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resumo 
 

 

As nanopartículas de dióxido de titânio (NPs de TiO2) têm sido amplamente 
utilizadas em várias aplicações industriais e produtos de consumo. Devido à sua 
grande produção e uso, acabam por entrar nos ambientes aquáticos. Uma vez 
no ambiente aquático, as NPs de TiO2 podem interagir com os organismos e 
induzir efeitos tóxicos. Além da contaminação, os organismos também estão 
expostos a alterações climáticas, responsáveis por um aumento gradual da 
temperatura nos oceanos, que pode causar danos fisiológicos e bioquímicos nos 
organismos aquáticos e maior sensibilidade a poluentes. Além disso, já foi 
reportado que o aquecimento pode alterar as propriedades e a toxicidade dos 
poluentes. Como as formas mais comuns das NPs de TiO2 são o rutílio e a 
anatase, o presente estudo avaliou os efeitos destas duas formas em Mytilus 
galloprovincialis à temperatura controlo e os efeitos das NPs de rutílio sob 
condições de aquecimento global. Para isto, os mexilhões foram distribuídos em 
duas salas climáticas para manter os organismos em duas temperaturas 
diferentes: 18 ± 1 e 22 ± 1 °C. As concentrações testadas de NPs de rutílio e 
anatase a 18 °C e de rutílio a 22 ºC foram 0 µg/L; 5 µg/L; 50 µg /L; e 100 µg/L. 
A exposição durou 28 dias e no final foram avaliadas as concentrações de Ti no 
tecido dos mexilhões, as alterações histopatológicas e os efeitos bioquímicos. 
Os resultados histopatológicos demonstraram que ambas as formas de TiO2 
induziram alterações nas brânquias e nas glândulas digestivas ao longo do 
aumento das concentrações de exposição, independentemente da temperatura. 
Os parâmetros bioquímicos mostraram que os mexilhões expostos a NPs de 
rutílio na temperatura controle mantiveram a capacidade metabólica (avaliada 
pela atividade da cadeia de transporte de eletrões, ETS), enquanto o 
metabolismo dos mexilhões expostos a NPs de rutílio a 22 °C aumentou quando 
expostos a 5 e 50 µg/L de Ti e os mexilhões expostos a NPs de anatase também 
aumentaram a capacidade metabólica. Os mexilhões expostos a NPs de rutílio 
à temperatura controlo aumentaram as defesas desintoxicantes que, devido às 
baixas concentrações testadas, foram suficientes para evitar danos celulares. 
Por outro lado, os mexilhões expostos a NPs de anatase sofreram danos 
celulares, apesar do aumento das defesas antioxidantes, o que pode estar 
relacionado com a maior atividade da cadeia de transporte de eletrões. Além 
disso, os mexilhões expostos a NPs de rutílio sob temperaturas mais elevadas 
ativaram as defesas antioxidantes, porém ainda ocorreram danos celulares 
nessas condições. No geral, este estudo mostrou que as NPs de rutílio e 
anatase são tóxicas para M. galloprovincialis, com maior stress oxidativo 
exercido pela anatase e que o aumento da temperatura pode aumentar 
significativamente a sensibilidade de bivalves para as NPs de rutílio, 
demonstrando impactos tóxicos mais elevados em mexilhões expostos a NPs 
de rutílio sob condições de aquecimentom global. 
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abstract 

 
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various 
industrial applications and consumer products. Due to their large production and 
use, they will eventually enter into aquatic environment. Once in the aquatic 
environment TiO2 NPs may interact with the organisms and induce toxic effects. 
Beside contamination, organisms are also exposed to climate change, 
responsible for a gradual increase in the ocean temperature, which can cause 
physiological and biochemical impairments in aquatic organisms as well as 
increased the sensibility of organisms to pollutants. Furthermore, it is already 
reported that warming may change the properties and toxicity of pollutants. Since 
the most common forms of TiO2 NPs are rutile and anatase, the present study 
evaluated the effects of these two forms in Mytilus galloprovincialis at control 
temperature and the effects of rutile NPs under warming conditions. For this, 
mussels were distributed into two climatic rooms to maintain organisms at two 
different temperatures: 18±1 and 22±1 °C. The tested concentrations of rutile 
and anatase NPs at 18 °C and of rutile ate 22 °C were 0 µg/L; 5 µg/L; 50 µg/L; 
and 100 µg/L. The experimental exposure lasted 28 days and at the end Ti 
concentrations, histopathological alterations and biochemical effects were 
evaluated. Histopathological results demonstrated that both forms of TiO2 
induced alterations on gills and digestive glands along the increasing exposure 
concentrations regardless the temperature. Biochemical markers showed that 
mussels exposed to rutile NPs at control temperature maintained their metabolic 
capacity (assessed by the activity of the electron transport system, ETS), while 
the metabolism of mussels exposed rutile NPs under higher temperature 
increased at 5 and 50 µg/L of Ti and in mussels exposed to anatase NPs the 
metabolic capacity was increased. Mussels exposed to rutile NPs at control 
temperature increased their detoxificant defenses which, due to the low tested 
concentrations, were sufficient to avoid cellular damage. On the other hand, 
mussels exposed to anatase NPs suffered cellular damages despite the 
increased in antioxidant defenses which may be related to higher activity of the 
electron transport system. Also, mussels exposed rutile NPs under higher 
temperature activated the antioxidant defenses, however still cellular damage 
occurred under these conditions. Overall, this study showed that rutile and 
anatase NPs were toxic to M. galloprovincialis, with higher oxidative stress 
exerted by anatase form and that temperature rise may significantly increase the 
sensitivity of bivalves towards rutile NPs, revealing higher toxic impacts in 
mussels exposed to rutile NPs under warming conditions.  
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1. INTRODUCTION 

