x

∂Ne
2

∂y
∂Ne

2
∂x ... ∂Ne

n
∂y

∂Ne
n

∂x

 (3.12)

This matrix contains the derivatives of the shape functions N e
i (i = 1, ..., n).

3.3 Sti�ness Matrix and Load Vector

After calculating the B matrix is now possible to determine the sti�ness of the element
as

Ke =

∫
Ωe

BTCBdΩe. (3.13)

This matrix has the dimension (2n× 2n) and the element volume can be expressed by

dΩe = hdetJdξdη, (3.14)

where h is the thickness and detJ is the determinant of the Jacobian. The integration
can be done in terms of the natural coordinate system using four Gauss points (Figure
3.4) considering the weight of each integration point (Table 3.1). The element load vector
can be expressed as

fe =

∫
Ωe

hNTbdΩe +

∫
Γe

hNTtdΓe. (3.15)

This components can be assembled in the global form and used to obtain the dis-
placement vector trough the equilibrium equation stated in the optimization problem

Ku = f, (3.16)

u = K−1f. (3.17)

where K is the global sti�ness matrix assembled using the element sti�ness matrices Ke

and f the global load vector.
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3.The Finite Element Method 15

Figure 3.4: Quadrilateral �nite element using 4 Gauss-Legendre integration points.

Table 3.1: Natural coordinates and weights for four Gauss integration points.

Point ξ η Weight

1 -0.5773502... -0.5773502... 1
2 0.5773502... -0.5773502... 1
3 0.5773502... 0.5773502... 1
4 -0.5773502... 0.5773502... 1

3.4 Stress, Strain and Equivalent von Mises Stress Tensors

After solving the equilibrium equation (equation 3.16), it is possible to use the displace-
ments and calculate the strain tensor using equation 3.11 and the stress by

σ = CBue = Cε (3.18)

The stress tensor is composed by three components σxx, σyy and σxy. Using this
tensor it is possible to calculate the equivalent stress using the von Mises criteria (�gure
3.5)

σ(σ) =

√
3

2
s(σ) : s(σ), (3.19)

with s = s(σ) being the deviatoric stress tensor

s(σ) = σ − 1

3
tr(σ)I. (3.20)
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16 3.The Finite Element Method

Figure 3.5: Representation of the vonMises and Tresca criteria.
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Chapter 4

Topology Optimization

4.1 Structural Optimization

Structural Optimization (SO) is an old thematic in engineering, and the primary objective
is to obtain the best relation between characteristics such as sti�ness, weight or cost.
However, the �rst scienti�c evaluation of SO problems was in 1870 by Maxwell [3] and
later in 1904 by Michell [4]. The �eld of application was civil engineering where Maxwell
studied ways to minimize the material used in a bridge project. To achieve that he
analysed the stress �eld and suggested that the optimal structure is composed of discrete
elements oriented in the principal directions of the stress �eld. This way the elements
only have nominal stresses without shear component. Later Michell also studied optimal
structures with minimum material. An example of these structures is shown in Figure
4.1. These structures are commonly used as an analytical benchmark for frame structures
in topology optimization.

Figure 4.1: Example of a Michell frame structure (Michell-cantilever). Adapted from [16].

Structural optimization is commonly divided into three fundamental approaches: (i)
sizing optimization, (ii) shape optimization and (iii) topology optimization. These types
of SO are illustrated in Figure 4.2. In sizing optimization, the design variables are es-
sential parameters to the structural behaviour. These parameters are related to the
de�nition of the transversal section, dimensions, constitutive parameters, and others.
The shape optimization allows to change the geometry of the structure in order to ob-
tain the optimal con�guration. The design variables are point coordinates and relevant
parameters to the geometric de�nition. One of the typical approach it is the manipulation
of the curves coe�cients such as splines or Non-Uniform Rational Basis Spline (NURBS).
Finally, in topology optimization, the objective function is optimized manipulating the
topology of the structure inside the prescribed domain. This type of SO is concerned
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18 4.Topology Optimization

with the distribution of the material inside the domain in order to minimize/maximize
the objective function respecting the primary constraints. The design variables are dens-
ities that vary between di�erent phases of the material or void, assuming values of 1 or
0 respectively [1].

Figure 4.2: Three types of structural optimization. a) Sizing optimization, b) shape
optimization and c) topology optimization. At the left hand side are shown the initial
problems and at the right the respective solutions. Adapted from [17]

4.2 Topology Optimization for Minimum Compliance Design

In order to maximize the sti�ness or minimize the compliance of a structure for the linear
elastic problem it is used the strain energy as a measure of the compliance.

S =
1

2

∫
Ω
Cijkl(x)εij(u)εkl(u)dΩ, (4.1)

where u represents the displacement �eld at the equilibrium, εij the strains at the equi-
librium and Cijkl the elastic tensor of the material in x ∈ Ω.

Other way is to use the compliance, stated as

W =

∫
Ω
biuidΩ +

∫
Γ
tiuidΓ. (4.2)

bi and ti are the external forces by unit of volume and area, respectively. These equations
can be used to de�ne the total potential energy of the system (P ) as,

P = S −W. (4.3)

The potential energy is minimized by the displacement �eld u at the equilibrium (δP =
0).

The most common form is to use the external work as a measure of the compliance.
Thus the optimization problem can be stated as

minimize

∫
Ω
budΩ +

∫
Γ
tudΓ,

subject to C = Cadm,

Ku = f,

, (4.4)
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4.Topology Optimization 19

or, in the most practical form,

minimize

∫
Ω
fTudΩ =

∫
Ω
uTKudΩ,

subject to C = Cadm,

Ku = f.

, (4.5)

Here u and f are the displacement and load vectors, respectively. The sti�ness matrix K
depends on Ce in element e = 1, ..., N .

K =
N∑
e=1

Ke(Ce), (4.6)

where Ke is the element sti�ness matrix.

4.3 Solid Isotropic Material with Penalization (SIMP)

In 1988 Bendsøe and Kikuchi [5] presented topology optimization as a computational
tool applied to continuum structures, where a so-called microstructure or homogeniza-
tion based approach was used, based on studies of the existence of solutions. The homo-
genization has the disadvantage that the determination and evaluation of optimal micro-
structures and their orientations are cumbersome if not unresolved (for non-compliance
problems). However, the homogenization approach to topology optimization is still relev-
ant in the sense that it can provide bounds on the theoretical performance of structures.
One year later an alternative approach to topology optimization, the so-called �power-
law approach� or SIMP approach was introduced by Bendsøe [7] and later presented
by Rozvany et al. 1992 [8], being today one of the most used approaches in topology
optimization. In this approach, material properties are assumed constant within each
element used to discretize the design domain, and the variables are the element relative
densities. The material properties are modelled as the relative material density raised to
some power times the material properties of a solid material. This approach has been
criticized since it was argued that no physical material exists with properties described
by the power-law interpolation. However, in 1999 Bendsøe and Sigmund proved that the
power-law approach is physically permissible as long as simple conditions on the power
are satis�ed (e.g., p ≥ 3 for Poisson's ratio equal to 1

3 ) [18].

