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resumo Métodos avançados de otimização têm sido amplamente aplicados ao
projeto mecânico, principalmente pela sua capacidade de resolver problemas
complexos que técnicas tradicionais de otimização como os métodos basea-
dos em gradiente não apresentam. Devido à sua crescente popularidade,
o número de algoritmos encontrados na literatura é vasto. Neste trabalho
são implementados três algoritmos distintos, Otimização por Bando de
Partículas (PSO), Evolução Diferencial (DE) e Otimização Baseada no
Ensino-Aprendizagem (TLBO). Inicialmente, a aplicação destes algoritmos
é analisada numa função composta e em três problemas de minimização de
projeto mecânico (o peso de um redutor de velocidade, o volume de uma es-
trutura de três barras e a área de uma placa quadrada com um furo circular).

Além disso, com o aumento do número de algoritmos existentes, a
escolha de ferramentas de programação para implementá-los também é
vasta e geralmente feita considerando critérios subjetivos ou dificuldades
no uso de estratégias de melhoria como processamento paralelo. Deste
modo, no presente trabalho é realizada uma análise de ferramentas de
programação aplicadas a algoritmos metaheurísticos, utilizando linguagens
de programação com distintas características: Python, MATLAB, Java e
C++. Os algoritmos e problemas selecionados são programados em cada
linguagem de programação, e inicialmente comparados numa implementação
de processamento sequencial. Além disso, de forma a analisar possíveis gan-
hos de desempenho, são implementados procedimentos de processamento
paralelo utilizando recursos de cada linguagem de programação.

A aplicação dos algoritmos aos problemas de projeto mecânico demon-
stra bons resultados nas soluções obtidas. Os resultados, em termos
de tempo computacional, de processamento sequencial e paralelo, ap-
resentam diferenças consideráveis entre as linguagens de programação. A
implementação de procedimentos de processamento paralelo demonstra
benefícios significativos em problemas complexos.





keywords advanced optimization methods, mechanical design, programming lan-
guages, parallel processing

abstract Advanced optimization methods are widely applied to mechanical design,
mainly for its abilities to solve complex problems that traditional optimiz-
ation techniques such as gradient-based methods do not present. With its
increasing popularity, the number of algorithms found in the literature is
vast. In this work three algorithms are implemented, namely Particle Swarm
Optimization (PSO), Differential Evolution (DE) and Teaching-Learning-
Based Optimization (TLBO). Firstly, the application of these algorithms
is analyzed for a composition function benchmark and three mechanical
design minimization problems (the weight of a speed reducer, the volume
of a three-bar truss and the area of a square plate with a cut-out hole).

Furthermore, as the scope of available algorithms increases, the choice of
programming tools to implement them is also vast, and generally made
considering subjective criteria or difficulties in using enhancing strategies
such as parallel processing. Thereby an analysis of programming tools
applied to metaheuristic algorithms is carried out using four programming
languages with distinct characteristics: Python, MATLAB, Java and C++.
The selected algorithms and problems are coded using each programming
language, which are initially compared in a sequential processing imple-
mentation. Additionally, in order to analyze potential gains in performance,
parallel processing procedures are implemented using features of each
programming language.

The application of the algorithms to the mechanical design problems
demonstrates good results in the achieved solutions. In what concerns to
the computational time, sequential and processing results present consider-
able differences between programming languages while the implementation
of parallel processing procedures demonstrates significant benefits for
complex problems.
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Chapter 1

Introduction

The framework of the work is presented and the general
objectives defined. The structure of the document is described.

1.1 Framework

Optimization stands as a key role in solving engineering problems. From the design of
aircraft and aerospace structures, water resources systems to electrical networks, different
methods are being applied to obtain the best viable solutions [Rao 2009]. Nowadays, the
use of optimization techniques can be transversal to almost every scientific area, from
simple personal goals to industrial applications.

In the optimization of mechanical design, depending on the requirements, several ob-
jectives can be considered (e.g. weight, strength). Furthermore, if the mechanical system
is too complex it can lead to a complicated objective, involving several parameters to
optimize and requirements to satisfy. In order to simplify the optimization process, the
system is usually split into several subsystems, which in turn are easier to optimize. For
example, in a power transmission system, the optimization of the gearbox is computa-
tionally and mathematically simpler than the optimization of the whole system [Rao and
Savsani 2012]. Different optimization methods or algorithms have been applied to solve
mechanical design problems, which can be classified into two different types: traditional
optimization methods and advanced optimization methods.

The use of traditional optimization methods, called deterministic algorithms, can be
dated to the days of Newton, Lagrange and Cauchy [Rao 2009]. Some algorithms can be
classified as gradient-based, as the Newton-Raphson method, which uses the information
of the derivatives and values of the function. Gradient-free or direct search algorithms
are an alternative, as they do not use any derivative, but only function values. One
example of the latter is the Nelder-Mead simplex method [Nelder and Mead 1965]. Overall,
traditional optimization techniques have been used with some success in mechanical design
problems [Rao and Savsani 2012]. Some advantages have been appointed to traditional
methods, as they present good convergence rates and are efficient when searching for local
optima [Yang et al. 2016]. However, they also present some drawbacks, as getting trapped
in local optima, not providing guarantees of global optimality [Yang et al. 2018]. Moreover,
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as the function gradients might be difficult to estimate when applied to complex problems
with a large number of variables and constraints, they are very demanding to solve.

The advanced optimization methods combine a heuristic component with probabil-
istic transition rules or randomization. These methods have been gaining popularity due
to properties traditional methods do not present, allowing quality solutions to be found,
but not guaranteeing optimal solutions [Yang et al. 2018]. The randomization component
allows the algorithms to search globally, avoiding the algorithm to be trapped in local
optima. These algorithms can be evolutionary or even nature-inspired, depending on the
source of inspiration and on mathematical equations. Examples of advanced optimization
methods are the Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Simulated
Annealing (SA), Differential Evolution (DE), among others. Analogous to the traditional
optimization methods, the use of advanced methods present advantages and disadvant-
ages. From a general perspective, these algorithms are more flexible, simpler and have
the capability to deal with more complex problems [Yang et al. 2016]. Additionally, the
potential of global exploration enhances the chances to reach an optimum solution, as well
as the aptitude to deal with a variety and magnitude of problems. Nevertheless, the com-
putational cost tends to be higher than traditional techniques and exact solutions are not
repeatable [Yang et al. 2016].

Application of the advanced optimization techniques in mechanical design problems
has been widely researched, as several authors have studied how to improve the solu-
tion of mechanical design optimization problems by employing these techniques. Rao and
Savsani [Rao and Savsani 2012] compiled and studied a large number of problems found
in the literature using metaheuristic algorithms, such as a gear train, radial ball bearing,
Belleville’s spring, multi-plate disc clutch brake, robot gripper, pressure vessel, hydrostatic
bearing, four stage gear train, among others. Other authors [He et al. 2004, Yang and
Deb 2010,Baykasoglu 2012,Guedria 2015,Alcántar et al. 2017,Zhang et al. 2018] have also
employed different algorithms and improved variations to a broad range of problems.

When the problem to optimize is relatively simple, its solution might be easily found
using analytical methods or even graphic representations. However, if the problem is com-
plex, analytical methods prove to be non-efficient. In the latter scenario, implementation
of the optimization methods can be achieved using programming tools that are easily
available and automate the process. Nowadays, to solve this kind of problems, general
mathematical/technical computing software or programming languages are usually used.
Furthermore, it is well known that some programming languages are better suited for a
specific application than others, but selecting the optimal programming language involves
the consideration of several factors – targeted platform, time of development, readabil-
ity, writability, among others [Reghunadh and Jain 2011,Sebesta 2012]. Additionally, the
majority of programming languages are prepared for multi-paradigm approaches such as
procedural or object-oriented programming which might be better suited for some applic-
ations than others. However, the choice is generally taken considering subjective criteria
or difficulties in using enhancing strategies such as parallel programming tools.

1.2 Objectives

The main goal of this work is to analyze the use of advanced optimization methods in
mechanical design problems in order to better understand their characteristics and poten-
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tial. This analysis is carried out using three distinct algorithms selected for its simplicity
and vast application to mechanical design problems: Particle Swarm Optimization (PSO),
Differential Evolution (DE) and Teaching-Learning-Based Optimization (TLBO). Further-
more, it is intended to gain knowledge on available programming tools for the implement-
ation of the algorithms either in terms of development strategies and computational per-
formance. Thereby each algorithm is implemented using different programming languages:
Python, MATLAB, Java and C++. Additionally, it is intended to analyze strategies to
boost the computational performance, using parallel processing procedures available in
each programming language.

1.3 Reading Guidelines

The present document is divided into six chapters, organized as here described.
Chapter 1 - An introduction to the work is presented and its framework described.

The general objectives are briefly presented.
Chapter 2 - General concepts used in this work are presented, such as the math-

ematical formulation of an optimization problem and a method to deal with constrained
optimization problems. Moreover, general concepts related to parallel processing are de-
scribed, as well as parameters used in the evaluation of computational performance.

Chapter 3 - It is presented the mathematical formulations of the implemented ad-
vanced optimization methods. Additionally, variants and different strategies of these al-
gorithms are described and literature applications in mechanical design problems are briefly
presented.

Chapter 4 - The implementation procedures are described, in particular, the applic-
ation of parallel processing in the advanced optimization methods. A description of the
implemented programming languages and its features is also presented, as well as the math-
ematical formulation and computational implementation of different applications. Finally,
a succinct description of the work’s implementation flow is presented.

Chapter 5 - The results and its analysis are presented. Firstly, the advanced op-
timization methods are compared, based on its efficiency and ability in the resolution of
implemented applications. Secondly, the analysis is focused on the computational per-
formance of the algorithms and programming languages, both in sequential and parallel
processing implementations.

Chapter 6 - General conclusions and perspectives of future work are presented.
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Chapter 2

Fundamentals and General Concepts

A mathematical formulation of an optimization problem and a
method to deal with constrained optimization problems are

presented. General concepts and approaches in parallel
processing are presented, as well as parameters used in the

evaluation of performance.

2.1 Fundamentals of Optimization

2.1.1 Mathematical Formulation of an Optimization Problem

Before solving any optimization problem, it is necessary to correctly formulate it and
translate it into mathematical language. Mathematically, the properties of a system to
be optimized are defined through a function, named objective function. The goal of an
optimization problem is to minimize or maximize the objective function. This function
relates the properties of the system through D parameters, named design variables or
decision variables.

An optimization or mathematical programming problem can be stated as

Find x =


x1

x2
...
xD

which minimizes f(x) , (2.1)

subject to the constraints

gj(x) ≤ 0 , j = 1, 2, ...,m , (2.2)

hk(x) = 0 , k = 1, 2, ..., l , (2.3)

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, ..., D , (2.4)

where x is aD-dimensional vector of the design variables, f(x) is termed objective function,
and g(x) and h(x) are known as inequality and equality constraints, respectively. The last
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constraints are also referred to as simple constraints or side constraints. In a compact and
generic way, an optimization problem can be defined as

minimize f(x) , (2.5)

subject to gj(x) ≤ 0 , j = 1, 2, ...,m , (2.6)

hk(x) = 0 , k = 1, 2, ..., l , (2.7)

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, ..., D . (2.8)

An optimization problem that is either subject to side, inequality or equality constraints is
said to be a constrained optimization problem. However, some optimization problems are
not subject to inequality and equality constraints, thereby known as unconstrained optim-
ization problems. In problems subject to inequality and equality constraints, solutions can
be either classified as feasible or unfeasible. If the solutions are feasible, they satisfy the
imposed constraints and are thereby a possible valid solution to the problem. However,
if the solutions are infeasible, they do not satisfy the imposed constraints and should be
rejected. To deal with constrained optimization problems, one of the methods is to rely
on an exterior penalty function [Coello 2002].

2.1.2 Penalty Function for Constrained Optimization Problems

The method of the exterior penalty function is a simple and common approach to handle
constraints. The idea behind this method is to transform a constrained optimization
problem into an unconstrained problem, by adding (or subtracting) a penalty function
P to the objective function. Solutions that violate the constraints are penalized and the
problem is defined as

minimize F (x, rh, rg) = f(x) + P (x, rh, rg) , (2.9)

subject to xmin
i ≤ xi ≤ xmax

i , i = 1, 2, ..., D , (2.10)

where rh and rg are penalty factors and F designates the augmented objective function.
A general formulation of the exterior penalty function is defined as

P (x, rh, rg) = rh

[
l∑

k=1

[hj(x)]
γ

]
+ rg

 m∑
j=1

[max{0, gj(x)}]β
 . (2.11)

where, γ and β are positive penalty constants. The penalty function P is non-existent
when the constraints’ functions h and g are not active.

Furthermore, an exterior penalty function can be classified as dynamic. When the
current iteration number is associated with the corresponding penalty factors, normally
defined in such a way that the value of the penalty function increases over time. Joines and
Houck [Joines and Houck 1994] proposed a dynamic penalty method in which individuals
are evaluated at iteration i as

F (x) = f(x) + (C i)αSVC(x, β) , (2.12)

where C, α and β are pre-defined constants and SVC(x, β) is defined as
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SVC(x, β) =
l∑

k=1

Hk(x) +
m∑
j=1

Gβj (x) , (2.13)

and functions Hk and Gj are defined as

Hk(x) =

{
0 if − ε ≤ hk(x) ≤ ε
|hk(x)| otherwise

and (2.14)

Gj(x) =

{
0 if gj(x) ≤ 0

|gj(x)| otherwise
. (2.15)

In this approach, equality constraints are transformed into inequality constraints, where ε
is the allowed tolerance (normally a very small value). These methods are simple and easy
to implement in the advanced optimization methods. However, a disadvantage is related
to the necessity of tuning the parameters depending on the optimization problem.

2.2 General Concepts of Parallel Processing

The use of parallel processing implementations is concerned with the need to increase
the performance in the computation of applications requiring great processing capacity.
A variety of engineering applications, especially of numerical simulation, require lots of
resources and the time it takes to solve them may not be affordable.

A simple definition of parallel processing is when two or more activities happen at the
same time. When relating parallel processing to computer systems, it means a single system
performing multiple independent activities in parallel, rather than sequentially or one after
the other (sequential processing), with the goal of decreasing the computational time of a
specific task [Williams 2012]. Historically, computers have had one processor, with a single
processing unit or core, not allowing to truly run multiple applications simultaneously.
However, with the development of technology, computers with multiple core processors
on a single chip have become common, allowing to genuinely run more than one task
simultaneously.

The task of implementing parallel programs can become more complex when compared
to sequential programs, and it does not guarantee an increase in the performance. To
ensure that a better performance is achieved with the implementation of a parallel system,
the nature of the application and the approach need to be considered.

2.2.1 Approaches to Parallel Processing

A simplified approach to parallel processing is to divide its implementation into two
paradigms: multiple threads and multiple processes [Pacheco 2011,Williams 2012]. The
first approach uses multiple threads on a single processor, which are commonly designated
as lightweight processes. Threads run independently from each other and may run differ-
ent sequences of instructions. In opposition to multiple processes, threads share the same
memory address space and a specific thread’s data can be accessed from all threads. An
advantage in using multiple threads is that they are lighter and can be created, destroyed
and switched faster than processes.
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Alternatively, the second approach consists of using multiple processes, where an ap-
plication is divided into multiple, independent, single-threaded processes that are run at
the same time. These processes are then able to communicate, passing messages to each
other through interprocess communication channels. A disadvantage on the use of mul-
tiple processes is that communication between processes is generally complicated or slow.
Furthermore, the initialization of processes might take time and its maintenance requires
that the operating system allocates resources to them. However, operating systems typic-
ally provide protection between processes in order to avoid that a process unintentionally
modifies data associated with another process, as each process has a dedicated memory
address space. In Figure 2.1 an illustrative representation of the communication in both
approaches is presented.

(a) (b)

Figure 2.1: Illustrative representation of the communication between (a) processes running
in parallel and (b) threads running in parallel in a single process.

Additionally, two types of parallelism can be implemented in both of the described
paradigms: task parallelism and data parallelism [Cung et al. 2002, Pacheco 2011]. In
the case of task parallelism, a program is divided into several instructions that run in
parallel, thus reducing the total computational time. However, to implement this strategy
it is necessary to guarantee those parallel instructions are not dependent. Data parallelism
concerns with the division of data into small chunks to be processed in a set of instructions.

