
Universidade de Aveiro Departamento de Engenharia Mecânica
2018

Miguel Gonçalves
Gaspar

Desenvolvimento de um modelo de comportamento
elastoplástico através de inteligência artificial

Development of a model of elastoplastic behavior
through artificial intelligence

Universidade de Aveiro Departamento de Engenharia Mecânica
2018

Miguel Gonçalves
Gaspar

Desenvolvimento de um modelo de comportamento
elastoplástico através de inteligência artificial

Development of a model of elastoplastic behavior
through artificial intelligence

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quesitos necessários à obtenção do grau de Mestre em Engenharia Mecânica,
realizada sob a orientação cient́ıfica de António Gil D’Orey de Andrade
Campos, Professor Auxiliar do Departamento de Engenharia Mecânica da
Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Rui António da Silva Moreira
Professor Auxiliar do Departamento de Engenharia Mecânica da Universidade de

Aveiro

vogais / examiners committee Prof. Doutor Hugo Filipe Pinheiro Rodrigues
Professor Adjunto do Departamento de Engenharia Civil do Instituto Politécnico

de Leiria, Escola Superior de Tecnologia e Gestão (arguente principal)

Prof. Doutor António Gil D’Orey Andrade Campos
Professor Auxiliar do Departamento de Engenharia Mecânica da Universidade de

Aveiro (orientador)

agradecimentos /
acknowledgements

É este o momento de tornar público o meu profundo agradecimento a to-
dos os que, nos últimos cinco anos, me acompanharam no meu percurso
universitário

Ao orientador desta dissertação o Professor Gil Campos, pela orientação
prestada, pelo seu incentivo, disponibilidade e apoio que sempre demon-
strou. Aqui lhe exprimo a minha gratidão.

Um grande obrigada à minha familia, em especial à minha mãe, ao meu
pai e à minha irmã, pelo eterno apoio e por todas as oportunidades que me
proporcionaram.

Gostaria também de agradecer à Joana Mota pela imensa paciência que
sempre demonstou ter em me aturar.

Agradeço ao António, ao Gonçalo, ao Francisco, ao Filipe e a todos os meus
amigos que sempre me acompanharam desde infância, mesmo estudando e
vivendo em universidades e cidades diferentes.

Por fim, quero Agradecer ao Carneiro, à Sara, à Carmen, ao Barros, ao
Miguel e ao Nunes, pelo gratificante percurso de cinco anos e pelas longas
e extensas discussões em inúmeros trabalhos de grupo.

Palavras-chave Inteligência Artificial, Aprendizagem Computacional, Aprendizagem Super-
visionada, Regressão, Redes Neuronais, Modelos Constitutivos, Algoritmos
de Otimização, FEA, Modelação Preditiva, User Subroutines, Comporta-
mento Elastoplástico

Resumo Nos últimos anos, tem havido enormes avanços na precisão e capacidades
preditivas de ferramentas para a simulação de materiais. A modelação
preditiva tornou-se numa ferramenta poderosa que também pode agre-
gar um grande valor por meio de aplicações e inovações para a indústria
global. A simulação das operações de conformação, particularmente us-
ando o método dos elementos finitos, é claramente dependente da precisão
dos modelos constitutivos. Nos últimos anos, várias metodologias foram
desenvolvidas para melhorar a precisão de modelos constitutivos através de
metodologias de identificação e calibração de parâmetros. No entanto, in-
dependentemente da eficácia dos métodos de calibração, a precisão de um
modelo constitutivo é sempre restrita à sua formulação matemática pre-
definida. Adicionalmente, usando formulações elastoplásticas conhecidas, é
imposśıvel reproduzir os fenómenos do comportamento de materiais se estes
comportamentos não forem eficazmente formulados matematicamente.

Recentemente, as técnicas de inteligência artificial (IA) tornaram-se mais ro-
bustas e complexas. Este campo estabeleceu o objetivo ambicioso de tornar
as máquinas aparentemente ou genuinamente inteligentes. O sub-campo
da inteligência artificial conhecido como aprendizagem computacional tenta
fazer com que os computadores aprendam com as observações. Os algo-
ritmos de aprendizagem computacional são ferramentas gerais que podem
ser adaptadas a um grande número de problemas, incluindo a previsão da
relação tensão-deformação do material.

Este trabalho propõe modelar o comportamento de um material metálico
utilizando técnicas de aprendizagem computacional (ML) e utilizar este ML
na modelação de simulações. Inicialmente, o modelo ML é projetado e
treinado usando um modelo de elastoviscoplasticidade em estado plano de
tensão de forma a avaliar a sua eficácia na substituição de modelos clássicos.
Diferentes topologias ML e técnicas de otimização são usadas para treinar
o modelo. Em seguida, o modelo IA é introduzido num código de análise
de elementos finitos (FEA), como user subroutine, e a sua concretização
em simulações de conformação é avaliada. A substituição de formulações
clássicas por técnicas de IA para a definição do comportamento do material
é analisada e discutida.

Keywords Artificial Intelligence, Machine Learning, Supervised Learning, Regres-
sion, Neural-Networks, Constitutive Models, Optimization Algorithms, FEA,
Predicitive Modeling, User Subroutines, Elastoplastic Behaviour

Abstract In the past few years, there has been tremendous advances in the accuracy
and predictive capabilities of tools for the simulation of materials. Predictive
modeling has now become a powerful tool that can also deliver real value
through application and innovation to the global industry. Simulation of
forming operations, particularly using the finite element method, is clearly
dependent on the accuracy of the constitutive models. In the last years,
several methodologies were developed to improve the accuracy of constitu-
tive models through parameter identification and calibration methodologies.
However, independently of the efficacy of the calibration methods, the ac-
curacy of a constitutive model is always constrained to its predefined math-
ematical formulation. Additionally, using known elastoplastic formulations,
it is impossible to reproduce the material phenomena if these phenomena
are not formulated mathematically.

In the past several years, artificial intelligence (AI) techniques have become
more robust and complex. This field has set the ambitious goal of making
machines either seemingly or genuinely intelligent. The sub-field of artificial
intelligence known as machine learning attempts to make computers learn
from observations. Machine-learning algorithms are general tools that can
be fitted to a vast number of problems, including predicting the stress-strain
relationship of the material.

This work proposes to model the behavior of a metal material using machine-
learning (ML) techniques and use this ML in forming simulations. Initially,
the ML model is designed and trained using a known plane stress elastovis-
coplasticity model to evaluate its competence to replace classical models.
Different ML topologies and optimization techniques are used to train the
model. Then, the AI model is introduced into a finite element analysis
(FEA) code, as a user subroutine, and its attainment in forming simulations
is evaluated. The replacement of classical formulations by AI techniques for
the material behavior definition is analysed and discussed.

Contents

Contents i

List of Figures iii

List of Tables vii

1 Introduction 1

1.1 Related Work . 2

1.2 Objectives . 4

1.3 Reading Guide . 4

2 Artificial Neural Networks 5

2.1 Mathematical Formulation . 5

2.2 Topologies . 8

2.3 Software . 8

2.3.1 Models . 9

2.3.2 Pre-processing data . 9

2.3.3 Model Evaluation and Selection . 9

2.3.4 Model Persistence . 10

3 Training 11

3.1 Creating Data for Machine Learning training 11

3.1.1 Chaboche Constitutive Model in 1D 11

3.1.1.1 Numerical Implementation 13

3.1.1.2 Virtually experimental results 14

3.1.2 Chaboche Constitutive Model in 2D 17

3.1.2.1 Numerical Implementation 20

3.1.2.2 Virtually experimental results 21

3.2 Training on Generated Dataset . 24

3.2.1 ANN Model for 1D . 24

3.2.1.1 Final model . 26

3.2.1.2 Validation . 28

3.2.2 ANN Model for 2D . 33

3.2.2.1 Final model . 36

3.2.2.2 Validation . 37

i

4 Implementation and analysis of the ANN-model on a FEA code 41
4.1 User defined subroutine UMAT and SDVINI 42
4.2 Communication between UMAT and machine learning

model . 43
4.3 Validation . 44

5 Testing machine learning model on complex geometry 51
5.1 Adapted butterfly test . 51
5.2 Results . 52

6 Conclusions and Future Work 61

References 63

Appendices 67

A Mechanical displacement used for the virtually experimental tests in 2D 68
A.1 Tensile test (Txx) . 68
A.2 Tensile test (Tyy) . 70
A.3 Simple Shear test (Sxy) . 72

B Tables for validating ANN-model 74

C Code 76
C.1 chaboche1D . 76
C.2 chaboche2D . 78
C.3 UMAT . 81
C.4 neuronalFem (ANN-FEA) . 84

ii

List of Figures

1.1 Simple representation of an artificial neural network. 2

1.2 Machine Learning approach in material characterization. 3

2.1 Artificial neural network with one hidden layer. 5

2.2 Activation functions used for artificial neural networks. 6

2.3 Examples of different neural network topologies. 8

2.4 Cross-validation method using 5 folds [33]. 10

3.1 Total strain with a cyclic strain range of ±0.036 during four cycles. 12

3.2 Scheme of equations from Chaboche’s model in 1D for the machine learning
model to learn. 13

3.3 Input values from the generated dataset in 1D before and after the transfor-
mation. 15

3.4 Output values from the generated dataset in 1D before and after the transfor-
mation. 16

3.5 Scheme of equations from Chaboche’s model in 2D for the machine learning
model to learn. 19

3.6 Input values from the generated dataset in 2D before and after the transfor-
mation. 22

3.7 Output values from the generated dataset in 2D before and after the transfor-
mation. 23

3.8 Grid search results for the 1D training dataset using different optimization
algorithms, activation functions and neural network sizes. 24

3.9 Validation curve of trained 1D model with a range of hidden neurons from one
to twenty for one hidden layer. 25

3.10 Validation curve of trained 1D model with a range of regularization factor values. 25

3.11 Representation of the final neural network’s architecture for the 1D model. It is
composed with an input layer with four nodes (total stress, viscoplastic strain,
back and drag stress), one hidden layer with 4 nodes and an output layer with
three nodes (viscoplastic strain rate, back and drag stress rates). 26

3.12 MSE function values from training set thought 103 iterations. 27

3.13 Comparison between predicted and experimental values of back stress and it’s
rate over time with a cyclic strain of ±0.025 %. 28

3.14 Comparison between predicted and experimental values of drag stress and it’s
rate over time with a cyclic strain of ±0.025 %. 28

iii

3.15 Comparison between predicted and experimental values of viscoplastic strain,
and it’s rate over time with a cyclic strain of ±0.025 %. 29

3.16 Comparison between predicted and experimental values of all stresses over time
with a cyclic strain of ±0.025 %. 30

3.17 Comparison between predicted and experimental values of cyclic loading over
time with a cyclic strain of ±0.025 %. 30

3.18 Comparison between predicted and experimental values of cyclic loading over
time with a cyclic strain of ±0.040 %. 31

3.19 Comparison between predicted and experimental values of cyclic loading over
time with a cyclic strain of ±0.072 %. 32

3.20 Grid search results for the ANN-model for the 2D experimental dataset using
different optimization algorithms, activation functions and neural network sizes. 33

3.21 Validation curve of trained ANN-model with a range of hidden neurons from
nine to twenty for one hidden layer. 34

3.22 Learning curve of ANN-model for the 2D experimental dataset. 35

3.23 Validation curve of ANN-model with a range of λ. 35

3.24 MSE function values from training set throughout 190 iterations. 36

3.25 Comparison between predicted and experimental curves of 2D cyclic loading
in tensile tests a) Txx, b) Tyy and shear testing c) Sxy, with a cyclic strain of
±0.18. 39

3.26 Comparison between predicted and experimental curves of 2D cyclic loading in
tensile and simple shear testing. The left column corresponds to a cyclic strain
of ±0.11 and the right to ±0.14. 40

4.1 Flow of data and actions from the start of an ABAQUS/Standard analysis to
the end of a step. 42

4.2 Communication method between the FEA and the machine learning model. . 43

4.3 Tests performed on FEA, as well as the boundary conditions for tensile tests
in the a) xx and b) yy directions and c) for simple shear. Points C and P
represent where the evaluation of stresses and strains are performed further. . 44

4.4 Stress and strain curves obtained from proposed model of the ANN-FEA and
ANN-model and from experimental results for tensile test (Txx). 45

4.5 Stress and strain curves obtained from proposed model of the ANN-FEA and
ANN-model and from experimental results for tensile test (Tyy). 46

4.6 Stress and strain curves obtained from proposed model of the ANN-FEA and
ANN-model and from experimental results for simple shear test (Sxy). 47

4.7 Stress and strain curves obtained with ANN-FEA, ANN-model and experimen-
tal results for tests Txx, Tyy and Sxy with a maximum strain of 0.11. 48

4.8 Stress and strain curves obtained with ANN-FEA, ANN-model and experimen-
tal results for tests Txx, Tyy and Sxy with a maximum strain of 0.14. 49

5.1 Detail geometry of adapted butterfly specimen. 51

5.2 Representation of a) boundary conditions and b) numerical mesh for the adapted
butterfly specimen. 52

5.3 Contour obtained for the von Mises equivalent stress and the elements chosen
for evaluation. 53

iv

5.4 Stress tensor σ in function of it’s correspondent strain, obtained from ANN
and experimental values, for the first selected point. 55

5.5 Back stress tensor χ over time, obtained from ANN and the experimental
values, for the first selected point. 56

5.6 Viscoplastic strain tensor εvp over time, obtained from ANN and the experi-
mental values, for the first selected point. 56

5.7 Drag stress R over time, obtained from ANN and the experimental values, for
the first selected point. 57

5.8 Plastic strain p over time, obtained from ANN and the experimental values,
for the first selected point. 57

5.9 Stress tensor σ in function of it’s correspondent strain, obtained from ANN
and experimental values, for the second selected point. 58

5.10 State variables over time, obtained from ANN and the experimental values, for
the second selected point. 58

5.11 Stress tensor σ in function of it’s correspondent strain, obtained from ANN
and experimental values, for the third selected point. 59

5.12 State variables over time, obtained from ANN and the experimental values, for
the third selected point. 59

A.1 Total strain tensor for a cyclic strain of ±0.05. 68
A.2 Total strain tensor for a cyclic strain of ±0.12. 69
A.3 Total strain tensor for a cyclic strain of ±0.16. 69
A.4 Total strain tensor for a cyclic strain of ±0.05. 70
A.5 Total strain tensor for a cyclic strain of ±0.12. 70
A.6 Total strain tensor for a cyclic strain of ±0.16. 71
A.7 Total strain tensor for a cyclic strain of ±0.05. 72
A.8 Total strain tensor for a cyclic strain of ±0.12. 72
A.9 Total strain tensor for a cyclic strain of ±0.16. 73

v

vi

List of Tables

3.1 Material parameters for the chaboche’s viscoplasticity model in 1D. 13

3.2 Material parameters for the Chaboche’s viscoplasticity model in 2D. 19

3.3 Final model variables described for training, neural network’s architecture, the
score of predicting the material behavior and it’s mean-square-error. 26

3.4 Values calculated with the proposed model in comparison with the experimen-
tal results in 1D, as well as the percentage error between them. These values
correspond at the maximum strain of the first cycle (t = 5 s) on a strain range
of ±0.025 %. 29

3.5 Values calculated with the proposed model in comparison with the experimen-
tal results in 1D, as well as the percentage error between them. These values
correspond at the maximum strain of the first cycle (t = 5 s) on a strain range
of ±0.040 %. 31

3.6 Values calculated with the proposed model in comparison with the experimen-
tal results in 1D, as well as the percentage error between them. These values
correspond at the maximum strain of the first cycle (t = 5 s) on a strain range
of ±0.072 %. 32

3.7 Final model variables described for training, neural network’s architecture, the
score of predicting the material behavior and it’s mean-square-error. 36

3.8 Values calculated with ANN-model in comparison with the virtually experi-
mental values in 2D. These values correspond at the maximum strain of the
first cycle (t = 5 s) on a strain range of ±0.18. 38

4.1 Incrementation definitions for FEA step and element type to perform tensile
and simple shear tests using the trained machine learning model (ANN-FEA)
to predict the material behavior. 44

4.2 Comparison between normal stress and strains obtained from ANN-FEA, ANN-
model and experimental results for tensile test Txx, as well as the percentage
error for each neural network model. 45

4.3 Comparison between normal stress and strains obtained from ANN-FEA, ANN-
model and experimental results for tensile test Tyy, as well as the percentage
error for each neural network model. 46

4.4 Comparison between normal stress and strains obtained from ANN-FEA, ANN-
model and experimental results for tensile test Sxy, as well as the percentage
error for each neural network model. 47

vii

5.1 Comparison between ANN and experimental values of σ, χ and R, as well as
the percentage error between them, at the end of the step for the three selected
points. 54

5.2 Comparison between ANN and experimental values of εvp and p, as well as the
percentage error between them, at the end of the step for the three selected
points. 54

B.1 Values calculated with ANN-model in comparison with the virtually experi-
mental values in 2D. These values correspond at the maximum strain of the
first cycle (t = 5s) on a strain range of ±0.11. 74

B.2 Values calculated with ANN-model in comparison with the virtually experi-
mental values in 2D. These values correspond at the maximum strain of the
first cycle (t = 5s) on a strain range of ±0.14. 75

viii

Chapter 1

Introduction

In this past few years, there has been tremendous advances in the accuracy and predictive
capabilities of tools for the simulation of materials. Predictive modeling has now become
a powerful tool which can also deliver real value through application and innovation to the
global industry. However, the fast pace which new complex materials are developed to assist
the objective of industrial designers leads to the increasing necessity for non-linear analysis
of materials which are characterized by material models or constitutive equations.