Thus it can be now introduced the penalization parameter p and the topology optim-
ization problem rewrite in terms of the element density ρe as

minimize
ρe

c(ρe) = fTu

subject to
N∑
e=1

ρpeKeu = f,

N∑
e=1

veρe ≤ V,

0 < ρmin ≤ ρe ≤ 1,

(4.7)
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20 4.Topology Optimization

Figure 4.3: Representation of the power-law approach (SIMP) for di�erent penalties.

where ve represent the element volume and V the prescribed volume fraction. Note that
the element densities can not be zero, to avoid singularity, so it is de�ned a minimum
density value, ρmin.

4.4 Sensitivity Analysis

The analysis of the objective function's derivatives is critical to the solution of the op-
timization problem. The derivatives in a certain point permits to evaluate the behaviour
of the function in its proximity. This type of analysis is called sensitivity analysis. In
topology design is usual to work with a moderate number of constraints, so the most
e�ective method for calculating derivatives is to use the adjoint method, where the de-
rivatives of the displacement are not calculated explicitly. Thus the objective function
c(ρ) can be rewrite by adding the zero function:

c(ρ) = fTu− ũT(Ku− f), (4.8)

where ũ is any arbitrary, but �xed real vector. The zero function is chosen using the
equilibrium Ku = f. By deriving the new objective function is obtained the follow
derivative

∂c

∂ρe
= (fT − ũTK)

∂u

∂ρe
− ũT ∂K

∂ρe
u. (4.9)

This can in turn be written as

∂c

∂ρe
= −ũT ∂K

∂ρe
u, (4.10)

when ũ satis�es the adjoint equation:

fT − ũTK = 0. (4.11)

Knowing that

fT = uTK, (4.12)
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it is veri�ed that in this case is directly obtained that ũ = u. Finally using the K
derivative

∂K

∂ρe
= p(ρe)

p−1Ke, (4.13)

the �nal derivative of the objective function for the minimum compliance problem is

∂c

∂ρe
= −p(ρe)p−1uTKeu. (4.14)

It is interesting to notice that the derivative is �localized� once that it uses information
of each element and is negative for all elements wich con�rms that additional material
in any element decreases compliance [17].

4.5 Mesh-independency Filter

In topology optimization many restriction methods can be used in order to reduce the
mesh dependency, checkerboard phenomena (�gure 4.4), for a better post-processing of
the �nal geometries and to ensure existence of solutions. A great example of that is �lter
techniques [Sigmund and Petersson 1998] that can be divided in �lters that are applied
directly on the problem variable and �lters that use gradients or the objective function
sensitivities. The mesh-independency �lter works by modifying the element sensitivities
as follow:

∂̂c

∂ρe
=

1

ρe

N∑
f=1

Ĥf

N∑
f=1

Ĥfρf
∂c

∂ρf
, (4.15)

where Ĥf is the convolution operator and is written as

Ĥf = rmin − dist(e, f), (4.16)

{f ∈ N | dist(e, f) ≤ rmin}, e = 1, . . . , N.

The �lter is applied to the element e and to the elements that have their centers in
a distance delimited by the �lter radius rmin. The convolution operator is zero outside
the �lter area and decays linearly with the distance from element f . Thus the sensitivity
used in the optimization problem will be the modi�ed (4.15) instead of the original one
(4.14).

4.6 Optimality Criteria Method

The optimality criteria is a method that uses a �x point iteration scheme. Is a very e�-
cient method for problems with reduced number of restrictions compared with the number
of design variables. The update scheme has the objective of updating the variable re-
specting optimum criteria established with the Karush-Kuhn-Tucker or KKT conditions.
The generic problem can be stated as

minimize f(x),

subject to gj(x) = 0, j = 1, ..., p,
(4.17)
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22 4.Topology Optimization

Figure 4.4: In�uence of the �lter for di�erent radius: a) rmin = 1, b) rmin = 1.5 and c)
rmin = 3.

∇L(x∗) = ∇f(x∗) + λ∗T∇g(x∗) = 0 (4.18)

where λ is a Lagrange multiplier vector to the restriction g. Considering a problem with
one restriction only the equation 4.18 can be rewrite as

− ∂f
∂xi

= λ
∂g

∂xi
, i = 1, ..., n, (4.19)

from where the Lagrange multiplier can be deduced as

λ = −
∂f
∂xi
∂g
∂xi

. (4.20)

Thus the �x point iteration scheme can be presented as

x
(k+1)
i = x

(k)
i

(
−

∂f
∂xi

λ ∂g
∂xi

) 1
γ

, (4.21)

where γ is an iteration step control parameter.
In terms of the topology optimization problem the optimality criteria can be stated

using the heuristic updating scheme

ρnewe =



max(ρmin, ρe −m)

if ρeB
η
e ≤ max(ρmin, ρe −m),

ρeB
η
e

if max(ρmin, ρe −m) < ρeB
η
e < min(1, ρe +m),

min(1, ρe +m)

if min(1, ρe +m) ≤ ρeBη
e ,

(4.22)
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wherem is a positive move-limit and η is a numerical damping coe�cient. The optimality
condition to be used in the �xed point iteration (equation 4.21) is de�ned as

Be =
− ∂c
∂ρe

λ ∂V∂ρe
. (4.23)

In this procedure the density is increased when Be > 1 and decreased when Be < 1. The
optimal point is when the optimality condition equals to unity (Be = 1) for all density
variables. In this problem the Lagrange multiplier satis�es the volume restriction. The
function g(λ) = V (ρ(λ)) − fvV has a monotonous decreasing dependency with λ, due
to that the Lagrangian multiplier can be found by a bi-sectioning algorithm to do an
iterative update of λ. This iterative cycle is represented in the �gure 4.5 and converge
when g(ρ) = 0. When the optimality condition equals one for all values (ρnew ≈ ρ) the
optimization problem has converged [18], [1].

Figure 4.5: Iterative cycle in the OC. Adapted from [1]
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Part II

Methodology and Implementation
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Chapter 5

Methodology

5.1 Non-linear Material

In order to de�ne a non-linear material behaviour two simple approaches were applied.
The �rst approach consists in make a variation of the Young's modulus with some
prescribed parameters. These parameters have the intuit of simulate the plastic phe-
nomenon. The �rst one is related with a load limit (fy) that de�nes at which percentage
of the maximum load (fmax) this phenomenon occurs, its calculated by

H1 =
fy

fmax
. (5.1)

The second one a parameter to the variation of the Young's modulus in each load step
(H2 = αE). In this approach the proprieties of the material are assumed to be constant
in all elements. Thus the Young's modulus is updated in each load step by

Ei+1 = αEEi, (5.2)

so for a αE of 0.5 in each load step the Young's modulus will decay to an half of the
previous one.

The second approach is similar to the �rst with the di�erences that the �plastic� phe-
nomenon is not related with the applied load but with the stress levels of each individual
element and the material proprieties are not constant for all elements. To achieve that a
vector containing the element's elastic modulus was created and only the elements with
stress levels greater than a de�ned yield stress have their proprieties changed.

5.2 Objective Function and Sensitivities

In this work two di�erent objectives were considered. Minimization of the end-compliance
and minimization of the complementary work. The main di�erence between these two
objectives is that the minimization of end-compliance only takes into account the last
values of displacement and sti�ness matrices ignoring the history behind the last load
increment and since only requires the �nding of one equilibrium no incremental procedure
is necessary [17]. On the other hand the minimization of the complementary work requires
an incremental procedure since that the objective is calculated using all the information

27



28 5.Methodology

Figure 5.1: Force displacement curve obtained with the Young's modulus variation.

of all load increments. The objective function and sensitivities of the minimization of
end-compliance were already discussed (Equations 4.7 and 4.14).