The advanced optimization methods implemented in this work and later described are
more suitable for a parallel processing implementation using a data parallelism paradigm.
These algorithms are structured in a way that several instructions are applied to a chunk
of data while some instructions are order dependent. Thereby, using a data parallelism
paradigm it is possible to evaluate the data independently and simultaneously. Further-
more, the implementation of parallel processing techniques follows a shared memory Mul-
tiple Instruction stream/ Multiple Data stream (MIMD) computer architecture [Duncan
1990]. In a MIMD architecture, computers with multiple processors run, simultaneously
and independently, different streams of instructions over several streams of data. The
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shared memory architecture allows for interprocess communication by providing a shared
memory that each processor can address. Moreover, each processor in a shared memory
architecture also has a local memory used as a cache1.

2.2.2 Evaluation of Performance

As the goal in parallel processing implementations is, usually, to increase the overall per-
formance, objective parameters are used to evaluate the achieved performance. Generally,
the evaluation of performance consists of the comparison of the time of execution between
sequential and parallel programs.

In terms of evaluating the global performance of a program in a computer with p
processors, the main used parameters are the speedup and efficiency. The speedup Sp
demonstrates the relationship between the time of execution in sequential processing and
the time of execution in parallel processing, showing how many times the parallel program
is faster than the sequential program. Speedup is defined as

Sp =
ts
tp
, (2.16)

where ts is the time of execution of the sequential program and tp the time of execution
of the parallel program. In an ideal parallel program, it is expected to achieve a linear
speedup of Sp = p, corresponding to an efficiency ep of 1, given by

ep =
Sp

p
. (2.17)

The efficiency is then a parameter that demonstrates the degree of utilization of the avail-
able computational resources, representing the fraction of the time spent by the processors
in the execution of the parallel program. However, the time consumed by processors is
not uniquely dedicated to the execution of the parallel program. Parts of the time of exe-
cution is dedicated to other tasks, such as communication between processors or threads,
and executing sequential tasks of the program. For these reasons, real programs typically
present values of speedup lower than p and efficiency lower than 1.

1Cache is a hardware or software component that is used to temporarily store data
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Chapter 3

Advanced Optimization Methods

The advanced optimization methods, including their
mathematical formulations are described. Variants and different
strategies of the algorithms are described and applications of the

algorithms in mechanical design problems presented.

3.1 Particle Swarm Optimization

First introduced by Kennedy and Eberhart in 1995 [Kennedy and Eberhart 1995], the
Particle Swarm Optimization (PSO) method is based on the communication and social
behavior of insects, birds or fish. Each particle or individual behaves both using its own
intelligence and the collective intelligence of the swarm. The group of all particles constitute
the swarm or population and move through the search range until it finds the best possible
solution. If one particle discovers good solutions, it is able to share that information with
other particles, which will also be able to follow that particle, even if they are far away in
the design space.

The swarm is assumed to have a fixed size of particles, with each particle initially
located at a random position in the multidimensional design space. Each particle is rep-
resented by two attributes, a position and a velocity. Particles move around the design
space and remember their individual best-discovered position (in terms of objective func-
tion value). These individual best positions are shared between particles which then adjust
their own positions and velocities based on the best position of the swarm (deterministic)
and a randomly chosen acceleration factor (stochastic).

3.1.1 Algorithm Formulation

Kennedy and Eberhart [Kennedy and Eberhart 1995] proposed a standard PSO where
each particle n is represented by its position vector xn and a velocity vector vn, with equal
dimension D representative of the number of design variables. Initially, each particle is
randomly generated inside the design space limited by the upper and lower bounds of each
design variable. As each particle is defined for its position in the design space, let xmax be
the vector containing the upper bounds and xmin the vector containing the lower bounds,
for each design variable. The initial position of each particle x0

n is then defined as
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x0
n = xmin + r (xmax − xmin) , (3.1)

where r is a vector of random numbers uniformly distributed in the range [0, 1]. In the
implementation presented in this work the initial velocity of each particle v0

n is defined
similarly to x0

n as

v0
n = vmin + r (vmax − vmin) , (3.2)

where vmax = (xmax−xmin)/2 is the vector containing the upper bounds and vmin = −vmax
the vector containing the lower bounds for each design variable velocity.

At each iteration i, the velocity vi+1
n of each particle is updated based on the current

velocity vin and position xin, as according to

vi+1
n = vin + c1r1

(
pbestn − xin

)
+ c2r2

(
gbest − xin

)
, (3.3)

where c1 and c2 are parameters representing, respectively, the influence of individual ex-
perience (cognitive parameter) and the influence of global experience (social parameter).
r1 and r2 are vectors of random numbers uniformly distributed in the range [0, 1]. pbestn
represents the best position of particle n obtained during previous iterations, while gbest
represents the best position of all particles in the population. The position xi+1

n is after-
wards updated based on the current position xin and the updated velocity vi+1

n ,

xi+1
n = xin + vi+1

n . (3.4)

At every iteration, the position of each particle is then evaluated, repeating the cycle until
a stopping criterion is satisfied. The PSO implementation is described in the pseudo-code
presented in Figure 3.1.

3.1.2 Operational Parameters

3.1.2.1 Population

The number of particles in the population is a parameter initially chosen. A general rule
to determine the best number of particles to select does not exist, but experience and the
nature of the problem should help to determine the best choice. A good number to select
is one that allows the population to cover the design space.

Different studies on the influence of the size of the population in PSO have been made
in the past decades, although a consensus was never reached. Trelea [Trelea 2003] stated
that in the majority of the problems the success rate (number of times it reaches global
optimum) of the algorithm improves significantly with a bigger number of particles, but
it also increases the computational time. Chen et al. [Chen et al. 2015] showed that for
problems of low dimension (D ≤ 50), it is better to use a number of particles bigger than
the dimension of the problem, as opposed to problems with high dimension where a smaller
number of particles is preferred.

3.1.2.2 Acceleration Parameters

The acceleration parameters c1 and c2 control the step each particle can take at every
iteration. In the originally proposed PSO, Kennedy and Eberhart [Kennedy and Eberhart
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1 Generate initial population with n particles
2 Initialize each particle with random position x0

n and random velocity v0
n

3 Set acceleration parameters c1 and c2
4 Set iteration counter i = 0
5 while stopping criterion do
6 for loop over n particles do
7 Evaluate the objective function f(xin)
8 if f

(
xin
)
< f (pbestn) or i == 0 then

9 pbestn = xin
10 end
11 end
12 Find gbest from n particles
13 for loop over n particles do

// Update Velocity
14 r1 = rand(0, 1)
15 r2 = rand(0, 1)
16 vi+1

n = vin + c1r1
(
pbestn − xin

)
+ c2r2

(
gbest − xin

)
17 Check lower and upper bounds of vi+1

n

// Update Position
18 xi+1

n = xin + vi+1
n

19 Check lower and upper bounds of xi+1
n

20 end
21 Update iteration counter i = i+ 1

22 end
23 Post-process and output final results

Figure 3.1: Pseudo-code for the implementation of Particle Swarm Optimization.
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1995] defined these two parameters as being positive constants equal to 2, so that the
cognitive and social terms equally influence the new velocity of the particles. Further
research was developed to evaluate if these two parameters could be linearly modified or if
other values would present better results. Suganthan [Suganthan 1999] studied the effect
of linearly decreasing both parameters but concluded that using constant values would
present better results, although not necessarily equal to 2.

3.1.2.3 Inertia Weight

The inertia weight w was first introduced by Shi and Eberhart in 1998 [Shi and Eberhart
1998a] to control the balance between local search and global search ability in the velocity
of each particle. This new parameter influences the updated velocity vi+1

n , now defined as

vi+1
n = wvin + c1r1

(
pbestn − xin

)
+ c2r2

(
gbest − xin

)
. (3.5)

In the first study developed by Shi and Eberhart, a fixed inertia weight was tested in
the range [0, 1.4], demonstrating that, on average, a value in the range [0.9, 1.2] will
have a bigger chance to find the global optimum with a reasonable convergence rate.
A time decreasing inertia weight in the range of [0, 1.4] also proved to have significant
improvements [Shi and Eberhart 1998a]. A further study by the same authors [Shi and
Eberhart 1998b] considered a linear decreasing inertia weight in the range of [0.4, 0.9]
demonstrating even better results than previous studies. In this formulation a bigger
inertia weight at the beginning of the optimization process promotes global exploration,
avoiding the algorithm to be trapped in local optimum and a smaller inertia weight at the
end enables the algorithm to refine the solution, promoting local exploration.

3.1.3 Variants of the Standard Particle Swarm Optimization

After the introduction of the standard algorithm, several authors proposed modifications
or additions to improve the algorithm robustness and its convergence rate. Some authors
focused on the addition of parameters to the algorithm, as the case of the inertia weight [Shi
and Eberhart 1998a,Trelea 2003], while others proposed quasi-new algorithms.

Veeramachaneni et al. [Veeramachaneni et al. 2003] proposed a significant modifica-
tion to the standard algorithm to prevent a premature convergence to local optima. In
the newly proposed variant named Fitness-Distance-Ratio-based Particle Swarm Optimiz-
ation (FDR-PSO), particles move towards nearby particles with a more successful search
history, instead of just the best position discovered so far. Experiments proved that this
modification improved the algorithm performance compared to the standard formulation.

Liu and Abraham [Liu and Abraham 2005] introduced turbulence to PSO to overcome
the premature convergence problem, naming the new variant Turbulent Particle Swarm
Optimization (TPSO). The idea behind this modification is to control the velocity of the
particles implementing a minimum velocity threshold that is adaptively controlled. This
way if a particle is trapped in local optima it is able to continue exploring the design space
until the algorithm converges.

Knowledge-based Cooperative Particle Swarm Optimization (KCPSO) was introduced
by Jie et al. [Jie et al. 2008] to tackle the premature convergence in complex problems. This
variant of PSO simulates the self-cognitive and self-learning process of evolutionary species
in a special environment. Particles are divided into sub-swarms to maintain diversity and
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carry out local explorations, while information is shared between sub-swarms to maintain
global exploration.

To improve the computational cost of PSO in demanding optimization problems, some
authors [Schutte et al. 2004,Zhou and Tan 2009,Qu et al. 2017] proposed a parallel imple-
mentation of the standard algorithm.

3.2 Differential Evolution

The Differential Evolution (DE) algorithm was originally introduced by Storn and Price
in their nominal papers [Storn 1996, Storn and Price 1997]. DE is a simple evolutionary
algorithm of easy understanding and implementation, similar to pattern search and genetic
algorithms due to its use of mutation, crossover and selection. As a population-based-
stochastic algorithm, DE creates new solutions based on the combination of the progenitor
with different members of the population.

3.2.1 Algorithm Formulation

A population of n vectors of D dimension is initially randomly generated and should try
to cover the design space as much as possible. At each generation i, a vector xin represents
a position in the design space and is limited by its upper and lower bounds, respectively,
xmax and xmin. The generation of initial vectors is given by

x0
n = xmin + r (xmax − xmin) , (3.6)

where r is a vector of random numbers uniformly distributed in the range [0, 1]. The optim-
ization process is then initialized with DE being divided into three main steps: mutation,
crossover and selection.

The mutation scheme allows for a more diversified and robust search in the design
space. In this step, for every xin vector, designated target vector, a mutant vector vi+1

n is
generated by randomly choosing three mutually different vectors xir1 , x

i
r2 and xir3 , where

r1, r2 and r3 are integer values from a sample in the range of [1,2, ..., n]. The mutant
vector vi+1

n is then given by

vi+1
n = xir1 + F

(
xir2 − xir3

)
, (3.7)

where F is a positive integer that controls the ratio in which population evolves. This
parameter is often referred to as scale factor. The vectors xir2 and xir3 should also be
different from the current xin vector. Depending on the strategy used, xir1 can be chosen
randomly from the population or even be the best vector from the previous generation.

To complement the mutation strategy, DE introduces crossover, controlled by a prob-
ability parameter Cr that defines the rate or probability for crossover. In this step, trial
vector ui+1

n is generated from two different vectors, the mutant vector vi+1
n and the target

vector xin. The type of crossover can either be binomial or exponential. In the binomial
crossover, the trial vector ui+1

n is generated as

ui+1
n,j =

{
vi+1
n,j if rj ≤ Cr

xin,j otherwise
, (3.8)
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where rj is a random number uniformly distributed in the range [0, 1]. Each parameter
j = 1, 2, ..., D of the trial vector ui+1

n is determined independently from each other and to
determine which vector contributes a given parameter, Cr is compared to rj . If rj is less
than or equal to Cr , the trial vector parameter ui+1

n,j is inherited from the mutant vector
vi+1
n , otherwise the parameter is copied from the vector xin. In the exponential crossover a

random position j = 1, 2, ..., D is selected and starting from that position the trial vector
ui+1
n receives a parameter from the mutant vector vi+1

n until Cr is less than rj , a random
number uniformly distributed in the range [0,1]. From that point forward ui+1

n copies all
the remaining parameters from vi+1

n .
Finally, the selection step decides if the trial vector ui+1

n replaces the target vector xin
in the population. The objective function is evaluated at ui+1

n and if its value is less than
or equal to the value at xin, ui+1

n replaces xin in the population as

xi+1
n =

{
ui+1
n if f

(
ui+1
n

)
≤ xin

xin otherwise
. (3.9)

The procedure repeats up until a termination criterion is satisfied as described in the
pseudo-code of Figure 3.2.

3.2.2 Operational Parameters

3.2.2.1 Population

Similar to the PSO algorithm, the size of the population n in DE is an important parameter
to achieve satisfying results. According to Storn and Price [Storn 1996] a reasonable size
for the population is between 5×D and 10×D, but the algorithm requires only a minimum
of 4 to ensure that there are enough different vectors to work with.

3.2.2.2 Scale Factor

Storn [Storn 1996] initially defined F as a real and constant factor ∈ [0, 2], but to avoid
a premature convergence it is important that F has sufficient magnitude, usually in the
range of [0, 1]. Although F > 1 is a possible choice, solutions tend to be inferior and
computationally less efficient compared to values of F < 1. When F = 1, the combination
of vectors become indistinguishable, reducing the number of mutant vectors by half [Price
et al. 2005].

3.2.2.3 Crossover Probability

The crossover parameter Cr defines the probability of a parameter of the trial vector being
inherited from the mutant vector. Storn [Storn 1996] defined Cr to be a value in the
range of [0,1], where a low Cr corresponds to a low crossover rate and a high Cr to a high
crossover rate. Storn and Price [Storn and Price 1997] found that using Cr = 0.1 would be
a good first choice, but higher values of Cr ∈ [0.9, 1.0] increased the speed of convergence
and would also make a good first choice to see if a quick solution was found.
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1 Generate initial population with n vectors of random position x0
n

2 Evaluate the objective function f
(
x0
n

)
3 Set scale factor F and crossover probability Cr
4 Set iteration counter i = 0
5 while stopping criterion do
6 for loop over n vectors do

// Mutation
7 Randomly choose three vectors xir1 , x

i
r2 and xir3 all 6= xin

8 vi+1
n = xir1 + F

(
xir2 − xir3

)
9 Check lower and upper bounds of vi+1

n

// Crossover
10 for j = 1, 2, ..., D do
11 rj = rand(0, 1)
12 if rj ≤ Cr then
13 ui+1

n,j = vi+1
n,j

14 else
15 ui+1

n,j = xi+1
n,j

16 end
17 end

// Selection
18 Evaluate the objective function f

(
ui+1
n

)
19 if f

(
ui+1
n

)
< f

(
xin
)

then
20 xi+1

n = ui+1
n

21 end
22 end
23 Update iteration counter i = i+ 1

24 end
25 Post-process and output final results

Figure 3.2: Pseudo-code for the implementation of Differential Evolution.
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3.2.3 Strategies and Variants of Differential Evolution

The presented strategy of DE is not the only one existent, as Storn and Price [Storn 1996,
Storn and Price 1997] proposed several other strategies that can be adopted depending on
the type of problem. In order to classify different strategies of DE the notation DE/x/y/z
is introduced, where x specifies the vector to be mutated which can be rand (a randomly
chosen population vector), best (the vector of lowest fitness from the current population) or
rand-to-best (combination of rand with best), y is the number of difference vectors used and
z denotes the crossover scheme, which can be bin (binomial) or exp (exponential). Using
this notation, the basic DE strategy described in the previous section can be written as
DE/rand/1/bin, as others strategies were later proposed by Storn and Price, but described
in the work of Babu and Jehan [Babu and Jehan 2003]. These strategies and corresponding
changes to the mutation scheme are described in Table 3.1.

Table 3.1: Strategies of the standard Differential Evolution.