Finite Element Method (FEM) is a numerical method that has been widely used as a
powerful tool in the analysis of engineering and mathematical physics problems, such as
structural analysis. In FEM, the behavior of the material is defined with some constitutive
relationships. Therefore, the selection of an appropriate constitutive model, capable of ade-
quately describing the behavior of the material, plays a significant role in the reliability and
precision of the numerical predictions. For a non-linear behavior, the hardest problem that
the technique commonly face is to reduce the error between the numerical prediction by the
model and the experimental values. This can only be improved by increasing the number of
parameters, many of which have no physical meaning. However, the decrease of model error
does not tackle the substance of the problem since all models are limited by the capability of
their mathematical description, since the model is written explicitly.

In the past years, artificial intelligence techniques have become more robust and complex.
This field has set the ambitious goal of making machines either seemingly or genuinely in-
telligent. The sub-field of artificial intelligence known as machine learning attempts to make
computers learn from observations. While statistical time series models are specialized for
their task, machine learning algorithms are general tools that can be fitted to a vast number of
problems, including predicting the relationship between the stress and strain in the material.

A standard neural network (NN) mimics how brain neurons works. The network is made
of enumerous simple connected processors, called neurons, each producing a sequence of real-
valued activations. These neurons can be grouped as input, hidden and output layers, as
it can be seen in figure 1.1. Typically, a neural network is initially trained and fed with
large amounts of data. Training consists on providing input and highlighting to the network
what the output should be. Then, the hidden neurons adapt their values to better fit the
training data and, as result, give predictions with untrained inputs. The training phase uses
optimization techniques to find efficiently the neuron’s values.

1

Figure 1.1: Simple representation of an artificial neural network.

Considering the machine learning advantages and capabilities, a neural network model
could be incorporated in the finite element analysis (FEA) code as a replacement to the
constitutive material model.

1.1 Related Work

In order to provide data to the training process of machine learning algorithms, some
authors used experimental data yet others used computed data. In [1, 2, 3], the authors used
experimental data. On [1], data from soils is used. Other approach is given in [2], where the
authors analyzed results from a bundle of super-conduction cables used in a nuclear power
plant as an experimental investigation of its mechanical properties. Another interesting factor
to have in mind is concerning noise in the experimental measurements, which was presented
in [3]. They conclude that the constitutive relations could be modeled regardless of the noise
level when sufficient data are available. However, on a first step, the data used to train
the machine learning model is generated using an analytical formulation, for instance, the
Chaboche viscoplasticity model, in resemblance with the work made on [4].

The next step is to chose an appropriate model to train the dataset. In [4], a multilayer
feedfoward neural network is presented, as a universal function approximator for any bounded
square integrable function of many variables. However, the authors in [4] chose the same
number of training and test sets which can substantially decrease the reliability of their
implemented model. Other work, such as [5] implemented a Nested Adaptive Neural Network
(NANN), which is a variation of standard multi-layer neural network. The network consists
of a total of four layers, one input layer (strain vector and state variables), two hidden layers
and an output layer (stress vector). An initial number of nodes to each hidden layer are
assigned, then the number of nodes can vary to better fit the training data. On [2, 3], both
authors use a back-propagation neural network, but in [3] the algorithm is modified and it is
only based on the error of the strain energy and the external work without the need of stress
data.

2

The implementation of these trained models whether to test or to use on finite element
analysis was poorly or not described in [4, 3]. Nevertheless, in [5], the authors report the
issues related to this numerical implementation. The trained model is implemented in the
widely used general-purpose finite element code Abaqus , using the user defined material
module UMAT capability. Also in [1], a similar approach was made but the authors does not
specify the framework used for the so called NeuroFEM. Besides the software part, in [2], the
constitutive law represented by ANN is described analytically inside a FE code. The authors
rewrite its standard equations and explain how this application is possible.

The implementation of the material behavior description is schematically represented in
1.2.

Figure 1.2: Machine Learning approach in material characterization.

Recently the use of artificial neural networks to reproduce constitutive models are pre-
sented in different projects [6, 7, 8, 9, 10, 11]. In all of these, the modelling of hot deformation
behavior of a specific material using artificial neural networks are described. However, in [11]
the author develops a constitutive model from an evolutionary polynomial regression-based
self-learning finite element analysis. Some authors [12, 13, 14] use artificial neural networks
to predict the failure of glass/epoxy composite pipes, fatigue life assessment of in-service road
bridge decks and stress hotspots. In [15], the author propose the predicting effect of cooling
rate on the mechanical properties of glass fiber-polypropylene composites.

3

1.2 Objectives

The objective is to develop a model for elastoplastic behavior using artificial intelligence
techniques. For this purpose, it is necessary to understand such techniques, as well as the
material constitutive models in order to generate virtually experimental tests. After the
training process using the virtually experimental data, the proposed model to be developed
needs to be validated in non-trained strain fields.

Once the machine learning models are validated, an implementation and analysis of the
proposed model on a FEA code is intended, as well as the validation of such implementation.
Finally, an application of the system on a more practical engineer problem is analyzed and
discussed.

1.3 Reading Guide

This dissertation is composed of 6 chapters, including the present one, in order to meet the
objectives described above in a more organized way. Those chapters are arranged as follows:

1. Introduction - The current chapter in which is presented a brief introduction, a de-
scription of the problem per se, related projects and an enumeration of the objectives.

2. Artificial Neural Networks - Introduces and describes the mathematical formulation
behind neural networks, which software is used and some machine learning methods for
model evaluation and selection. It is also presented a way to persist the trained model
without having to retrain every time it needs to perform predictions.

3. Training - The aim in this chapter is to develop trained neural networks to repro-
duce the material behavior for the chosen constitutive model in 1D and 2D. Thus,
the constitutive models are described and virtually experimental tests are generated.
Then, it focus on the training process and subsequent validation for both models with
non-trained strain range.

4. Implementation and analysis of the ANN-model on a FEA code - Introduces
the steps required to perform a simulation in FEA using user-subroutines. Then, the
communication between the user-subroutine and the machine learning model is de-
scribed, as well as the tests and results to validate this implementation.

5. Testing machine learning model on a complex geometry - Knowing that the
implementation is validated, it was tested the trained neural network on the tensile test
of the adapted butterfly specimen.

6. Conclusions and Future Work - Presents conclusions of the developed machine
learning models and some suggestions for future work in this field of study.

4

Chapter 2

Artificial Neural Networks

2.1 Mathematical Formulation

Considering a simple neural network (figure 2.1) with an input layer of three units, a
hidden layer with four units and an output layer with one unit, the calculations necessary to
get the predictions (ŷ) are described below:

a
[1]
1

a
[1]
2

a
[1]
3

a
[1]
4

a
[2]
1

x1

x2

x3

ŷ

Figure 2.1: Artificial neural network with one hidden layer.

a
[1]
1 = g(Θ

[1]T
1 x+ b

[1]
1), (2.1)

a
[1]
2 = g(Θ

[1]T
2 x+ b

[1]
2), (2.2)

a
[1]
3 = g(Θ

[1]T
3 x+ b

[1]
3), (2.3)

a
[1]
4 = g(Θ

[1]T
4 x+ b

[1]
4), (2.4)

ŷ = a
[2]
1 = g(Θ

[2]T
1 a[1] + b

[2]
1), (2.5)

where g() is the activation function, aji is the activation of unit i in layer j, Θj
i is the

matrix of weights controlling function mapping from layer j to layer j+1 of unit i and bji is
the bias.

5

The activation functions introduce linear or non-linear properties to the neural network.
Their main purpose is to convert an input signal of a node to an output signal. Then, the
output signal is used as an input in the next layer. Figure 2.2 illustrates some activation
functions discussed in [16].

(a) Linear. (b) Logistic.

(c) Tanh. (d) Relu.

Figure 2.2: Activation functions used for artificial neural networks.

In this example, the activation nodes are calculated using a 4*3 matrix of parameters.
Each row of the parameters are aplied to the inputs to obtain the value for one activation
node. The hypothesis output is applied to the sum of the values of the activation nodes,
which have been multiplied by another parameter matrix Θ[2] containing the weights for the
second layer of nodes.

A simpler forward neural network representation from equations 2.1:

a[1] = g(Θ[1]x+ b[1]), (2.6)

a[2] = g(Θ[2]a[1] + b[2]), (2.7)

ŷ = a[2]. (2.8)

Training a neural network consists on finding the best parameters (Θ and b) in order

6

to better represent the relationship between inputs and outputs. This result in a search for
minimizing the cost function. For neural networks, the cost function is defined as:

J(Θ, b) = − 1

m

m∑
i=1

K∑
k=1

[
y
(i)
k log(ŷk) + (1− y(i)

k) log(1− ŷk)
]

+
λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(Θ
(l)
j,i)

2, (2.9)

where L is the total number of layers in the network, sl is the number of units, K is the
number of output units, ŷk is the hypothesis for the kth output and λ is the regularization
factor.

In the training process, the regularization factor (λ) is responsible for penalize the param-
eters (Θ and b) update.

With regard to the update of Θ and b, gradient descent can be used as optimization
algorithm. The partial derivatives are represented as:

dΘ[1] =
dJ

dΘ[1]
, (2.10)

db[1] =
dJ

db[1]
, (2.11)

dΘ[2] =
dJ

dΘ[2]
, (2.12)

db[2] =
dJ

db[2]
. (2.13)

Then, the parameters update is perform:

Θ[1] := Θ[1] − αdΘ[1], (2.14)

b[1] := b[1] − αdb[1], (2.15)

Θ[2] := Θ[2] − αdΘ[2], (2.16)

b[2] := b[2] − αdb[2]. (2.17)

(2.18)

Where the parameter α is the learning rate.

Gradient descent [17] is a first-order iterative optimization algorithm for finding the min-
imum of a function. In this case, it is to converge the parameters. Although, there are more
robust and complex optimization algorithms, such as:

• Stochastic gradient descent [17], a stochastic aproximation of gradient descent;

• Adam [17], an extension to stochastic gradient descent;

• Limited-memory BFGS [18, 19].

In addiction, the back propagation algorithm is generally used. It consists on the repeated
application of the error calculation used for gradient descent, but it is repeatedly applied in
the reverse order, starting from output layer towards input layer. A more detailed explanation
can be found in [20].

7

2.2 Topologies

Neural networks can be arranged in various forms and topologies. The necessity of im-
proving the existing topologies led to the existence of different neural networks and how they
work. In [21], the author present a map to navigate between emerging architectures and
approaches to neural networks, which some examples are displayed on figure 2.3.

Feed Forward (FF) neural networks are defined by having all of their nodes fully connected,
the activation flows from input layer to output, without back loops. These networks have only
one hidden layer between input and output. Deep feed forward neural networks have the same
principle as FF networks but with more than one hidden layer and uses back propagation
to calculate the gradient to adjust weights. Recurrent Neural networks have the same basic
principle as FF but the connections between nodes form a directed graph along a sequence.
This allows it to exhibit dynamic temporal behavior for a period of time. These type of
networks can use their internal state to process sequences of inputs, making them applicable
for unsegmented task like connected handwriting recognition or speech recognition. The last
example shown in figure 2.3 are the Long/Short Term Memory networks, an extension of
recurrent neural networks. A more detailed explanation can be found in [22].

Feed Forward (FF) Deep Feed Forward (DFF)

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)

Input Cell

Hidden Cell

Output Cell

Recurrent Cell

Memory Cell

Figure 2.3: Examples of different neural network topologies.

2.3 Software

There are several open source libraries to implement machine and deep learning models.
The list is large and Tensorflow [23], Pytorch [24], Keras [25] and Scikit-learn [26] are some
examples. Selecting one technology from the options previous refereed can be a difficult task.
First, due to the low size and complexity of the datasets, that is used for training, the best
solution is a framework with an easy to use and debug interface. A major advantaged of
this type of framework is having some internal methods for automatically search the best

8

hyper-parameters. With this in mind, Scikit-Learn is chosen.

2.3.1 Models

In Scikit-Learn ecosystem, the neural network module includes three models based on
neural networks. One for unsupervised learning, called Bernoulli Restricted Boltzmann Ma-
chine, and other two for supervised learning, the Multi-layer Perceptron Classifier and the
Multi-layer Perceptron Regressor. Note that the scope of this work is not to explain in detail
the mathematical formulations behind these models. The possibility of using an unsupervised
model was put aside because each example on the dataset consists on a pair of an input ob-
ject and a desired output value. Then, the Multi-layer perceptron regressor(MLPRegressor)
module was selected because the goal in this work is to have an output on a set of continuous
values and not a classification problem.

2.3.2 Pre-processing data

For regression estimators it’s common use to standard scale the dataset. The result of
standardization (or Z-score normalization) is that the features and the targets will be rescaled
so that they have the properties of a standard normal distribution with zero mean and unit
variance. This is done using Scikit−Learn’s class called StandardScaler from preprocessing
module [27]. From this class the fit method is used which compute the mean and standard
deviation to be used for later scaling. The transform method which perform standardization
by centering and scaling. The inverse transform, which transforms the dataset to it’s initial
state, is also used.

2.3.3 Model Evaluation and Selection

To quantify the performance of predictions for a given machine learning model, it is used
metrics. For regression problems, Scikit-Learn provides mean square error [28], a risk metric
corresponding to the expected value of the squared (quadratic) error or loss. Where ŷi is
the predicted value of the i-th sample, and yi is the corresponding true value, then the mean
squared error (MSE) estimated over nsamples is computed by the following equation:

MSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷ)2. (2.19)

It also provides the R2 score, the coefficient of determination [29]. It provides a measure of
how well future samples are likely to be predicted by the model. It’s mathematical formulation
is given by:

R2(y, ŷ) = 1−
∑nsamples−1

i=0 (yi − ŷ)2∑nsamples−1
i=0 (yi − ȳ)2

, (2.20)

where ȳ is described as:

ȳ =
1

nsamples

nsamples−1∑
i=0

yi. (2.21)

9

Selecting a model or adapting it’s parameters for machine learning tasks is often referred
as tunning hyper-parameters.

Hyper-parameters can be divided into two groups: one containing the variables responsible
for determine the network structure (e.g. number of hidden units for each hidden layer), and
other with variables which establish how the network is trained (e.g. optimization algorithms,
activation functions, learning rate, regularization factor). As shown in [30], the combinations
of all these variables results in a search for the best parameters. Scikit-Learn have built-in
functions (grid search) which allow to perform this search. Documentation can be found in
[31].

Scikit-Learn provides a function to test a range of hyper-parameters using cross-validation
[32]. This method consists into splitting the dataset into k folds. For each k-fold the model
is trained on k-1 folds of the dataset, then the model is tested to check the effectiveness for
the correspondent fold. This process is repeated until each of the k-folds has served as test
set. The overall error is computed as the average of each fold error. This method is repeated
through the range of chosen hyper-parameters. An example of this method is illustrated in
figure 2.4, where k = 5.

Figure 2.4: Cross-validation method using 5 folds [33].

Scikit-Learn also provides the validation curve [34] function to test different combi-
nations for a single hyper-parameter using cross-validation. It is calculated the validation
and training score to visually analyze the model performance. The learning curve [34] is
also used to show the validation and training scores of an estimator for varying numbers of
training samples.