For the minimization of complementary work, using the trapezoidal method for nu-
merical integration, the complementary work of the external forces can be calculated
as

c(ρ) = WC ≈ ∆fT

[
1

2
u(f0) +

n−1∑
i=1

u(fi) +
1

2
u(fn)

]
, (5.3)

where n is the number of load increments and ∆f the size of the increments determined
by

∆f =
(fn − f0)

n
, (5.4)

where f0 and fn are the zero and maximum load vectors, respectively. The sensitivity
analysis for the complementary work also uses the adjoint method as described before,
resulting in the following derivative

∂c

∂ρe
= ∆fT

[
1

2
λT

0

∂r0

∂ρe
+
n−1∑
i=1

λT
i

∂ri
∂ρe

+
1

2
λT
n

∂rn
∂ρe

]
, (5.5)

where r is the residual de�ned as the error in obtaining the equilibrium that corresponds
to the di�erence between the external and internal forces

r(u) = f−
∫
V
BTσdV. (5.6)

This �nite element equilibrium can be found using the iterative Newton-Raphson
method, but for a multi-linear approach as the used in this work the partial derivative
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of the residual is − ∂K
∂ρe

u and the adjoint variable λ equal to the original displacement
vector u. Thus the sensitivity for the minimization of complementary work is

∂c

∂ρe
= −∆fTpρp−1

e

[
1

2
uT

0 K0u0 +
n−1∑
i=1

uT
i Kiui +

1

2
uT
nKnun

]
. (5.7)

Figure 5.2: Representation of the complementary work.
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Chapter 6

Software Arquitecture and

Implementation

6.1 Implementation Details

6.1.1 Mesh Generation

The discretization of the initial domain it was implemented with a function that gen-
erates a mesh with quadrilateral elements. This function permits to de�ne the domain
dimensions and the number of elements in the x − axis and y − axis. The outputs are
the variables node, the nodal coordinate matrix (nnodes × 2), which contains the nodes
coordinates and element, the element connectivity matrix (nelem×4), that contains the
connectivity between nodes of all elements. The numbering of the elements start from
the bottom left corner and end at the top right corner, same as the software ABAQUS.
The connectivity of the nodes is done in counter-clockwise fashion to avoid negative
Jacobian's and consequently a singular sti�ness matrix.

node =


0.0 0.0
1.0 0.0
0.0 1.0
1.0 1.0

 (6.1)

element =
[
1 2 4 3

]
(6.2)

Figure 6.1: Mesh generated with RectangularMesh function.
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6.1.2 The Constitutive Tensor

For the constitutive tensor was implemented for the two assumptions discussed before,
the plane stress and plane strain assumptions. This function has as input arguments the
Young modulus E, the Poisson ration ν, a variable state that is a string that contains
the chosen assumption (plane-stress or plane-strain), but also the variable used in the
topology problem, the density x, and the penalization used in the SIMP approach, p.
Also has the number of elements, numelem, in order to access to the densities of each
element. The variable and the penalization is applied to the constitutive tensor giving
in this way the output of this function that is an hyper-matrix with dimension (ntens×
ntens×numelem), where ntens is the size of stress and strain component array (= 3 in
2D analysis).

C = ρpeCe (6.3)

In this way all the constitutive matrix for all elements are stored in one variable.

6.1.3 Global Sti�ness Matrix Assemble

The global constitutive tensor will be than used as an input to compute the global sti�ness
matrix K through this function. This function also has as input arguments the nodal
coordinate matrix, node, and the connectivity matrix, element. After computing the
B matrix using the methodology described in chapter 5 the element sti�ness is computed
using equation 3.13 for all four integration points. These matrices are then assembled in
the global sti�ness matrix. In order to do that the connectivity matrix is used to create
a vector with the degrees of freedom of the corresponding element, eldof. Thus for an
element with the connectivity [1 2 4 3] is obtained the following degrees of freedom

eldof =



1
2
3
4
7
8
5
6


, (6.4)

6.1.4 The Finite Element Function

To solve the �nite element problem is used the function FEM.m. In this function are
established boundary conditions for 3 di�erent problems, determining which degrees of
freedom are active (activeDof) and also the node where the load is applied. After begins
the iterative cycle where is added the load increment to the load in each iteration. In
this cycle is calculated the constitutive tensor then used to determine the sti�ness matrix
and solve the equilibrium equation (Ku = f) using only the active degrees of freedom.
With the resulting displacements the stress, strain and equivalent von Mises stress are
calculated for each element. For the �rst approach after the load reach a percentage of the
maximum load, de�ned by an hardening parameter the Young's modulus is changed in
accord to the second hardening parameter. In the second approach the Young's modulus
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variation occurs only for elements with stress levels greater than the de�ned �yield stress�.
Thus a scheme of this function it is presented in Figure 6.2.

Figure 6.2: Scheme of the FEM.m function.

6.1.5 Element Numbering

The main function is and adaptation of �A 99 line topology optimization code written

in Matlab� by O.Sigmund [18] with a �nite element formulation. Since the element
numbering in the Sigmund's mesh is di�erent a rearrangement was necessary in the
design variable, x, and in the sensitivities vector, dc. One of the Matlab's advantages is
that permits an easy solution for this problem by its �exibility in reshaping vector and
matrices.

X = f l i p (x ' , 2 ) ;

dc = f l i p ( reshape ( dce , [ nelx , ne ly ] ) ' , 1 ) ;

6.2 Final Computational Tool

The main function is composed by 5 functions. The input arguments are the number
of elements in x, nelx, the number of elements in y, nely, the domain dimensions, L
and B, the volume fraction, volfrac, this can be considered the domain proprieties. For
the material proprieties is given the Young's modulus, E, the Poisson's ration, nu, the
�hardening� parameters, Hparams and the penalization, penal. The last inputs are
the �lter radius, rmin, the maximum load, fmax, the load increment size, step, the
assumption to use (plane-strain or plane-stress), state(string), the boundary condition,
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34 6.Software Arquitecture and Implementation

Figure 6.3: Di�erence in the element numbering between the Sigmund mesh and the
generated mesh.

problem and �nally, the objective function to be use (end-compliance or complementary-
work), objective(string). The function can be run through the command window as for
example

>> TopOpt (60 , 20 , 6 0 , 2 0 , 0 . 5 , 7 0000 , 0 . 3 , [ 4 0 0 . 5 ] , 3 , 1 . 5 , 2 0 , 5 , ' plane−s t r e s s ' , 4 , '
complementary−work ' )

The algorithm structure is:

� Construct a �nite element mesh for the given domain dimensions and number of
elements;

� Make the initial design with an homogeneous distribution of material (gives the
selected volume fraction value for all elements);

� Start the iterative part of the algorithm (loop= 0, change=1);

� For the initial design, compute by the �nite element method the resulting displace-
ments and element sti�ness matrices;

� Compute the objective function and sensitivities of the design;

� Modify the sensitivities using �ltering techniques;

� Compute the update of the density variable based on the optimality criteria method

� If there is only a marginal improvement over the last design (change≤ 0.01), stop
the iterations.