1.1. Marine coastal systems: major stressors 

Marine coastal systems are among the most productive ecosystems in the world 

(Dayton et al., 2005). These dynamic areas are usually defined as the interface between land 

and sea and for this reason are subjected to natural and anthropogenic changes (FAO, 1998). 

Coastal systems such as estuaries and lagoons are water bodies that connect terrestrial, 

freshwater and marine systems (Dame, 2008) and because of that they are expected to be the 

ultimate sink for contaminants (Islam and Tanaka, 2004; Dauvin and Ruellet, 2009). In fact, 

coastal systems have been exposed to a variety of contaminants including “classical” (like 

metals and organic) (Huang et al., 2014; Artifon et al., 2019; Gao et al., 2019) and emerging 

contaminants (ECs) such as rare-earth elements (REEs) (Elderfield et al., 1990; Casse et al., 

2019), nanoparticles (NPs) (Baalousha et al., 2011; Gondikas et al., 2014) or 

pharmaceuticals (Desbiolles et al., 2018; Fernández-Rubio et al., 2019). Besides 

contamination, marine coastal systems are increasingly subject to climate change related 

factors, including warming and acidification (Angel, 1991; Murawski, 1993; Caldeira and 

Wickett, 2003; Orr et al., 2005).  

 

1.1.1. Emerging contaminants 

In the last few decades, population growth and the expansion of the chemical, 

agrochemical, cosmetic and pharmaceutical industries led to the synthesis and increased 

manufacture and usage of innumerous compounds known as emerging contaminants (ECs) 

(Starling et al., 2019). These substances are not commonly monitored in the environment 

because they have only recently being considered potentially toxic (Rodriguez-Narvaez et 

al., 2017; Martín-Pozo et al., 2019). Emerging contaminants are a heterogeneous group of 

compounds that includes REEs, pharmaceuticals, personal care products, flame retardants 

and endocrine disrupting chemicals (Martín-Pozo et al., 2019). 

Among anthropogenic ECs are also manufactured NPs that include carbonaceous 

nanomaterials, metal oxides, semiconductor materials (quantum dots (QDs)), zero-valent 

metals (iron (Fe), silver (Ag), and gold (Au)) and nanopolymers (Fadeel and Garcia-Bennett, 

2010; Măruţescu et al., 2019). Nanoparticles can be in an unbound state, as an aggregate 

(hard bonds between particles) or as an agglomerate (weak bonds between particles) (Jiang 
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et al., 2009; Maskos and Stauber, 2016) and at least one dimension must have 1–100 nm to 

be considered as NPs (Hood, 2004; The European Commission, 2011; ISO, 2015). 

Nanoparticles exhibit different properties than their bulk counterparts as they have a very 

large surface area-to-volume ratio (D’Agata et al., 2014; Măruţescu et al., 2019) allowing 

the production of new technologies with novel or improved specificities and applications 

(Măruţescu et al., 2019). These particles can be produced by chemical (‘‘bottom-up 

methods’’), physical (‘‘top-down methods’’) and biological (green methods) synthesis 

(Yazdi et al., 2016) and in various shapes such as rod (Mnasri et al., 2016), cube (Zhou et 

al., 2019), sphere (Zhang and Zheng, 2019) and nanoplate (Im et al., 2019). It is difficult to 

characterize NPs due to their tendency to aggregate or agglomerate when there is a change 

in surrounding environment and also due to their small size which is usually below the 

wavelength limit of direct optical detection via light microscopy (Maskos and Stauber, 

2016). Nanoparticles have received considerable attention in physics, chemistry, biology, 

and technology because their use is more efficiency compared to bulk particles due to their 

unique characteristics (mechanical, physical, catalytic, optical, and electrical conductivity) 

and their small dimensions (Hosseinzadeh et al., 2016; Măruţescu et al., 2019). For these 

reasons their applications in various industries have rapidly expanded (Banerjee et al., 2017; 

Cai et al., 2017; Dey et al., 2017; Gao et al., 2017; Priyadarshini and Pradhan, 2017; Liu, 

2006). 