2.3.4 Model Persistence

In order to use the machine learning model, it is desirable to have a way to persist the
model without having to retrain every time it needs to perform predictions. It is possible to
save a model in Scikit-Learn by using joblib [35] class from sklearn.externals module.
To save and load the model, joblib.dump and joblib.load were used, respectively. These
functions were also used to save and load the two StandardScaler classes described in section
2.3.2. One transforms the features (scaler x) and other to inverse transform the predictions
(scaler y). This flow of actions results in three pickle files: estimator.pkl, scaler x.pkl and
scaler y.pkl.

10

Chapter 3

Training

3.1 Creating Data for Machine Learning training

3.1.1 Chaboche Constitutive Model in 1D

The goal of this section is to compute an explicit viscoplastic material model in 1D.
For that purpose, the computation of structures beyond the yield limit requires hardening
properties and material’s viscosity. There are some mathematical constitutive equations to
describe the elasto-viscoplastic material behavior, but only Chaboche’s model is in the scope
of this research.

First, the stress-strain behavior is often studied by separating it’s elastic properties from
overall behaviors (inelastic properties). So, the sum of elastic strain with inelastic strain
returns the total strain under uniaxial loading condition:

ε = εe + εin. (3.1)

A material in it’s elastic behavior, the stress can be computed between the linear rela-
tionship with strain, using Young’s Modulus as slope:

σ = Eεe. (3.2)

In the unified theory capable of report cyclic loading and viscous behavior, the time-dependent
effect is unified with the plastic deformations as a viscoplastic term, where εe and εvp represent
the elastic and viscoplastic behavior:

ε = εe + εp + εv = εe + εvp. (3.3)

The finite element structure computations under reverse cyclic loading are defined by strain,
so for a given time (t) and from equation 3.3, the stress is calculated as:

σ(t) = E(ε(t)− εvp(t)). (3.4)

To determine the total strain in function of time, first the variable time needs to be converted
to tcycle, as described below:

tcycle = t− tc
⌊
t

tc

⌋
. (3.5)

11

The variable tc is the amount of time performed in the cyclic loading. For example, with
a tc = 20 s, in the first five seconds it will reach the maximum strain with traction. Five
seconds further it reaches null strain. Then, it starts compressing until t = 15 s. The cycle
is complete after 20 s, where it reaches null strain. The total strain is calculated during this
cycle by the following equation:

ε(t) =

4εmax
tc

tcycle, if tcycle ≤ tc
4

2εmax − 4εmax
tc

tcycle, if tc
4 < tcycle ≤ tc

4

4εmin − 4εmin
tc

tcycle, if 3tc
4 < tcycle ≤ tc

(3.6)

The time of cycle used during this research is tc = 20 s. An example for the previous
described cyclic strain, with a range of ±0.036 with four cycles is demonstrated in figure 3.1.
In this example, the εmax = 0.036 and εmin = −0.036.

Figure 3.1: Total strain with a cyclic strain range of ±0.036 during four cycles.

The viscoplastic component of the equation 3.4 is calculated by a differential equation that
depends on the previous state of kinematic hardening (back stress) and isotropic hardening
(drag stress) in order of time. These states are defined by differential equations and the
properties of a specific material. The parameters used are presented in table 3.1.

The derivative of the viscoplastic (ε̇vp) component, as well as the back (χ̇) and drag stress
(Ṙ) rates in order to time, are defined by the following equations:

ε̇vp =

(
|σ − χ| −R

K

)n
sgn(σ − χ), (3.7a)

χ̇ = H · ε̇vp −D · χ|ε̇vp|, (3.7b)

Ṙ = h · |ε̇vp| − d ·R|ε̇vp|. (3.7c)

The relations between the differential equations presented in 3.7 can be visually repre-
sented by figure 3.2. This scheme represents the relations that the neural network have to
mimic.

12

Table 3.1: Material parameters for the chaboche’s viscoplasticity model in 1D.

Parameters Values

E [MPa] 5000

K [MPa·s1/n] 50
n [-] 3
H [MPa] 5000
h [MPa] 10
D [-] 300
d [-] 0.6

εvp

χ

σ

R

ε̇vp

χ̇

Ṙ

Eq.

(3.7a)

Eq.

(3.7b)

Eq.

(3.7c)

Figure 3.2: Scheme of equations from Chaboche’s model in 1D for the machine learning model
to learn.

3.1.1.1 Numerical Implementation

To solve the system of ordinary differential equations, odeint function from Scipy1 ecosys-
tem is used. This function needs as input the initial state of the system, a function which
returns the derivatives for a given time, and a sequence of time points. A more detailed
documentation can be found in [36]. The code used is shown in C.1 from appendix C. The
algorithm used can be seen in algorithm 1.

The initial conditions are given by:

εvp|t=0 = εvp0 = 0; (3.8a)

χ|t=0 = χ0 = 0; (3.8b)

R|t=0 = R0 = 50. (3.8c)

1Scipy ecosystem is an open-source Python library used for scientific computing and technical computing.

13

Algorithm 1: Function that returns viscoplastic strain, back and drag stress rate values
at requested state.

Input: Initial conditions of the differential states at a given time t.

Output: Derivatives with respect to time: ε̇vp, χ̇, Ṙ.

Calculate Total Stress
if elastic state then

ε̇vp = χ̇ = Ṙ = 0
return null Derivatives;

else
Calculate viscoplastic strain and state variables rates (equation 3.7)
return Derivatives;

end

3.1.1.2 Virtually experimental results

After solving the system of differential equations, the work carried out by the authors
in the paper [4] was successfully reproduced. To train a neural network with the data

obtained in this virtually experimental test, it is necessary to save the differential state (σ,
εvp, χ and R) at each point of time. This result in the following matrix X, where the variable
m corresponds to the number of time points, which is interpreted as number of training
examples:

X(4,m) =

σ(1) εvp(1) χ(1) R(1)

...
...

...
...

σ(m) εvp(m) χ(m) R(m)

 . (3.9)

It is also necessary to save the corresponding derivatives for each differential state. For
that, it is built the following target matrix y:

y(3,m) =

ε̇vp(1) χ̇(1) Ṙ(1)

...
...

...

ε̇vp(m) χ̇(m) Ṙ(m)

 . (3.10)

The dataset is generated with m = 3000 and a cyclic strain range of ±0.036, as shown in
figure 3.1. To use it for training it is necessary to transform the X and y matrices. For this
task it’s used the transform method (see section 2.3.2). Figures 3.3 and 3.4 illustrates the
input and the correspondent output values before and after the transformation, respectively.

14

(a) Before transformation.

(b) After transformation.

Figure 3.3: Input values from the generated dataset in 1D before and after the transformation.

15

(a) Before transformation.

(b) After transformation.

Figure 3.4: Output values from the generated dataset in 1D before and after the transforma-
tion.

16

3.1.2 Chaboche Constitutive Model in 2D

The objective of this section is to compute an explicit viscoplastic material model in
2D. In order to simplify this computation, a plane stress condition is implemented. Under
plane-stress conditions the following tensor:

σ =

σxx τxy τxz
τxy σyy τyz
τxz τyz σzz

 (3.11)

is simplified by the values establish below:

τxz = τzx = τyz = τzy = σzz = 0. (3.12)

So in this case, Hooke’s law takes the form represented on the matrix:

ε =

εxxεyy
δxy

 =
1

E

 1 −ν 0
−ν 1 0
0 0 2 + 2ν

σxxσyy
τxy

 . (3.13)

Like in the previous section, the finite element structure computations under reverse cyclic
loading are defined by strain. So, the inverse relation is usually written in the reduced form:

σ =

σxxσyy
τxy

 =
E

1− v2

1 ν 0
ν 1 0
0 0 1−ν

2

εxxεyy
δxy

 . (3.14)

Although the stress tensor depends on the static material properties (Young’s modulus
and poisson coefficient), it also depends on the strain tensor. This vector is not the total
strain, but the difference between the total and viscoplastic strain. In resemblance with
the method implemented for the determination of total strain on the previous section, it is
calculated through equations 3.5 and 3.6 for the 2D conditions:

ε = εt − εvp. (3.15)

The viscoplastic strain rate tensor, ε̇vp, of the Chaboche model can be written as:

ε̇vp =
3

2
ṗ
σ′ − χ′

J(σ′ − χ′)
. (3.16)

The plastic strain rate, ṗ, has the following form:

ṗ =

〈
J(σ′ − χ′)−R− k

K

〉n
, (3.17)

where the angle brackets represent the McCauley bracket, which is defined by:

〈x〉 =
1

2
(x+ |x|). (3.18)

17

Both inelastic and plastic strain rates, use the deviatoric back stress and the total deviatoric
stress. But to calculate the deviatoric components, first it must be calculated the hydrostatic
stress for both stresses. The Hydrostatic stress is the average of the three normal stress
components of any stress tensor:

σhydii =
1

3
(σxx + σyy + σzz), (3.19)

χhydii =
1

3
(χxx + χyy + χzz). (3.20)

However, under plane stress conditions, the hydrostatic stress is the average of the two normal
stress components, and the shear on hydrostatic stress is zero.

σhyd =

1
2(σxx + σyy)
1
2(σxx + σyy)

0

 , (3.21)

χhyd =

1
2(χxx + χyy)
1
2(χxx + χyy)

0

 . (3.22)

The back and total deviatoric stresses are calculated by the following form:

σ′ = σ − σhyd, (3.23)

χ′ = χ− χhyd. (3.24)

The J invariant is defined by the following equation, where the apostrophe between the
parenthesis means to transpose the matrix:

J(σ′ − χ′) =

√
3

2
(σ′ − χ′)′(σ′ − χ′). (3.25)

The evolution of the kinematic hardening rate (back stress rate), is defined by:

χ̇ =
3

2
aε̇vp − cχṗ. (3.26)

The isotropic hardening rate (drag stress rate) is calculated by the following equation:

Ṙ = b(R1 −R)ṗ. (3.27)

The states of the previous differential equations depend also on material properties (E, ν, R1,
k, K, a, b, c, n). These parameters are presented on table 3.2.

18

Table 3.2: Material parameters for the Chaboche’s viscoplasticity model in 2D.

Parameters Values

E [MPa] 5000
ν[-] 0.3
R1 [MPa] 500
k [MPa] 0

K[MPa ·s1/n] 50
a [MPa] 7500
b [-] 0.6
c [-] 100
n [-] 3

The relations between the equations 3.24, 3.23, 3.25, 3.27, 3.17, 3.16 and 3.26, can be
visually represented in figure 3.5. This scheme represents the constitutive description of the
Chaboche’s viscoplasticity model. Therefore, figure 3.5 summarizes the equations which the
neural network will learn.

εvp

χ

σ

R

ε̇vp

χ̇

Ṙ

p

ṗ

Eq.
Eq.

Eq.

Eq.

Eq.

Eq.

Eq.

(3.27)

(3.17)

(3.16)

(3.26)

(3.24)

(3.23)

(3.25)

Figure 3.5: Scheme of equations from Chaboche’s model in 2D for the machine learning model
to learn.

19

3.1.2.1 Numerical Implementation

In resemblance to the numerical implementation described in 1D, the system of ordinary
differential equations are solved using odeint function from Scipy2 ecosystem. This function
needs as input the initial state of the system, a function which returns the derivatives for a
given time, and a sequence of time points. A more detailed documentation can be found in
[36]. The code used is shown in C.2 from appendix C. The algorithm used can be seen in
algorithm 2.

The initial conditions are given by:

εvp|t=0 =

0
0
0

 ; (3.28a)

χ|t=0 =

0
0
0

 ; (3.28b)

R|t=0 = R0 = 50; (3.28c)

p|t=0 = p0 = 0. (3.28d)

Algorithm 2: Function that returns inelastic and plastic strain, back and drag stress
rate values at a requested state.

Input: Initial conditions of the differential state and total strain at a given time t.

Output: Derivatives with respect to time: ε̇vp, χ̇, Ṙ, ṗ.

Calculate:
- Total stress
- Back and total deviatoric stresses
- J invariant
- State

if elastic state then

ε̇vp = χ̇ =

0
0
0

Ṙ = ṗ = 0
return null Derivatives;

else
Calculate viscoplastic and plastic strain and state variables rates
return Derivatives;

end

2Scipy ecosystem is an open-source Python library used for scientific computing and technical computing.

20

3.1.2.2 Virtually experimental results

To train a neural network with the data obtained in this virtually experimental test, it is
necessary to save the differential state (σ, εvp, χ, R and p) at each point of time. However,
plane-stress conditions leads to three types of testing: the tensile tests along xx (Txx), yy
(Tyy) axis and simple shear (Sxy). In addiction, the tests can be performed under various
cyclic strain ranges. This results in the following matrix X, where the variable m and n are
the number of time points and the correspondent cyclic strain range, respectively:

X(11,m×3×n) =

σ(1,1,n) εvp(1,1,n) χ(1,1,n) R(1,1,n) p(1,1,n)
...

...
...

...
...

σ(m,1,n) εvp(m,1,n) χ(m,1,n) R(m,1,n) p(m,1,n)
σ(1,2,n) εvp(1,2,n) χ(1,2,n) R(1,2,n) p(1,2,n)

...
...

...
...

...
σ(m,2,n) εvp(m,2,n) χ(m,2,n) R(m,2,n) p(m,2,n)
σ(1,3,n) εvp(1,3,n) χ(1,3,n) R(1,3,n) p(1,3,n)

...
...

...
...

...
σ(m,3,n) εvp(m,3,n) χ(m,3,n) R(m,3,n) p(m,3,n)

. (3.29)

It is also necessary to save the corresponding derivatives for each differential state. For that,
the following target matrix y is built with those derivatives:

y(8,m×3×n) =

ε̇vp(1,1,n) χ̇(1,1,n) Ṙ(1,1,n) ṗ(1,1,n)
...

...
...

...

ε̇vp(m,1,n) χ̇(m,1,n) Ṙ(m,1,n) ṗ(m,1,n)

ε̇vp(1,2,n) χ̇(1,2,n) Ṙ(1,2,n) ṗ(1,2,n)
...

...
...

...

ε̇vp(m,2,n) χ̇(m,2,n) Ṙ(m,2,n) ṗ(m,2,n)

ε̇vp(1,3,n) χ̇(1,3,n) Ṙ(1,3,n) ṗ(1,3,n)
...

...
...

...

ε̇vp(m,3,n) χ̇(m,3,n) Ṙ(m,3,n) ṗ(m,3,n)

. (3.30)

The dataset is created with 1000 data points for all virtually experimental tests, resulting
in 9000 training examples. The mechanical displacements used to generate the virtually
experimental tests are illustrated on figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8 and A.9
from appendix A. In resemblance to the transformation performed to the data for the 1D
model, it is used the transform method (see section 2.3.2) to transform the X and y matrices.
Figures 3.6 and 3.7 shows the input and the correspondent output values before and after the
transformation, respectively.

21

(a) Before transformation.

(b) After transformation.

Figure 3.6: Input values from the generated dataset in 2D before and after the transformation.

22

(a) Before transformation.

(b) After transformation

Figure 3.7: Output values from the generated dataset in 2D before and after the transforma-
tion.

23

3.2 Training on Generated Dataset

3.2.1 ANN Model for 1D

On a first step, the selection of the optimization algorithm and the activation function
is performed. For this task, it’s used the grid search function from Scikit-Learn using cross
validation with 5 folds. This search makes a combination between three activation functions
(logistic, tanh, relu), three optimization algorithms (lbfgs, sgd, adam) and four topologies
(two, four, seven and ten hidden neurons) for one hidden layer. All estimators are trained with
an automatic batch size=min(200,number of training examples), unless if the optimization
algorithm is lbfgs. In this case the estimators will not use minibatch. The linear activation
function is always used for the output layer and the learning rate is set constant with an
initial value of 0.001.

(a) 2 hidden neurons. (b) 4 hidden neurons.

(c) 7 hidden neurons. (d) 10 hidden neurons.

Figure 3.8: Grid search results for the 1D training dataset using different optimization algo-
rithms, activation functions and neural network sizes.

The results obtained by the grid search are illustrated on figure 3.8. It is possible to observe
that lbfgs optimization algorithm produces the higher score regardless of the activation
function or the number of hidden neurons used. Although, relu and tanh produce the best

24

scores as activation functions, it is the use of lbfgs and relu that overcome any combination
of optimization algorithms and activation functions for this dataset.