The change variable is responsible for the convergence of the iteration cycle, when
necessary condition of optimality are satis�ed the design of the previous iteration is al-
most equal to the new one and then the cycle stop. The scheme of the �nal computational
tool is shown in Figure 6.4.

change = max(max( abs (x−xold ) ) ) ;

Riccardo Oliveira Master Degree



6.Software Arquitecture and Implementation 35

Figure 6.4: Scheme of the developed computational tool.
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Results and Discussion
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Chapter 7

Validation and Numerical Examples

In the developed computational tool 4 di�erent problems are programmed: (1) cantilever
beam with a load in the upper right corner, (2) cantilever beam with a load in the middle
of the free end, (3) MBB-beam and (4) beam with both ends �xed (Figure 7.1). Problem
number 3 corresponds to the MBB-beam problem (Figure 7.2) with a symmetry boundary
condition in order to simplify the problem.

Figure 7.1: Di�erent problems analysed with the developed computational tool.

Figure 7.2: MBB-beam without the symmetry boundary condition.
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7.1 Validation

For a good solution of the optimization problem it is essential to have a solid sensitivity
analysis that is dependent of a good Finite Element Analysis (FEA). Thus, in order
to validate the FEM function the numerical simulation software Abaqus was used. In
this software the problem number 1 described before for the data presented in Table 7.1
was simulated. The graphical results (Figure 7.3) and the maximum values (Table 7.2)
are similar, with the major di�erence in stress values. The Abaqus notation S stands for
stress, E for strain and U for the displacement, where 1 and 2 are the x and y components,
respectively. Another way to validate the displacement values was done by comparing
them with the displacement obtained using the 99 line topology optimization code by
Ole Sigmund [18] for problem 3 and the values are similar.

Table 7.1: Properties of the validation FEA.

Material properties

Young's modulus (E) 70 [GPa]
Poisson's ratio (ν) 0.3

Domain dimension

Length (L) 30 [mm]
Width (B) 10 [mm]
Number of elements (nelx× nely) 30×10

Analysis conditions

Boundary condition Encastre (left side)
Load (fmax) 40 [N]

Table 7.2: Comparison of the maximum values of the FEA using Abaqus and the de-
veloped �nite element function.

S11 [MPa] S22 [MPa] E11 E22 U1 [mm] U2 [mm]

Abaqus 85.7300 25.7200 1.1100E-03 2.7000E-04 0.0168 -0.0690
FEM.m 78.4546 19.7449 8.0000E-04 3.2500E-04 0.0153 -0.0628
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Figure 7.3: Comparison of the images for the FEA using Abaqus and the developed �nite
element function.
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7.2 First Approach

7.2.1 Plane Strain vs Plane Stress

Using the �rst approach and the complementary work as objective function, the designs
for the di�erent problems were compared for both described assumptions, plane-stress
and plane-strain. For all the results the von Mises equivalent stress, the sensitivities
and the �nal designs were analyzed. The inputs used are presented in Table 7.3. In
this analysis it was veri�ed that the topologies for both assumptions do not have much
variation. The only topology that has a small change is for the problem 3 (MBB-beam)
in the lower right corner. It can be also noticed that the stress and sensitivities absolute
values are higher were is de�ned the boundary condition and were the load is applied
(Figures 7.4, 7.6, 7.8 and 7.10). Another interesting analysis is about the computational
cost for the di�erent problems and assumptions. It was veri�ed that the plane-stress
assumption has lower cost than the plane-strain assumption, and in terms of the de�ned
problems the most expensive is problem 1 and the less expensive is the problem 4 (Table
7.4).

Table 7.3: Values used in the developed computational tool.

Material properties Input argument Values

Young's modulus (E) 70 [GPa]
Poisson's ratio (nu) 0.3
Young's modulus variation (dE) 0.5

Domain dimension

Length (L) 60 [mm]
Width (B) 20 [mm]
Number of elements (nelx× nely) 60×20

FEM conditions

Load (fmax) 40 [N]
Load limit (fy) 24 [N]
Load steps (step) 5

Optimization conditions

Volume fraction (volfrac) 0.5
Penalization (SIMP) (penal) 3
Filter radius (rmin) 1.5
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Figure 7.4: a) von Mises stress, b) sensitivity analysis and c) �nal design to the plane
strain (left) and plane stress (right) assumptions for problem 1.

Figure 7.5: Evolution of the objective function value for problem 1.
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Figure 7.6: a) von Mises stress, b) sensitivity analysis and c) �nal design to the plane
strain (left) and plane stress (right) assumptions for problem 2.

Figure 7.7: Evolution of the objective function value for problem 2.
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Figure 7.8: a) von Mises stress, b) sensitivity analysis and c) �nal design to the plane
strain (left) and plane stress (right) assumptions for problem 3.

Figure 7.9: Evolution of the objective function value for problem 3.

Riccardo Oliveira Master Degree



46 7.Validation and Numerical Examples

Figure 7.10: a) von Mises stress, b) sensitivity analysis and c) �nal design to the plane
strain (left) and plane stress (right) assumptions for problem 4.

Figure 7.11: Evolution of the objective function value for problem 4.
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Table 7.4: Values of the von Mises stress, complementary work and number of iterations
for plane stress and plane strain.

Problem State von Mises [MPa] WC [J] Iterations

1 P-Strain 59.0177 14.3186 278
P-Stress 59.4058 15.7701 256

2 P-Strain 60.7946 14.1921 70
P-Stress 61.1743 15.5912 62

3 P-Strain 72.8979 15.0188 164
P-Stress 73.9134 16.9297 160

4 P-Strain 25.7749 0.7641 67
P-Stress 26.082 0.8404 56
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7.2.2 Load Variation for Complementary Work

After comparing both assumptions, it was selected the problem 2 with plane-stress as-
sumption and was made a variation of the load in order to analyse the evolution of the von
Mises stress, complementary work values and �nal con�gurations. This study was made
using the same values of the previous analysis (Table 7.3), changing only the load values.
It was veri�ed that the von Mises equivalent stress has a linear relation with the load as
expected (Figure 7.14). In contrast, the evolution of the objective function value has a
quadratic evolution when compared with the load variation. This can be explained by
the relations between load-displacements and displacements-complementary work. The
increase of the load also re�ects an increase in displacements once that this physical
measures present a linear dependence by the sti�ness (Equation 3.16), this can be seen
in Figure 7.12. In terms of the complementary work, it can be veri�ed in its equation
(Equation 5.3) that the displacements have a double contribution, which is equivalent
to have Ku2. The �nal design con�guration does not present changes, neither does the
objective function evolution, and to explain that a study of the evolution of sensitivities
was made.

Figure 7.12: Deformed con�gurations of the topologies optimized for a) 40 N, b) 45 N,
c) 50 N and d) 55 N.
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Figure 7.13: Evolution of the normalized objective function values for 40 N, 45 N, 50 N
and 55 N load values.

Table 7.5: Values of the von Mises stress and complementary work for di�erent loads.