The increasing production of several NPs caused its increase in the environment and, 

therefore, doubts concerning nanoparticle effects on the environment and human health has 

rised (Zanjani et al., 2018), although these materials can be used in biological applications, 

such as water treatment (Coppola et al., 2019; Masunga et al., 2019) in order to improve 

aquatic environment health (Zanjani et al., 2018). However, several studies have shown that 

NPs induced adverse effects to marine and freshwater organisms. Gambardella et al. (2015) 

shown that silica NPs (SiO2) induced anomalies in sea urchin offspring and neurotoxicity in 

sea urchin (Paracentrotus lividus).  Ale et al. (2019) demonstrated that Ag NPs cause cellular 

damage and Ag accumulation in the mussel Mytilus galloprovincialis. Also, Barreto et al. 

(2019) shown that the fish species Sparus aurata had decreased their swimming performance 

and increased oxidative damage in gills and liver when exposed to Au NPs. According to De 

Marchi et al. (2018; 2019 a,b) carbon nanotubes induce oxidative damage and neurotoxicity 
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in clams (Ruditapes philippinarum) and polychaetes (Nereis diversicolor, Diopatra 

neapolitana). 

 

Titanium dioxide nanoparticles as emerging contaminants 

Titanium dioxide (TiO2) displays properties including a bright white color, ability to 

block UV light, long-term stability, antimicrobial activity, hydrophilicity as well as a 

relatively low cost (Hoffmann et al., 1995; Su et al., 2006; Wang et al., 2009; Cho et al., 

2013). TiO2 NPs are metal oxide nanoparticles which have been extensively used in various 

industrial applications and consumer products including personal care products as sunscreen, 

creams and toothpastes (Wahie et al., 2007; Johnson et al., 2011; Lu et al., 2015; de la Calle 

et al., 2017; Sureda et al., 2018), as pigment in paints, plastics, and paper (Winkler, 2003; 

Kaegi et al., 2008; Amorim et al., 2018); as well as in food storage acting as an antibacterial 

agent (Cui et al., 2016; Zhu et al., 2018). For this reason it is estimated that the worldwide 

TiO2 NPs will reach 2.5 million tons by 2025 (Mezni et al., 2018).  

There are mainly three crystalline forms of TiO2, namely anatase (tetragonal), rutile 

(tetragonal), and brookite (orthorhombic) (Fig. 1) (Cho et al., 2013; Iswarya, 2018). Among 

these, rutile and anatase are the most common forms of TiO2 due to their properties such as 

high photocatalysis, refractive index and transparency to visible light and high UV 

absorption (Braydich-Stolle et al., 2009; Iswarya, 2018). Brookite has been rarely used and 

studied so far, due to its scarcity in the environment (Allen et al., 2010) and difficulties in 

preparing significant amounts of good quality material (Gong and Selloni, 2007). Both rutile 

and anatase are widely employed in consumer products like toothpaste, sunscreens, food, 

paints, plastics, paper, and biomedical devices (Wang et al., 2007; Yang et al., 2009; 

Middlemas et al., 2013; de la Calle et al., 2017; Barbosa et al., 2018; Leong and Oh, 2018; 

Dorier et al., 2019). Furthermore, they are also used in environmental oriented applications 

including water treatment (Yuzer et al., 2016; Abdel-Maksoud et al., 2018), air purification 

(Paz, 2010) and soil remediation (Yang and Xing, 2009). Rutile is commonly used in optical 

elements, since it has one of the highest refractive indices at visible wavelengths of any 

known crystal and also exhibits a particularly large birefringence and high dispersion 

(Iswarya et al., 2016, 2018). It is also used as a dielectric material in ceramics (Amtout and 

Leonelli, 1995; Wang et al., 2019). Anatase is applied as a catalytic support for the 

production of nanotubes and nanoribbons (Mogilevsky et al., 2008) and used in 
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photovoltaics (Grätzel, 2001).  Due to their worldwide production and usage, both forms of 

TiO2 NPs are released in enormous quantities in urban and industrial sewage and, 

consequently, reach aquatic environments (Colvin, 2003; Lecoanet and Wiesner, 2004; 

Guzman et al., 2006; Nowack and Bucheli, 2007; Gottschalk and Nowack, 2011; Nowack 

et al., 2012). 

 

 

Dissolved Ti is usually present at very low concentrations in marine systems with 

concentrations ranging between 0.01 and 5.5 µg/L (Yan et al., 1991; Yokoi et al., 1991; 

Skrabal, 2006). With the increased use of TiO2 NPs and low capacity of wastewater 

treatment plants (WWTPs) to eliminate these NPs (Shi et al., 2016), Ti concentration has 

been increasing in aquatic systems (Batley et al., 2013; Gondikas et al., 2014). TiO2 NPs are 

found in domestic sewage, wastewater, industrial effluents and surface runoff from the paints 

on building facades (Kaegi et al., 2008; Kiser et al., 2009; Brar et al., 2010; Weir et al., 

2012). Kiser et al. (2009) demonstrated that raw sewage contains 100–3000 μg/L of Ti and 

after the removal at WWTPs the resulting effluent contains only 5 – 15 μg/L of Ti. Shi et al. 