Strategy Mutation Scheme

DE/best/1/exp

DE/rand/1/exp

DE/rand-to-best/1/exp

DE/best/2/exp

DE/rand/2/exp

DE/best/1/bin

DE/rand/1/bin

DE/rand-to-best/1/bin

DE/best/2/bin

DE/rand/2/bin

vi+1
n = xibest + F

(
xir2 − xir3

)
vi+1
n = xir1 + F

(
xir2 − xir3

)
vi+1
n = xin + λ

(
xibest − xir1

)
+ F

(
xir1 − xir2

)
vi+1
n = xibest + F

(
xir1 − xir2 + xir3 − xir4

)
vi+1
n = xir1 + F

(
xir2 − xir3 + xir4 − xir5

)
vi+1
n = xibest + F

(
xir2 − xir3

)
vi+1
n = xir1 + F

(
xir2 − xir3

)
vi+1
n = xin + λ

(
xibest − xir1

)
+ F

(
xir1 − xir2

)
vi+1
n = xibest + F

(
xir1 − xir2 + xir3 − xir4

)
vi+1
n = xir1 + F

(
xir2 − xir3 + xir4 − xir5

)
Other than these different strategies of DE, authors have proposed variants of DE to

improve the design space exploration ability, convergence rate, among others.
Zhenyu et al. [Zhenyu et al. 2006] proposed a variant of DE named Self-Adaptive

Chaos Differential Evolution (SACDE). This variant adopts a chaos mutation factor, a
dynamically changing weighting factor, and introduces an evolution speed factor and an
aggregation degree factor of the population to control the parameters F and Cr. The
chaos mutation factor prevents the algorithm from falling into the local optima as exper-
iments show that the convergence speed of SACDE is significantly superior to DE, while
convergence accuracy is also increased.

Epitropakis et al. [Epitropakis et al. 2011] proposed a proximity induced mutation
scheme for DE, named Proximity-Based Differential Evolution (ProDE). In ProDE, neigh-
bors of a parent vector, rather than the randomly chosen vectors, are used to generate
the trial vector. To avoid sacrificing exploration capability, a probabilistic approach was
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suggested and proved to improve mutation schemes such as DE/rand/1, but fails to show
significant improvement when implemented over highly multi-modal or hybrid functions.

Gong and Cai [Gong and Cai 2013] suggested that the mutation scheme can be more
useful if two of the vectors are selected based on their fitness, while the third is selected
randomly. Their proposed variant, called Ranking-Based Differential Evolution (rank-DE)
proposes that, instead of randomized or proximity based approaches, the probability for a
vector to be selected in the mutation is calculated from their objective function value rank
in the population. The proposed strategy proved to be thus faster and less computationally
expensive.

Yang et al. [Yang et al. 2015] designed an automatic population enhancement scheme
that checks each dimension to identify a convergence and diversifies that dimension to a
satisfactory level. The proposed mechanism named Auto-Enhanced Population Diversity
(AEPD) aids DE to escape from local optima and stagnation. To quantify population
diversity, the mean and the standard deviation of individuals’ positions are calculated. If
the standard deviation is found to be below a threshold, the dimension is called converged.

The mentioned studies and variants of DE are introduced to benefit the algorithm,
increasing its robustness and convergence rate. Many more modifications and variants of
DE are found in the literature, as it is one of the most famous and more used algorithms.

3.3 Teaching-Learning-Based Optimization

Rao et al. [Rao et al. 2011,Rao et al. 2012] proposed a new optimization algorithm named
Teaching-Learning-Based Optimization (TLBO). The proposed algorithm presents the
characteristic of being parameter-less (does not require parameters), in opposition to the
two previously described algorithms, PSO and DE. According to the authors, TLBO is
proposed to obtain global solutions for continuous non-linear functions with less compu-
tational effort and high consistency. The algorithm is based on the philosophy of learning
and teaching, resembling the influence of a teacher on the output of learners in a class.
A teacher is often considered as a highly learned person who shares their knowledge with
the learners, whereas the results of the learners are affected by the quality of the teacher.
To complement the knowledge provided by the teacher, learners also interact between
themselves improving their results.

Similar to other nature-inspired algorithms, TLBO is a population-based algorithm,
where a group of learners is considered. Design variables are analogous to the different
subjects of the learners and the teacher is considered to be the best solution found so far.

3.3.1 Algorithm Formulation

Initially a population of n learners is randomly generated inside the design space, with
each learner having dimension D equal to the number of design variables. At any iteration
i, a learner xin represents the position in the design space and is limited by its upper and
lower bounds, respectively, xmax and xmin. The generation of initial learners is then given
by

x0
n = xmin + r (xmax − xmin) , (3.10)

where r is a vector of random numbers uniformly distributed in the range [0, 1]. The
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optimization process is then initialized with TLBO being divided into two main phases:
teacher and learner phase.

During the first phase, the goal of the teacher is to increase the mean result mi of
the population in each design variable (subject), where the teacher ti is considered the
best learner at a given moment. New solutions ui+1

n are generated based on the differ-
ence between the existing mean result mi and the current teacher ti. This difference is
represented as din and given by

din = r
(
ti − TFm

i
)
, (3.11)

where r is a vector of random numbers uniformly distributed in the range [0, 1]. TF is a
teaching factor that can either be 1 or 2 and is decided randomly with equal probability.
The new solution ui+1

n is then generated according to

uin = xin − din. (3.12)

Afterwards, uin is evaluated and its objective function value compared to the current learner
xin value. If its value is better, it replaces the respective learner in the population, other-
wise, it is discarded.

In the learner phase, learners increase their knowledge by interacting with each other.
For every learner in the population, a learner xip is randomly selected among the population,
conditioned to be different from the current learner xin. A new solution vin is then generated
from the shared knowledge between the two learners, according to

vin =

{
xin + r

(
xin − xip

)
if f

(
xin
)
< f

(
xip
)

xin + r
(
xip − xin

)
if f

(
xip
)
< f

(
xin
) , (3.13)

where r is a vector of random numbers uniformly distributed in the range [0, 1]. If the
new solution vin is better than the current learner, the last is replaced by the new solution,
otherwise, the new solution is discarded. After the learner phase, the updated learners are
maintained and become the input of the teacher phase in the next iteration. The steps of
TLBO are described in the pseudo-code presented in Figure 3.3.

3.4 Applications in Mechanical Design

Perez and Behdinan [Perez and Behdinan 2007] applied PSO to structural design optimiz-
ation, using three benchmark problems of 10, 25 and 72 bar truss. The results suggested
PSO faired significantly well against different optimization approaches including gradient-
based algorithms, convex programming and genetic algorithms. Degertekin and Hayalio-
glu [Degertekin and Hayalioglu 2013] and Ho-Huu et al. [Huu et al. 2016] considered the
application of TLBO and DE, respectively, to structural design optimization, including the
benchmark 10, 25 and 72 bar truss design problems.

Zhou et al. [Zhou et al. 2006] studied the application of PSO to machining tolerances
of a cylinder-piston assembly. PSO demonstrated high efficiency and effectiveness in the
studied example.

Rao et al. [Rao et al. 2011] tested the implementation of TLBO to several design
problems, including a four step-cone pulley with four design variables to minimize its weight
and a rolling element bearing to maximize the dynamic load carrying capacity. Their study
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1 Generate initial population with n vectors of random position x0
n

2 Evaluate the objective function f
(
x0
n

)
3 Find the teacher t0 for n particles
4 Set iteration counter i = 0
5 while stopping criterion do

// Teacher Phase
6 mi =

(∑n
k=1 x

i
k

)
/n

7 for loop over n vectors do
8 TF = round [1 + rand(0, 1)(2− 1)]
9 r = rand(0, 1)

10 din = r
(
ti − TFm

i
)

11 ui+1
n = xin − din

12 Check lower and upper bounds of uin
13 Evaluate the objective function f

(
uin
)

14 if f
(
uin
)
< f

(
xin
)

then
15 xin = uin
16 end
17 end

// Learner Phase
18 for loop over n vectors do
19 Randomly select xip 6= xin
20 r = rand(0, 1)
21 if f

(
xin
)
< f

(
xip
)

then
22 vin = xin + r

(
xin − xip

)
23 else if f

(
xip
)
< f

(
xin
)

then
24 vin = xin + r

(
xip − xin

)
25 end
26 Check lower and upper bounds of vin
27 Evaluate the objective function f

(
vin
)

28 if f
(
vin
)
< f

(
xin
)

then
29 xi+1

n = vin
30 end
31 end
32 Update iteration counter i = i+ 1

33 end
34 Post-process and output final results

Figure 3.3: Pseudo-code for the implementation of Teaching-Learning-Based Optimization.
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demonstrated that TLBO is more effective and efficient than other optimization methods
in the mechanical design problems considered.

Rao and Savsani [Rao and Savsani 2012] studied several mechanical design problems
using different optimization algorithms, including PSO, DE and TLBO. The problems
studied include a gear train design problem, a multi-objective optimization of a radial
ball bearing, design optimization of a Belleville’s spring to minimize its weight, a multiple
disc clutch brake, optimization of a robot gripper geometric dimensions to minimize the
difference between maximum and minimum force applied by the gripper for the range of
gripper end displacements and a hydrodynamic thrust bearing, among many others.

Saruhan [Saruhan 2014] employed DE to minimize a ball bearing pivot link system
weight. Their study concluded that DE proved to be robust and demonstrated the capab-
ility to produce an efficient solution to the problem.

Guedria [Guedria 2015] and Kiran [Kiran 2017] applied variants of PSO to a ten-
sion/compressing spring design problem, a cylindrical pressure vessel capped at both ends
by hemispherical heads to minimize the total manufacturing cost, a welded beam and a
speed reducer design problem to minimize its weight.
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Chapter 4

Implementation and Applications

The implementation of parallel processing techniques in
advanced optimization methods is described. Programming

languages and its features are presented. A description of the
implemented applications is presented, including the

mathematical formulation and computational implementation.

4.1 Configuration of Advanced Optimization Methods

In Chapter 3, a general description and variants of the implemented advanced optimization
methods are described. However, the used configuration and parameters are yet to be
defined.

As for the PSO (cf. Section 3.1), a standard configuration of the algorithm is imple-
mented with acceleration parameters c1 and c2 equal to 2. Additionally, the algorithm is
implemented using a linear decreasing inertia weight in the range of [0.4, 0.9]. DE (cf.
Section 3.2) is implemented using a standard configuration, with the mutation strategy of
DE/rand/1/bin. Operational parameters F and crossover probability Cr are, respectively,
equal to 0.5 and 0.7. Finally, TLBO (cf. Section 3.3) is implemented similarly to what is
described.

The three algorithms are implemented using a stopping criterion based on the number
of function evaluations, rather than the number of iterations/generations. The advantage
of the selected stopping criteria is that it enables a fair comparison of the algorithms’
efficiency, as this way each one evaluates the objective function exactly the same number
of times [Črepinšek et al. 2012]. Using the number of function evaluations as a stopping
criterion is specifically relevant because, for an equal number of iterations, TLBO evaluates
the objective twice than PSO or DE. The selected number of function evaluations was
empirically selected and differs from application to application, as they are defined ahead.

4.2 Parallel Processing in Advanced Optimization Methods

When considering a parallel implementation in advanced optimization methods, some is-
sues need to be considered as the goal is to improve the computational performance without
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compromising the algorithm’s result. The algorithm should operate in such a way that it
can be easily decomposed for a parallel implementation. Additionally, it is highly recom-
mended that it presents scalable characteristics [Schutte et al. 2004]. Scalability implies
that the nature of the algorithm does not place a limit on the number of computational
processes to be used, allowing for a full use of the computational resources available. The
advanced optimization methods here considered (cf. Chapter 3) are population-based al-
gorithms, thereby well suited for parallel computing as the size of the population can be
increased or decreased to maximize the resources available.

A parallel implementation of the algorithm should not have an effect on its operations.
The flow of operations should be similar to the sequential implementation, in order to
lead to similar results. Furthermore, the selection of the type of parallelism is influenced
by the algorithm operations. If the operations of the algorithm are sequence dependent,
that is, if the order they appear is mandatory, a parallel processing implementation using
task parallelism is not recommended. This characteristic is observed in the implemented
algorithms, as in the implementation of PSO, the particle’s position can only be updated
after the velocity’s updating and in DE the crossover operation can only be computed after
mutation. Moreover, in TLBO, the learner’s phase can only take place after the teacher
phase. For these reasons and to guarantee the coherence of the algorithm, data parallelism
stands as a more straightforward implementation.

In the case of data parallelism, as the algorithms are population-based (present different
solutions at the same time) and different operations are performed over the entire popula-
tion, a parallel implementation is possible either at the evaluation of the objective function
or at specific operations of the algorithm. In PSO, this approach is easily implemented
as all the solutions are independent and can be evaluated sequentially. However, in the
implementations of DE and TLBO, solutions interact with each other. This dependency
observed in DE and TLBO does not allow for a straightforward implementation of parallel
processing without compromising the algorithms’ order of operations, as each evaluation
is either preceded or succeeded by a series of operations that affect individual solutions.
As a consequence of this characteristic in the implementations of DE and TLBO, PSO is
the only algorithm in which a parallel processing approach is implemented in this work.

PSO operations can be divided into three main steps: the evaluation of the objective
function, the update of velocity and the update of position. For the majority of optimiza-
tion problems, it is expected that the bulk of the computational effort is at the evaluation
of the objective function, rather than at the update of velocity or position. For this reason,
in the parallel processing implementation of PSO, the algorithm performs the evaluation
of the objective function in parallel and the other operations sequentially, similar to the
sequential processing implementation. The differences in both PSO implementations, se-
quential and parallel, are described in Figure 4.1, where dotted lines indicate the parts
where they differ.

4.3 Programming Languages and Paradigm

The algorithms are implemented using different programming languages. The program-
ming languages are selected due to its popularity, potential and use in academic environ-
ments, as well as using languages with different specifications. Taking these criteria into
consideration, four programming languages are considered: Python, MATLAB, Java and

24



Programming Languages and Paradigm

Begin

Generate and initialize n particles with
random position and velocity

Update the velocity and
position for n particles

Stopping criterion 
satisfied?

End

Find global best position

Yes

No

i = 1

f ( )xi

i ≤ n ?

No

i = i + 1

Yes

(a)

Begin

Generate and initialize n particles with
random position and velocity

Update the velocity and
position for n particles

End

Find global best position

Yes

No

i = 1

Yes

No

i = i + p

Set number of processes p

f ( )xi f ( )xi+1 f ( )xi+(p−1)...

Stopping criterion 
satisfied?

i ≤ n ?

(b)

Figure 4.1: Schematic representation of the implementations of Particle Swarm Optimiza-
tion (a) sequential and (b) parallel algorithms.
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C++.
Python is a multi-paradigm, object-oriented, open-source, designed to be an easy-to-

read and easy-to-use programming language. Python comes with several features, such
as an elegant syntax, making the programs easier to read and write, a large standard
library, a variety of basic data types, supports object-oriented programming with classes
and multiple inheritance, variables’ type are dynamically typed1 and is an interpreted
programming language, among several other features. Python provides built-in modules
to implement parallel programming, such as threading module and multiprocessing module.
Both modules provide tools to implement parallel programs. However, the multiprocessing
module is of more interest, as it implements parallelism based on processes, rather than
threads. The multiprocessing offers a vast number of methods that are easily implemented
and suitable for different applications.

MATLAB is a multi-paradigm numerical computing environment and a proprietary
programming language developed by MathWorks®. It was designed for engineers and sci-
entists, compiling a vast number of toolboxes for different applications. As a programming
language, it is enhanced for matrix-based algorithms but supports other features, such as
object-oriented programming. Similarly to Python, MATLAB is interpreted and statically
typed. Although MATLAB is not free, it is vastly used for educational purposes, either
for its capabilities or the user-friendly environment. The implementation of parallel pro-
grams is achieved using the Parallel Computing ToolboxTM, available in MATLAB, which
enables the use of multi-core processors. The toolbox offers parallel for-loops, special array
types and parallelized numerical algorithms that are easily implemented in the sequential
implementation.

Java is a general-purpose, object-oriented programming language, and is one of the
most used and popular programming languages in the world [TIOBE 2018]. It is recog-
nized as being a fast, reliable and secure programming language, as well as having a large
standard library available for any programmer and application. Java, in opposition to
Python and MATLAB, is compiled and statically typed2. Java offers features to easily
implement parallel programs using threads. However, the implementation using processes
is not straightforward. For this reason, it is used a multiprocessing library available in a
GitHub3 repository [Csomor 2017] for the implementations of parallel processing in Java.