Load [N] von Mises [MPa] WC[J]

20 30.5804 0.6509
25 38.2329 1.3365
30 45.8791 2.9812
35 53.5280 6.8191
40 61.1743 15.5912
45 68.8211 35.3287
50 76.4679 79.1894
55 84.1146 175.6833

Figure 7.14: Evolution of the von Mises equivalent stress with load variation.
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Figure 7.15: Evolution of the complementary work with load variation.
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7.2.3 Sensitivity Analysis

In order to understand why the �nal con�guration do not present signi�cant changes, a
sensitivity analysis was made. It was analyzed the evolution of the derivative's values
for three cases: elastic material behaviour, multi-linear behaviour and bilinear behaviour
(Figures 7.16, 7.17 and 7.18 respectively). For the elasticity it was applied a load of 24 N
and for the other two cases the applied load was 40 N changing only the Young's modulus
variation. From Figure 7.19 it can be veri�ed that the evolution of the sensitivity for
di�erent optimization steps does not change, which means that the same problem is being
solved but for di�erent parameters that consequently result in di�erent solution values.
This can also be seen trough the normalized evolution of the objective function values in
Figure 7.13.

Figure 7.16: Load displacement curve for elastic behaviour (24 N).

Figure 7.17: Load displacement curve for multi-linear behaviour (40 N).
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Figure 7.18: Load displacement curve for bilinear behaviour (40 N).

Figure 7.19: Evolution of sensitivities for elastic, multi-linear and bilinear behaviour
respectively. a) �rst optimization step, b) 10 optimization steps, c) 20 optimization
steps, d) 30 optimization steps and e) 62 (last) optimization steps.
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7.3 Second Approach

Using the second approach, in which the elastic modulus is changed only for the yielded
elements, it was solved the optimization problem with load variation. In this approach it
can be veri�ed that the �nal con�guration changes in contrast to the �rst approach. An
interesting result was that with the convergence of the optimization problem the �nal
design evolves in a way that tends to minimize the number of elements that have reached
the de�ned yield stress. Thus is equivalent to say that the algorithm tends to minimize
elements with higher stress levels and also larger displacements, which makes sense once
that the objective depends on the displacement values. In Figure 7.20 it is possible to see
the evolution of the element's state (yielded or elastic), the von Mises equivalent stress
and the sensitivities for di�erent optimization steps using problem 2 with a load of 55
N and a yield stress of 40 MPa. The next study was to analyse the evolution of the
solutions for the di�erent problems with di�erent loads.

Figure 7.20: Element state (left), von Mises stress (middle) and local sensitivities (right)
for: a) �rst optimization step, b) 10 optimization steps, c) 20 optimization steps, d) 30
optimization steps and e) last optimization step.

7.3.1 Load Variation and Final Topologies for Complementary Work

For the �rst boundary condition the optimization problem was solved for the load values
of 35 N, 40 N, 45 N and 50 N. In this case it is not veri�ed a big variation of the �nal
designs and with the increase of the load the computational cost also increases. The
evolution of the objective functions for the di�erent loads can be seen in Figure 7.22.
Analysing the second boundary condition it is veri�ed that for a load of 55 N the �nal
design presents a signi�cant change and in this case the number of iterations increased a
lot compared with the other loads. It is possible to see in Figure 7.24 that for this load
value the evolution of the objective function value has a large oscillation. The evolution
of the topologies in problem number 3 is also signi�cant with the load variation (Figure
7.25). In this case, the problem with more iterations was the one with 35 N of load
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value, stabilizing for the next two loads (40 N and 45 N). Finally, for the problem 4 it
was considered a yield stress of 20 MPa in order to reach the yield phenomenon with less
load values once that this boundary condition generates a more stable structure. In this
case there is not a signi�cant variation of the �nal designs and the objective function
values are again lower than the other problems.

Figure 7.21: Solutions for problem 1 with load values of: a) 35 N, b) 40 N, c) 45 N and
d) 50 N.

Figure 7.22: Evolution of the objective function values for the di�erent load values in
problem 1.
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Table 7.6: Numerical results for di�erent loads for problem 1.

Load von Mises [MPa] WC[J] Iterations

35 46.2654 1.9190 259
40 52.4706 2.4966 259
45 58.5900 3.1905 351
50 65.7391 4.0255 661

Figure 7.23: Solutions for problem 2 with load values of: a) 40 N, b) 45 N, c) 50 N and
d) 55 N.

Table 7.7: Numerical results for di�erent loads for problem 2.

Load von Mises [MPa] WC[J] Iterations

40 51.3967 2.4852 73
45 54.5835 3.1626 74
50 51.8558 3.9878 58
55 54.8948 4.7496 375
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Figure 7.24: Evolution of the objective function values for the di�erent load values in
problem 2.

Figure 7.25: Solutions for problem 3 with load values of: a) 30 N, b) 35 N, c) 40 N and
d) 45 N.
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Figure 7.26: Evolution of the objective function values for the di�erent load values in
problem 3.

Table 7.8: Numerical results for di�erent loads for problem 3.

Load von Mises [MPa] WC[J] Iterations

30 46.5413 1.5346 150
35 47.0529 2.1401 455
40 50.6925 2.8120 175
45 58.1473 3.7328 165

Table 7.9: Numerical results for di�erent loads for problem 4.

Load von Mises [MPa] WC[J] Iterations

40 24.6741 0.1345 170
50 29.6640 0.2423 78
60 36.1474 0.5322 67
70 42.0953 1.5907 67
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Figure 7.27: Solutions for problem 4 with load values of: a) 40 N, b) 50 N, c) 60 N and
d) 70 N.

Figure 7.28: Evolution of the objective function values for the di�erent load values in
problem 4.
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7.4 Final Topologies for End Compliance

For the minimization of end-compliance has objective function it was veri�ed that the
algorithm has the same behaviour (Figure 7.29). It is possible to note that the �rst
design is a homogeneous distribution through the domain with the prescribed volume
fraction value for all elements. The solution were obtained by solving the optimization
problem for a load value of 40 N. The obtained results are shown in Table 7.10. In terms
of the solution it can be veri�ed that the topologies are similar to the ones using the
complementary work as objective function (Figure 7.30). The evolution of the objective
function values can be seen in Figure 7.31 for the �rst 3 problems and in Figure 7.32 for
problem number 4. The plots are presented separately due to the di�erence of range in
values.

Figure 7.29: Element's state (left), von Mises stress (middle) and design con�guration
for 1, 10, 20 and last optimization steps, respectively.

Figure 7.30: Solutions (left), von Mises stress (middle) and local sensitivities (right) for:
a) problem 1, b) problem 2, c) problem 3 and d) problem 4.
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Figure 7.31: Evolution of the objective function values for problems 1,2 and 3.

Figure 7.32: Evolution of the objective function value for problem 4.

Table 7.10: Numerical results for all problems

Problem von Mises [MPa] Compliance Iterations

1 52.045 4.5125 456
2 49.2462 4.3865 134
3 52.5414 5.1199 247
4 26.0966 0.2320 69
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Chapter 8

Final Remarks

8.1 Conclusion

In this work, a computational tool was developed using Matlab as a programming plat-
form. The primary objective of the tool is to solve the topology optimization problem.
However, a simulation module using the �nite element method, that can be used indi-
vidually or within the optimization procedures with minimal changes, was also developed.
This tool has four di�erent boundary conditions, but more conditions can be implemented
in a straightforward manner with simple modi�cations.