The next step was to choose the neural network size. For this purpose, it was used
validation curve function from Scikit-Learn library with five folds (k = 5). It was tested
for one hidden layer with a range of hidden neurons from 1 to twenty. Figure 3.9 presents the
results. It can be conclude that 4 neurons is the optimal value, with R2 = 0.971 for training
score mean and R2 = 0.969 for cross-validation score mean.

Figure 3.9: Validation curve of trained 1D model with a range of hidden neurons from one to
twenty for one hidden layer.

In terms of regularization, the validation curve was used to test model’s performance
using different values of regularization factors (λ), using a cross-validation with 5 folds. Figure
3.23 presents the results, which tells that the model has to be trained with γ = 0.1, in order
to obtain a neural network model with the highest performance.

Figure 3.10: Validation curve of trained 1D model with a range of regularization factor values.

25

3.2.1.1 Final model

Regarding the variables which establish how the network is trained, the rectified linear
unit (relu) was selected as activation function for the hidden layer. For the training solver,
Limited-memory BFGS (lbfgs), an optimization algorithm in the family of quasi-Newton
methods is selected. The learning rate was set to constant with an initial learning rate of
0.001. To penalty the weight updates, regularization was used with λ = 0.1, and the number
of epochs was set to automatic. The neural network have an input layer with four nodes
(total stress, viscoplastic strain, back and drag stress), only one hidden layer with 4 nodes
and an output layer with three nodes (viscoplastic strain rate, back and drag stress rates).
All of the previous described parameters are listed in table 3.3.

The dataset have a total of 3000 number of examples. The model, after fitting on training
data, presented a R2 of 97,28% and a MSE of 0.0333.

Table 3.3: Final model variables described for training, neural network’s architecture, the
score of predicting the material behavior and it’s mean-square-error.

Activation
Function

Optimization
Algorithm

Learning
Rate

Number
of

Neurons
λ

Number
of

Iterations
R2 MSE

relu lbfgs constant 4 0.1 103 0.9728 0.0333

σ

εvp

χ

R

ϕ

ϕ

ϕ

ϕ

ε̇vp

χ̇

Ṙ

Hidden
layer

Input
layer Output

layer

Figure 3.11: Representation of the final neural network’s architecture for the 1D model. It
is composed with an input layer with four nodes (total stress, viscoplastic strain, back and
drag stress), one hidden layer with 4 nodes and an output layer with three nodes (viscoplastic
strain rate, back and drag stress rates).

26

The error development of the training set until 103 training iterations is shown in figure
3.12. The error is approaching to zero, indicating that the neural network is learning the
material model.

Figure 3.12: MSE function values from training set thought 103 iterations.

27

3.2.1.2 Validation

Now that the proposed model can reproduce the training data, the total strain needs
to be changed in order to validate the trained neural network model to produce untrained
curves. For this effect, the performance of the model with cyclic strains ranges of ±0.025 %,
±0.040 % and ±0.072 % were simulated and compared to the virtually experimental results.
These values were selected in resemblance to the work done in [4].

The figures 3.13, 3.14 and 3.15 present the comparison between the experimental and
ANN-model values of back stress, drag stress and viscoplastic strain respectively, together with
their derivatives. These figures only represent the correspondent cyclic strain of ±0.025 %.

(a) Back stress. (b) Back stress rate.

Figure 3.13: Comparison between predicted and experimental values of back stress and it’s
rate over time with a cyclic strain of ±0.025 %.

(a) Drag stress. (b) Drag stress rate.

Figure 3.14: Comparison between predicted and experimental values of drag stress and it’s
rate over time with a cyclic strain of ±0.025 %.

28

(a) Inelastic strain. (b) Inelastic strain rate.

Figure 3.15: Comparison between predicted and experimental values of viscoplastic strain,
and it’s rate over time with a cyclic strain of ±0.025 %.

Gathering predicted and experimental values of drag stress, back stress and total stress
resulted in figure 3.16. This comparison shows that the ANN-model could produce these
untrained curves with success, since the experimental and the predicted curves match in all
three stresses. For example, at the maximum strain of the first cycle (t = 5 s), the total, back
and drag stress and viscoplastic strain are 85.61 MPa, 27.05 MPa, 51.93MPa and 7.79×10−3%
respectively. Whereas the corresponding curve by the proposed model has a total stress of
83.60 MPa, a back stress of 25.86 MPa, a drag stress of 52.04 MPa and a viscoplastic strain
of 8.17×10−3%. This relation and the percentage error are described in table 3.4.

The cyclic loading with a cyclic strain range of ±0.025 % is represented in figure 3.17.

Table 3.4: Values calculated with the proposed model in comparison with the experimental
results in 1D, as well as the percentage error between them. These values correspond at the
maximum strain of the first cycle (t = 5 s) on a strain range of ±0.025 %.

Total Stress
[MPa]

Back Stress
[MPa]

Drag Stress
[MPa]

Viscoplastic Strain
[%]

ANN-model 83.60 25.86 52.04 8.17×10−3

Experimental 85.61 27.05 51.93 7.79×10−3

Error [%] 2.35 4.34 0.211 4.88

29

Figure 3.16: Comparison between predicted and experimental values of all stresses over time
with a cyclic strain of ±0.025 %.

Figure 3.17: Comparison between predicted and experimental values of cyclic loading over
time with a cyclic strain of ±0.025 %.

30

An identical material behaviour to the Chaboche’s model is obtained with a cyclic strain
range of ±0.040 % as shown in figure 3.18. It should be noticed that the range of this test
exceeds the one of the training data. At the maximum strain of the first cycle (t = 5 s), the
total stress is 105.33 MPa, whereas the corresponding curve by the proposed model has a
total stress of 109.62 MPa. In table 3.5 is possible to visualize the comparison of all stresses
and viscoplastic strain between the experimental results and the predictions of the proposed
model at the first maximum strain, as well as the percentage error.

Table 3.5: Values calculated with the proposed model in comparison with the experimental
results in 1D, as well as the percentage error between them. These values correspond at the
maximum strain of the first cycle (t = 5 s) on a strain range of ±0.040 %.

Total Stress
[MPa]

Back Stress
[MPa]

Drag Stress
[MPa]

Viscoplastic Strain
[%]

ANN-model 109.62 43.32 54.52 1.79×10−2

Experimental 105.33 42.37 55.04 1.88×10−2

Error [%] 4.07 2.24 0.94 4.79

Figure 3.18: Comparison between predicted and experimental values of cyclic loading over
time with a cyclic strain of ±0.040 %.

31

The curves of the proposed model with a cyclic strain range of ±0.072 % are far off the
experimental curves as illustrated in figure 3.19. At the maximum strain of the first cycle
(t = 5 s), the total stress is 121.73 MPa, whereas the corresponding curve by the proposed
model has a total stress of 162.55 MPa. Table 3.6 presents the percentage error among the
predictions made by the neural network with the experimental results at the first maximum
strain.

Table 3.6: Values calculated with the proposed model in comparison with the experimental
results in 1D, as well as the percentage error between them. These values correspond at the
maximum strain of the first cycle (t = 5 s) on a strain range of ±0.072 %.

Total Stress
[MPa]

Back Stress
[MPa]

Drag Stress
[MPa]

Viscoplastic Strain
[%]

ANN-model 162.55 77.44 59.94 3.91×10−2

Experimental 121.73 49.56 62.62 4.74×10−2

Error [%] 33.53 56.25 4.28 17.51

Figure 3.19: Comparison between predicted and experimental values of cyclic loading over
time with a cyclic strain of ±0.072 %.

In conclusion, the trained neural network has a good performance using a cyclic strain
range of 0.025 % and 0.040 %. Although, when using a cyclic strain of 0.072 %, it fails to
predict the stress and the state variables. This is due to the fact that the cyclic strain used
is two times higher than the one used for training.

32

3.2.2 ANN Model for 2D

The previous dataset for the 1D viscoplasticity model has four features (σ, εvp, χ and
R) and three outputs (ε̇vp, χ̇ and Ṙ). In comparison with the 2D viscoplastic model, the
complexity of the data is smaller in the 1D model. This is because the dataset used to mimic
the 2D viscoplastic model has eleven features (σ, εvp, χ, R and p) and eight outputs (ε̇vp, χ̇,
Ṙ and ṗ). In addiction, under plane-stress conditions there are three different tensile tests,
which add complexity to the dataset.

To overcome the problem of complexity, the dataset was created with three cyclic strain
ranges of ±0.05, ±0.12 and ±0.16 for each different trials, containing 1000 data points each,
therefore providing more information about the material behavior. The 1D model was only
trained with one cyclic strain range. In addiction, the neural network size is increased.

(a) 4 hidden neurons. (b) 10 hidden neurons.

(c) 16 hidden neurons. (d) 22 hidden neurons.

Figure 3.20: Grid search results for the ANN-model for the 2D experimental dataset using
different optimization algorithms, activation functions and neural network sizes.

33

In resemblance with the selection of the optimization algorithm and the activation function
performed on the training process for the 1D model, it’s used the grid search function, using
cross-validation with 5 folds. A combination between three activation functions (logistic,
tanh, relu), three optimization algorithms (lbfgs, sgd, adam) and four topologies (four, ten,
sixteen and twenty two hidden neurons) for one hidden layer is conducted for this search. The
estimators are trained with an automatic batch size=min(200,number of training examples),
unless if the optimization algorithm is lbfgs. In this case the estimator will not use minibatch.
The linear activation function is always used for the output layer and the learning rate is set
constant with an initial value of 0.001.

The results obtained by the grid search are illustrated on figure 3.20. It is possible to
observe that similar results are obtained when comparing this search with the one performed
on the 1D model. The combination of lbfgs optimization algorithm and relu as activation
function produce the highest score, regardless of the number of hidden neurons.

The next step was to choose the neural network size. For this purpose, it was used the
validation curve function from Scikit-Learn library with five folds (k = 5). It was tested
for one hidden layer with a range of hidden neurons from four to twenty. Figure 3.21 presents
the results. It can be conclude that 16 neurons is the optimal value, with R2 = 0.965 for
training score mean and R2 = 0.964 for cross-validation score mean.

Figure 3.21: Validation curve of trained ANN-model with a range of hidden neurons from
nine to twenty for one hidden layer.

Then, the learning curve function from Scikit-Learn was used to determine if the model
could perform better with more training examples, using a 5 fold cross-validation and with
one hidden layer with 16 hidden nodes. The results are illustrated in figure 3.22. This figure
shows that adding more training examples is not likely to help the model, due to the fact the
training and cross validation R2 mean values converge and stay almost the same after 6000
training examples.

In terms of regularization, the validation curve was used to test model’s performance
using different values of λ, using a cross-validation with 5 folds. Figure 3.23 presents the
results, which tells that the model has to be trained with a regularization factor lower than
0.01 in order to preserve the performance.

34

Figure 3.22: Learning curve of ANN-model for the 2D experimental dataset.

Figure 3.23: Validation curve of ANN-model with a range of λ.

35

3.2.2.1 Final model

Regarding the variables which establish how the network is trained, the rectified linear unit
(relu) was selected as activation function for the hidden layer. The used training solver was
the Limited-memory BFGS (lbfgs), an optimization algorithm in the family of quasi-Newton
methods. The learning rate was set to constant with an initial learning rate of 0.001. The
weights updates were penalized, with a regularization factor λ = 0.001, and the number of
epochs was set to automatic. The neural network has an input layer with eleven nodes (total
stress tensor, viscoplastic strain tensor, plastic strain, back stress tensor and drag stress),
one hidden layer with sixteen nodes and an output layer with eight nodes (viscoplastic strain
rate tensor, back stress rate tensor, plastic strain and drag stress rates). All of the previous
described parameters are listed in table 3.7.

The ANN-model, after fitting on training data, presented a score (R2) of 96,9% and a
mean square error (MSE) of 0.0153.

Table 3.7: Final model variables described for training, neural network’s architecture, the
score of predicting the material behavior and it’s mean-square-error.

Activation
Function

Optimization
Algorithm

Learning
Rate

Number
of

Neurons
λ

Number
of

Iterations
R2 MSE

relu lbfgs constant 16 0.001 190 0.969 0.0153

The evolution of the error during the training through 190 iterations is shown in figure
3.24. The error reaches almost zero, indicating that the neural network is learning the material
model.

Figure 3.24: MSE function values from training set throughout 190 iterations.

36

3.2.2.2 Validation

The performance of the model with cyclic strain ranges of ±0.11 , ±0.14 and ±0.18, for
each test, were simulated and compared to the curves of the virtually experimental tests
under plane-stress conditions. Therefore, the values of total stress, back stress, drag stress,
viscoplastic and plastic strain were collected at the maximum strain of the first cycle (t = 5 s).
The results are presented in table 3.8 and in appendix B on B.1 and B.2, for cyclic strain
ranges of ±0.18, ±0.11 and ±0.14, respectively. However, only the results corresponding to a
cyclic strain of ±0.18 will be fully analyzed since it exceeds the cyclic strain used as training
data.

With respect to the total stress for tensile tests (Txx, Tyy) the correspondent stress (σxx
and σyy) from the experimental tests is 324 MPa. Whereas the corresponding value by the
proposed model has a difference in total stress of σxx = 14.37 MPa in Txx and σyy = 7.59 MPa
in Tyy. For simple shear test, the difference between predicted and experimental values of
shear stress has a larger difference of 21.11 MPa. In addiction, from the experimental results,
σxx and σyy should be 0 MPa, whereas the correspondent predicted values are 9.42 MPa and
28.42 MPa, respectively. Similarly, the back stress and viscoplastic strain have a smaller differ-
ence between predicted values and experimental results in tensile tests, when compared with
simple shear testing. In cases where back stress and viscoplastic strain components should be
0, the model predicts a residual value from −32.36 MPa to 36.03 MPa and −1.80× 10−4 to
−5.12× 10−3, respectively. In each integration the prediction of the derivatives is performed.
Therefore, since these values result from several integrations until t = 5 s, if in each one
present a prediction error, even if it is a small error, the integration will increase or decrease
the variables (εvp, χ). Since the trained neural network does not present a MSE = 0 and
R2 = 1, when these values should be 0 they present a stack error.

In terms of plastic strain and drag stress, the predicted and experimental values are
identical in tensile tests. However, in simple shear testing the plastic strain has a difference
of 2.03× 10−2 and drag stress a variation of 5.23 MPa.

The complete reversed cyclic loadings, calculated using the machine learning model and
the virtually experimental tests, are compared for tensile and simple shear tests. Figure
3.25 presents this comparison for a cyclic strain of ±0.18. Both tensile tests shows that the
predicted curve fits well with the experimental curve until the first two full cycles. The same
is true for the simple shear testing.

Regarding the simulations performed with a cyclic strain of ±0.11 and ±0.14, the compar-
ison of complete reversed cyclic loadings are presented in figure 3.26. By using both strains, it
is possible to show that the trained model could predict well for the tensile and simple shear
tests. Through these strains the correspondent results are better than using a cyclic strain of
±0.18. This is due to the fact that the cyclic strain ranges used as training data were ±0.05,
±0.12, ±0.16, thus the strains used to validate the model are expected to perform better
within this range.

In conclusion, the proposed neural network model can reproduce the virtually experi-
mental tests using Chaboche’s viscoplastic material behavior. However, components of total
stress, back stress and viscoplastic strain sometimes presents some residual values when these
should be null.

37

Table 3.8: Values calculated with ANN-model in comparison with the virtually experimental
values in 2D. These values correspond at the maximum strain of the first cycle (t = 5 s) on a
strain range of ±0.18.