(2016) detected concentrations ranging between 52 and 86 μg/L of Ti in the Xiaohe River 

(China). Also, Gondikas et al. (2014) quantified TiO2 at the Old Danube Recreational Lake 

(Vienna) with concentrations between 1.7 – 27.1 µg/L of Ti.  

Fig. 1 Crystal structures of TiO2. A: rutile; B: brookite; and C: anatase (Moellmann et al., 2012). 
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Once in the aquatic environment TiO2 NPs may interact with the organisms and 

induce toxic effects (Iswarya et al., 2019). Previous studies demonstrated that these NPs 

caused severe toxicity towards aquatic organisms. Monteiro et al. (2019 a,b) demonstrated 

that the estuarine mussel M. galloprovincialis is affected by TiO2, with alterations of 

organism’s metabolic capacity, oxidative damage and defense mechanisms. Barmo et al. 

(2013) showed that TiO2 NPs affected mussels immune system and digestive gland function. 

Other studies showed the impacts of different forms of TiO2 NPs. Braydich-Stolle et al. 

(2009) observed that rutile NPs were capable of initiating apoptosis, while anatase NPs 

triggered cell necrosis in mouse keratinocytes. Also, Iswarya et al. (2015) demonstrated that 

rutile and anatase NPs caused damage in different parts of the green algae Chlorella sp. with 

rutile NPs causing damages in chloroplast and internal organelles and anatase NPs 

originating nucleus and cell membrane damages. Nevertheless, information on the impacts 

of these two forms of TiO2 NPs on aquatic species, and especially marine and estuarine 

organisms, is still limited. Therefore, it is of upmost relevance to understand the impacts of 

rutile and anatase NPs on aquatic environments, namely on their inhabiting organisms. 

 

1.1.2. Impact of climate changes: warming 

Since the beginning of the industrial revolution, atmospheric concentration of carbon 

dioxide (CO2) has been increasing, reaching for the first time levels above 400 ppm (IPCC, 

2014). This increased of atmospheric CO2 is related with the cumulative emissions of 

anthropogenic greenhouse gases that besides CO2, release methane (CH4) and nitrous oxide 

(N2O) (IPCC, 2014). Furthermore, unless CO2 emissions are reduced as a result of policy 

actions, it is expected that CO2 in the atmosphere may reach up to ~1000 ppm until the end 

of the century (Pörtner et al., 2014). The oceans act as CO2 sinks because nearly 30% of the 

atmospheric CO2 is absorbed by the oceans. The continuous CO2 uptake by the oceans result 

in seawater chemistry alterations, including the predicted decrease of seawater pH up to 0.42 

units by the year of 2100 (IPCC, 2014). However, besides changes in seawater properties, 

the increase of CO2 in combination with other “greenhouse” gases has triggered a continuous 

rise in mean ocean temperature (nowadays increased by 0.76 °C from pre-industrial levels), 

with predictions indicating that temperature may rise up to 4 °C in the sea surface by the end 

of the century (Collins et al., 2013; IPCC, 2014). Additionally, models studying global 
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climate patterns have predicted that the frequency and extent of extreme weather events, 

including drought periods, will increase at a global scale (Pörtner et al., 2014).  

The increase in temperature that exceeds the organism’s thermal tolerance range may 

cause deleterious effects in the organisms (IPCC, 2007; Hofmann and Todgham, 2010). 

Recent studies already demonstrated that seawater warming is expected to induce major 

shifts in species spatial distribution and abundance (Clarke, 2003; Hoffmann et al., 2003; 

Harley et al., 2006). Organisms exposed to warming conditions showed also physiological 

perturbations, such as growth and reproductive patterns (Pörtner et al., 2007; Pörtner and 

Knust, 2007; Santos et al., 2011; Boukadida et al., 2016), as well as biochemical alterations 

(Verlecar et al., 2007; Freitas et al., 2017; Nardi et al., 2017; Velez et al., 2017; Andrade et 

al., 2019). Warming is known to induce the production of reactive oxygen species (ROS) in 

cells and activate the mechanisms of defense, such as superoxide dismutase (SOD), catalase 