C++ is an enhanced/extended version of the C programming language and one of the
most popular nowadays [TIOBE 2018]. It is characterized for being compiled, statically-
typed, multi-paradigm, sophisticated, efficient and for having a large standard library.
The development of programs in C++ might be more time expensive than, for example,
Python or MATLAB. Nevertheless, it is expected to run faster [Nanz and Furia 2015].
C++ offers standard support for multi-threading, but not for parallel processing using
processes [Williams 2012]. A search was conducted to find an available online library
that would facilitate the implementation of parallel processing using processes. However,
this search did not lead to a solution that would be easily implemented. Therefore, it
was decided not to implement C++ programs in parallel processing, having only been
implemented in sequential processing.

The algorithms and applications are implemented in the following versions of the pro-

1Dynamically typed programming languages do not require the declaration of the type of variables.
2Statically typed programming languages require the declaration of the type of variables.
3GitHub (https://github.com) is a web-based version-control and collaboration platform for software

developers.

26

https://github.com


Applications

gramming languages: Python 3.7.0, MATLAB R2015a, Java 10.0.2 with javac compiler
and C++ compiled with Intel® C++ Compiler. Furthermore, the implementation of the
algorithms in the four programming languages follows an objected-oriented programming
paradigm. Moreover, the structure of the algorithms in each programming language is
identical. However, differences exist when features for a boost in performance of each
language are available.

4.4 Applications

To evaluate the algorithms’ and programming languages’ performance, four applications
are implemented. One application is a composition function benchmark used to test the
algorithms’ efficiency and robustness. Other three applications are mechanical design prob-
lems, consisting of a problem solely evaluated using numerical equations and two problems
that require the use of external programs.

4.4.1 Composition Function

In order to assess the robustness and efficiency of optimization methods, tests are fre-
quently carried out using standard benchmark functions from the literature. However,
some algorithms take advantage of known properties of the benchmark functions, such as
local optima lying along the coordinate axes or global optimum having the same values
for different variables. To tackle this advantage, Liang et al. [Liang et al. 2005] identi-
fied shortcomings associated with the existing benchmark functions and proposed hybrid
benchmark functions whose complexity and properties can be easily controlled. According
to their experience, some properties encountered in standard benchmark functions are:

1. Global optimum with the same parameter values for different dimensions;

2. Global optimum at the origin;

3. Global optimum lying in the center of the search range;

4. Global optimum on the bounds;

5. Local optima lying along the coordinate axes or no linkage among dimensions.

4.4.1.1 Mathematical Formulation

Based on the previous considerations, Liang et al. [Liang et al. 2005] proposed a struc-
ture to construct challenging composition test functions. These composition functions are
built using standard benchmark functions with a randomly located global optimum and
considerable randomly located local optima. The composition functions F (x) are obtained
according to

F (x) =

n∑
i=1

wi (fi(x) + biasi) , (4.1)

where n denotes the number of basic functions fi(x), with i = 1, 2, ..., n, wi represents the
weight of each n function and biasi defines which optima is global optimum. The smallest
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value of bias corresponds to the global optimum and the bigger n is, the more complex
F (x) is. The weight wi of each n function is given by

wi = exp

(
−
∑D

k=1 (xk − oi,k)
2

2Dσ2i

)
, (4.2)

where D denotes the dimension, oi is a vector that defines the global and local optima
positions for each n function. σi is a parameter used to control the coverage range, where
a small σi gives a narrow range for each n function. Subsequently the maximum value of
the weight max (wi) is determined and wi rearranged according to

wi =

{
wi if wi 6= max (wi)

wi

(
1−max (wi)10

)
otherwise

. (4.3)

The weight wi of each function is finally normalized following

wi =
wi∑n
i=1wi

. (4.4)

In the situation of fi(x) representing different functions and in order to obtain a better
mixture, the biggest function value fmax

i is estimated for each function and then fi(x) is
normalized to similar height as

fi(x) =
C fiti(x)

|fmax
i |

, (4.5)

where C is a pre-defined constant, fmax
i and fiti(x) are given by

fmax
i = fi

( z
λ
·Mi

)
and (4.6)

fiti(x) = fi

(
x− oi
λ

·Mi

)
, (4.7)

where z corresponds to the upper boundary of the composition function, λ is used to
stretch or compress the function, to which λi > 1 means stretch, λi < 1 means compress.
Mi is an orthogonal rotation matrix of each function, with size D ×D. In Figure 4.2, the
pseudo-code for the construction of the composition functions is presented.

4.4.1.2 Construction of Composition Function

From the procedure previously described it is possible to construct different composi-
tion functions by modifying the parameters and using different basic functions. Liang et
al. [Liang et al. 2005] defined and constructed six different composition functions. The
parameters used in the construction of the composition functions are as follows:

◦ Number of basic functions, n = 10;

◦ Dimension, D = 10;

◦ C = 2000;

◦ Design space, [−5, 5]D;
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1 Define fi, σ, λ, bias, oi, Mi, n and constants C and z
2 for i = 1, 2, ..., n do
3 wi = exp

(
−
[∑D

k=1 (xk − oi,k)
2
]
/
(
2Dσ2i

))
4 fmax

i = fi ((z/λ) ·Mi)
5 fiti(x) = fi ([(x− oi) /λ] ·Mi)
6 fi(x) = (C fiti(x)) /|fmax

i |
7 end
8 SumW =

∑n
i=1wi

9 MaxW = max(wi)
10 for i = 1, 2, ..., n do
11 if wi =MaxW then
12 wi = wi
13 else
14 wi = wi

(
1−MaxW 10

)
15 end
16 wi = wi/SumW

17 end
18 F (x) =

∑n
i=1wi (fi(x) + biasi)

Figure 4.2: Pseudo-code for the construction of composition functions.

◦ bias = [0, 100, 200, 300, 400, 500, 600, 700, 800, 900].

From the values set for bias, the first basic function is the one with the global optimum, as
its bias is always 0. o1, o2,...,o9 are generated randomly in the design space, except for o10
which is set as [0, 0, ..., 0] in order to trap algorithms that have a potential to converge at
the center of the design space. M1, M2, ..., M10 are D×D orthogonal rotation matrices
obtained using Salomon’s method [Salomon 1996].

The basic functions composed to construct the composition functions are five, although
not all are necessarily used at the same time, as one basic function can be repeated as many
times as necessary. These functions are described as follows:

◦ Sphere Function:

f(x) =
D∑
i=1

x2i ; (4.8)

◦ Rastrigin’s Function:

f(x) =
D∑
i=1

{
kmax∑
k=0

[
ak cos

(
2πbk(xi + 0.5)

)]}
−D

kmax∑
k=0

(
ak cos(πbk)

)
, (4.9)

a = 0.5, b = 3, kmax = 20 ;
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◦ Weierstrass’s Function:

f(x) =
D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
+ 1 ; (4.10)

◦ Griewank’s Function:

f(x) =

D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
+ 1 ; (4.11)

◦ Ackley’s Function:

f(x) = −20 exp

−0.2
√√√√ 1

D

D∑
i=1

x2i

− exp

(
1

D

D∑
i=1

cos(2πxi)

)
+ 20 + e . (4.12)

Although six composition functions were introduced, in this work only one is implemented,
corresponding to composition function 5 in the works of Liang et al. [Liang et al. 2005] and
Caseiro [Caseiro 2009]. This composition function is composed of all five basic functions,
each repeated once according to Table 4.1. The parameters σ and λ are set as:

◦ σ = [σ1, σ2, ..., σ10] = [1, 1, ..., 1];

◦ λ = [λ1, λ2, ..., λ10] =
[
1
5 ,

1
5 , 10, 10,

5
100 ,

5
100 ,

5
32 ,

5
32 ,

5
100 ,

5
100

]
,

where λ1 and λ2 are set 1/5 in order to achieve a more complex landscape for the global op-
timum’s area. In Figure 4.3, a three-dimensional (corresponding to D = 2) representation
of the composition function is illustrated.

Table 4.1: Basic functions composing the implemented composition function.

fi (x) Basic Function

f1−2 (x) Rastrigin’s
f3−4 (x) Weierstrass
f5−6 (x) Griewank’s
f7−8 (x) Ackley’s
f9−10 (x) Sphere

To guarantee that the algorithms are tested for the same composition function, that is
with the same parameters and global optimum, the orthogonal rotation matrix Mi and the
vectors containing the global and local optima oi were previously generated and maintained
through all tests. The generated values correspond to a global optimum of F (x) = 0.0000
located at x = [1.5953, 2.6440, 1.8047, 0.9389, -3.0486, -1.1571, 3.5582, 2.4246, -0.3767,
4.4637]. Furthermore, the number of function evaluations used as a stopping criterion is
105.
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Figure 4.3: Three-dimensional (D = 2) representation of the composition function.

4.4.2 Speed Reducer

The weight of a speed reducer [Golinski 1970] is to be minimized subject to constraints
on bending stress of the gear teeth, surface stress, transverse deflections of the shafts and
stresses in the shafts. This design problem involves seven design variables as shown in
Figure 4.4, which are the face width x1, module of teeth x2, number of teeth on the pinion
x3, length of the first shaft between bearings x4, length of the second shaft between bearings
x5, diameter of the first shaft x6 and diameter of the second shaft x7. The third variable x3
is an integer, while the rest are continuous. With eleven constraints, this is a constrained
optimization problem that could be transformed into an unconstrained problem using a
penalty function.

Figure 4.4: Illustrative representation of the speed reducer design geometry [Rao and
Savsani 2012].

The problem is formulated as a constrained nonlinear mathematical programming to
minimize the objective function f(x), subject to the inequality constraints gj(x), with
j = 1, 2, ..., 11, stated as
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minimize f(x) = 0.7854x1x
2
2

(
3.3333x23 + 14.9334x3 − 43.0934

)
− 1.508x1

(
x26 + x27

)
+ 7.4777

(
x36 + x37

)
+ 0.7854

(
x4x

2
6 + x5x

2
7

)
,

(4.13)

subject to g1(x) =
27

x1x22x3
− 1 ≤ 0 , (4.14)

g2(x) =
397.5

x1x22x
2
3

− 1 ≤ 0 , (4.15)

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0 , (4.16)

g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0 , (4.17)

g5(x) =

√(
745x4
x2x3

)2
+ 16.9e6

110x36
− 1 ≤ 0 ,

(4.18)

g6(x) =

√(
745x5
x2x3

)2
+ 157.5e6

85x37
− 1 ≤ 0 ,

(4.19)

g7(x) =
x2x3
40
− 1 ≤ 0 , (4.20)

g8(x) =
5x2
x1
− 1 ≤ 0 , (4.21)

g9(x) =
x1
12x2

− 1 ≤ 0 , (4.22)

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0 , (4.23)

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0 , (4.24)

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,

7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x6 ≤ 5.5 .

However, as previously stated, the problem does not take into account unfeasible solutions
(which are not desired). In order to handle the inequality constraints presented in the
design problem, a dynamic penalty function (cf. Section 2.1.2) is used with the parameters
C = 60, α = 2 and β = 1.

As the problem is solved by many authors [Baykasoglu 2012, Guedria 2015, Rao and
Waghmare 2017] using different algorithms, the best reported result is f(x) = 2996.348165
located at x = [3.499999, 0.7, 17, 7.3, 7.8, 3.350215, 5.286683]. The reported result serves
as a reference to the global optimum in the analysis of results. The selected number of
function evaluations as a stopping criterion is 105.

4.4.3 Three-Bar Truss

The problem consists of a three-bar truss, represented in Figure 4.5, subject to three
different loading conditions, where the goal is to minimize the structure volume without
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compromising its structural integrity or without presenting inadmissible strain energy.
Each bar is characterized by having equal length and different cross sections, with volume
xi, and the problem can be mathematically defined as

minimize f(x) = x1 + x2 + x3 , (4.25)

subject to gj(x) = pT
j uj(x)− cmax ≤ 0 , j = 1, 2, 3 , (4.26)

0.01 ≤ xi ≤ 2 , i = 1, 2, 3 , (4.27)

where pj and uj represent, respectively, the load vector and the displacement vector of
node 4 for each load j = 1, 2, 3. The constraints gj(x) define the strain energy of the truss
for each load pj applied, where cmax = 1 is the critical value of admissible strain energy.

1

2

3

4

2

3

1

p
1

p
3

p
2

Figure 4.5: Illustrative representation of the three-bar truss design problem.

The displacements uj are calculated as k(x)uj = pj , defined by the finite element
method, where k(x) is the stiffness matrix. The coordinates of the nodes 1, 2, 3, 4 are,
respectively, (−1, 0),

(
−1/
√
2,−1/

√
2
)
, (0,−1) and (0, 0). The three loads are defined by

the vectors, p1 = (1, 0), p2 = (1, 1) and p3 = (0, 1).
To avoid unfeasible solutions, a dynamic penalty function (cf. Section 2.1.2) is used

with the parameters C = 2, α = 1 and β = 1. The global optimum, corresponds to
f(x) = 2.666667, located at x = [0.666667, 1.333333, 0.666667]. Additionally, the number
of function evaluations used as a stopping criterion is 104.

4.4.3.1 Computational Implementation

To compute the displacement of node 4, the program FRAN4 is used. FRAN analyses
structures composed of rod elements with different properties. The program receives as
input the node coordinates, element connectivity, loading conditions and prescribed dis-
placements. FRAN assembles the stiffness matrix and computes the equation system,
returning as output the axial forces in each element and the displacements of each node.

4FRAN is an academic program to analyze articulated and reticulated structures.
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The program also exports a file recognized by GiD5 software, allowing the visualization
and post-processing of results.

To establish a connection between the optimization algorithm and FRAN, an interface
program is implemented. The interface receives the design variables generated by the
algorithm and transmits this information to FRAN, writing the area of each bar to a file,
that is subsequently read by FRAN. After the execution of the program, this interface
reads the results from a generated file and computes the objective function, including its
constraints and associated penalty.

On the sequential implementation of the algorithms, only one instance of the program
is necessary at the same time. However, on the parallel processing implementation, several
instances are needed simultaneously. To avoid different processes accessing the same files
and the same executable of the program, risking a conflict of access, different directories
are created. For p processes used in the computation, a directory containing the executable
and associated files is replicated p times. The newly replicated directories are associated
with the process identifier6 of each process p, which is used by the interface to know which
directory it should access. The described implementation is represented in the flowchart
of Figure 4.6.

FRAN

Read data from .dat
file

Compute axial
forces and

displacements

Write results to .res
file

INTERFACE

Read results from
.res file

Write data to  
.dat file

Compute objective
function

ALGORITHM

Call fran.exe

Analyze objective
function

Generate new data

Begin

End

Replicate 'fran'
directory n times  

Access specific
'fran' directory 

Processing?

Stopping  
criterion satisfied?

Yes

Sequential (S)

(S)

Parallel 
(P) 

(P)

No

Figure 4.6: Flow diagram of the computational implementation of the three-bar truss
design problem using FRAN.

5GiD (https://www.gidhome.com) is a pre and post-processing software for numerical simulations.
6Number used to uniquely identify an active process, commonly referred as PID.
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4.4.4 Square Plate

The square plate with central cut-out hole [Papadrakakis and Lagaros 2003] is a struc-
tural application, where the goal is to minimize the area of the structure when subject to
distributed loads and a threshold to the equivalent stress of σmax = 7 MPa. Plane stress
conditions and isotropic material properties are assumed, with Poisson’s ratio ν = 0.3 and
elastic modulus E = 210 GPa. The problem definition is given schematically in Figure 4.7,
where due to double symmetry only a quarter of the plate is modeled. The initial shape of
the structure is of dimensions a = 650 mm, with the two exterior sides of the plate loaded
with a distributed loading of P = 0.65 MPa.

P/2

P

1

2

3

4
5

a

a

r
i

(a) (b)

Figure 4.7: Representation of (a) the geometry, loading and boundary conditions, and (b)
domain discretization of the square plate design problem.

The problem consists of five design variables xi, with i = 1, 2, ...5, corresponding to the
radius r1, r2, r3, r4 and r5 which can move along radial lines and are used to generate the
shape of the central hole. A mathematical formulation of the problem is stated as

minimize f(x) = At −Af(x) , (4.28)

subject to gj(x) = σj − σmax ≤ 0 , j = 1, 2, ...,m , (4.29)

250 ≤ xi ≤ 649 , i = 1, 2, ..., 5 , (4.30)

where At is the total area of a quarter of the initial geometry and Af(x) the area of the
central hole. The constraints gj(x) define the stress constraints imposed for all the model
which is generated using 1280 linear quadrilateral elements with complete integration,
corresponding to m = 4× 1280 constraints.