Strain range ±0.18

Testing Txx Tyy Sxy

Total Stress
[MPa]

σxx
experimental 324.00 0 0
ANN-model 338.37 0 9.42

σyy
experimental 0 324.00 0
ANN-model 0 331.59 28.42

τxy
experimental 0 0 203.12
ANN-model 7.07 3.12 224.23

Back Stress
[MPa]

χxx
experimental 97.43 -97.43 0
ANN-model 88.21 -83.84 -32.36

χyy
experimental -97.43 97.43 0
ANN-model -92.49 87.51 36.03

χxy
experimental 0 0 137.46
ANN-model 9.38 7.70 128.25

Viscoplastic
Strain

[-]

εvpxx
experimental 1.50×10−1 -1.50×10−1 0
ANN-model 1.42×10−1 -1.51×10−1 -1.80×10−4

εvpyy
experimental -1.50×10−1 1.50×10−1 0
ANN-model -1.33×10−1 1.49×10−1 -5.12×10−3

εvpxy
experimental 0 0 7.42×10−2

ANN-model -3.68×10−3 -1.62×10−3 6.33×10−2

Plastic Strain
[-]

p
experimental 1.73×10−1 1.73×10−1 6.06×10−2

ANN-model 1.73×10−1 1.75×10−1 8.03×10−2

Drag Stress
[MPa]

R
experimental 94.32 94.32 66.07
ANN-model 94.59 89.32 71.30

38

(a) Tensile test (Txx) ±0.18

(b) Tensile test (Tyy) ±0.18

(c) Simple shear test (Sxy) ±0.18

Figure 3.25: Comparison between predicted and experimental curves of 2D cyclic loading in
tensile tests a) Txx, b) Tyy and shear testing c) Sxy, with a cyclic strain of ±0.18.

39

(a) Tensile test (Txx) ±0.11 (b) Tensile test (Txx) ±0.14

(c) Tensile test (Tyy) ±0.11 (d) Tensile test (Tyy) ±0.14

(e) Simple shear test (Sxy) ±0.11 (f) Simple shear test (Sxy) ±0.14

Figure 3.26: Comparison between predicted and experimental curves of 2D cyclic loading in
tensile and simple shear testing. The left column corresponds to a cyclic strain of ±0.11 and
the right to ±0.14.

40

Chapter 4

Implementation and analysis of the
ANN-model on a FEA code

To verify that the trained model can mimic the constitutive material mechanical behavior
in various geometries and boundary conditions, it’s convenient to implement it on finite
element analysis code. Abaqus [37] was the one selected because it has user routines [38] that
allow the user to implement general constitutive models. One of its user routines is UMAT
subroutine capability, where the mechanical behavior of a material can be described. In this
case, the goal is to implement the trained neural network for 2D analysis on the UMAT
subroutine.

ABAQUS/Standard analysis is divided into creating the model and submitting it for a
job (simulation). In the first part, the following properties must be defined: part, material,
assignment sections, assembly, steps, boundary conditions, loads and mesh. Note that, to use
UMAT subroutine, the material definition must be specified as user defined. After defining
all these properties, Abaqus creates a file (.inp extension) with all the necessary information
about the desired model to be tested.

Submitting a job in Abaqus/Standard analysis begins with the definition of the initial
conditions and the start of a step. Each analysis step is associated with a specific procedure
that defines the type of analysis to be performed during the step, such as a static stress
analysis. To obtain a converged solution inside the step, a loop is performed though iterations.
In these subsequent iterations the corrections to the model’s configuration are calculated using
the stiffness from the end of the previous iteration until convergence. The flow of data and
actions from the start of an Abaqus/Standard analysis to the end of a step is illustrated in
figure 4.1.

41

Starting the Analysis

Define Initial Conditions

Start of Step

Start of Increment

Start of Iteration

Converged?

End of Step?

Define Kel, σ, χ, εvp, R and p

Define Loads Rα

Solve Kelu = Rα

Write Output

NO YES

NO

UMAT

Figure 4.1: Flow of data and actions from the start of an ABAQUS/Standard analysis to the
end of a step.

4.1 User defined subroutine UMAT and SDVINI

The UMAT subroutine capability can be used to define the mechanical constitutive be-
havior of a material. It is called at all material integration points of each element for which
the material definition includes a user-defined material behavior. The UMAT can be used
with any procedure that includes mechanical behavior and solution-dependent state variables.
However, this subroutine has the following requirements:

• update the stresses and solution-dependent state variables to their values at the end of
the increment for which it is called;

• provide the material Jacobian matrix for the mechanical constitutive model;

• be written in fortran, C or C++.

In this project, as mentioned before, instead of defining a constitutive behavior with
classical equations, those are replaced with the trained machine learning model.

In order to initialize the solution-dependent state variables (χ, εvp, R and p) with a
specific value, the user subroutine SDVINI is used. This is used due to the fact that the
material model used for training presents an initial drag stress of 50 MPa, as presented in
equation 3.28 from subsection 3.1.2.1.

42

4.2 Communication between UMAT and machine learning
model

A communication method must be implemented between the model trained in subsection
3.2.2.1 and the UMAT subroutine. The communication between the UMAT and a python 3.5
script is made through files.

Inside the UMAT subroutine (presented in C.3 from appendix C), the stress tensor and
state variables are written into features.txt file, for each iteration. Then, a prediction has
to be performed based on this features. For this purpose the estimator.pkl, scaler x.pkl and
scaler y.pkl needs to be loaded. A call to call neuronalfem.py is performed to clear the
environment path, to therefore call neuronalfem.py program.

Inside the neuronalfem.py code (presented in C.4 from appendix C), the stress tensor
and state variables are loaded from the UMAT and are fed to the neural network to output
the correspondent derivatives. These derivatives are also written into a file for the UMAT to
update the state variables and the stress tensor. The flow of data and actions are represented
in figure 4.2.

Save σ, χ, εvp, R and p

Execute

UMAT-FEA

predictions.txt

features.txt

Load trained model

Transform features

neuronalFem.py

Calculate σ based
on elastic behavior

to features.txt file

neuronalFem.py

Load χ̇, ε̇vp, Ṙ, ṗ from

Update state variables

Update σ

predictions.txt file

Communication

with joblib from
sklearn.externals

Load σ, χ, εvp, R and p
from features.txt file

Perform predictions

Save predictions
to predictions.txt file

and transform them

with scaler x.pkl

with scaler y.pkl

Figure 4.2: Communication method between the FEA and the machine learning model.

43

4.3 Validation

In order to validate the implementation previously described, it was simulated two tensile
tests (Txx − FEA, Tyy − FEA) and one simple shear (Sxy − FEA) for each strain on FEA
code Abaqus.

To implement the tensile and simple shear tests on FEA, a geometry must be selected.
For this purpose, a square with 1 × 1 mm is defined. Figure 4.3 represents each test with
the corresponding boundary conditions. The red line in this figure represents the boundary
condition for the mechanical displacement with a uniform distribution. In contrast to the
validation made on section 3.2.2.2, the simulation performed on FEA was not set for cyclic
displacement. For all tensile and simple shear tests the mechanical displacement used were
0.11 mm, 0.14 mm and 0.18 mm.

P

C

(a) Tensile test (Txx − FEA)

C

P

(b) Tensile test (Tyy − FEA)

P

C

(c) Simple shear (Sxy − FEA)

Figure 4.3: Tests performed on FEA, as well as the boundary conditions for tensile tests in
the a) xx and b) yy directions and c) for simple shear. Points C and P represent where the
evaluation of stresses and strains are performed further.

Regarding the incrementation definition of the step, the time period was set to five seconds
and the incrementation is fixed with an increment size of 0.05 s. The 4-node element CPS4,
with plane-stress, was used. This definitions are described in table 4.1.

Table 4.1: Incrementation definitions for FEA step and element type to perform tensile
and simple shear tests using the trained machine learning model (ANN-FEA) to predict the
material behavior.

Time Period
[s]

Incrementation
Increment Size

[s]
Element Type

5 fixed 0.05 CPS4

The comparison between the ANN-FEA, the ANN-model and the (virtually) experimental
curves are only analyzed for a mechanical displacement of 0.18 mm, since it exceeds the total
strain used as training data. Firstly, it is analyzed the normal stress and the strains for the
tensile test Txx, where the results are listed in table 4.2.

44

Table 4.2: Comparison between normal stress and strains obtained from ANN-FEA, ANN-
model and experimental results for tensile test Txx, as well as the percentage error for each
neural network model.

σxx
[MPa]

εtxx
[-]

εvpxx
[-]

εexx
[-]

ANN-FEA 322.13 1.80×10−1 1.17×10−1 6.30×10−2

ANN-model 338.37 1.80×10−1 1.42×10−1 3.80×10−2

Experimental 324.00 1.80×10−1 1.50×10−1 3.00×10−2

Error [%] 0.58/4.44 - 22.00/5.33 110.00/26.67

For this test, the predicted stress-strain curve determined using ANN-FEA fits the ex-
perimental curve more accurately than the predicted curve using ANN-model. For exam-
ple, at the maximum strain (t = 5 s), the stress from experimental results has a value of
324 MPa, whereas the predicted values from ANN-FEA and ANN-model are 322.13 MPa and
338.37 MPa, respectively. Figure 4.4(a) shows the comparison between both curves for the
centroid (C point) of the element.

The evolution of the strain during the analysis of the P point (fourth point of integration)
are illustrated on figure 4.4(b). In this figure, the predicted viscoplastic strain from ANN-
FEA until t = 2 s behaves like the ANN-model, however, at the end of the test they present
a percentage error of 22.00 % and 5.33 %, respectively, when comparing to the experimental
values.

(a) σxx − εtxx curves from Txx test . (b) εvpxx, ε
t
xx, ε

e
xx over time from Txx test.

Figure 4.4: Stress and strain curves obtained from proposed model of the ANN-FEA and
ANN-model and from experimental results for tensile test (Txx).

For the Tyy test , the stress and strain values at maximum strain are presented in table
4.3.

In contrast to the test Txx’s results, both predicted curves present nearly the same normal
stress gap at maximum strain. The percentage error between the ANN-FEA and ANN-model
curves with the experimental curve is 2.55 % and 2.34 %, respectively. Figure 4.5(a) shows
the comparison of these curves.

45

Table 4.3: Comparison between normal stress and strains obtained from ANN-FEA, ANN-
model and experimental results for tensile test Tyy, as well as the percentage error for each
neural network model.

σyy
[MPa]

εtyy
[-]

εvpyy
[-]

εeyy
[-]

ANN-FEA 315.72 1.80×10−1 1.17×10−1 6.30×10−2

ANN-model 331.59 1.80×10−1 1.49×10−1 3.10×10−2

Experimental 324.00 1.80×10−1 1.50×10−1 3.00×10−2

Error [%] 2.55/2.34 - 22.00/0.67 110.00/3.33

The strains evolution during the analysis for the P point are illustrated in figure 4.5(b).
From this figure, it can be observed that the predicted viscoplastic strain from ANN-model
perfectly matches the experimental curve as of t = 2.5 s to t = 5 s. Although, the pre-
dicted viscoplastic strain from ANN-FEA is slightly lower when compared to the other two,
presenting a percentage error of 22 %.

(a) σyy − εtyy curves from Tyy test. (b) εvpyy, ε
t
yy, ε

e
yy over time from Tyy test.

Figure 4.5: Stress and strain curves obtained from proposed model of the ANN-FEA and
ANN-model and from experimental results for tensile test (Tyy).

For the simple shear test (Sxy), the stress and strain values at maximum strain are pre-
sented on table 4.4.

The shear stress are properly predicted until the mechanical displacement hits 0.125, when
comparing the values predicted from the ANN-FEA and ANN-model with the experimental
results. At maximum strain, they reach 224.13 MPa, 223.76 MPa and 203.12 MPa, respec-
tively.

The evolution of the strains during the analysis are illustrated on figure 4.6(b). From
this figure it can be observed that both predicted viscoplastic strains perfectly matches the
experimental curve until t = 3 s, but from then on, they drive way from it. At the maximum
mechanical displacement, viscoplastic strain from ANN-FEA, ANN-model and experimental
results reach 6.33× 10−2, 6.36× 10−2 and 7.42× 10−2, respectively.

46

Table 4.4: Comparison between normal stress and strains obtained from ANN-FEA, ANN-
model and experimental results for tensile test Sxy, as well as the percentage error for each
neural network model.

τxy
[MPa]

εtxy
[-]

εvpxy
[-]

εexy
[-]

ANN-FEA 223.76 1.80×10−1 6.36×10−2 1.16×10−2

ANN-model 224.23 1.80×10−1 6.33×10−2 1.17×10−2

Experimental 203.12 1.80×10−1 7.42×10−2 1.06×10−2

Error [%] 10.16/10.39 - 14.29/14.69 9.43/10.38

(a) τxy − εtxy curves from Sxy test. (b) εvpxy, ε
t
xy, ε

e
xy over time from Sxy test.

Figure 4.6: Stress and strain curves obtained from proposed model of the ANN-FEA and
ANN-model and from experimental results for simple shear test (Sxy).

On the tensile tests, the same neural network model seems to predict differently whether
it’s used as ANN-model or ANN-FEA. However, this occur due to the fact that the integration
method used is different. The ANN-model uses a Runge-Kutta scheme whereas the ANN-FEA
uses a total Lagrangian implicit scheme to the time integration. In addiction, Runge-Kutta
uses error control to integrate, whereas in FEA, for this experiment, the increment was set
to fixed with no error control. Therefore, the results obtained with the same neural network
model may vary according to the size of increments and whether or not error control is used.

The results of the previous strain are similar for a mechanical displacement of 0.11 and
0.14. The results are presented on figures 4.7 and 4.8, respectively. On the left of each figure
is presented the comparison of the normal stress for the tests Txx, Tyy and Sxy. On the right
the evolution of total, elastic and plastic strain can be visualized.

47

(a) σxx − εtxx curves from Txx test. (b) εvpxx, ε
t
xx, ε

e
xx over time from Txx test.

(c) σyy − εtyy curves from Tyy test. (d) εvpyy, ε
t
yy, ε

e
yy over time from Tyy test.

(e) τxy − εtxy curves from Sxy test. (f) εvpxy, ε
t
xy, ε

e
xy over time from Sxy test.

Figure 4.7: Stress and strain curves obtained with ANN-FEA, ANN-model and experimental
results for tests Txx, Tyy and Sxy with a maximum strain of 0.11.

48

(a) σxx − εtxx curves from Txx test. (b) εvpxx, ε
t
xx, ε

e
xx over time from Txx test.

(c) σyy − εtyy curves from Tyy test. (d) εvpyy, ε
t
yy, ε

e
yy over time from Tyy test.

(e) τxy − εtxy curves from Sxy test. (f) εvpxy, ε
t
xy, ε

e
xy over time from Sxy test.

Figure 4.8: Stress and strain curves obtained with ANN-FEA, ANN-model and experimental
results for tests Txx, Tyy and Sxy with a maximum strain of 0.14.

49

50

Chapter 5

Testing machine learning model on
complex geometry

5.1 Adapted butterfly test

On the Last Chapter it is demonstrated that the trained neural network model is capable
of reproducing the virtually experimental results for 2D plane-stress conditions on FEA. The
final step is to test the proposed model on a more complex geometry. For this purpose, the
adapted butterfly specimen is selected [39]. On a first step, the adapted butterfly geometry
must be defined. Figure 5.1 illustrates the specimen’s geometry in millimeters.

Figure 5.1: Detail geometry of adapted butterfly specimen.

The purpose of this test is to perform a tensile test Tyy, in order to simulate a tool dis-
placement. Thus, a mechanical displacement is imposed to the specimen’s top. The boundary
conditions are illustrated on figure 5.2(a), where the symmetry along X and Y axis are rep-
resented, as well as the mechanical displacement (line in red), with a tool displacement of
9.6 mm.

Due to the symmetry boundary conditions, it is used only one fourth of the specimen,
which is meshed with 2D 4-node bilinear elements (CPS4). In order to reduce the simulation
time, it is used an unstructured mesh with an element size of 0.75 mm as shown in figure
5.2(b).

51

Regarding the incrementation definition of the step, the time period was set to five seconds
in resemblance to the tests made on last section, whereas the incrementation is fixed but with
an increment size of 0.2 s.

x

y

(a) Tensile test (xx). (b) Numerical mesh.

Figure 5.2: Representation of a) boundary conditions and b) numerical mesh for the adapted
butterfly specimen.

5.2 Results

With all the parameters defined, the job is submitted using the UMAT subroutine in
appendix C.3 to define the mechanical constitutive behavior. The wallclock time in seconds
to complete the analysis was 92 502 s, which correspond approximately to twenty five hours
and forty two minutes.

To represent the obtained results, the contour presented in figure 5.3 represents the von
Mises equivalent stress. In this image it is also demonstrated the three elements chosen to
evaluate the performance of the proposed model. In addiction, the evaluation is performed
only for the second integration point for all chosen elements.

To evaluate the performance of the proposed model in this test, it is necessary to generate
virtually experimental results using the Chaboche constitutive model. Thus, the total strain
field and step time from all selected points are collected and used as total strain and time
period for algorithm 2, in order to generate virtually experimental results. This provides
the values necessary to compare the results obtained in this test, using the ANN, with the
experimental results. It is important to mention that the ANN model was trained for three
specific test cases. Which in the case of tensile tests, shear stress was always zero, as well as
the shear strain.