(CAT), glutathione peroxidase (GPx), glutathione reductase (GRed) and glutathione S-

transferases (GSTs) (Verlecar et al., 2007). Warming may influence the respiratory and 

aerobic capacity as well as metabolic rate of aquatic organisms (Pörtner et al., 2005; Jansen 

et al., 2009; Pörtner, 2010; Velez et al., 2017). Besides the direct effects of temperature rise 

in aquatic organisms, increased temperature may also change organism’s responses when 

exposed to pollutants, through alterations in biochemical and physiological processes as well 

as pollutants bioavailability and toxicity (Banni et al., 2014; Izagirre et al., 2014; Manciocco 

et al., 2014; Nardi et al., 2017; Coppola et al., 2018). It is known that warming may increase 

the sensibility of organisms to pollutants, for example Coppola et al. (2017; 2018) shown 

that M. galloprovincialis increased the sensitive to mercury (Hg) and arsenic (As) 

respectively, when exposed to increased temperature. Sokolova (2004) demonstrated that 

warming increased the sensitivity of Crassostrea virginica to cadmium. Also, it was already 

reported that warming influences the accumulation of the pollutants, for example Mubiana 

and Blust (2007) showed a higher accumulation of cadmium and lead in M. edulis under 

warming conditions, and Coppola et al. (2018) demonstrated that M. galloprovincialis 

increased the accumulation of As when exposed to increased temperature. 

 

1.2. Mytilus galloprovincialis as bioindicator species 

A biological indicator is an organism (or a community of organisms) which 

represents the impact of environmental pollutants on a habitat, community or ecosystem 
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(Markert et al., 2003). Bioindicators must show wide geographical distribution, display a 

sessile lifestyle or a restricted territory, be easily collected and be well understood in 

biochemical, physiological and biological terms (Lower and Kendall, 1990). Mussels are 

globally used as bioindicators of pollution in coastal environments, since the monitoring 

programme known as ‘mussel watch’ (Kimbrough et al., 2008). In fact, mussels have wide 

distribution, dominate coastal and estuarine communities, accumulate and respond to many 

pollutants, do not show a prolonged handling stress, and many aspects of their biology and 

responses to intrinsic and extrinsic factors are well understood (Livingstone et al., 1989). 

M. galloprovincialis (Lamark, 1819) (Fig. 2), also known as Mediterranean mussel, 

is widely distributed from warm temperate to subpolar areas (Grant and Cherry, 1985), being 

present in intertidal zones to 40 m deep attached to rocks and piers, within sheltered 

harbours, estuaries and on rocky shores (FAO, 2019). This species is native to the 

Mediterranean coasts but has colonised several regions around the globe, such as South 

Africa, Hong Kong, Japan, Korea, Australia, Hawaii, Mexico, California, Washington and 

the west coast of Canada, and it is establishing as an invasive species (Branch and Steffani, 

2004). This species plays a significant ecologic and economic role in marine ecosystems, 

being commonly used as bioindicator (Wang et al., 1996; Viarengo et al., 2007; Banni et al., 

2014). A variety of studies in laboratory conditions worked with this species exposed to a 

combination of pollutants and higher temperature, such as studies conducted by Coppola et 

al. (2018), Andrade et al. (2019), Banni et al. (2014) and Freitas et al. (2019). This species 

is also used in biomonitoring programs to evaluate the distributions and biological effects of 

pollutants (Catsiki and Florou, 2006; Benali et al., 2017; Azizi et al., 2018). 

 

 

 

 

 

 

 

 

 

Fig. 2 Mytilus galloprovincialis (FAO, 2019). 
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1.3. Objectives 

Several studies already revealed the impacts of TiO2 NPs in M. galloprovincialis 

(Canesi et al., 2010; Canesi et al., 2012; Ciacci et al., 2012; Barmo et al., 2013; D’Agata et 

al., 2014; Mezni et al., 2018), but to my knowledge no information is available on the toxic 

effects of rutile and anatase forms on this mussel species. Furthermore, in most of the aquatic 

environments, especially coastal systems, both pollution and climate change related factors 

act in combination, and so it is important to understand how temperature may change the 

effects induced by TiO2 NPs as well as the sensitivity of M. galloprovincialis to this 

pollutant. Therefore, the present study evaluated: i) the impacts induced by different 

concentrations of rutile and anatase NPs in M. galloprovincialis, by measuring 

histopathological and metabolic alterations as well as oxidative and neurotoxic status; ii) the 

impacts of different concentrations of rutile NPs induced in M. galloprovincialis, under 

actual and predicted warming conditions, to understand the effects of predicted temperature 

rise on the toxicity of rutile and sensitivity of mussels to this NP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



11 

 

 

 

 

 

 

Chapter 2 

Materials and Methods 

 

 

 

 

 

 



12 

 

  



13 

 

2. MATERIALS AND METHODS 

2.1. Rutile and Anatase characterization 

In the present study two TiO2 NPs of different morphology were tested: the rutile 

form acquired from Alfa Aesar, and the anatase form, acquired from Merck. The structural 

and microstructural characterization were performed by X-ray diffraction (XRD), and 

scanning electron microscopy (SEM) techniques, respectively (Table 2). The textural 

properties of the samples were achived by -196 °C N2 adsorption-desorption isotherms. XRD 

data were collected with a Phillips X’Pert MPD diffractometer using Cu-Kα radiation. SEM 

images were acquired on a SEM-FEG Hitachi S4100 microscope operated at 15 kV. 