A fourth-degree polynomial function (in polar coordinates) is calculated for each set of
design variables by the least square method. The polynomial, that passes through the five
design variables, gives the coordinates for the central hole boundary.

To take only into account feasible solutions, a generic penalty function is used with the
parameters rg = 10000 and β = 2. The global optimum of the square plate design problem
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is not known and the selected number of function evaluations as a stopping criterion is
103.

4.4.4.1 Computational Implementation

To compute the equivalent stresses in the model, the numerical simulation software Abaqus7

is used. To establish a connection between the optimization algorithm and Abaqus, an in-
terface program is implemented. The interface receives the design variables generated by
the algorithm and generates the fourth-degree polynomial function which is afterwards
used to calculate the Cartesian coordinates of the nodes composing the central hole. Sub-
sequently, the interface writes the new coordinates to an input file to be read by Abaqus.
After Abaqus concludes the simulation, it exports the results to a file, which the interface
reads and uses to compute the objective function, constraints and associated penalty.

Both, sequential and parallel processing implementations, use the same approach as
described for the computational implementation of the three bar truss design problem.
The implementation of the square plate design problem is represented in the flowchart of
Figure 4.8.

ABAQUS

Read data from .inp
file

Finite element
simulation

Write results to .dat
file

INTERFACE

Read results from
.dat file

Generate nodes
coordinates

Compute objective
function

ALGORITHM

Write data to  
.inp file

Analyze objective
function

Generate new data

Begin

End

Replicate 'abaqus'
directory n times  

Access specific
'abaqus' directory 

Processing?

Stopping  
criterion satisfied?

Yes

Sequential (S)

(S)

Parallel 
(P) 

(P)

No

Call abaqus.bat

Figure 4.8: Flow diagram of the computational implementation of the square plate design
problem using Abaqus.

7Abaqus is a software for finite element analysis and computer-aided engineering [Smith 2009].
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4.5 Flow of Implementation

In summary, the implementation of the present work can be divided into four levels: the
optimization algorithms, the programming languages, the type of processing and the ap-
plications. In general, all levels are interconnected. The three optimization algorithms are
all implemented in the four selected programming languages. However, DE and TLBO
are only implemented with sequential processing, in opposition to PSO which is imple-
mented in both sequential and parallel processing. The implementations in C++ only
include sequential processing, in opposition to Python, MATLAB and Java, which are all
implemented in sequential and parallel processing. Finally, the four applications are im-
plemented in all the presented configurations. The flow of inter-connectivity between the
four levels is described in Figure 4.9.
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Figure 4.9: Flow diagram illustrating the inter-connectivity of the computational imple-
mentations of the algorithms, programming languages, type of processing and applications.
The line symbols , and represent, respectively, the inter-connectivity of the
Particle Swarm Optimization, Differential Evolution and Teaching-Learning-Based Optim-
ization with other levels.
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Chapter 5

Results and Analysis

The results of a study on the size of the population and the
analyses of the algorithms best solutions are presented. The

results of the computational performance of the algorithms is
also presented and analyzed.

In this chapter, the results for the efficiency of the advanced optimization methods and
performance of programming languages, both in sequential and parallel processing are
presented. Results are obtained with the same computer using a Intel® CoreTM i7-4790
@ 3.60 GHz Quad-Core processor and 8 GB of RAM1. Moreover, the computer presents
hyper-threading technology that enables each physical core to appear as two logical cores
for the operating system. Thereby, from the perspective of the operating system, the
processor presents eight logical cores. Additionally, Windows 10 is used as the operating
system.

As a consequence of the four levels of implementation, the amount of results obtained is
considerably big. Consequently, different strategies and ways of presenting the results are
possible. Following this consideration, the selected strategy in which results are presented
is to divide them according to the target of analysis, each including an individual analysis
for each application. This way it is given emphasis to the analysis, rather than to the
application itself, as different problems could have been selected for this work.

5.1 Analysis of Advanced Optimization Methods

5.1.1 Study on the Size of the Population

The implemented advanced optimization methods require the selection of operational para-
meters, such as the size of the population. Some parameters have already been selected
(cf. Section 4.1) and are maintained throughout the different applications. However, the
size of the population should be dependent on the problem’s domain and constitutes an
important parameter in the optimization process. If the size of the population is too small,
the algorithm might not be able to carry out a detailed exploitation of the design space

1Random-access memory (RAM) is a form of computer data storage that stores data and machine
code currently being used.
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while, on the other hand, a size of the population too large requires more computational
time.

In order to achieve the best results, a parametric study on the size of the population
for each algorithm is carried out for all applications. In the selection of the size of the
population, it is taken into consideration that the study is not excessively extensive and
covers a broad range of options. Following these considerations, the size n of the population
is given by the multiplication of an integer i = 1, 2, ..., 10 by the dimension D of the
problem. To analyze if the results of the algorithms improve with a constant increase in
the size of the population, an additional value is studied, with n = 20D, although this
value is only used for comparison purposes between the different size of the population.
For all studies, twenty independent runs are computed, with its analysis focusing on the
results of best (Best), mean (Mean), standard deviation (SD) and worst (Worst) values
of the objective function for the twenty runs, as well as the success rate (SR) and the
function evaluations (FE), required to converge on the best solution. The evolution of the
mean objective function values is also analyzed, which is stored at every iteration of the
optimization process. In order to select the size of the population for further analysis and
simulations, it is given preference to the best solution found and success rate of all runs.

5.1.1.1 Composition Function

The first analyzed application is the composition function (cf. Section 4.4.1). It is presented
the results of the evolution of the mean objective function for all sizes of the population
(cf. Figure 5.1) and in Table 5.1 the numerical results obtained for each algorithm. In
general, the three algorithms (PSO, DE and TLBO), start converging after 104 function
evaluations, thus indicating that the selected number of function evaluations is sufficient
for the algorithms to converge to a feasible solution.

In the case of the PSO, the algorithm is not able to find the global optimum in any
of the runs. The results of the evolution of the mean objective function (cf. Figure 5.1)
suggest that, in general, for n ≤ 5D the algorithm is not able to find solutions as good as
the results obtained with a bigger size of the population. Nevertheless, it is observed in the
results of Table 5.1 that for values such as n = 4D and 5D the algorithm finds a solution
similar to those found for bigger values. These results might be considered as a strike of
‘luck’, as the corresponding values for the mean and standard deviation are significantly
higher than results for bigger values of n. The mean and worst results of the PSO are
relatively high when compared to the DE, which is an indication that the algorithm is,
sometimes, not able to escape local optima. Even though for n = 10 the PSO finds the
best solution of all simulations, for n = 20D the algorithm achieves the lowest results of
mean, standard deviation and worst parameters, presenting an indication that, for this
specific application, increasing the size of population for values bigger than 10D is a good
strategy.

Analyzing Figure 5.1, it seems the DE algorithm performs overall better than the PSO.
Except for n = D, the DE converges very close to the global optimum for all values of n.
Observing Table 5.1, results for n > D show that the algorithm is able to find the global
optimum for all values of n, achieving the best results at n = 9D, 10D and 20D. For
these values of n, the DE achieves a success rate of 100%, indicating that it is able to find
the global optimum in every attempt. For values of n between 2D and 8D, the success
rate of the algorithm is high, while mean and standard deviation parameters are relatively
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Figure 5.1: Evolution of the mean objective function in relation to the number of function
evaluations for different sizes of the population, obtained by (a) Particle Swarm Optim-
ization, (b) Differential Evolution and (c) Teaching-Learning-Based Optimization for the
composition function.
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small. However, as observed in the worst values parameter, the algorithm seems to be
stuck in local optima, at least once. From a computational effort perspective, selecting
smaller values of n would be ideal, as the necessary number of function evaluations to find
the global optimum is comparatively smaller than bigger values of n. However, selecting
smaller values for the size of the population does not guarantee that the DE finds the
global optimum, in contrast to the top three values of n that guarantee 100% probability
of success. Consequently, the size of the population selected is of n = 9D, which provides
the best solution, but it is at the same time the one with the least computational effort
(least function evaluations to find global optimum) from the top three values.

The results of the evolution of the mean objective function for the TLBO are similar
to those of the PSO and the DE. For values of n ≤ 3D the algorithm presents difficulties
converging to a good solution, in opposition to values of n ≥ 4D where results converge
closer to the global optimum. Results presented in Table 5.1 show that, comparatively
to the best solution found for n = D, solutions found for n > D are closer to the global
optimum. However, for none of the values of n is the TLBO able to reach the global
optimum. The value of n that provides the best solution corresponds to n = 20D, while
having at the same time the best result of mean value, demonstrating that an increase
in the size of the population might return better results. From the other values of n,
the one with the best results is n = 10D, which finds a solution close to the one found
with n = 20D and closer to the global optimum, as well as presenting the best results of
standard deviation and worst parameters.

Additionally, in Figure 5.2 is presented the same results of Figure 5.1, but in relation
to the number of iterations. Comparing the results of the evolution of the mean objective
function this way might suggest that using bigger sizes of the population returns better
solutions with fewer iterations than lower sizes of the population. However, the number of
function evaluations per iteration depends on the size of the population. For example, using
a n = 20D comparatively to n = D, means that in the first scenario the algorithms evaluate
the objective function twenty times more than in the latter, thus not representing a good
indicator for comparison between different sizes of the population or between algorithms
[Črepinšek et al. 2012]. Nevertheless, for this specific application results for bigger sizes of
the population returned the best solutions, but that is not necessarily true for others as it
will be analyzed then.

5.1.1.2 Speed Reducer

Overall, the PSO, DE and TLBO perform well for the speed reducer design problem (cf.
Section 4.4.2), as results in Figure 5.3 and Table 5.2 suggest. In general, after 103 function
evaluations the algorithms start converging towards a final solution and the evolution
of the mean objective function stagnates after 104 function evaluations. Similar to the
composition function, these results suggest that the number of function evaluations selected
as the stopping criteria is adequate.

The PSO presents good results, as for all values of n it is able to find the global optimum
at least three times. For n = D the algorithm finds the global optimum with the least
computational effort. However, the success rate is considerably low. With the increase of n,
the success rate increases almost linearly, but the number of function evaluations required
to find the global optimum also increases. When n = 20D, the best results are observed, as
it presents the biggest success rate and the lowest mean and standard deviation parameters.
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Figure 5.2: Evolution of the mean objective function in relation to the number of iterations
for different sizes of the population, obtained by (a) Particle Swarm Optimization, (b)
Differential Evolution and (c) Teaching-Learning-Based Optimization for the composition
function.
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This observation indicates that, for this application, the PSO benefits from an increase in
the size of the population. Observing results for n ≤ 10D, the size of population with the
best results is n = 10D.

In the case of the DE, results demonstrate to improve with the increase of n. Except
for n = D, the algorithm is able to find the global optimum for all values of n. Between
n = 2D and n = 5D, the results of mean, standard deviation and success rate improve
with the increase of n, and when n ≥ 6D the algorithm finds the global optimum on 100%
of the runs while presenting the least computational effort for n = 6D.

Results of the TLBO demonstrate that the algorithm performs relatively well for all
values of n except n = D and n = 20D. When n = D, the TLBO is able to find the
global optimum but presents a low success rate. On the other hand, for n = 20D the
algorithm does not find the global optimum and the result of the mean solution is close
to the global optimum and standard deviation is almost zero, indicating that for this
size of the population the algoritghm might require more function evaluations. Between
n = 4D and n = 10D, high rates of success are observed, but in some situations, such
as n = 4D, 5D, 8D, 10D, it is not able to converge to the global optimum or is trapped
in local optima. When the size of the population is equal to 6D or 7D, the success rate
is of 100%, while for n = 6D the algorithm finds the global optimum with fewer function
evaluations.

In general, the speed reducer design problem seems to present several local optima in
the search range. This observation is reasoned by the analysis of results in Table 5.2, where
similar solutions of the worst parameter are repeated throughout the PSO, DE and TLBO.

5.1.1.3 Three-Bar Truss

The two applications previously presented are solely implemented with numerical oper-
ations, thereby allowing the selection of a large number of function evaluations as the
stopping criteria. However, the three-bar truss design problem (cf. Section 4.4.3) uses
an external program in the operations leading to the evaluation of the objective function,
thus requiring more computational time. Because of this characteristic, it was necessary to
decrease the number of function evaluations as the stopping criteria to 104. Nevertheless,
from the results of the evolution of the mean objective function presented in Figure 5.4,
it is observed that the algorithms easily converge until 103 function evaluations and begin
stagnating after it. These results indicate that the selected number of function evaluations
as the stopping criteria are sufficient for the algorithms to find the global optimum.

In the case of the PSO, for all values of n the solution seems to gradually converge
to the global optimum. In the range of D ≤ n ≤ 10D, the algorithm finds the global
optimum at least four times, achieving a 100% success rate for n = 3D, 5D, 6D and 7D.
For n = 20D, the PSO does not have the capability to converge to the global optimum,
stagnating close to it in all runs, as results of mean and standard deviation demonstrate.
Overall, the algorithm presents high rates of success, while for n = 3D it requires the least
computational effort from the values of n with 100% success rate.

For this application, the DE has the particularity of not having been tested for n = D,
as the size of the population is less than the minimum required by the algorithm. For this
reason, the lowest value of n is equal to 2D, with results not demonstrating the algorithms
ability to find the global optimum. Beginning with n = 3D, the DE is able to find the
global optimum using 105 function evaluations, although it only presents a high success
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Figure 5.3: Evolution of the mean objective function for different sizes of the population,
obtained by (a) Particle Swarm Optimization, (b) Differential Evolution and (c) Teaching-
Learning-Based Optimization for the speed reducer.
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Figure 5.4: Evolution of the mean objective function for different sizes of the population,
obtained by (a) Particle Swarm Optimization, (b) Differential Evolution and (c) Teaching-
Learning-Based Optimization for the three-bar truss.
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rate for n ≥ 6D. For n = 7D, 8D, 9D and 10D, the algorithm finds the global optimum
on 100% of the runs with relative ease, as the required number of function evaluations
demonstrate. When n = 20D the global optimum is achieved. However, on approximately
half of the runs, the algorithm fails to converge to the global optimum. Overall, for n = 7D
is when the DE presents the least computational effort from values of n with perfect success
rate.

The TLBO is the algorithm that presents the best results, as it achieved a 100% success
rate for seven values of n. Except for n = D, the algorithm is able to find the global
optimum with a low number of function evaluations. For n = 20D the algorithm requires
a lot more computation effort compared to lower values of n and does not present a perfect
success rate. From the values of n that present 100% success rate, namely n = 4D to 10D,
the one where the algorithm requires less function evaluations is for n = 4D.

From all the implemented applications, the three-bar truss design problem is the one
that presents the lowest dimension (D = 3), as well as having side constraints with a small
range compared to the other application. These characteristics might explain the fact that
good results are found for lower values of n.

5.1.1.4 Square Plate

Similarly to the three-bar truss, the optimization process for the square plate design prob-
lem was a priori limited by the little number of function evaluations defined as the stopping
criteria (cf. Section 4.4.4), as a consequence of the operations required in the evaluation of
the objective function using an external program (Abaqus). Consequently, observing the
results of the evolution of the mean objective function for the square plate design problem
(cf. Figure 5.9) it is not evident if the algorithms are able to converge to a solution that is
maybe close to the global optimum or not. Results show a slight stagnation of the objective
function values close to the end of the optimization process. However, the observed stagna-
tion is not sufficiently long to conclude whether the selected number of function evaluations
is adequate or not for this application. Furthermore, results presented in Figure 5.5 for
the PSO, DE and TLBO algorithms show considerable differences between them in the
values of the objective function in the beginning of the optimization process. In the case
of the PSO and the DE, the high values observed are explained by the addition of penalty
values to the objective function, a consequence of several constraints being violated and
the algorithms not finding feasible solutions. On the other hand, the lower results of the
TLBO are explained by the fact that the algorithm evaluates the objective function two
times more than the PSO or the DE for the same number of iterations.

By first observing the results of the PSO for n = D to 4D at the beginning of the
optimization process, the algorithm presents solutions of lower quality. Approximately after
50 function evaluations, values of the mean objective function evolve into an acceptable
range – compared to the reported best solution (cf. Table 5.8). Analyzing the results
presented in Table 5.8 the best solution is found for n = 2D, while presenting at the same
time the best result of the mean parameter. For n > 2D, reported solutions are worst and
the mean solution tends to be higher with the increase of n, thereby not benefiting the
algorithm.