52

1

2

3

Figure 5.3: Contour obtained for the von Mises equivalent stress and the elements chosen for
evaluation.

The values of total, back and drag stress are listed in table 5.1, at the end of the step,
which is responsible for the mechanical displacement. Here it can be verified that, in general,
the proposed model show stress values close to the experimental values. However, for the first
point, σxx and τxy presents a difference of 40.46 MPa and 31.25 MPa, respectively. Although,
for the same point, σy only presents a difference of 4.04 MPa. This divergence of results from
total stress can be explained by the fact that the combination of total strain’s components
being (−0.0914, 0.2008, 0.0442). The artificial neural network was never trained with the
existence of displacement in all three components of total strain. In addiction, the machine
learning model was only trained for a maximum strain of 0.16. From table 5.1, χxy stands
negatively for the first point, as the predicted value from ANN is 3.49 MPa, whereas the
expected value is 23.94 MPa.

For the second and third points, due to the lower mechanical displacement imposed , when
compared to the first point, the performance of ANN is good , with anything to emphasize.

With regard to the viscoplastic and plastic strains, the values at the end of the step for
all selected points are presented in table 5.2. Overall, the performance of ANN is good, and
only two values are worth mention negatively. For the first and third points, ANN predicted
εvpxy as 8.266× 10−3 and 9.220× 10−5, whereas the expected values are 2.452× 10−3 and
5.400× 10−5, respectively.

53

Table 5.1: Comparison between ANN and experimental values of σ, χ and R, as well as the
percentage error between them, at the end of the step for the three selected points.

σxx
[MPa]

σyy
[MPa]

τxy
[MPa]

χxx
[MPa]

χyy
[MPa]

χxy
[MPa]

R
[MPa]

Point 1
ANN 283.88 533.31 69.08 -100.18 101.41 3.49 81.97

Experimental 243.42 537.35 37.83 -95.94 95.94 23.94 82.81
Error[%] 16.62 0.75 82.61 4.42 5.7 85.42 1.01

Point 2
ANN -29.96 180.21 0.96 -64.34 64.08 1.72 52.49

Experimental -25.78 180.33 1.05 -69.35 69.35 0.77 53.35
Error[%] 0.16 0.07 8.57 7.22 7.60 0.01 1.61

Point 3

ANN 0.62 163.06 7.47 -48.62 48.28 1.25 51.80
Experimental -0.66 168.67 6.61 -52.11 52.11 4.18 52.07
Error[%] 193.94 3.33 13.01 6.7 7.35 70.1 0.52

Table 5.2: Comparison between ANN and experimental values of εvp and p, as well as the
percentage error between them, at the end of the step for the three selected points.

εvpxx εvpyy εvpxy p

Point 1
ANN -1.162×10−1 1.111×10−1 8.266×10−3 1.313×10−1

Experimental -1.079×10−1 1.079×10−1 2.452×10−2 1.262×10−1

Error[%] 7.69 2.97 66.29 4.04

Point 2
ANN -9.948×10−3 1.055×10−2 1.798×10−4 1.162×10−2

Experimental -1.077×10−2 1.077×10−2 1.400×10−4 1.244×10−2

Error[%] 7.63 2.04 28.43 6.59

Point 3

ANN -7.230×10−3 7.836×10−3 9.220×10−5 8.538×10−3

Experimental -6.630×10−3 6.630×10−3 5.400×10−4 7.670×10−3

Error[%] 9.05 18.19 82.93 11.32

It’s important to evaluate the evolution of σ between the ANN with the experimental
results. Figure 5.4 illustrates this evaluation for the first selected point. It’s observed that
for both σxx and σyy from ANN curves fit well the experimental results, whereas the τxy from
ANN curve fails to predict the experimental curve. This is due to the fact that the relationship
between stress-strain was never used for training. State variables: Back stress, viscoplastic
strain, drag stress and plastic strain for the first selected point were also evaluated in terms
of evolution over time and these are represented by figures 5.5, 5.6, 5.7 and 5.8, respectively.
It’s also observed that for all state variables the ANN curves fit well the experimental ones.

For the second and third selected points, both stress and state variables evolutions are
illustrated on figures 5.9 and 5.10, 5.11 and 5.12, respectively. From these figures, the maxi-
mum strain reached for all points are below 0.05 and the ANN curves fit well the experimental
ones.

54

In conclusion, the proposed machine learning model, even with different combinations of
strain never used in training, is capable of reproducing the material behavior, defined by
Chaboche’s constitutive model. In addiction, ANN have no problems within a simulation
with a more complex geometry and several elements.

(a) σxx − εtxx curves. (b) σyy − εtyy curves.

(c) τxy − εtxy curves.

Figure 5.4: Stress tensor σ in function of it’s correspondent strain, obtained from ANN and
experimental values, for the first selected point.

55

Figure 5.5: Back stress tensor χ over time, obtained from ANN and the experimental values,
for the first selected point.

Figure 5.6: Viscoplastic strain tensor εvp over time, obtained from ANN and the experimental
values, for the first selected point.

56

Figure 5.7: Drag stress R over time, obtained from ANN and the experimental values, for the
first selected point.

Figure 5.8: Plastic strain p over time, obtained from ANN and the experimental values, for
the first selected point.

57

(a) σxx − εtxx curves. (b) σyy − εtyy curves. (c) τxy − εtxy curves.

Figure 5.9: Stress tensor σ in function of it’s correspondent strain, obtained from ANN and
experimental values, for the second selected point.

(a) Viscoplastic Strain tensor εvp. (b) Back Stress tensor χ.

(c) Drag Stress R. (d) Plastic Strain p.

Figure 5.10: State variables over time, obtained from ANN and the experimental values, for
the second selected point.

58

(a) σxx − εtxx curves. (b) σyy − εtyy curves. (c) τxy − εtxy curves.

Figure 5.11: Stress tensor σ in function of it’s correspondent strain, obtained from ANN and
experimental values, for the third selected point.

(a) Viscoplastic Strain tensor εvp. (b) Back Stress tensor χ.

(c) Drag Stress R. (d) Plastic Strain p.

Figure 5.12: State variables over time, obtained from ANN and the experimental values, for
the third selected point.

59

60

Chapter 6

Conclusions and Future Work

During the course of this work, a constitutive model using artificial intelligence techniques
was accomplished, in order to reproduce an explicit constitutive model. This was successfully
reproduced for 1D and 2D (plane-stress) conditions, thus achieving the main objective. With
regard to the training process for both conditions, it was demonstrated that for only one
hidden layer, the number of hidden neurons increase from four to sixteen. In spite of this
grow being non-linear, it shows that in order to predict the rates of viscoplastic strain, plastic
strain, kinematic and isotropic hardening, the number of hidden neurons should increase. In
this stage, the use of cross-validation technique and the analysis of validation and learning
curves lead to a better understanding of how the hyper-parameters affect the neural network’s
performance. In addiction, for both models, lbfgs as optimization algorithm and relu as acti-
vation function produces the highest R2. This work also shows that the usage of small neural
networks capable of reproducing the material constitutive model is a plus to the continuous
development in this area, due to the lower computational resources needed.

To test the artificial neural networks, mechanical tests outside the scope of the training
were used. For both 1D and 2D models, the predicted curves of reverse cyclic loading fit well
the virtual experimental results. However, the ANN-model (2D) presented residual values in
components of total stress, back stress and in viscoplastic strain tensors, when they should
be null.

The neural network on a finite element analysis software was successfully implemented.
This implementation consists on a file method communication between a user-subroutine and
the neural network model. On this stage, the predictions performed by the artificial neural
network model can be compared under different integration schemes and increment sizes. The
proposed model presented differences between them, however, both have a good performance
when compared to the virtually experimental curves.

Knowing that the implementation is validated, the artificial neural network was tested
for a more complex engineer problem. A tensile test along Y axis was performed using the
adapted butterfly test specimen. Although the points used for analysis present combinations
of strain never used for training, the neural network predicted curves similar to the ones
produced by the explicit constitutive model.

The communication method implemented leads to a large wall-clock time, thus the creation
of subroutine inside the UMAT describing the mathematical formulation of the trained neural
network is proposed, as future work.

This work aims at creating a machine learning model to reproduce the explicit constitutive

61

model of a virtual material. Thus, the development of such model using experimental data is
proposed as future work.

62

References

[1] A A Javadi, T P Tan, and M Zhang. “Neural network for constitutive modelling in
finite element analysis”. In: Computer Assisted Mechanics and Engineering Sciences
10.4 (2003), pp. 523–529.

[2] M. Lefik and B. A. Schrefler. “Artificial neural network as an incremental non-linear
constitutive model for a finite element code”. In: Computer Methods in Applied Me-
chanics and Engineering 192.28-30 (2003), pp. 3265–3283.

[3] Hou Man and Tomonari Furukawa. “Neural network constitutive modelling for non-
linear characterization of anisotropic materials”. In: International Journal for Numerical
Methods in Engineering 85.August (2010), pp. 939–957.

[4] Tomonari Furukawa and Genki Yagawa. “Implicit constitutive modelling for viscoplas-
ticity using neural networks”. In: International Journal for Numerical Methods in En-
gineering 43.2 (1998), pp. 195–219.

[5] Y. M. A. Hashash, S. Jung, and J. Ghaboussi. “Numerical implementation of a neural
network based material model in finite element analysis”. In: International Journal for
Numerical Methods in Engineering 59.7 (2004), pp. 989–1005.

[6] Jingwei Zhao, Hua Ding, Wenjuan Zhao, Mingli Huang, Dongbin Wei, and Zhengyi
Jiang. “Modelling of the hot deformation behaviour of a titanium alloy using constitutive
equations and artificial neural network”. In: Computational Materials Science 92 (2014),
pp. 47–56.

[7] Dong Dong Chen, Y. C. Lin, Ying Zhou, Ming Song Chen, and Dong Xu Wen. “Dis-
location substructures evolution and an adaptive-network-based fuzzy inference system
model for constitutive behavior of a Ni-based superalloy during hot deformation”. In:
Journal of Alloys and Compounds 708 (2017), pp. 938–946.

[8] Si Wei Wu, Xiao Guang Zhou, Guang Ming Cao, Zhen Yu Liu, and Guo Dong Wang.
“The improvement on constitutive modeling of Nb-Ti micro alloyed steel by using in-
telligent algorithms”. In: Materials and Design 116 (2017), pp. 676–685.

[9] Shuang Wu, Shougen Zhao, Dafang Wu, and Yunfeng Wang. “Constitutive modelling
for restrained recovery of shape memory alloys based on artificial neural network”. In:
NeuroQuantology 16.5 (2018), pp. 806–813.

[10] Y. C. Lin, Fu Qi Nong, Xiao Min Chen, Dong Dong Chen, and Ming Song Chen. “Mi-
crostructural evolution and constitutive models to predict hot deformation behaviors of
a nickel-based superalloy”. In: Vacuum 137 (2017), pp. 104–114.

63

[11] Ali Nassr, Akbar Javadi, and Asaad Faramarzi. “Developing constitutive models from
EPR-based self-learning finite element analysis”. In: International Journal for Numer-
ical and Analytical Methods in Geomechanics 42.3 (2017), pp. 401–417.

[12] J. Y. Ang, M. S. Abdul Majid, A. Mohd Nor, S. Yaacob, and M. J.M. Ridzuan. “First-
ply failure prediction of glass/epoxy composite pipes using an artificial neural network
model”. In: Composite Structures 200 (2018), pp. 579–588.

[13] Eissa Fathalla, Yasushi Tanaka, and Koichi Maekawa. “Remaining fatigue life assess-
ment of in-service road bridge decks based upon artificial neural networks”. In: Engi-
neering Structures 171.February (2018), pp. 602–616.

[14] Ankita Mangal and Elizabeth A. Holm. “Applied machine learning to predict stress
hotspots I: Face centered cubic materials”. In: International Journal of Plasticity 111
(2018), pp. 122–134.

[15] Mohammed S Kabbani and Hany A El Kadi. “Predicting the effect of cooling rate on
the mechanical properties of glass fiber–polypropylene composites using artificial neural
networks”. In: Journal of Thermoplastic Composite Materials (2018), pp. 1–14.

[16] Anish Walia. Activation functions and it’s types-Which is better? 2017. url: https:
//towardsdatascience.com/activation-functions-and-its-types-which-is-

better-a9a5310cc8f (visited on 03/22/2018).

[17] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: (2016),
pp. 1–14.

[18] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. “A Stochastic Quasi-Newton
Method for Large-Scale Optimization”. In: SIAM Journal on Optimization 26.2 (2014),
pp. 1008–1031.

[19] Aria D. Haghighi. Numerical Optimization: Understanding L-BFGS. 2014. url: http:
//aria42.com/blog/2014/12/understanding-lbfgs (visited on 03/22/2018).

[20] Shams S. Neural Networks: Cost Function and Backpropagation — Machine Learning
Medium. 2018. url: https://machinelearningmedium.com/2017/10/03/neural-
networks-cost-function-and-back-propagation/ (visited on 03/22/2018).

[21] Andrew Tchircoff. The mostly complete chart of Neural Networks, explained. url: https:
//towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-

explained-3fb6f2367464 (visited on 04/10/2018).

[22] Nimesh Sinha. Understanding LSTM and its quick implementation in keras for senti-
ment analysis. url: https://towardsdatascience.com/understanding-lstm-and-
its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47

(visited on 04/24/2018).

[23] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. 2016. url: https://tensorflow.org/ (visited on 04/26/2018).

[24] Adam Paszke, Gregory Chanan, Zeming Lin, Sam Gross, Edward Yang, Luca Antiga,
and Zachary Devito. “Automatic differentiation in PyTorch”. In: 31st Conference on
Neural Information Processing Systems (2017), pp. 1–4.

[25] François Chollet. Keras. 2015. url: https://keras.io/ (visited on 04/26/2018).

64

https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
http://aria42.com/blog/2014/12/understanding-lbfgs
http://aria42.com/blog/2014/12/understanding-lbfgs
https://machinelearningmedium.com/2017/10/03/neural-networks-cost-function-and-back-propagation/
https://machinelearningmedium.com/2017/10/03/neural-networks-cost-function-and-back-propagation/
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47
https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47
https://tensorflow.org/
https://keras.io/

[26] Fabian Pedregosa, Ron Weiss, and Matthieu Brucher. “Scikit-learn Machine Learning
in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[27] Scikit-Learn. sklearn.preprocessing.StandardScaler — scikit-learn 0.20.1 documentation.
url: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html (visited on 05/15/2018).

[28] Scikit-Learn. sklearn.metrics.mean squared error — scikit-learn 0.20.0 documentation.
url: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.
mean_squared_error.html (visited on 05/18/2018).

[29] Scikit-Learn. sklearn.metrics.r2 score — scikit-learn 0.20.0 documentation. url: http:
//scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.

html (visited on 05/18/2018).

[30] Yurii Shevchuk. Hyperparameter optimization for Neural Networks — NeuPy. url:
http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_

networks.html (visited on 05/25/2018).

[31] Scikit-Learn. 3.2. Tuning the hyper-parameters of an estimator — scikit-learn 0.20.0
documentation. url: http://scikit-learn.org/stable/modules/grid_search.
html (visited on 06/02/2018).

[32] Scikit-Learn. sklearn.model selection.validation curve — scikit-learn 0.20.0 documenta-
tion. url: http://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.validation_curve.html (visited on 06/08/2018).

[33] Adi Bronshtein. Train/Test Split and Cross Validation in Python – Towards Data Sci-
ence. 2017. url: https://towardsdatascience.com/train-test-split-and-cross-
validation-in-python-80b61beca4b6 (visited on 06/15/2018).

[34] Scikit-Learn. 3.5. Validation curves: plotting scores to evaluate models — scikit-learn
0.20.1 documentation. url: https://scikit-learn.org/stable/modules/learning_
curve.html (visited on 06/08/2018).

[35] Joblib developers. Persistence — joblib 0.13.0 documentation. 2018. url: https://
joblib.readthedocs.io/en/latest/persistence.html (visited on 06/10/2018).

[36] Scipy. scipy.integrate.odeint — SciPy v1.1.0 Reference Guide. url: https://docs.
scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

(visited on 04/05/2018).