Nitrogen adsorption-desorption isotherms were recorded at -196 °C using a Gemini V 2.00 

instrument model 2380. The samples were dehydrated overnight at 120 °C to an ultimate 

pressure of 1024 mbar and then cooled to room temperature prior to adsorption. 

For particles characterization in the exposure medium, water samples (5 mL each) 

were collected from each aquarium immediately after medium contamination. The 

measurements of the particles was made by Dynamic Light Scattering (DLS) analysis. 

 

2.2. Sampling area 

M. galloprovincialis specimens were collected in September 2018 during low tide in 

the Ria de Aveiro (Fig. 3). Ria de Aveiro is a coastal lagoon located on the northwest coast 

of Portugal, with 10 km wide and 45 km long (Dias et al., 1999; Dias et al., 2000) and it is 

constituted by four main channels: S. Jacinto , Mira, Espinheiro and Ílhavo (Dias et al., 1999; 

Lopes et al., 2013). The average depth is about 1 m, except in navigation channels (15 m 

depth) (Dias et al., 1999; Lopes et al., 2013). This lagoon is separated from the Atlantic 

ocean through an artificial channel, and supplied with freshwater by Antua and Vouga rivers 

(Dias et al., 1999; Dias et al., 2000). Ria de Aveiro is considered one of the most important 

coastal system of Portugal, presenting several biotopes with biological importance, such as 

salt marshes (Sousa et al., 2017). Regarding the benthic community, the most abundant taxa 

found in Ria de Aveiro are annelids followed by bivalves (Quintino et al., 2012). 
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2.3. Experimental conditions 

After sampling, mussels were transported to the laboratory, where they were 

maintained for two weeks in different aquaria for depuration and acclimation to laboratory 

conditions. During this period organisms were maintained in synthetic seawater (salinity 30 

± 1, temperature 18.0 ± 1.0 °C; pH 8.0 ± 0.1), prepared with reverse osmosis water with 

commercial salt (Tropic Marin® SEA SALT). Seawater was renewed every day for the first 

three days and every three days until the end of this period and mussels were fed with 

Algamac protein plus (150,000 cells/animal) three times per week.  

Fig. 3 Sampling area (Google Maps, 2019). 



15 

 

During the experimental exposure (twenty-eight days), mussels were distributed into 

two climatic rooms to maintain organisms at two different temperatures: 18±1 (control) and 

22±1 °C (control + 4 °C, resembling predicted warming conditions). Within each 

temperature mussels were divided into different aquaria, with the following gradient of rutile 

and anatase NPs concentration at 18 °C: CTL (control) 0 µg/L; C1) 5 µg/L; C2) 50 µg/L; 

and C3) 100 µg/L and the same gradient for rutile NPs at 22 °C. Per condition three replicates 

(3 aquaria of 3 L) were used with five mussels per aquaria. Fig. 4 demonstrates the 

experimental setup performed in this study. 

 

 

 

 

 

 

 

 

 

The tested Ti concentrations were selected according to the values reported in 

previous works for pristine and contaminated aquatic systems (Kennedy et al., 1974; Yan et 

al., 1991; Yokoi et al., 1991; Skrabal, 2006; Kiser et al., 2009; Menard et al., 2011; Gondikas 

et al., 2014; Shi et al., 2016). For the exposure assay, TiO2 NPs in a powder form were 

dispersed in ultrapure water using a bath sonicator to obtain stock solution of 60 and 600 

mg/L of Ti. From these dispersions, appropriate contamination ones were prepared so that 

the intended contaminated levels in aquaria were achieved.  

The control temperature (18 °C) was selected considering the average temperature 

measured at the bivalves sampling site. Salinity and pH conditions were the same as those 

used during acclimation and containers were continuously aerated, with a 12 light: 12 dark 

A 

B 

Fig. 4 Experimental setup of this study. A: Control room 18±1 °C; B: Warming room 22±1 °C. 
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photoperiod. Temperature (18±1 or 22±1 °C), pH (8.0± 0.1) and salinity (30 ± 1) were daily 

checked and adjusted if necessary. Mortality was also daily checked. During the entire 

experimental period organisms were fed with Algamac protein plus (150,000 cells/animal) 

three times a week. Seawater was renewed once a week after which Ti concentration was re-

established. Immediately after the rutile and anatase NPs spiking into the water, samples of 

water were collected from each aquarium for further quantification and characterization of 

Ti, aiming to compare real and nominal concentration.  

At the end of the exposure period, with the exception of one mussel per aquarium 

(three per condition) used for histopathological analyses, the remaining organisms were 

frozen with liquid nitrogen and stored at -80 °C. Three frozen mussels per aquarium (nine 

per condition) were homogenized with a mortar and a pestle under liquid nitrogen (Fig. 5). 