Despite the use of simple approaches, some interesting conclusions about the op-
eration of the topology optimization algorithm were retrieved, such as the reduction
of plastic elements through the optimization steps and the distribution of material for
di�erent load cases.

Based on the results, it can be observed that, for the topology optimization problem
in the 2D analysis, there are no signi�cant di�erences between the use of plane stress
and plane strain assumptions. The distribution of material and the numerical results are
similar in both approaches.

It can also be concluded that the use of an explicit incremental scheme has a high
computational cost. When implemented using programming languages such as Matlab
the problem appears to be cumbersome to solve for a large number of design iterations
and elements.

Therefore, for future works, it is suggested to use an iterative scheme such as the
Newton-Raphson method. However, taking into account that the method can fail to
converge for large displacements and in order to stabilize the convergence for the equi-
librium iterations, it can be relaxed by eliminating the nodes surrounded by void.

8.2 Future Work

With the work done in this document some future works are proposed in order to continue
and improve the study in this �eld:

� Elaboration of an interface using Matlab's GUI;

� Implementation using iterative schemes such as Newton-Raphson method;
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� Implementation of constitutive models such as elastoplasticity or viscoplasticity;

� Resolution of the topology optimization problem using other objective functions
(e.g. minimization of the strain energy, multiple load case).

Riccardo Oliveira Master Degree



Bibliography

[1] A. A. Campos, J. Oliveira, and J. Cruz, Otimização não-linear em engenharia:

cálculo estrutural e computacional multiescala. ETEP - Edições Técnicas e Pro�s-
sionais, 2015.

[2] R. Alberdi, G. Zhang, L. Li, and K. Khandelwal, �A uni�ed framework for nonlinear
path-dependent sensitivity analysis in topology optimization,� International Journal
for Numerical Methods in Engineering, vol. 115, no. 1, pp. 1�56, 2018.

[3] J. Maxwell, �On Reciprocal Figures, Frames and Diagrams of Force,� Transactions
of the Royal Society of Edinburgh, vol. 26, pp. 1�40, 1870.

[4] A. Michell, �The Limits of Economy of Material in Frame Structures,� Philisophical
Magazine, vol. 8, no. 6, pp. 589�597, 1904.

[5] M. Bendsøe and N. Kikuchi, �Generating Optimal Topologies in Structural Design
Using a Homogenization Method,� Computer Methods in Applied Mechanics and

Engineering, vol. 71, no. 2, pp. 197�224, 1988.

[6] S. Cho and H. S. Jung, �Design sensitivity analysis and topology optimization of
displacement-loaded non-linear structures,� Computer Methods in Applied Mechan-

ics and Engineering, vol. 192, no. 22-23, pp. 2539�2553, 2003.

[7] M. Bendsøe, �Optimal Shape Design as a Material Distribution Problem,� Structural
and Multidisciplinary Optimization, vol. 1, no. 4, pp. 193�202, 1989.

[8] G. Rozvany, M. Zhou, and T. Birker, �Generalized Shape Optimization Without
Homogenization,� Structural and Multidisciplinary Optimization, vol. 4, no. 3-4,
pp. 250�252, 1992.

[9] K. Yuge and N. Kikuchi, �Optimization of a frame structure subjected to a plastic
deformation,� Structural Optimization, vol. 10, no. 3-4, pp. 197�208, 1995.

[10] K. Maute, S. Schwarz, and E. Ramm, �Adaptive topology optimization of
elastoplastic structures,� Structural Optimization, vol. 15, no. 2, pp. 81�91, 1998.

[11] J. Kato, H. Hoshiba, S. Takase, K. Terada, and T. Kyoya, �Analytical sensitivity in
topology optimization for elastoplastic composites,� Structural and Multidisciplinary

Optimization, vol. 52, no. 3, pp. 507�526, 2015.

[12] F. Teixeira-Dias, J. Pinho-da Cruz, R. F. Valente, and R. Sousa, Método dos ele-

mentos �nitos: técnicas de simulação numérica em engenharia. 2010.

63



64 BIBLIOGRAPHY

[13] E. A. de Souza Neto, D. Peri, and D. R. J. Owen, Computational Methods for

Plasticity. 2008.

[14] A. J. M. Ferreira, Problemas de elementos �nitos em Matlab. Fundação Calouste
Gulbenkian. Serviço de Educação e Bolsas, 2010.

[15] P. Hartley, Introduction to Computational Plasticity, vol. 39. 2006.

[16] T. Sokóª, �A 99 line code for discretized Michell truss optimization written in Math-
ematica,� Structural and Multidisciplinary Optimization, vol. 43, no. 2, pp. 181�190,
2011.

[17] M. Bendsøe and O. Sigmund, Topology Optimization. Theory, Methods and Applic-

ations. Springer, 2003.

[18] O. Sigmund, �A 99 line topology optimization code written in matlab,� Structural

and Multidisciplinary Optimization, vol. 21, no. 2, pp. 120�127, 2001.

Riccardo Oliveira Master Degree



Appendix A

Developed functions

A.1 Main

1 f unc t i on TopOpt( nelx , nely , L ,B, vo l f r a c ,E, nu , Hparams , penal , rmin , fmax , step ,
s ta te , problem , ob j e c t i v e )

2 % MESH GENERATION
3 [ node , element ] = RectangularMesh (L ,B, nelx , ne ly ) ;
4 % INITIALIZE
5 x ( 1 : nely , 1 : ne lx ) = vo l f r a c ;
6 loop = 0 ;
7 change = 1 . ;
8 % START ITERATION
9 whi le change > 0.01

10 loop = loop + 1 ;
11 xold = x ;
12 % FINITE ELEMENT ANALYSIS
13 X = f l i p (x ' , 2 ) ;
14 [U1 , KE, s t r e s s , s t r a in , smises ,P, Plas ] = FEM(node , element ,X, penal ,E, nu ,

fmax , step , Hparams , s ta te , problem ) ;
15 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
16 [ c , dce ] = S en s i t i v i t yAna l y s i s ( element ,X, penal , step ,U1 ,KE,P, ob j e c t i v e ) ;
17 dc = f l i p ( reshape ( dce , [ nelx , ne ly ] ) ' , 1 ) ;
18 % FILTERING OF SENSITIVITIES
19 [ dc ] = check ( nelx , nely , rmin , x , dc ) ;
20 % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
21 [ x ] = OC( nelx , nely , x , vo l f r a c , dc ) ;
22 % PRINT RESULTS
23 change = max(max( abs (x−xold ) ) ) ;
24 di sp ( [ ' I t . : ' s p r i n t f ( '%4i ' , loop ) ' Obj . : ' s p r i n t f ( '%10.4 f ' , c ) . . .
25 ' Vol . : ' s p r i n t f ( '%6.3 f ' , sum(sum(x ) ) /( ne lx * ne ly ) ) . . .
26 ' ch . : ' s p r i n t f ( '%6.3 f ' , change ) ] )
27 % PLOT DENSITIES
28 colormap ( gray ) ; imagesc(−x ) ; ax i s equal ; ax i s t i g h t ; ax i s o f f ; pause (1 e