[37] Michael Smith. ABAQUS/Standard User’s Manual, Version 6.14. Vol. IV. 2016.

[38] Imechanica.org. User Subroutines in Abaqus. 2017. url: http://imechanica.org/
files/WritingUserSubroutineswithABAQUS_0.pdf (visited on 06/25/2018).

[39] S. Thuillier J. Aquino, A. Andrade Campos, N. Souto. “Design of heterogeneous me-
chanical tests - Numerical methodology and experimental validation”. In: AIP Confer-
ence Proceedings 1960.August (2018), pp. 1–20.

65

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html
http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html
http://scikit-learn.org/stable/modules/grid_search.html
http://scikit-learn.org/stable/modules/grid_search.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
https://scikit-learn.org/stable/modules/learning_curve.html
https://scikit-learn.org/stable/modules/learning_curve.html
https://joblib.readthedocs.io/en/latest/persistence.html
https://joblib.readthedocs.io/en/latest/persistence.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
http://imechanica.org/files/Writing User Subroutines with ABAQUS_0.pdf
http://imechanica.org/files/Writing User Subroutines with ABAQUS_0.pdf

66

Appendices

67

Appendix A

Mechanical displacement used for
the virtually experimental tests in
2D

A.1 Tensile test (Txx)

Figure A.1: Total strain tensor for a cyclic strain of ±0.05.

68

Figure A.2: Total strain tensor for a cyclic strain of ±0.12.

Figure A.3: Total strain tensor for a cyclic strain of ±0.16.

69

A.2 Tensile test (Tyy)

Figure A.4: Total strain tensor for a cyclic strain of ±0.05.

Figure A.5: Total strain tensor for a cyclic strain of ±0.12.

70

Figure A.6: Total strain tensor for a cyclic strain of ±0.16.

71

A.3 Simple Shear test (Sxy)

Figure A.7: Total strain tensor for a cyclic strain of ±0.05.

Figure A.8: Total strain tensor for a cyclic strain of ±0.12.

72

Figure A.9: Total strain tensor for a cyclic strain of ±0.16.

73

Appendix B

Tables for validating ANN-model

Table B.1: Values calculated with ANN-model in comparison with the virtually experimental
values in 2D. These values correspond at the maximum strain of the first cycle (t = 5s) on a
strain range of ±0.11.

Strain range ±0.11

Testing Txx Tyy Sxy

Total Stress
[MPa]

σxx
experimental 293.22 0 0
ANN-model 297.93 0 -10.38

σyy
experimental 0 293.22 0
ANN-model 0 293.80 15.46

τxy
experimental 0 0 168.49
ANN-model 4.35 -1.01 166.93

Back Stress
[MPa]

χxx
experimental 97.38 -97.38 0
ANN-model 92.91 -89.21 -21.27

χyy
experimental -97.38 97.38 0
ANN-model -94.47 90.63 20.97

χxy
experimental 0 0 115.54
ANN-model 5.87 3.48 97.28

Viscoplastic
Strain

[-]

εvpxx
experimental 6.67×10−2 -6.67×10−2 0
ANN-model 6.33×10−2 -6.85×10−2 3.00×10−3

εvpyy
experimental -6.67×10−2 6.67×10−2 0
ANN-model -5.84×10−2 6.71×10−2 -3.72×10−2

εvpxy
experimental 0 0 2.23×10−2

ANN-model -2.26×10−3 5.30×10−4 2.32×10−2

Plastic Strain
[-]

p
experimental 7.70×10−2 7.70×10−2 1.82×10−2

ANN-model 7.81×10−2 7.80×10−2 2.95×10−2

Drag Stress
[MPa]

R
experimental 70.31 70.31 54.90
ANN-model 70.50 68.81 57.95

74

Table B.2: Values calculated with ANN-model in comparison with the virtually experimental
values in 2D. These values correspond at the maximum strain of the first cycle (t = 5s) on a
strain range of ±0.14.

Strain range ±0.14

Testing Txx Tyy Sxy

Total Stress
[MPa]

σxx
experimental 306.77 0 0
ANN-model 315.64 0 -3.90

σyy
experimental 0 306.77 0
ANN-model 0 310.25 20.95

τxy
experimental 0 0 191.07
ANN-model 5.56 0.81 194.42

Back Stress
[MPa]

χxx
experimental 97.43 -97.43 0
ANN-model 91.29 -87.21 -27.68

χyy
experimental -97.43 97.43 0
ANN-model -93.92 89.59 28.61

χxy
experimental 0 0 132.77
ANN-model 7.34 5.39 113.63

Viscoplastic
Strain

[-]

εvpxx
experimental 1.02×10−1 -1.02×10−1 0
ANN-model 9.69×10−2 -1.04×10−1 2.04×10−3

εvpyy
experimental -1.02×10−1 1.02×10−1 0
ANN-model -9.01×10−2 1.02×10−1 -4.42×10−3

εvpxy
experimental 0 0 4.06×10−2

ANN-model -2.89×10−3 -4.20×10−4 3.88×10−2

Plastic Strain
[-]

p
experimental 1.18×10−1 1.18×10−1 3.31×10−2

ANN-model 1.19×10−1 1.19×10−1 4.93×10−2

Drag Stress
[MPa]

R
experimental 80.74 80.74 58.86
ANN-model 80.84 77.63 63.15

75

Appendix C

Code

C.1 chaboche1D

1 #! / usr / bin /env python3
2 import math
3 import numpy as np
4 from sc ipy . i n t e g r a t e import ode int
5

6 c l a s s Chaboche1D :
7 ”””
8

9

10 Args :
11 param1 (array) : Array conta in ing the mate r i a l parameters .
12

13 ”””
14

15

16 de f i n i t (s e l f , E, K, n , H, D, h , d) :
17 s e l f .E = E
18 s e l f .K = K
19 s e l f . n = n
20 s e l f .H = H
21 s e l f .D = D
22 s e l f . h = h
23 s e l f . d = d
24 s e l f . s o l u t i o n s = []
25

26 de f t o t a l s t r a i n (s e l f , t) :
27 ”””
28

29 Args :
30 param1 (i n t) : Current moment o f time (t) .
31

32 Returns :
33 The mechanical d i sp lacement f o r the cur rent moment
34 o f time (t) .
35 ”””
36 tc = 20 .0 # Cyc l i c time f o r one c y c l i c l oad ing
37 Emax = 0.036 # Maximum mechanical d i sp lacement
38 Emin = −Emax

76

39 t c i c l e = t − tc ∗math . f l o o r (t / tc)
40 # Caculate t o t a l s t r a i n
41 i f t c i c l e <= tc / 4 . 0 :
42 re turn 4 . 0∗ (Emax/ tc)∗ t c i c l e
43 i f t c /4 .0 < t c i c l e <= (3 . 0 / 4 . 0) ∗ tc :
44 re turn (−((4.0∗Emax))/ tc) ∗ t c i c l e + (2 . 0) ∗ Emax
45 i f (3 . 0 / 4 . 0) ∗ tc < t c i c l e <= tc :
46 re turn ((−4.0∗Emin)/ tc) ∗ t c i c l e + 4 .0∗Emin
47

48

49 de f de r i v (s e l f , z , t , ET) :
50 ”””
51

52 Args :
53 param1 (np . array) : Array conta in ing the va lue s o f v i s c o p l a s t i c
54 s t r a in , back s t r e s s and drag s t r e s s .
55 param2 (np . array) : A sequence o f time po in t s f o r which
56 to s o l v e f o r z .
57 param3 (i n t) : The mechanical d i sp lacement f o r t h i s s tep
58 Returns :
59 Array conta in ing the d e r i v a t i v e s o f v i s c o p l a s t i c s t r a in ,
60 back s t r e s s and drag s t r e s s in t , with the i n i t i a l
61 value z0 in the f i r s t row .
62

63 ”””
64 Evp = z [0] # V i s c o p l a s t i c s t r a i n
65 X = z [1] # Back s t r e s s
66 R = z [2] # Drag s t r e s s
67 S = s e l f .E∗(ET − Evp) # Calcu la te Total S t r e s s
68 i f abs (S − X) − R < 0 : # E l a s t i c s t a t e
69 dEvpdt = 0 .
70 dXdt = 0 .
71 dRdt = 0 .
72 e l s e : # P l a s t i c s t a t e
73 dEvpdt = (((abs (S − X) − R) / s e l f .K) ∗∗ s e l f . n) ∗ np . s i gn (S − X)
74 dXdt = s e l f .H ∗ dEvpdt − s e l f .D ∗ X ∗ abs (dEvpdt)
75 dRdt = s e l f . h ∗ abs (dEvpdt) − s e l f . d ∗ R ∗ abs (dEvpdt)
76 re turn [dEvpdt , dXdt , dRdt]
77

78

79 de f s o l v e (s e l f , z0 , t) :
80 ”””
81

82 Args :
83 param1 (np . array) : Array conta in ing the i n i t i a l c o n d i t i o n s .
84 param2 (i n t) : Total sequence o f time po in t s f o r which
85 to s o l v e f o r z .
86

87 ”””
88 # I t e r a t e through the sequence o f time po in t s
89 f o r i in range (1 , l en (t)) :
90 # Mechanical d i sp lacement f o r next s tep
91 ET = s e l f . t o t a l s t r a i n (t [i])
92 # Time span f o r the next time step
93 tspan = [t [i −1] , t [i]]
94 # Solve f o r next s tep
95 z = ode int (s e l f . der iv , z0 , tspan , args=(ET,))

77

96 # Store s o l u t i o n
97 s e l f . s o l u t i o n s . append (z)
98 # Next i n i t i a l cond i t i on
99 z0 = z [1]

100

101 # Main program
102 i f name == ” ma in ” :
103 # i n i t i a l c o n d i t i o n s − Evp / X / R
104 z0 = [0 , 0 , 5 0 . 0]
105 # number o f data po in t s
106 n = 3000
107 # Def ine mate r i a l parameters
108 # E, K, n , H, D, h , d
109 model 1D = Chaboche1D (5000 . 0 , 50 . 0 , 3 . 0 , 5000 .0 , 100 .0 , 300 .0 , 0 . 6)
110 # Time po in t s
111 t = np . l i n s p a c e (0 , 80 , n)
112 # Solve Chaboche ’ s 1D model with g iven mate r i a l parameters
113 model 1D . s o l v e (z0 , t)

C.2 chaboche2D

1 #! / usr / bin /env python3
2 import math
3 import numpy as np
4 import copy
5 from sc ipy . i n t e g r a t e import ode int
6

7 c l a s s Chaboche2D :
8 ”””
9

10

11 Args :
12 param1 (i n t) : Array conta in ing the mate r i a l parameters ,
13 as we l l as the maximum s t r a i n f o r the
14 s p e c i f i e d t e s t .
15 Att r ibute s :
16 E, v , R1 , k ,K, a , b , c , n (i n t) : Mater ia l parameters
17 t e s t (s t r) : Type o f mechanical t e s t , i t can be a t e n s i l e
18 t e s t (xx , yy) or s imple shear (xy) .
19 Emax (i n t) : Maximum mechanical d i sp lacement
20

21 ”””
22

23

24 de f i n i t (s e l f , E, v , R1 , k , K, a , b , c , n , t e s t , Emax) :
25 s e l f .E = E
26 s e l f . v = v
27 s e l f . R1 = R1
28 s e l f . k = k
29 s e l f .K = K
30 s e l f . a = a
31 s e l f . b = b
32 s e l f . c = c
33 s e l f . n = n
34 s e l f . t e s t = t e s t
35 s e l f .Emax = Emax
36 s e l f . s o l u t i o n s = []

78

37

38 de f t o t a l s t r a i n (s e l f , t) :
39 ”””
40

41 Args :
42 param1 (i n t) : Current moment o f time (t) .
43

44 Returns :
45 The mechanical d i sp lacement f o r the cur rent moment
46 o f time (t) .
47 ”””
48 tc = 20 .0 # Cyc l i c time f o r one c y c l i c l oad ing
49 Emax = s e l f .Emax # Maximum mechanical d i sp lacement
50 Emin = −Emax
51 t c i c l e = t − tc ∗math . f l o o r (t / tc)
52 # Caculate t o t a l s t r a i n
53 i f t c i c l e <= tc / 4 . 0 :
54 re turn 4 . 0∗ (Emax/ tc)∗ t c i c l e
55 i f t c /4 .0 < t c i c l e <= (3 . 0 / 4 . 0) ∗ tc :
56 re turn (−((4.0∗Emax))/ tc) ∗ t c i c l e + (2 . 0) ∗ Emax
57 i f (3 . 0 / 4 . 0) ∗ tc < t c i c l e <= tc :
58 re turn ((−4.0∗Emin)/ tc) ∗ t c i c l e + 4 .0∗Emin
59

60

61 de f de r i v (s e l f , z , t , s t i f f , ET) :
62 ”””
63

64 Args :
65 param1 (np . array) : Array conta in ing the va lue s o f v i s c o p l a s t i c
66 s t r a i n tensor , back s t r e s s tensor , drag s t r e s s
67 and p l a s t i c s t r a i n .
68 param2 (np . array) : A sequence o f time po in t s f o r which
69 to s o l v e f o r z .
70 param3 (i n t) : The mechanical d i sp lacement f o r t h i s s tep
71 Returns :
72 Array conta in ing the d e r i v a t i v e s o f v i s c o p l a s t i c s t r a i n tensor ,
73 back s t r e s s tensor , drag s t r e s s and p l a s t i c s t r a i n in t , with
74 the i n i t i a l va lue z0 in the f i r s t row .
75

76 ”””
77 Evp = z [: 3] . reshape (3 , 1) # I n e l a s t i c s t r a i n t enso r
78 X = z [3 : 6] . reshape (3 , 1) # Back s t r e s s t enso r
79 R = copy . deepcopy (z [6]) # Drag s t r e s s
80 p = copy . deepcopy (z [7]) # p l a s t i c s t r a i n
81 ET = ET. reshape (3 , 1) # Total s t r a i n
82 # Calcu la t e S t r e s s
83 S = np . matmul (s t i f f , ET−Evp)
84 i f s e l f . t e s t == ’ xx ’ : # Txx
85 S [1] = 0 # S22 = 0
86 e l i f s e l f . t e s t == ’ yy ’ : # Txy
87 S [0] = 0 # S11 = 0
88 # Calcu la t e d e v i a t o r i c S t r e s s
89 S dev = copy . deepcopy (S)
90 S dev [0] [0] −= (1 . / 2 .) ∗ (S [0]+S [1])
91 S dev [1] [0] −= (1 . / 2 .) ∗ (S [0]+S [1])
92 # Calcu la t e d e v i a t o r i c back s t r e s s
93 X dev = copy . deepcopy (X)

79

94 X dev [0] [0] −= (1 . / 2 .) ∗ (X[0] + X[1])
95 X dev [1] [0] −= (1 . / 2 .) ∗ (X[0] + X[1])
96 # Calcu la t e J i n v a r i a n t
97 J = math . s q r t ((3 . / 2 .) ∗ np . matmul ((S dev−X dev) . t ranspose () , S dev−X dev))
98

99 i f (J/ s e l f .K) < ((R + s e l f . k)/ s e l f .K) : # E l a s t i c State
100 dpdt = 0
101 dEvpdt = np . array ([[0] , [0] , [0]])
102 dXdt = np . array ([[0] , [0] , [0]])
103 dRdt = 0
104 e l s e : # P l a s t i c State
105 # Calcu la t e p l a s t i c s t r a i n ra t e
106 dpdt = ((J − R − s e l f . k) / s e l f .K) ∗∗ s e l f . n
107 # Calcu la t e v i s c o p l a s t i c s t r a i n ra t e t enso r
108 dEvpdt = (3 . / 2 .) ∗ dpdt ∗ (S dev−X dev)/ J
109 # Calcu la t e Back s t r e s s r a t e t enso r
110 dXdt = (3 . / 2 .) ∗ s e l f . a ∗ dEvpdt − s e l f . c ∗ X ∗ dpdt
111 # Calcu la t e Drag s t r e s s ra t e
112 dRdt = s e l f . b ∗ (s e l f . R1 − R) ∗ dpdt
113

114 dzdt = [dEvpdt [0] [0] , dEvpdt [1] [0] , dEvpdt [2] [0] , dXdt [0 , 0] , dXdt [1 , 0] ,
115 dXdt [2 , 0] , dRdt , dpdt]
116 re turn dzdt
117