Each homogenized organism was divided into 0.5 g fresh weight (FW) aliquots for 

biomarkers analyses and the remaining tissue was used for Ti quantification. 

 

2.4. Titanium quantification in water and mussel’s samples 

For the determination of Ti concentration in water, the samples were stirred and then 

sonicated for 10 min to ensure proper dispersion of the potentially present TiO2 NPs. For the 

digestion 10 mL of reagent mixture (4 mL of sample, 0.5 mL HNO3, 0.1 mL HF and 5.4 mL 

of H2O) were added to Teflon vessels (Fig. 6A). Samples were digested in a CEM MARS 5 

(Fig. 6B) by increasing temperature to 180 °C in 10 min, which was then maintained for 10 

min. After cooling down, the resultant 10 mL of digest was promptly analyzed by inductively 

coupled plasma optical emission spectrometry (ICP-OES) (Fig. 7A). Quality control was 

Fig. 5 Homogenization of mussel’s frozen tissue with liquid nitrogen. 
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kept by blank analysis (0.5 mL HNO3, 0.1 mL HF and 9.4 mL of H2O), which was below 

quantification limit (2 µg/L).  

For the determination of Ti in M. galloprovincialis soft tissues, freeze-dried samples 

of mussel’s (0.2 g) were homogenized and weighted into a Teflon vessel (Fig. 6A) to which 

1 mL HNO3 65% (v/v), 1 mL HF (40%) and 2 mL H2O2 (30%) were added. Samples were 

digested in a CEM MARS 5 (Fig. 6B) using the same procedure as described for water 

samples. After cooling, samples were transferred into 25 mL polyethylene vessels, the 

remaining volume made up with ultrapure water and analyzed by ICP-OES (Fig. 7A). The 

quality control was assured by running procedural blanks (reaction vessels with only reagent 

mixture), certified reference material BCR-060 (Aquatic Plant, Lagarosiphon major) and 

duplicates. Blanks were always below the quantification limits for Ti (2 µg/L and 0.25 

mg/kg). The coefficient of variation of samples duplicates varied from 1 to 22% and mean 

percentage of recovery in BCR-60 was 79 ± 2 %.  

 

 

 

 

 

 

 

 

 

2.4.1. Inductively coupled plasma optical emission spectrometry 

Total Ti concentrations in water samples and M. galloprovincialis soft tissues were 

determined by ICP-OES (Jobin Yvon Activa M.) (Fig. 7A), after microwave-assisted acid 

digestion. In this equipment the samples are normally analyzed in liquid form. The liquid 

sample is aspirated into the nebulizer chamber, where the liquid is converted into an aerosol. 

Then the aerosol is transported to the plasma where it is vaporized, desolvated and atomized, 

as well as excited and/or ionized by the plasma. The excited atoms and ions when return of 

an electron from a higher (excited) state of energy to a state of fundamental energy emit their 

characteristic radiation at different wavelengths. This radiation is detected and turned into 

Fig. 6 A: Teflon vessels; B: CEM MARS 5 microwave. 

A B 
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electronic signals that are converted into concentration of the different elements in the 

samples (Fig. 7B) (Boss and Fredeen, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Histopathological measurements  

Histopathological changes were identified in gills and digestive glands of mussels, 

from each condition. The assessment of histopathological alterations is an important method 

to evaluate the impacts of pollutants in bivalves (Calabrese et al., 1984; Bignell et al., 2011; 

Cuevas et al., 2015). Gills are one of the major target organs for contaminants because they 

are in direct contact with the surrounding environment, playing an important role in 

respiration (Evans, 1987; Au, 2004; Rajalakshmi and Mohandas, 2005). The digestive gland 

of bivalves is the main organ for xenobiotic biotransformation, a mechanism of immune 

defense and homeostatic regulation (Moore and Allen, 2002; Livingstone et al., 2006), being 

also extensively used for toxicity assessment (Bignell et al., 2008; Marigómez et al., 2013).  

After the exposure period, one mussel per aquarium was fixed in Bouin's solution 

(5% of acetic acid, 9% of formaldehyde, 0.9% of picric acid) for 24 h at 4 °C. Subsequently, 

samples were kept in 70-75% ethanol for one month, replacing the ethanol daily until the 

total removal of the fixative (Fig. 8A). After this, a transverse histological sample of 

approximately 1 cm thickness of the anterior part of each organism was excised and samples 

were dehydrated in ethanol (75% for 15 min, 85% for 15 min, 95% for 15 min twice and 

100% for 15 min twice) and placed in xylene for 30 min twice. Afterwards, samples were 

immersed in paraffin (58 °C) in a vacuum stove overnight (Fig. 8B). After this step, paraffin 

Fig. 7 A: ICP-OES used for the quantification of Ti in water and mussel’s samples; B: Representation of the 

layout of a typical ICP-OES instrument (in: Boss and Fredeen, 2004). 