−6) ;
29 % OUTPUTS
30 ObjF( loop ) = c ;
31 Dce ( : , loop ) = dce ;
32 i t ( loop ) = loop ;
33 S t r e s s ( : , : , loop ) = s t r e s s ;
34 St ra in ( : , : , loop ) = s t r a i n ;
35 Smises ( : , loop ) = smises ( : , 1 ) ;
36 GPlas ( : , loop ) = Plas ;
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37 x2 ( : , : , loop ) = x ;
38 end
39 f i g u r e
40 p lo t ( i t , ObjF)
41 end

A.2 Mesh Generation

1 f unc t i on [ node , element , Nnodes]=RectangularMesh (L , B, Nx, Ny)
2 ne l = Nx*Ny; %number o f e lements
3 nnel = 4 ; %number o f nodes per element
4 nx = Nx+1; %nodes in x
5 ny = Ny+1; %nodes in y
6 nnode = nx*ny ; %number o f nodes
7 Nnodes = 1 : nnode ; %numbering o f nodes
8 %node coo rd ina t e s
9 nodex = l i n s p a c e (0 ,L , nx ) ;

10 nodey = l i n s p a c e (0 ,B, ny ) ;
11 [ xx , yy ] = meshgrid ( nodey , nodex ) ;
12 node = [ yy ( : ) xx ( : ) ] ;
13 %Connect iv i ty
14 element = ze ro s ( nel , nne l ) ;
15 Nnodes = reshape (Nnodes , nx , ny ) ;
16 element ( : , 1 ) = reshape (Nnodes ( 1 : nx−1 ,1:ny−1) , nel , 1 ) ;
17 element ( : , 2 ) = reshape (Nnodes ( 2 : nx , 1 : ny−1) , nel , 1 ) ;
18 element ( : , 3 ) = reshape (Nnodes ( 2 : nx , 2 : ny ) , nel , 1 ) ;
19 element ( : , 4 ) = reshape (Nnodes ( 1 : nx−1 ,2:ny ) , nel , 1 ) ;
20 end

A.3 Finite Element Method

1 f unc t i on [ U2 ,KE2, s t r e s s , s t r a in , smises ,P, Plas ] = FEM(node , element , x , penal ,E
, nu , fmax , step , Hparams , s ta te , Problem )

2 %I n i t i a l i z e v a r i a b l e s
3 numnode = s i z e ( node , 1 ) ;
4 numelem = s i z e ( element , 1 ) ;
5 U1 = ze ro s (2*numnode , 1 ) ;
6 f = ze ro s (2*numnode , 1 ) ;
7 P = ze ro s (2*numnode , 1 ) ;
8 Load = 0 : s tep : fmax ;
9 fy = Hparams (1 ) ;

10 dE = Hparams (2 ) ;
11 Eg ( 1 : numelem) = E;
12 smises = ze ro s (numelem , 3 ) ;
13 Plas = ze ro s (numelem , 1 ) ;
14 %Boundary Condit ion
15 switch Problem
16 case 1
17 %Boundary Condit ion 1
18 a l l d o f s = 1 :2*numnode ;
19 enca s t r e = f i nd ( node ( : , 1 )==0)*2 ;
20 d i f f = encast re−ones ( numel ( enca s t r e ) , 1 ) ;
21 f i x e ddo f s ( 1 : 2 : 2 * numel ( enca s t r e )−1) = d i f f ;
22 f i x e ddo f s ( 2 : 2 : 2 * numel ( enca s t r e ) ) = enca s t r e ;
23 act iveDof = s e t d i f f ( a l l d o f s ' , f i x e ddo f s ) ;
24 case 2
25 %Boundary Condit ion 2
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26 nx = 2*sum( node ( : , 2 )==0) ;
27 ha l f end = nx * ( ( ( sum( node ( : , 1 )==0)−1)/2)+1) ;
28 a l l d o f s = 1 :2*numnode ;
29 enca s t r e = f i nd ( node ( : , 1 )==0)*2 ;
30 d i f f = encast re−ones ( numel ( enca s t r e ) , 1 ) ;
31 f i x e ddo f s ( 1 : 2 : 2 * numel ( enca s t r e )−1) = d i f f ;
32 f i x e ddo f s ( 2 : 2 : 2 * numel ( enca s t r e ) ) = enca s t r e ;
33 act iveDof = s e t d i f f ( a l l d o f s ' , f i x e ddo f s ) ;
34 case 3
35 %Boundary Condit ion 3
36 ne lx = sum( node ( : , 2 )==0)−1;
37 a l l d o f s = 1 :2*numnode ;
38 enca s t r e = f i nd ( node ( : , 1 )==0)*2 ;
39 d i f f = encast re−ones ( numel ( enca s t r e ) , 1 ) ;
40 l a s t = ( ne lx+1) *2 ;
41 f i x e ddo f s = union ( d i f f , l a s t ) ;
42 act iveDof = s e t d i f f ( a l l d o f s ' , f i x e ddo f s ) ;
43 case 4
44 %Boundary Condit ion 4
45 ne lx = sum( node ( : , 2 )==0)−1;
46 a l l d o f s = 1 :2*numnode ;
47 enca s t r e = f i nd ( node ( : , 1 )==0)*2 ;
48 enca s t r e2 = f i nd ( node ( : , 1 )==nelx ) *2 ;
49 d i f f 2 = encast re2−ones ( numel ( enca s t r e2 ) ,1 ) ;
50 d i f f = encast re−ones ( numel ( enca s t r e ) , 1 ) ;
51 union1 = union ( encast re , d i f f ) ;
52 union2 = union ( encast re2 , d i f f 2 ) ;
53 f i x e ddo f s = union ( union1 , union2 ) ;
54 act iveDof = s e t d i f f ( a l l d o f s ' , f i x e ddo f s ) ;
55 ha l f t op = 2*numnode−ne lx ;
56 end
57 %Young ' s modulus v a r i a t i o n
58 f o r i = 1 : s i z e (Load , 2 )
59 f o r e = 1 : numelem
60 i f smises ( e , 1 ) > fy
61 Eg( e ) = dE*Eg( e ) ;
62 Plas ( e ) = 1 ;
63 end
64 end
65 %Cons t i tu t i v e Tensor
66 [C] = Const i tut iveTensor (Eg , nu , x , penal , numelem , s t a t e ) ;
67 %S t i f f n e s s Matrix
68 [ K,~ ,~ ,KE ] = S t i f f n e s sMa t r i x ( node , element , C) ;
69 %Load
70 switch Problem
71 case 1
72 f (numnode*2) = −Load ( i ) ;
73 P(numnode*2) = −s tep ;
74 case 2
75 f ( ha l f end ) = −Load ( i ) ;
76 P( ha l f end ) = −s tep ;
77 case 3
78 f (max( enca s t r e ) ) = −Load ( i ) ;
79 P(max( enca s t r e ) ) = −s tep ;
80 case 4
81 f ( ha l f t op ) = −Load ( i ) ;
82 P( ha l f t op ) = −s tep ;
83 end
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84 %Solv ing KU=F
85 U = K( act iveDof , ac t iveDof ) \ f ( act iveDof ) ;
86 U1( act iveDof ) = U;
87 %Compute St re s s , Stra in , von Mises
88 [ s t r e s s , s t r a in , smises ] = Globa lS t r e s s ( node , element ,U1 ,C) ;
89 %Output
90 U2 ( : , i ) = U1 ;
91 KE2{ i } = KE;
92 end
93 end