Similarly to the PSO, the DE presents solutions of lower quality in the beginning of the
optimization process for n = D, 2D, 3D and 4D. For n = 4D the algorithm presents the
best results of mean and worst parameters. Furthermore, the value of standard deviation
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Figure 5.5: Evolution of the mean objective function for different sizes of the population,
obtained by (a) Particle Swarm Optimization, (b) Differential Evolution and (c) Teaching-
Learning-Based Optimization for the square plate.
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is comparatively smaller than for other values of n. However, it is for n = 2D that the
DE presents the best solution, even though the standard deviation parameter is relatively
high and the worst parameter far from the best solution. Following these observations, it
would be wise to select a size of the population equal to 4D, as it returns good solutions
more often. However, as the preferred criterion is the best solution found, the selected size
of the population is n = 2D.

The TLBO is the only algorithm that presents for all values of n solutions that are
not excessively penalized from the beginning of the optimization process. Similarly to the
PSO and the DE, the best solution in the TLBO is found when n = 2D. Nevertheless,
this value of n does not present the best results of mean, standard deviation and worst
parameters.

In general, the algorithms are not able to converge to similar solutions, as the standard
deviation is relatively high for all values of n. Furthermore, it is observed that the number
of function evaluations required to find the best solution is, in general, very close to the
total number of function evaluations. These results help to conclude that selecting a bigger
number of function evaluations as the stopping criteria would be beneficial to reach better
conclusions on the most adequate size of the population. Moreover, these results do not
necessarily mean that with a bigger size of the population the algorithms do not perform
well for the application, only that for the selected number of function evaluations as the
stopping criteria results are not ideal and if possible should have been higher. Nevertheless,
from an engineering perspective, where quality solutions are desired within an acceptable
time, these algorithms show better results for lower sizes of the population.

5.1.1.5 Global Analysis

Overall, results demonstrate that the selection of a proper size of the population that is
able to find the global optimum and give guarantees to find the best possible solution is
not a trivial decision. Throughout the different applications, the size of population for each
algorithm presents great variation, as for the composition function high values of the size
of the population returned the best results, but for the square plate, the best results are
found for low values. Additionally, for the speed reducer, the best results are reported for
intermediate values of the size of the population and for the three-bar truss lower values
are preferred. These results seem to demonstrate that for applications of higher dimension,
it is preferred higher values of the size of the population, while for applications of lower
dimension the opposite is favored. This observation is a consequence of the design space
being larger for problems of higher dimension, therefore requiring that a bigger number of
solutions simultaneously explore the design space. Furthermore, if the computational time
of the application does not allow for a large number of function evaluations as it happens
with the square plate, lower values of the size of the population are preferred. Following
the study described in this section, the selected sizes of the population for each algorithm
and application that returned the best solutions are:

◦ Composition Function – 10D (PSO), 9D (DE) and 10D (TLBO);

◦ Speed Reducer – 10D (PSO), 6D (DE) and 6D (TLBO);

◦ Three-Bar Truss – 3D (PSO), 7D (DE) and 4D (TLBO);

◦ Square Plate – 2D (PSO), 2D (DE) and 2D (TLBO).
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5.1.2 Comparison of the Algorithms Best Solution

The previous study allowed for a more thoughtful selection of the size of the population
to use in each algorithm and application. However, in the previous study, the analysis did
not focus on the comparison of results between algorithms, but only on the results within
each algorithm. In this section, the results obtained for the selected sizes of the population
(cf. Section 5.1.1.5) are compared for each application.

5.1.2.1 Composition Function

In general, the composition function represents a difficult optimization problem for the
algorithms, as the DE is the only one able to find the global optimum (cf. Table 5.5).
Results show that the DE excels in every parameter, as it finds the global optimum in every
attempt and requires on average less than half of the total number of function evaluations.
Furthermore, the number of function evaluations in the run which the global optimum was
found with the least function evaluations are not farther away from the mean number of
function evaluations of all runs, as the corresponding standard deviation is relatively small.
Comparing the PSO and the TLBO, the latter present better results as it is able to find a
better solution while presenting the mean, standard deviation and worst parameters lower
than the PSO.

Comparing the evolution of the mean objective function for each algorithm as presented
in Figure 5.6, it is observed that the PSO is the algorithm with the most difficulty in
converging for solutions of higher quality. At the beginning of the optimization process,
the fact that the TLBO succeeds in finding better solutions than the PSO and DE might be
because, in each iteration, the TLBO evaluates the objective function twice as much as the
other two algorithms. The PSO begins the optimization process with higher solutions, but
quickly converge to lower solutions. However, at approximately 103 function evaluations,
its evolution begins stagnating. On the other hand, solutions of the DE and TLBO slightly
evolve more slowly, delaying the beginning of stagnation for approximately 104 function
evaluations. Nevertheless, DE presents better solutions than PSO approximately from 103

function evaluations and better than TLBO slightly after. Additionally, the selected size
of the population are the same for the PSO and TLBO (10D), but results demonstrate
the TLBO performs better than the PSO. This difference in the performance of the two
algorithms is well represented in the evolution of the mean objective function as TLBO
presents at 103 function evaluations the same values the PSO presents at 105 function
evaluations.

5.1.2.2 Speed Reducer

The speed reducer proves to be a relatively easy problem for the three algorithms with
the selected size of the population, as all of them are able to find the global optimum
within the total number of function evaluations. In Table 5.6 the results are summarized
for each algorithm, where it is observed that the DE and TLBO succeed in finding the
global optimum 100% of the runs, in opposition to the PSO that presents an 85% success
rate. Another difference in the three algorithms is in the number of function evaluations
required to find the global optimum, as the DE requires on average less than 10% of the
total number of function evaluations, while the PSO and TLBO require approximately 50%.
It should be noted that, even though the TLBO presents a lower value of the mean number
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Table 5.5: Results of the selected size of the population for the Particle Swarm Optimiza-
tion, Differential Evolution and Teaching-Learning-Based Optimization for the composition
function.

PSO DE TLBO

Best 5.5382 0.0000 2.2724
Mean 144.8705 0.0000 18.5532
SD 143.4580 0.0000 28.2106

Worst 536.6361 0.0000 100.0000

SR (%) 0 100 0
FE - 28220 -

Mean FE - 33987 -
SD FE - 3710 -

n 10D 9D 10D
G 1000 1112 500

Design Variables

x1 1.5832 1.5953 1.6122
x2 2.6296 2.6440 2.6659
x3 1.8876 1.8047 2.6659
x4 1.0234 0.9389 1.0246
x5 −3.1849 −3.0486 −3.0995
x6 −1.2192 −1.1571 −1.1036
x7 3.6541 3.5582 3.6734
x8 2.3576 2.4246 2.4753
x9 −0.4575 −0.3767 −0.3660
x10 4.6053 4.4637 4.4981

SD - Standard Deviation SR - Success Rate

FE - Function Evaluations G - Generations
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Figure 5.6: Evolution of the mean objective function obtained by the Particle Swarm
Optimization, Differential Evolution and Teaching-Learning-Based Optimization for the
composition function.
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of function evaluations than the PSO, its corresponding standard deviation is significantly
higher, demonstrating that on some runs it required more computational effort.

As observed in Figure 5.7, the evolution of the mean penalty function tends, for the
three algorithms, to decrease with the number of function evaluations. Approximately at
103 function evaluations, the value of penalty function is zero which means that solutions
are not violating imposed constraints. However, at the beginning of the optimization
process the algorithms are not able to find feasible solutions (penalty function value equal
to zero), while the PSO is the quickest algorithm to converge to feasible solutions and the
DE the slowest. Furthermore, the evolution of the mean objective function in the PSO
tends to quickly converge to better solutions at the beginning of the optimization process,
but the convergence rate decreases afterwards, in opposition to DE where the convergence
rate is more constant throughout the optimization process. Finally, the values of the
design variables corresponding to the best solution found for each algorithm corresponds
to those of the global optimum, therefore validating the optimization using the PSO, DE
and TLBO.

Table 5.6: Results of the selected size of the population for the Particle Swarm Optim-
ization, Differential Evolution and Teaching-Learning-Based Optimization for the speed
reducer.

PSO DE TLBO

Best 2996.348165 2996.348165 2996.348165
Mean 2999.799825 2996.348165 2996.348165
SD 11.119010 0.000000 0.000000

Worst 3046.713685 2996.348165 2996.348165

SR (%) 85 100 100
FE 55771 8918 33138

Mean FE 58216 9780 50482
SD FE 1095 535 11519

n 10D 6D 6D
G 1429 2381 1191

Design Variables

x1 3.499 999 3.499 999 3.499 999
x2 0.700 000 0.700 000 0.700 000
x3 17 17 17
x4 7.300 000 7.300 000 7.300 000
x5 7.800 000 7.800 000 7.800 000
x6 3.350 215 3.350 215 3.350 215
x7 5.286 683 5.286 683 5.286 683

SD - Standard Deviation SR - Success Rate FE - Function Evaluations

G - Generations

5.1.2.3 Three-Bar Truss

As demonstrated by the results of Table 5.7, the three-bar truss design problem presents
itself an easier optimization problem for the three algorithms, as all of them are able to
find the global optimum 100% of the runs. Consequently, the results for the best, mean,
standard deviation and worst parameters are identical for the three algorithms. Differences
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Figure 5.7: Evolution of the mean objective function ( ) and penalty function ( ) ob-
tained by the Particle Swarm Optimization, Differential Evolution and Teaching-Learning-
Based Optimization for the speed reducer.

between the algorithms are found in the computational effort each one requires to reach
the global optimum. The TLBO is the algorithm that finds the global optimum with the
least computation effort, as the DE takes, on average, almost twice and the PSO three
times number of function evaluations.

Table 5.7: Results of the selected size of the population for the Particle Swarm Optimiz-
ation, Differential Evolution and Teaching-Learning-Based Optimization for the three-bar
truss.

PSO DE TLBO

Best 2.666667 2.666667 2.666667
Mean 2.666667 2.666667 2.666667
SD 0.000000 0.000000 0.000000

Worst 2.666667 2.666667 2.666667

SR (%) 100 100 100
FE 5932 3010 1789

Mean FE 7056 3740 2285
SD FE 863 834 350

n 3D 7D 4D
G 1112 477 417

Design Variables

x1 0.666 667 0.666 667 0.666 667
x2 1.333 333 1.333 333 1.333 333
x3 0.666 667 0.666 667 0.666 667

SD - Standard Deviation SR - Success Rate FE - Function Evaluations

G - Generations

Regarding the evolution of the mean objective and penalty function presented in Figure
5.8, it is observed that the PSO presents solutions of lower quality at the beginning of the
optimization process, derived from the reduced size of the population used (cf. Table 5.7).
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However, it is able to progressively converge to solutions of more quality in an advanced
stage of the optimization process. The DE and TLBO algorithms present better solutions
in the beginning and start converging to the global optimum sooner than PSO. The
mean evolution of penalty function for each algorithm demonstrates that TLBO is the first
algorithm to find feasible solutions, approximately at 102 function evaluations, followed
by the DE and lastly the PSO, that rapidly finds solutions close to the feasible boundary,
even though it is only able to find feasible ones after 103 function evaluations.
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Figure 5.8: Evolution of the mean objective function ( ) and penalty function ( ) ob-
tained by the Particle Swarm Optimization, Differential Evolution and Teaching-Learning-
Based Optimization for the three-bar truss.

5.1.2.4 Square Plate

The square plate results are presented in Table 5.8, where it is observed that the TLBO
is the algorithm that returns the best solution. The reported best solution of the DE is
close to the one found in the TLBO, but slightly higher while the PSO returns the worst
solution out of the three algorithms. The correspondent design variables of each solution
are also presented in Table 5.8, as it is observed that the values of each design variable
are similar for the three algorithms. These results are better illustrated in Figure 5.10,
where the design geometry of the square plate obtained for each algorithm is presented.
Moreover, it is observed that the solutions obtained by the PSO, the DE or the TLBO
are different from the one presented by Valente et al. [Valente et al. 2011]. The solution
reported by Valente et al. presents less area in the top zone of the plate, but more in the
middle. However, the authors do not report a numerical solution to compare with those of
the PSO, DE and TLBO. Additionally, in Figure 5.11 the deformed shape of the square
plate for each solution is presented, where the maximum values of the equivalent stress are
located in the exterior border and in the interior hole border, similarly for all solutions.

Regarding the evolution of the mean objective and penalty functions represented in
Figure 5.9, the PSO and DE present penalized solutions in the first iterations, while the
TLBO is able to find solutions that are not penalized from the first iteration. Looking
at the results from 100 function evaluations onwards, the TLBO presents higher objective
function values than the other two algorithms up until 500 function evaluations while
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Table 5.8: Results of the selected size of the population for the Particle Swarm Optim-
ization, Differential Evolution and Teaching-Learning-Based Optimization for the square
plate.

PSO DE TLBO

Best 210209.5512 209846.2641 209791.7287
Mean 212901.9901 218342.3776 213128.3322
SD 3410.9547 11860.40689 3435.5616

Worst 220849.6972 249477.744 220265.1315

FE 936 996 971
Mean FE 976 977 919
SD FE 19 36 91

n 2D 2D 2D
G 100 100 50

Design Variables

x1 360.2695 364.1433 354.1008
x2 564.2672 563.6865 560.2531
x3 572.0206 580.3878 578.9840
x4 495.5253 492.4464 497.6825
x5 465.7822 464.2892 470.8945

SD - Standard Deviation FE - Function Evaluations G - Generations

at this point the DE starts stagnating and is not able to converge to better solutions.
Furthermore, it is observed that the mean evolution of the TLBO is very similar to the
PSO until the end of the optimization process.
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Figure 5.9: Evolution of the mean objective function ( ) and penalty function ( ) ob-
tained by the Particle Swarm Optimization, Differential Evolution and Teaching-Learning-
Based Optimization for the square.

On one hand, the results presented in Table 5.8 show that even though the PSO re-
turns the highest solution, its mean and standard deviation parameters are the lowest of
the three algorithms. On the other hand, the DE presents higher values of mean and
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standard deviation parameters, indicating that the reported best solution was possibly
found only once and that on average the reported solutions are relatively higher. Although
TLBO presents a mean result slightly higher than the PSO the worst solution found is
comparatively better, thereby demonstrating to be the most reliable algorithm for this
application.

Valente et al.

TLBO

DE

PSO

Figure 5.10: Representation of the best solution for the square plate design geometry
obtained by the implemented algorithms and reported by Valente et al. [Valente et al. 2011].

(a)

b

(b) (c)

Figure 5.11: Representation of best solution for the square plate deformed geometry ob-
tained by (a) Particle Swarm Optimization, (b) Differential Evolution and (c) Teaching-
Learning-Based Optimization.

5.1.2.5 Global Analysis

In Table 5.9 are summarized the results of the best solution, success rate and the least num-
ber of function evaluations required to find the best solution obtained by each algorithm
for all applications. The comparison between the results of the algorithms best solution,
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demonstrated that the DE is the only algorithm that is able to find the global optimum for
the composition function, speed reducer and the three-bar truss. Moreover, it is the only
algorithm that presents a 100% success rate for the same applications. The TLBO also
performs significantly well, presenting the same results as the DE for the speed reducer
and the three-bar truss, while outperforming the DE and PSO in the best solution found
for the square plate. Consequently, PSO is, in general, the most inefficient algorithm as it
only outperforms the DE and TLBO in the mean and standard deviation parameters for
the square plate.

From a computational effort perspective, the DE outperforms by a large margin PSO
and TLBO for the speed reducer application. For the same application, the DE requires,
on average, approximately six times fewer function evaluations than PSO and almost four
times less than TLBO. However, for the three-bar truss the TLBO is more efficient than
the PSO and DE and results regarding the computational effort for the square plate are
not conclusive as for the number of function evaluations required to find the reported best
solutions are close to the total number of function evaluations. Overall, PSO demonstrates
to require more computational effort than the other two algorithms.

Table 5.9: Summary of the results of best solution, success rate and function evaluations
obtained by Particle Swarm Optimization, Differential Evolution and Teaching-Learning-
Based Optimization for all aplications.