118 de f s o l v e (s e l f , z0 , t) :
119 ”””
120

121 Args :
122 param1 (np . array) : Array conta in ing the i n i t i a l c o n d i t i o n s .
123 param2 (i n t) : Total sequence o f time po in t s f o r which
124 to s o l v e f o r z .
125

126 ”””
127 # Def ine S t i f f matrix
128 s t i f f = s e l f .E/(1− s e l f . v∗∗2) ∗ np . array ([[1 , s e l f . v , 0] ,
129 [s e l f . v , 1 , 0] ,
130 [0 , 0 , (1− s e l f . v) / 2]])
131 # I n i t i a l i z e Total s t r a i n t enso r
132 ET = np . z e ro s ((1 , 3))
133 # I t e r a t e through the sequence o f time po in t s
134 f o r i in range (1 , l en (t)) :
135 # Mechanical d i sp lacements f o r next s tep
136 i f s e l f . t e s t == ’ xx ’ : # Txx t e s t
137 ET[0 , 0] = s e l f . t o t a l s t r a i n (t [i])
138 ET[0 , 1] = − s e l f . v ∗ ET[0 , 0]
139 e l i f s e l f . t e s t == ’ yy ’ : # Tyy t e s t
140 ET[0 , 1] = s e l f . t o t a l s t r a i n (t [i])
141 ET[0 , 0] = − s e l f . v ∗ ET[0 , 1]
142 e l i f s e l f . t e s t == ’ xy ’ : # Sxy t e s t
143 ET[0 , 0] = 0
144 ET[0 , 1] = 0
145 ET[0 , 2] = s e l f . t o t a l s t r a i n (t [i])
146 # Time span f o r next time step
147 tspan = [t [i −1] , t [i]]
148 # Solve f o r next s tep
149 z = ode int (s e l f . der iv , z0 , tspan , args=(s t i f f , ET))
150 # s t o r e s o l u t i o n f o r p l o t t i n g

80

151 s e l f . s o l u t i o n s . append (z)
152 # Next i n i t i a l cond i t i on
153 z0 = z [1]
154

155 # Main program
156 i f name == ” ma in ” :
157 # i n i t i a l c o n d i t i o n s − Evp(t enso r) / X(tenso r) / R / p
158 z0 = [0 , 0 , 0 , 0 , 0 , 0 , 50 . 0 , 0]
159 # number o f data po in t s
160 n = 1000
161 # Choose one t e s t from −> (xx , yy , xy)
162 t e s t = ’ xx ’
163 # Maximum mechanical d i sp lacement f o r c y c l i c l oad ing
164 Emax = 0.18
165 # Def ine mate r i a l and t e s t parameters
166 # E, v , R1 , k , K, a , b , c , n , t e s t , Emax
167 model 2D = Chaboche2D (5000 . 0 , 0 . 3 , 500 .0 , 0 . 0 , 50 . 0 , 7500 .0 ,
168 0 . 6 , 100 .0 , 3 . 0 , t e s t , Emax)
169 # Time po in t s
170 t = np . l i n s p a c e (0 , 80 , n)
171 # Solve Chaboche ’ s 1D model with g iven mate r i a l parameters
172 model 2D . s o l v e (z0 , t)

C.3 UMAT

1 ∗∗∗
2 ∗∗ UMAT FOR ABAQUS/STANDARD INCORPORATING PREDICTIVE MECHANICAL BEHAVIOUR ∗∗
3 ∗∗ BY NEURAL NETWORKS FOR PLANE−STRESS ∗∗
4 ∗∗∗
5 ∗∗∗
6 ∗∗
7 ∗∗
8 ∗∗
9 ∗USER SUBROUTINE

10 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE, SSE ,SPD,SCD,
11 1 RPL,DDSDDT,DRPLDE,DRPLDT,
12 2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
13 3 NDI ,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
14 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)
15 C
16 INCLUDE ’ABA PARAM. INC ’
17 C
18 CHARACTER∗80 CMNAME
19 C
20 C
21 DIMENSION STRESS(NTENS) ,STATEV(NSTATV) ,
22 1 DDSDDE(NTENS,NTENS) ,DDSDDT(NTENS) ,DRPLDE(NTENS) ,
23 2 STRAN(NTENS) ,DSTRAN(NTENS) ,TIME(2) ,DTIME(1) ,PREDEF(1) ,DPRED(1) ,
24 3 PROPS(NPROPS) ,COORDS(3) ,DROT(3 , 3) ,DFGRD0(3 , 3) ,DFGRD1(3 , 3) ,
25 4 KINC(1) , KSTEP(1)
26 C
27 C
28 PARAMETER (M=3,N=3,ID=3,ZERO=0.D0 ,ONE=1.D0 ,TWO=2.D0 ,THREE=3.D0 ,
29 + SIX=6.D0 , NINE=9.D0 , TOLER=0.D−6)
30 C
31 DIMENSION DSTRESS(4) , DDS(4 , 4) , SDEV(3) , XDEV(3)
32 r e a l (8) dEvp11 , dEvp22 , dEvp12 , dR, dX11 , dX22 , dX12 , dp

81

33 C
34 C LOAD MATERIAL PROPERTIES AND STATE VARIABLES
35 C
36 v = PROPS(1)
37 E = PROPS(2)
38 Evp11 = STATEV(1)
39 Evp22 = STATEV(2)
40 Evp12 = STATEV(3)
41 X11 = STATEV(4)
42 X22 = STATEV(5)
43 X12 = STATEV(6)
44 R = STATEV(7)
45 p = STATEV(8)
46 C
47 C CALCULATE ELASTIC STIFFNESS
48 C
49 DDSDDE(1 ,1) = E/(1−v∗∗2)
50 DDSDDE(1 ,2) = (E∗v)/(1−v∗∗2)
51 DDSDDE(1 ,3) = 0
52 DDSDDE(2 ,1) = (E∗v)/(1−v∗∗2)
53 DDSDDE(2 ,2) = E/(1−v∗∗2)
54 DDSDDE(2 ,3) = 0
55 DDSDDE(3 ,1) = 0
56 DDSDDE(3 ,2) = 0
57 DDSDDE(3 ,3) = ((1−v)∗E)/(2∗(1−v ∗∗2))
58 C
59 C ASSIGN STRESS TENSOR TO LOCAL VARIABLES
60 C
61 S11 = STRESS(1)
62 S22 = STRESS(2)
63 S12 = STRESS(3)
64 C
65 C ASK FOR THE DERIVATIVES
66 C
67 a = g e t d e r i v a t i v e s (Evp11 , Evp22 , Evp12 , R, S11 , S22 ,
68 + S12 , X11 , X22 , X12 , p)
69 C
70 C READ THE DERIVATIVES
71 C
72 open (un i t =17, f i l e=’ /home/ miguel / d e r i v a t i v e s . txt ’)
73 read (17 ,∗) dEvp11 , dEvp12 , dEvp22 , dR, dX11 , dX12 , dX22 , dp
74 CLOSE(17)
75 C
76 C TRANSFORM VISCOPLASTIC STRAIN RATE INTO INCREMENT
77 C
78 Evp11 inc = dEvp11 ∗ DTIME(1)
79 Evp22 inc = dEvp22 ∗ DTIME(1)
80 Evp12 inc = dEvp12 ∗ DTIME(1)
81 C
82 C UPDATE STRESS
83 C
84 STRESS(1) = S11 + DDSDDE(1 , 1)∗ (DSTRAN(1)−Evp11 inc)+
85 + DDSDDE(1 , 2)∗ (DSTRAN(2)−Evp22 inc)
86 STRESS(2) = S22 + DDSDDE(2 , 1)∗ (DSTRAN(1)−Evp11 inc)+
87 + DDSDDE(2 , 2)∗ (DSTRAN(2)−Evp22 inc)
88 STRESS(3) = S12 + DDSDDE(3 , 3)∗ (DSTRAN(3)−Evp12 inc)
89 C

82

90 C UPDATE STATE VARIABLES
91 C
92 STATEV(1) = Evp11 + dEvp11∗DTIME(1)
93 STATEV(2) = Evp22 + dEvp22∗DTIME(1)
94 STATEV(3) = Evp12 + dEvp12∗DTIME(1)
95 STATEV(4) = X11 + dX11∗DTIME(1)
96 STATEV(5) = X22 + dX22∗DTIME(1)
97 STATEV(6) = X12 + dX12∗DTIME(1)
98 STATEV(7) = R + dR∗DTIME(1)
99 STATEV(8) = p + dp∗DTIME(1)

100 RETURN
101 END
102 ∗∗
103 ∗∗
104 ∗∗ UTILITY FUNCTIONS ∗∗
105 ∗∗
106 ∗∗
107 ∗∗
108 ∗∗
109 ∗∗ PREDICT STATE DERIVATIVES GIVEN A CERTAIN STATE ∗∗
110 ∗∗
111 r e a l (8) func t i on g e t d e r i v a t i v e s (Evp11 , Evp22 , Evp12 , R, S11 , S22 ,
112 1 S12 , X11 , X22 , X12 , p)
113 C
114 r e a l (8) Evp11 , Evp22 , Evp12 , R, X11 , X22 , X12 , p , S11 , S22 , S12
115 C
116 C WRITE S , Evp ,X TENSORS p AND R TO f e a t u r e s . txt FILE
117 C
118 open (un i t =16, f i l e=’ /home/ miguel / f e a t u r e s . txt ’)
119 WRITE(16 ,∗) Evp11 , ’ , ’ , Evp12 , ’ , ’ , Evp22 , ’ , ’ ,R,
120 + ’ , ’ , S11 , ’ , ’ , S12 , ’ , ’ , S22 ,
121 + ’ , ’ ,X11 , ’ , ’ ,X12 , ’ , ’ ,X22 , ’ , ’ , p
122 CLOSE(16)
123 C
124 C CALL MACHINE LEARNING MODEL TO MAKE PREDICTIONS
125 C THEN WAIT UNTIL IT FINISH EXECUTION
126 C
127 c a l l system (”/ usr / bin /python /home/ miguel / c a l l n e u r o n a l f e m . py”)
128 re turn
129 end
130 ∗∗∗
131 ∗∗ SDVINI FOR ABAQUS/STANDARD ∗∗
132 ∗∗ ∗∗
133 ∗∗∗
134 ∗∗∗
135 ∗∗
136 ∗∗
137 ∗∗
138 ∗USER SUBROUTINE
139 SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,
140 1 LAYER,KSPT)
141 C
142 INCLUDE ’ABA PARAM. INC ’
143 C
144 DIMENSION STATEV(NSTATV) ,COORDS(NCRDS)
145 C
146 C ASSIGN INITIAL CONDITIONS TO STATE VARIABLES

83

147 C
148 STATEV(1) = 0 .
149 STATEV(2) = 0 .
150 STATEV(3) = 0 .
151 STATEV(4) = 0 .
152 STATEV(5) = 0 .
153 STATEV(6) = 0 .
154 STATEV(7) = 50 .
155 STATEV(8) = 0 .
156 RETURN
157 END

C.4 neuronalFem (ANN-FEA)

1 #! / usr / bin /env python3
2 import numpy as np
3 from s k l ea r n . e x t e r n a l s import j o b l i b
4

5 c l a s s NeuronalFem :
6 ”””
7

8

9 Args :
10 param1 (s t r) : Local path d i r e c t o r y to machine l e a r n i n g model and
11 s c a l e r s .
12

13 Att r ibute s :
14 e s t imator (p i c k l e obj) : Estimator ready f o r p r e d i c t i o n us ing the
15 multi−l a y e r perceptron model (ANN) .
16 s c a l e r x (p i c k l e obj) : Contains the binary f i l e , which has the methods
17 to be used f o r s c a l i n g f e a t u r e s .
18 s c a l e r y (p i c k l e obj) : Contains the binary f i l e , which has the methods
19 to be used f o r s c a l i n g p r e d i c t i o n s .
20

21 ”””
22

23 de f i n i t (s e l f , modeldir) :
24

25 s e l f . e s t imator = j o b l i b . load (modeldir + ’ ann . pkl ’)
26 s e l f . s c a l e r x = j o b l i b . load (modeldir + ’ s c a l e r x . pkl ’)
27 s e l f . s c a l e r y = j o b l i b . load (modeldir + ’ s c a l e r y . pkl ’)
28

29

30 de f g e t f e a t u r e s (s e l f , f i l e p a t h) :
31 ”””
32

33 Args :
34 param1 (s t r) : Local path d i r e c t o r y to the f i l e conta in ing
35 f e a t u r e s
36 Returns :
37 Array conta in ing the f e a t u r e s (t o t a l s t r e s s tensor ,
38 v i s c o p l a s t i c s t r a i n tensor , back s t r e s s tensor , drag s t r e s s
39 and p l a s t i c s t r a i n .)
40 ”””
41 f i l e = open (f i l e p a t h , ’ r ’)
42 f o r l i n e in f i l e . r e a d l i n e s () :
43 f e a t u r e s = l i n e . r s t r i p () . s p l i t (’ , ’)

84

44 f e a t u r e s = [f l o a t (i) f o r i in f e a t u r e s]
45 f i l e . c l o s e ()
46 re turn [f e a t u r e s]
47

48

49 de f s a v e p r e d i c t i o n s (s e l f , output , f i l e p a t h) :
50 ”””
51

52 Args :
53 param1 (np . array) : Array with the output p r e d i c t i o n s g iven
54 by es t imator (ANN) .
55 param2 (s t r) : Local path d i r e c t o r y to the f i l e where
56 p r e d i c t i o n s are s to r ed
57 Returns :
58 None .
59 ”””
60 f i l e = open (f i l e p a t h , ’wb ’)
61 # I n i t i a l i z e p r e d i c t i o n s vec to r
62 p r e d i c t i o n s = np . arange (8 , dtype=f l o a t)
63 f o r i in range (0 , 8) :
64 p r e d i c t i o n s [i] = output [0] [i]
65 np . savetxt (f i l e , [p r e d i c t i o n s] , fmt=’ %0.6 f ’ , d e l i m i t e r=’ , ’)
66 f i l e . c l o s e ()
67 re turn None
68

69 # Main program
70 i f name == ” ma in ” :
71 # Machine l e a r n i n g model d i r e c t o r y
72 modeldir = ’ /home/ miguel /Documents/ t e s e / V i s coP la s t i c−ML/2D/ t r a i n /model/ ’
73 # I n i t i a l i z e neuronalfem c l a s s with t ra ined model f o r f u r t h e r p r e d i c t i o n
74 # and s c a l e r s to trans form the data .
75 neuronalfem = NeuronalFem (modeldir)
76 # Load f e a t u r e s from f e a t u r e s . txt f i l e
77 f e a t u r e s = neuronalfem . g e t f e a t u r e s (’ /home/ miguel / f e a t u r e s . txt ’)
78 # Transform f e a t u r e s va lue s to make p r e d i c t i o n s
79 input = neuronalfem . s c a l e r x . trans form (f e a t u r e s)
80 # Make p r e d i c t i o n s and trans form the output
81 output = neuronalfem . s c a l e r y . i n v e r s e t r a n s f o r m (
82 (neuronalfem . e s t imator . p r e d i c t (input)))
83 # Save p r e d i c t i o n s
84 neuronalfem . s a v e p r e d i c t i o n s (output , ’ /home/ miguel / p r e d i c t i o n s . txt ’)

85

86

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Objectives
	Reading Guide

	Artificial Neural Networks
	Mathematical Formulation
	Topologies
	Software
	Models
	Pre-processing data
	Model Evaluation and Selection
	Model Persistence

	Training
	Creating Data for Machine Learning training
	Chaboche Constitutive Model in 1D
	Numerical Implementation
	Virtually experimental results

	Chaboche Constitutive Model in 2D
	Numerical Implementation
	Virtually experimental results

	Training on Generated Dataset
	ANN Model for 1D
	Final model
	Validation

	ANN Model for 2D
	Final model
	Validation

	Implementation and analysis of the ANN-model on a FEA code
	User defined subroutine UMAT and SDVINI
	Communication between UMAT and machine learning model
	Validation

	Testing machine learning model on complex geometry
	Adapted butterfly test
	Results

	Conclusions and Future Work
	References
	Appendices
	Mechanical displacement used for the virtually experimental tests in 2D
	Tensile test (Txx)
	Tensile test (Tyy)
	Simple Shear test (Sxy)

	Tables for validating ANN-model
	Code
	chaboche1D
	chaboche2D
	UMAT
	neuronalFem (ANN-FEA)