A.4 Constitutive Tensor

1 f unc t i on [C] = Const i tut iveTensor (E, nu , x , penal , numelem , s t a t e )
2 ntens = 3 ;
3 C = ze ro s ( ntens , ntens , numelem) ;
4 f o r e = 1 : numelem
5 Ee = E( e ) ;
6 i f strcmp ( s tate , ' plane−s t r a i n ' )
7 dsde = Ee/((1+nu) *(1−2*nu) ) *[(1−nu) nu 0 ; nu (1−nu) 0 ; 0 0

(1−2*nu) / 2 ] ;
8 end
9 i f strcmp ( s tate , ' plane−s t r e s s ' )

10 dsde = Ee/(1−nu^2) * [ 1 nu 0 ; nu 1 0 ; 0 0 (1−nu) / 2 ] ;
11 end
12 C( : , : , e ) = x( e )^penal *dsde ;
13 end
14 end

A.5 Sti�ness Matrix

1 f unc t i on [ K,B,C,KE ] = S t i f f n e s sMa t r i x ( node , element , C )
2 numnode = s i z e ( node , 1 ) ;
3 numelem = s i z e ( element , 1 ) ;
4 %Quadrature
5 q = 0.577350269189626 ;
6 Q = [−q −q ;
7 q −q ;
8 q q ;
9 −q q ] ; %natura l c oo rd ina t e s

10 W = [ 1 ; 1 ; 1 ; 1 ] ; %weights
11 K = spar s e (2*numnode ,2*numnode) ;
12 f o r e = 1 : numelem
13 Ce = C( : , : , e ) ;
14 i n d i c e = element ( e , : ) ;
15 nn = length ( i nd i c e ) ;
16 e l d o f = [ i nd i c e (1 ) *2−1; i nd i c e (1 ) * 2 ; . . .
17 i n d i c e (2 ) *2−1; i nd i c e (2 ) * 2 ; . . .
18 i n d i c e (3 ) *2−1; i nd i c e (3 ) *2 ;
19 i n d i c e (4 ) *2−1; i nd i c e (4 ) * 2 ] ;
20 f o r i = 1 : s i z e (W, 1 )
21 x i = Q( i , 1 ) ;
22 eta = Q( i , 2 ) ;
23 wt = W( i ) ;
24 N = 1/4* [ (1−x i )*(1− eta ) ;
25 (1+x i )*(1− eta ) ;
26 (1+x i ) *(1+ eta ) ;
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27 (1−x i ) *(1+ eta ) ] ; %Shape Var ia t ion
28 dNdxi = 1/4*[−(1− eta ) −(1−x i ) ;
29 1−eta −(1+x i ) ;
30 1+eta 1+x i ;
31 −(1+eta ) 1−x i ] ; %Der i va t i v e s o f Shape func t i on s

( dxi deta )
32 %Jacobian
33 J0 = node ( ind i c e , : ) '*dNdxi ;
34 invJ0 = inv ( J0 ) ;
35 dNdx = dNdxi* invJ0 ;
36 %B Matrix Assembly
37 B = ze ro s (3 , 8 ) ;
38 B(1 , 1 : 2 : 2 * nn) = dNdx ( : , 1 ) ' ;
39 B(2 , 2 : 2 : 2 * nn) = dNdx ( : , 2 ) ' ;
40 B(3 , 1 : 2 : 2 * nn) = dNdx ( : , 2 ) ' ;
41 B(3 , 2 : 2 : 2 * nn) = dNdx ( : , 1 ) ' ;
42 %K Matrix Assembly
43 Ke ( : , : , i ) = B'*Ce*B*wt*det ( J0 ) ;
44 K( e ldo f , e l d o f ) = K( e ldo f , e l d o f )+Ke ( : , : , i ) ;
45 end
46 KE( : , : , e ) = Ke ( : , : , 1 )+Ke ( : , : , 2 )+Ke ( : , : , 3 )+Ke ( : , : , 4 ) ;
47 end
48 K = f u l l (K) ; %Sparse Matrix to Fu l l Matrix
49 end

A.6 Stress, Strain and von Mises Stress

1 f unc t i on [ St r e s s , Stra in , Smises ] = Globa lS t r e s s ( node , element , U, C )
2 numelem = s i z e ( element , 1 ) ;
3 S t r e s s = ze ro s (numelem , 3 ) ;
4 St ra in = ze ro s (numelem , 3 ) ;
5 Smises = ze ro s (numelem , 3 ) ;
6 s t r e s sPo i n t s = [ 0 0 ] ;
7 f o r e = 1 : numelem
8 Ce = C( : , : , e ) ;
9 i n d i c e = element ( e , : ) ;

10 nn = length ( i nd i c e ) ;
11 e l d o f = [ i nd i c e (1 ) *2−1; i nd i c e (1 ) * 2 ; . . .
12 i n d i c e (2 ) *2−1; i nd i c e (2 ) * 2 ; . . .
13 i n d i c e (3 ) *2−1; i nd i c e (3 ) *2 ;
14 i n d i c e (4 ) *2−1; i nd i c e (4 ) * 2 ] ;
15 f o r i = 1 :1
16 pt = s t r e s sPo i n t s ( i , : ) ;
17 x i = pt (1 ) ;
18 eta = pt (2 ) ;
19 N = 1/4* [ (1−x i )*(1− eta ) ;
20 (1+x i )*(1− eta ) ;
21 (1+x i ) *(1+ eta ) ;
22 (1−x i ) *(1+ eta ) ] ; %Shape Var ia t ion
23 dNdxi = 1/4*[−(1− eta ) −(1−x i ) ;
24 1−eta −(1+x i ) ;
25 1+eta 1+x i ;
26 −(1+eta ) 1−x i ] ; %Der i va t i v e s o f Shape

func t i on s ( dxi deta )
27 %Jacobian
28 J0 = node ( ind i c e , : ) '*dNdxi ;
29 invJ0 = inv ( J0 ) ;
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30 dNdx = dNdxi* invJ0 ;
31 %B Matrix Assembly
32 B = ze ro s (3 , 8 ) ;
33 B(1 , 1 : 2 : 2 * nn) = dNdx ( : , 1 ) ' ;
34 B(2 , 2 : 2 : 2 * nn) = dNdx ( : , 2 ) ' ;
35 B(3 , 1 : 2 : 2 * nn) = dNdx ( : , 2 ) ' ;
36 B(3 , 2 : 2 : 2 * nn) = dNdx ( : , 1 ) ' ;
37 %s t r e s s and s t r a i n
38 s t r a i n = B*U( e l d o f ) ;
39 s t r e s s = Ce* s t r a i n ;
40 smises = s t r e s s (1 ) ^2 − s t r e s s (1 ) * s t r e s s (2 ) + s t r e s s (2 )^2+3*

s t r e s s (3 ) ^2;
41 smises = sq r t ( smises ) ;
42 Smises ( e , : ) = smises ;
43 S t r e s s ( e , : ) = Ce* s t r a i n ;
44 St ra in ( e , : ) = s t r a in ' ;
45 end
46 end
47 end
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