PSO DE TLBO

Composition Function
Best 5.5382 0.0000 2.2724

SR [%] 0 100 0
FE - 28220 -

Speed Reducer
Best 2996.348165 2996.348165 2996.348165

SR [%] 85 100 100
FE 55771 8918 33138

Three-Bar Truss
Best 2.666667 2.666667 2.666667

SR [%] 100 100 100
FE 5932 3010 1789

Square Plate
Best 210209.5512 209846.2641 209791.7285

SR [%] - - -
FE 936 996 971

SR - Success Rate FE - Function Evaluations

In can be concluded that the most reliable and robust algorithm seems to be the DE,
as it performs overall better than the PSO and TLBO. This conclusion might be related
to the structure of the DE implementation (cf. Section 3.2), as at every iteration the
new solution obtained after the operations of mutation, crossover and selection replaces
the current solution and influences the newly generated solutions at the same iteration.
The same is also observed in the TLBO implementation at the learner phase (cf. Section
3.3), as the new solution is placed in the current population and is able to influence newly
generated solutions. The opposite is observed in PSO as at each iteration all operations
are carried out for all solutions in the population, but new solutions only affect the next
iteration. Furthermore, the type of operations in the DE implementation differ from those
of the PSO and TLBO implementations in relation to the strategies used. Both PSO
and TLBO rely on information and statistics of the population while the DE only uses
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probabilistic rules and other solutions from the population. The PSO relies on the best
position of the population and the best individual solution while the TLBO also relies
on the best position of the population as well as the mean result of the population in
each design variable. Without knowing the results obtained by the algorithms, it would
be possible to assume that the PSO or TLBO could perform better than the DE as its
operations are more complex and rely on information of the population. However, as
already analyzed that is not the case as the simpler operations in the DE return better
results. Between PSO and TLBO, the latter present more complex operations and uses
more information of the population, probably explaining why it presented better results
than the PSO. Additionally, even though the TLBO is more complex than the other
two algorithms, it presents the advantage of not requiring the definition of an operational
parameter aside from the size of the population.

5.2 Performance of Computational Processing

In this section, the performance of computational processing of algorithms and program-
ming languages is analyzed. For both analyses, sequential and parallel, only one run is
performed for each algorithm, rather than the twenty runs performed in the previous sec-
tion. However, as independent runs might present variations in the measured parameters,
three independent simulations are performed and the mean results presented. Addition-
ally, the analyses were carried out using the selected size of the population (cf. Section
5.1.1.5) for each algorithm and application. In each run, both for the sequential and parallel
analyses, the measured parameters are:

◦ Evaluation Time: time range the algorithm is computing the required operations to
evaluate the objective function, in particular, the computation of constraints, penalty
function or specific operations depending on the application (e.g. computation of
fourth-degree polynomial function in the square plate design problem);

◦ Additional Time: time range the algorithm is performing operations aside from the
evaluation of the objective function, such as the position and velocity updating in the
PSO, mutation, crossover and selection in the DE or the teacher and learner phase
in the TLBO;

◦ Other Time: time range of background operations, post-processing operations or
initialization and termination of processes in the parallel processing implementation;

◦ Total Time: time range of the entire simulation.

The described parameters are measured using the elapsed real time or wall-clock time
of the computer with a precision of milliseconds. Moreover, it was attempted to maintain
the same conditions in the computer throughout all simulations.

Section 5.2.1 refers to the analysis of the sequential processing implementations, where
PSO, DE and TLBO algorithms are analyzed and implemented in Python, MATLAB, Java
and C++. Section 5.2.2 refers to the analysis of the parallel processing implementations,
where PSO is the only algorithm analyzed and implemented in Python, Java and MATLAB.
Furthermore, the parallel processing analysis is performed using one to eight processes.
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5.2.1 Performance in Sequential Processing

5.2.1.1 Composition Function

In terms of numerical operations of the evaluation of the objective function, the composition
function is particularly more complex than the other applications. This complexity is
related to the several operations required to build the composition function, as these are
mainly based on vectors and matrices, in particular, ten matrices of size 10×10.

Following these considerations, the sequential processing results of the measured times
for the composition function are presented in Figure 5.12, where for the evaluation time it
is observed that the three algorithms present similar results through all programming lan-
guages. Nevertheless, these results are expected, as each algorithm evaluates the objective
function exactly the same number of times. Comparing the results of the programming
languages for the three algorithms, Python is the one that takes more time evaluating the
objective function, while Java and C++ outperform Python and MATLAB by a large differ-
ence. Between Python and MATLAB, differences might relate to the fact that MATLAB
is a matrix-enhanced programming language, providing operations to easily manipulate
vectors and matrices. On the other hand, the basic operations of Python do not allow for
an easy manipulation of matrices without using for loops or a package (e.g. NumPy2).
Moreover, even though the results of evaluation time for C++ and Java are much better
than those of Python and MATLAB, its implementation is more complex as both, C++
and Java, do not present standard features do deal with matrices while advanced pack-
ages were not used. Thereby, for this specific application, it is important to consider the
trade-off between computational time and development time, as the cost of development
in Python and MATLAB is lower than in C++ and Java. Although the computational
time in Python and MATLAB is higher, it might not be worth in terms of development
compared to C++ and Java.

Further observing the results of additional time, in the case of Python and MATLAB
the differences between algorithms are significant, as the TLBO is the algorithm that takes
more time performing additional operations, followed by the DE and lastly the PSO. The
measured additional time for Java and C++ is very small when compared to the other
programming languages and differences between the two are almost insignificant. Results
of the other time, are almost insignificant compared to the evaluation and additional time.
Results of the total time are relatively proportional to those of the evaluation time while
Python demonstrates to be the programming language that, overall, requires more com-
putational time, followed by MATLAB, Java and C++, in that order. This observation is
well illustrated in Figure 5.13, where the fractions of total time are represented. For all
situations, the fraction of the evaluation time is above 0.6, as the additional time repres-
ents the great majority of the remaining total time. For the three algorithms, MATLAB is
the programming language in which the fraction of the evaluation time has less impact, as
the additional time represents a bigger fraction when compared to the other programming
languages. The fact that MATLAB presents higher values of additional time compared
to the other programming languages and the higher impact of this parameter in the total
time might be related to the observations made above of the language matrix capabilities
as well as the algorithms being implemented using an object-oriented structure (cf. Sec-
tion 4.3). The object-oriented structure might be directly related to the worst results of

2NumPy (http://www.numpy.org) is a package for scientific computing with Python.
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Figure 5.12: Sequential processing results of (a) evaluation time, (b) additional time, (c)
other time and (d) total time for the composition function.
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MATLAB regarding the evaluation time, as a vector-based structure would possibly be
favorable for MATLAB. The total time for Java and C++ is almost entirely represented
by the evaluation time, as the additional time stands as a small fraction. The other time
represents for all situations an insignificant fraction of the total time and is barely noticed.
Comparing the fraction of the additional time between algorithms is observed that the
PSO is the algorithm where this parameter has less impact. The additional time of the
TLBO demonstrates to have more impact of the three algorithms in Python and MAT-
LAB. However, in Java and C++ the additional time of the DE presents slightly more
impact than in the TLBO.
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Figure 5.13: Sequential processing results of fractions of total time obtained by the (a)
Particle Swarm Optimization, (b) Differential Evolution and (c) Teaching-Learning-Based
Optimization for the composition function.

Overall, C++ is the fastest programming language, with Python being the slowest, for
the three algorithms. As for the fraction of evaluation time, MATLAB is the programming
language where it has less impact and Java the most.

5.2.1.2 Speed Reducer

The speed reducer design problem demonstrates to require lower computational time than
the composition function, as the results of the evaluation time presented in Figure 5.14
demonstrate. For the three algorithms, MATLAB is the programming language that takes
more time evaluating the objective function and Python being the second slowest. Java
and C++ demonstrate to be faster than the other two programming languages, with C++
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slightly outperforming Java. In general, the evaluation time is very similar between al-
gorithms, as the number of function evaluations is the same between them. Regarding the
results of the additional time, Java and C++ are faster than the other two programming
languages, presenting additional times lower than 1 second. On the other hand, MATLAB
is the slowest programming language computing the algorithm operations, taking more
than twice the time of Python. It is particularly interesting to note that in the case of
MATLAB, the DE requires more computational effort than the TLBO, in opposition to
Python, where the TLBO takes more time computing the operations than the DE. Meas-
ured results for the other time present once again very small values and the differences
between the programming languages are almost insignificant (order of milliseconds).
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Figure 5.14: Sequential processing results of (a) evaluation time, (b) additional time, (c)
other time and (d) total time for the speed reducer.

The total time for the speed reducer implementations is strongly influenced by the
additional time, as results are almost identical. MATLAB is the programming language
that, in overall, requires more computational effort, as Python is more than two times
faster, while Java and C++ are at least twelve times faster. Results for Java and C++
are similar, with insignificant differences between the two. Python presents intermediate
results. However, these are closer to Java and C++ than to MATLAB. The fact that Java
and C++ are faster than Python and MATLAB is directly related to the fact that first
two programming languages are compiled and statically typed, in opposition to Python
and MATLAB that are interpreted and dynamically typed. Programming languages that
are compiled and statically typed benefit from having the source code (code written by
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the user) translated to machine code while the variables’ type is checked before execution
allowing for machine code optimization. On the other hand, in interpreted and dynamic
programming languages the source code is not previously compiled and is interpreted during
execution, meaning the variables’ type are checked during execution.

Analyzing the fractions of total time presented in Figure 5.15 for the PSO, DE and
TLBO, it is observed a big difference when compared to the results for the composition
function. Except for the implementation of the PSO in Python, the bigger fraction of the
total time corresponds to the additional time. In all C++ implementations, the fraction of
the evaluation time is below 0.2 while in MATLAB and Java is below 0.4. The additional
time in Python demonstrates to have less impact than in other programming languages.
Overall, the impact of the evaluation of the objective function is not significant compared to
the impact of the additional time in the total time. This observation might anticipate that
a possible boost in the performance of the evaluation time might not improve significantly
the results of total time.
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Figure 5.15: Sequential processing results of the fractions of total time obtained by (a)
Particle Swarm Optimization, (b) Differential Evolution and (c) Teaching-Learning-Based
Optimization for the speed reducer.

5.2.1.3 Three-Bar Truss

The three-bar truss design problem differs from the two previous applications, as it re-
quires the use of an external program. Therefore, a fraction of the computational time is
independent of the programming languages in which it is implemented. The results of the
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measured times are presented in Figure 5.16, where the evaluation time is in the order of
ten thousand seconds. As expected, the evaluation time for the same programming lan-
guage is very similar between algorithms, presenting insignificant differences. Observing
the results of evaluation time, it is observed that MATLAB stands out as the evaluation
time is comparatively superior to other programming languages. In opposition to the two
previous applications, Java presents higher evaluation time when compared to Python,
where results are very similar to C++. Even though this application relies on an external
program, the evaluation time is significantly different between programming languages.
Moreover, the fact that Python presents better results than Java would not be expected
from the analysis of the previous applications. Major differences in the implementation
of this application compared to the composition function and the speed reducer are the
external program used to compute the nodes displacement and the use of files to write
new input and read output. This way the results might indicate that the impact in the
evaluation time of calling the external program is not large enough, allowing differences
between programming languages to be observed in the other operations. The other signi-
ficant operations are related to the reading and writing to files, which might be the cause
of the observed differences. However, to have certainties regarding this analysis it would be
best to analyze with more detail the operations involved in the evaluation of the objective
function.

The results of the additional time are consistent with those in the composition function
and the speed reducer, as variations are related to the number of function evaluations
and the size of the population in each algorithm. In the case of the other time results,
these represent, once again, small values compared to the other parameters while in some
situations, for Python and C++, the measured other time is zero. For this reason, the
other time parameter is not of much interest in this analysis. Lastly, the results of the
total time are even more influenced by the evaluation time when compared to the previous
applications, as the fraction of the evaluation time is very high for all implementations. The
impact of the evaluation time in the total time is overwhelming, indicating that further
improvements in the evaluation of the objective function might make a big difference.
Comparing the differences between programming languages in the total time, MATLAB
clearly takes more time computing, as it is, approximately, more than three times slower
than Java and more than thirty times slower than Python and C++. Java demonstrates to
be, approximately, seven times slower than Python and C++ in this application. Finally,
C++ stands out as the fastest programming language, being approximately two times
faster than Python.

5.2.1.4 Square Plate

Analogously to the three-bar truss, the implementation of the square plate relies on an
external program and requires operations with files. Consequently, the results for the
square plate demonstrate even more the impact of an external program to calculate the
objective function, as the measured evaluation times (cf. Figure 5.17) are very high.

Furthermore, the results of the evaluation time are very similar for all algorithms and
programming languages. This observation is an indicator that the weight of running the
external program is much bigger than other operations in the evaluation of the objective
function, thereby showing insignificant differences in the evaluation time between program-
ming languages. In spite of these observed similarities, MATLAB stands out for being
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Figure 5.16: Sequential processing results of (a) evaluation time, (b) additional time, (c)
other time and (d) total time for the three-bar truss.
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slightly slower than the other three programming languages. The results of additional
time are significantly low, as compared to previous applications the number of function
evaluations is lower. The results of other time are, once again, insignificant compared to
the evaluation time. Consequently, for all situations, the measured total time is almost
identical to the evaluation time. Furthermore, as a consequence of the high values re-
gistered in evaluation time, the impact additional and other time have on the total time
is insignificant for all algorithms and programming languages.
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Figure 5.17: Sequential processing results of (a) evaluation time, (b) additional time, (c)
other time and (d) total time for the square plate.

These results might suggest that when the application is computationally heavy, spe-
cifically when it requires the use of an external program with great impact on the evaluation
time, the selection of the programming language in terms of computational capabilities is
less relevant while the cost of developing the application becomes a more important para-
meter. From this perspective, it can be said that C++ and Java present higher costs of
development comparatively to Python and MATLAB. For example, the computation of
the fourth-degree polynomial function requires two lines of code for Python and MAT-
LAB, using methods available in NumPy and in MATLAB it was achieved using standard
functions while for Java and C++ it was necessary to download and use external libraries.
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5.2.2 Performance of the PSO in Parallel Processing

5.2.2.1 Composition Function

The sequential processing results for the composition function anticipated that a parallel
processing implementation could potentially benefit the performance, as the evaluation
time demonstrated to be the larger fraction of the total time. Although this observation
is true for some situations, it does not stand for others, as results in Figure 5.18 and 5.19
demonstrate.
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Figure 5.18: Parallel processing results of measured parameters obtained by (a) Python,
(b) MATLAB and (c) Java for the composition function.

By first analyzing the measured times for Python, it is observed that the evaluation
and total times are almost identical through the number of processes, as the additional
and other times do not present a significant weight on the total time, but as the number
of processes increases, the weight of additional time in the total time slightly increases.
It is also demonstrated that an increase in the number of processes significantly bene-
fits the performance of the evaluation time, consequently reducing the total time. This
benefit is more evident from an increase between one and four processes, while onwards
the measured evaluation and total times present low improvements. While the evaluation
time improves, derived from the parallel implementation, the additional and other times
are implemented in sequential processing, presenting similar results through the number of
processes. The amount of improvement is explicitly given by the speedup, where results of
total time for two processes are close to the linear speedup of 2. However, as the number of
processes increases the speedup of total time distances itself from the linear values and it is
never higher than 4. Although the parallel processing implementation benefits the overall
performance compared to results of sequential processing, the number of benefits is lim-
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ited. In this context, it is relevant to consider that the implementation was achieved using
available methods in which the user only has control over the number of processes used
while the control over communication and distribution of data by each process is performed
automatically by the used methods. In this scenario the achieved boost in performance is
relatively good compared to the cost of implementation.

Results for MATLAB differ significantly from the ones in Python, as the additional
time plays a slightly bigger role in the total time, although it demonstrates to be similar
for all the number of processes. It is of interest to observe that values of the other time
are relatively significant, as it represents a bigger fraction of total time than the additional
time. Furthermore, it is observed that the other time increases with the increase in the
number of processes, thereby not benefiting the performance of the total time. Even though
the other time impacts the overall performance, the tendency of total time is significantly
influenced by the evaluation time, as the parallel performance slightly demonstrates to
improve for two and three processes. From four processes onwards the evaluation time is
worse while for eight processes it is almost similar to one process. Analyzing the results of
speedup and efficiency it becomes clear that a parallel processing implementation results
in a poor performance compared to the results of sequential processing, as the speedup
and efficiency of evaluation and total time are similar to results of additional and other
time.

Java presents a similar tendency as Python for the measured parameters. Results of
additional and other time show values almost constant through the number of processes
while the total time is mostly influenced by the evaluation time. Using two to four processes
results show an improvement in the evaluation time comparatively to one process. However,
from two processes onwards these improvements are low or even non-existent and after four
processes the evaluation time stabilizes close to 15 seconds. Regarding the fractions of total
time, small changes are observed for all processes, whereas the weight of other time slightly
increases, but does not represent a significant change. Finally, by observing the results of
speedup and efficiency it is notorious that the benefits of increasing the number of processes
are limited, with low speedups and values of efficiency moving towards zero.

Overall, the improvements obtained with the parallelization of the evaluation of the
objective function are affected by the sequential tasks, as the values for speedup of the
total time are lower than those of the evaluation time. When compared to MATLAB and
Java an increase in the number of processes in Python benefits the overall performance,
although demonstrating to be limited.

5.2.2.2 Speed Reducer

The sequential processing implementation in the speed reducer demonstrated the evalu-
ation time to be lower than the additional time, possibly indicating that a parallel pro-
cessing implementation would not bring significant improvements. Observing the results
of the parallel processing implementations presented in Figures 5.20 and 5.21, it is demon-
strated that the parallel processing does not benefit the overall performance in all pro-
gramming languages.

Results for Python show little improvement in the evaluation and total time, as for
only two processes a decrease in the reported values is observed compared to one process.
Moreover, from two to eight processes the evaluation time presents a tendency to increase,
in opposition to what would be desired. The evolution of total time is affected by the
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Figure 5.19: Parallel processing results of the fractions of total time, speedup and efficiency
obtained by (a), (b) and (c) Python, (d), (e) and (f) MATLAB, and (g), (h) and (i) Java
for the composition function.
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Figure 5.20: Parallel processing results of measured parameters obtained by (a) Python,
(b) MATLAB and (c) Java for the speed reducer.

additional time, which is processed sequentially and represents a great fraction of the
total time. Furthermore, the results of speedup and efficiency illustrate that the parallel
processing implementation does present benefits. Speedups of additional and total time
are below 2 for all the number of processes and efficiency results tend to zero with the
increase in the number of processes. Comparatively to the sequential processing results,
the evaluation time increased almost six times, probably meaning that communication
operations between processes take more time than the evaluation of the objective function.

The results for MATLAB are even worse than those reported for Python, as the eval-
uation time shows a slight improvement for two processes, but afterwards tends to largely
increase. Similarly to the results of the composition function, the other time tends to in-
crease with the number of processes, demonstrating to have more impact on the total time
than the additional time. Comparatively to Python and Java, MATLAB demonstrates to
be the programming language where the total time is more influenced by the additional
and other time. Results of speedup and efficiency confirm that this application does not
benefit from the parallel processing, as speedups of evaluation and total time tend to values
below 1 and efficiency close to zero.

Analogous to the results reported for Python and MATLAB, results for Java demon-
strate that this implementation does not benefit the performance. For only two and three
processes, the evaluation time decreases relatively to one process, as afterwards the tend-
ency is to increase. However, the fraction of evaluation time decreases with the number
of processes while the other time presents an increasing impact, even greater than the ad-
ditional time. Additionally, results of speedup for the evaluation and total time are lower
than 2 for all the number of processes, while efficiency for these parameters demonstrates
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to continuously decrease.
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Figure 5.21: Parallel processing results of the fractions of total time, speedup and efficiency
obtained by (a), (b) and (c) Python, (d), (e) and (f) MATLAB, and (g), (h) and (i) Java
for the speed reducer.

Overall, results for the speed reducer are not satisfying, as it could be anticipated from
the analysis of the sequential processing. In opposition to the other applications, the speed
reducer problem demonstrated that the weight in total time of the evaluation time is lower
than the additional time. This observation might represent an indicator when considering
the implementation of parallel processing in these type of application.

5.2.2.3 Three-Bar Truss

The three-bar truss design problem demonstrated in the results of sequential processing to
be more computationally demanding than the composition function and the speed reducer.
In the sequential processing results, the evaluation time presented as the bigger fraction
of the total time, representing a good indicator of the benefits of a parallel processing
implementation. Results relative to this application are presented in Figure 5.22 and 5.23.

Analyzing the evolution of the measured times for Python, results appear to be satis-
fying, as the total time is almost similar to the evaluation time while the initial tendency,
with the increase in the number of processes, is to benefit the performance. However, from
five processes onwards no improvements in the evaluation and total time are observed, as
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Figure 5.22: Parallel processing results of measured parameters obtained by (a) Python,
(b) MATLAB and (c) Java for the three-bar truss.

the measured times present an increase. Observing the evolution of the fractions of total
time, it is evident that the evaluation time almost entirely represents the whole time, even
though a slight decrease is observed with the increase in the number of processes. The
correspondent results of speedup and efficiency illustrate well these results, as until five
processes the speedup tendency is not far distanced from the linear speedup and efficiency
values are not far below 1. However, from there onwards the tendency of speedup is to
slightly decrease and efficiency presents an abrupt decrease.

Similar results are observed for MATLAB, as the overall performance seems to improve
until five processes, but afterwards, the same pattern as in Python is observed. However,
significant differences compared to Python are shown in the speedup, where from one to
two processes the speedup appears to be almost linear, while from two to three processes
results demonstrate higher speedup than the linear value. Nevertheless, these good results
do not stand onwards as the tendency in speedup is to stagnate and decrease. Additionally,
results of efficiency are of interest, as with three processes the parallel processing is more
efficient than what is expected in theory.

Java results are in sync with the ones of Python and MATLAB, as the increase in the
number of processes benefits the computational performance. Even though Java presents
a slight increase in the evaluation time for four processes, the same is not observed for five
and six processes, which demonstrate to benefit the computational time. Speedup results
present a peak value of approximately three for six processes but demonstrate that, in
general, the parallel processing implementation in Java is not as much efficient as it is in
Python and MATLAB.

Comparing the results for the three programming languages, it is interesting to ob-
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Figure 5.23: Parallel processing results of the speedup and efficiency obtained by (a) and
(b) Python, (c) and (d) MATLAB, (e) and (f) Java for the three-bar truss.
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serve that all of them present better results with one process in the parallel processing
implementation than in the sequential processing implementation. To note that both im-
plementations only differ in the calling of the subroutine to evaluate the objective function
and in the folder, the process needs to access to call the external program. Aside from
these differences, both implementations are similar, thereby a logical explanation for the
decrease in the evaluation time is not provided. In this context, a detailed analysis of the
operations involved in the evaluation of the objective function would be interesting to find
out the source of the observed differences.

5.2.2.4 Square Plate

This application stands out from the other applications because the results for the sequen-
tial processing demonstrate great similarities between programming languages. Addition-
ally, values of the evaluation time reported for the sequential processing are much higher
than for other applications and significantly higher than the additional time. Thereby,
results of the parallel processing implementations demonstrate to be very satisfying as it is
observed in Figure 5.24 and 5.25. It is of interest to mention that, in the presented results,
the evolution of the evaluation time is not easily identified, as its values are overlapped by
those of total time. According to this observation, the values of the additional and other
time are insignificant in the total time.
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Figure 5.24: Parallel processing results of measured parameters obtained by (a) Python,
(b) MATLAB and (c) Java for the square plate.

The evolution of the measured parameters for Python demonstrates a large decrease in
the evaluation and total time as the number of processes increase. This tendency prevails
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until five processes, as afterwards the total time stagnates and little or no improvements
are observed similarly to what was observed for the three-bar truss. The evolution of spee-
dup for the total time is at first below, but close to the linear speedup while presenting a
tendency to increase until five processes, where the value of speedup is almost 5. Although
the results for a higher number of processes do not demonstrate improvements in perform-
ance, the obtained gains for two to five processes are very satisfying relatively to the effort
of its implementation.
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Figure 5.25: Parallel processing results of the speedup and efficiency obtained by (a) and
(b) Python, (c) and (d) MATLAB, (e) and (f) Java for the square plate.

The tendency of measured times for MATLAB and Java are very similar, as the fol-
lowing observations apply to both programming languages. Both present a big decrease
in the total time from one to two processes while the corresponding speedup of total time
is almost linear and efficiency is slightly below 1. From there onwards the tendency of
total time to decrease continues, but with less emphasis than before, as values of speedup
are farther relative to linear speedup. For five processes and similarly to Python, it is
observed a peak in efficiency while the speedup presents a slight approximation to the
linear speedup. Once again, after five processes the computational total time stagnates
and improvements are of little significance.

Overall, the three programming languages present similar results, either relative to
the total time or obtained speedups. However, Java stands as the programming language
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with the biggest peak in speedup and Python the lowest. Nevertheless, the cost of the
parallel processing implementation in Python and MATLAB are significantly lower than
in Java, meaning that with less effort it is possible to achieve similar results using Python
or MATLAB.

5.2.3 Global Analysis

Concerning the results of sequential processing, it is interesting to observe that the results
are not uniform for all applications. Comparing the results for the composition function
and speed reducer, that are two applications solely computed using numerical operations, it
is observed that for the first, MATLAB outperforms Python and for the second Python out-
performs MATLAB as possible explained by the nature of the applications (vector/matrix
computations) and characteristics of both languages. As for Java and C++, results are
very similar, but both outperform the other two programming languages by a large margin
as both programming languages are compiled and statically typed. A different scenario is
observed for the square plate application, as results for all programming languages are very
similar. An explanation for these results might relate to the time it takes for the external
program to perform the simulation for every solution. As this time is very high (approxim-
ately 30 seconds) compared to the computation of additional operations in the evaluation
of the objective function. Although the observed similarities, MATLAB performs slightly
poorly compared to Python, Java and C++. In the three-bar truss application, even
though the evaluation of the objective function requires an external program, results are
very interesting, as Python considerably outperforms Java. C++ stands as the fastest
programming languages, while the measured total time for MATLAB is the highest of
them all. These results in the three-bar truss application are an indication of significant
differences in the programming languages regarding operations with files.

In what concerns the results of parallel processing, different situations are observed.
Firstly, for the implementation of the composition function in Python, it is observed that
the total time improved with the increase in the number of processes. On the other hand,
the same cannot be said for MATLAB and Java, as little or no improvements are observed.
As for the speed reducer, the parallel processing implementations prove to not benefit the
computational time as gains in speedup are not observed. Regarding the three-bar truss
and square plate implementations, both applications presented significant gains in speedup,
even though the observed results of efficiency are not ideal. Moreover, both applications
demonstrated that the gains in speedup do not increase significantly or even decrease
for more than five processes. These results might be directly related to the size of the
population used in these two applications – nine for the three bar truss and ten for the
square plate. These sizes of the population can be considered low and with the increase in
the number of processes the tendency would be for them to be equal which does not allow
to take full advantage of the increase in the number of processes. Technically, the total
time of the parallelized operations is as high as the slowest process, which is why from
five to eight processes the evaluation time is similar for both applications, as at least one
process is reused twice.

Comparing the results obtained for the sequential and parallel processing implement-
ations, it is shown that the implementation of parallel procedures in some applications
does not benefit the performance. That is the case for the speed reducer, as for the three
programming languages implemented in both situations the total time increases compared
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to the sequential implementations. Additionally, in the case of the composition function,
the parallel processing only improves the total time in Python, in opposition to MATLAB
and Java where the total time increases. Another interesting observation is made regard-
ing the sequential implementations and parallel implementations with 1 process, as for the
three-bar truss, a significant boost in the total time is observed for the three programming
languages, a fact that is not well understood. At last, it is observed that the other time in
parallel implementations increases comparatively to sequential implementations, probably
related to the initialization of processes. This increase in other time becomes more relevant
for MATLAB, as it can take as much as 15 seconds to initialize and terminate processes.

In general, C++ is the programming language that presents better results, even though
the cost of development can be considered to be higher. As for Python, it demonstrates
to perform better than MATLAB, except for the composition function in sequential pro-
cessing. The reason for this result might be referred to the fact that MATLAB is enhanced
in matrix computations and the composition function uses matrices in its objective func-
tion. Additionally, the implementation in MATLAB using object-oriented programming
might not favor its performance, as maybe it would be preferred an implementation based
on arrays. Java demonstrates to perform better than Python for applications solely im-
plemented with numerical calculations. However, it was outperformed by Python when
computations involving reading from and writing to files are present, as is the case for the
three-bar truss.

Objectively, when the application is purely implemented with numerical calculations,
C++ is the fastest programming language. Moreover, if the computational time of an
external program is not predominant in the evaluation time, C++ also presents as the
fastest programming language. However, as C++ is not implemented using parallel pro-
cedures no conclusions are made regarding its performance in parallel processing. When
the application can potentially benefit from parallel processing, selecting any programming
language out of Python, MATLAB and Java for the implementation, can lead to similar
results in speedup. Subjectively, if the computational operations of a specific application
are complex (e.g. matrices manipulation, polynomials calculation), implementations using
standard features of C++ or Java can lead to an increase in development time compared
to Python or MATLAB, which present features that are easily implemented. Moreover,
implementing parallel procedures in MATLAB can be as simple as changing two lines of
code while in Java the task can prove to be more demanding using advanced features.
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Chapter 6

Final Considerations

General conclusions and suggestions for further work are
presented.

6.1 Conclusions

The main goal of this work was to analyze the use of advanced optimization methods
in mechanical design problems, in which three distinct algorithms were selected: Particle
Swarm Optimization (PSO), Differential Evolution (DE) and Teaching-Learning-Based
Optimization (TLBO). The implemented formulation of each algorithm was similar to the
standard algorithms, only with little modifications in order to improve convergence rates
and exploration capabilities of the design space.

In a first phase of the work, it was carried out a study on the size of the population for
each algorithm and application, in order to understand how the algorithms performed with
the variation of this parameter and to select a size of the population that demonstrated
the best results. On one hand, it was observed that for applications where a large number
of function evaluations as the stopping criterion are defined, the algorithms demonstrate
better results for higher values of the size of the population. Nevertheless, it was observed
that the algorithms require more computational effort to reach the same solution than
for lower values of the size of the population. On the other hand, if the nature of the
operations in the application tends to be computationally heavy, as it happens in the
three-bar truss and square plate design problem, and consequently a lower number of
function evaluations is preferred, the best results were observed for lower values of the size
of the population. Later, the algorithms were compared using the results for the selected
size of the population. The DE was the algorithm that presented better results, proving
to be the most efficient and robust of the three algorithms. Between the PSO and TLBO,
the last demonstrated to be able to find better solutions while in what concerns to the
computational effort the results are similar.

Regarding the computational performance of the algorithms in the implemented pro-
gramming languages, different results were observed for each application. In what concerns
the sequential processing performance it was observed that for the composition function,
MATLAB outperforms Python as the nature of the problem involves several operations
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based on matrices. On the other hand, for the speed reducer design problem Python out-
performed MATLAB as the operations are computationally simple. For both applications,
Java and C++ demonstrated to be computationally faster than Python and MATLAB,
as the code only involves numerical operations. On the other hand, for the applications
involving operations with files and using external programs, the results were very different.
In the case of the square plate, the use of the external program demonstrated to have a
great impact on the evaluation time of the objective function, thereby resulting in similar
computational times for all programming languages. However, the same pattern was not
observed in the three-bar truss design problem, where several differences were observed
between programming languages. With the implementation of parallel processing tech-
niques to the PSO, it was shown that, in general, the applications that demonstrated to
be computationally fast in the sequential processing implementations do not benefit with
the parallel processing. On the other hand, applications computationally heavy, as was
the case of the three-bar truss and square plate design problems, presented great benefits
from the parallel processing.

Overall, the use of advanced optimization methods in mechanical design problems
presents as a viable option as they demonstrate to be efficient in the search of engin-
eering solutions. The DE presents as the more reliable algorithm while its operations are
simple to implement. Nevertheless, the DE and PSO require the selection of operational
parameters that might be difficult to estimate and for this reason, the TLBO presents
as a viable algorithm as it does not require the selection of any operational parameter
aside from the size of the population. Furthermore, in the selection of the programming
language for their implementation, it requires the consideration of the cost of development
with the computational impact. Even though it was demonstrated that Java and C++
are computationally fast for applications solely involving numerical operations their cost
of development can be said to be greater than in Python or MATLAB. Moreover, as for
applications where the bulk of the computational effort is independent of the program-
ming language, results were very similar between programming languages while in Python
and MATLAB the performance can be easily enhanced with simple modifications to the
sequential processing implementations.

6.2 Future Work

This work is intended to aid in the selection of algorithms and programming tools applied
to mechanical design problems. Even though the analyses carried out in this work is
expected to help in this decision, there are still things that can be further studied. With
this purpose, it is here suggested guidelines for future work:

◦ Application and comparison of additional advanced optimization methods to mech-
anical design applications, in particular, more complex problems, such as multi-
objective or with a larger number of design variables;

◦ Analysis of different programming strategies applied to the advanced optimization
methods;

◦ Detailed analysis of the operations involved in computational processing, in particu-
lar, the communication between processes;
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◦ Analysis on the influence of the size of the population in parallel processing imple-
mentations.
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