A B 
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was removed and samples were once again embedded in new paraffin for 45 min. This 

procedure was repeated twice. At last, samples were placed in paper molds filled with 

paraffin over night to solidify (Fig. 8C) (D’Aniello et al., 2016, Polese et al., 2016; Zupo et 

al., 2019).  

 

 

Histological sections of 7 μm were cut with a microtome (Fig. 9A) and placed on 

slides covered with glycerin/albumin. For histological staining, the samples were placed in 

xylene for 30 min twice, rehydrated through a descending series of alcohol (100% twice, 

95% twice, 85%, 75% each one during 5 min) and distilled water for 5 min to remove the 

paraffin. Then, half of the sections were stained with hematoxylin for 5 min (to assess tissue 

health), followed by washing in tap water (5 min) and distilled water (rapid passage). After 

this, samples were dehydrated by ascending series of alcohol and xylene and subsequently 

held with permount for their preservation (Fig. 9B) (Polese et al., 2016; Zupo et al., 2019). 

The other half of sections were stained with toluidine blue (0.2% of toluidine blue in sodium 

acetate buffer) for 30 min (to assess the abundance of hemocytes), followed by a rapid 

passage in sodium acetate buffer (pH 4.2), 5 min in molybdate (5%), various passages in 

water and a rapid passage in 100% ethanol, 10 min in xylene twice and held with permount 

(Gabe, 1968). 

Fig. 8 A: Mussels in ethanol 70%; B: Vacuum stove with the samples embedded in paraffin; C: 

Paper molds with samples and paraffin. 

A B C 
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The individual histopathological condition index (Ih) was estimated for gills (Ih G) 

and digestive glands (Ih DG), based on Bernet et al. (1999) and modifications performed by 

Costa et al. (2013). The Ih was calculated following the concepts of the differential biological 

significance of each surveyed alteration (weight) and its degree of dissemination (score) and 

was calculated following the formula: 

 

𝐼ℎ =
∑ 𝑤𝑗𝑎𝑗ℎ
𝑗
1

∑ 𝑀𝑗
𝑗
1

 

 

where Ih is the histophatological index for the individual h; wj the weight of the jth 

histopathological alteration; ajh the score attributed to the hth individual for the jth alteration 

and Mj is the maximum attributable value for the jth alteration. The condition weights 

proposed were based on Costa et al. (2013) and ranges between 1 (minimum severity) and 

3 (maximum severity) while the score ranges between 0 (none) and 6 (diffuse). Weight for 

the histopathological alteration considered in this study are reported in Table 1.  

 

 

 

 

 

 

A B 

Fig. 9 A: Microtome with one sample; B: Slides of samples stained with 

hematoxylin and held with permount. 
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Table 1 Weight for the histopathological alteration (Costa et al., 2013). 

 

  

2.6. Biochemical parameters  

With the purpose to evaluate the biochemical alterations induced in mussels after 

exposure to rutile and anatase NPs and the combinations of rutile NPs and warming, 

biomarkers related to metabolic capacity (electron transport system (ETS) activity), energy 

reserves (content of glycogen (GLY) and total protein (PROT)), oxidative stress (activity of 

antioxidant and biotransformation enzymes (superoxide dismutase (SOD); catalase (CAT); 

glutathione peroxidase (GPx); glutathione reductase (GRed); glutathione S-transferases 

(GSTs)); levels of lipid peroxidation (LPO) and protein carbonylation (PC)); and 

neurotoxicity (acetylcholinesterase (AChE) activity) were assessed.  

The ETS activity has been used to obtain an indication of organisms’ metabolic status 

(De Coen and Janssen, 1997). When organisms are exposed to stressful conditions, they may 

increase metabolism, in this case ETS, in mitochondria, for the maintenance of homeostasis, 

survival and reproduction (Gagné et al., 2006),                                                                                                          

or may decrease or maintain the ETS activity by activating behavioral adaptations as valves 

closure (Gosling, 2003). Usually along with the decrease of ETS activity organisms are able 

to preserve their energy reserves (GLY and PROT) as a defense mechanism. Organisms may 

also decrease the content in GLY and PROT resulting from the expenditure of their energy 

reserves to fuel up defense mechanisms. 

Under stressful conditions organisms, including mussels, normally increase the 

production of reactive oxygen species (ROS) and in order to avoid cellular damages they 

activate their antioxidant defenses, including the activity of the antioxidant enzymes (SOD, 

CAT, GPx and GRed) (Regoli and Giuliani, 2014). Along with the activation of antioxidant 

Tissue Histopathological alteration Weight (w) 

Gills 

Lipofuscin aggregates 1 

Loss of cilia 2 

Enlarged central vessel 1 

Heamocyte infiltration 1 

Digestive tubules 

Lipofuscin aggregates 1 
Heamocyte infiltration 1 

Atrophy 2 
Necrosis 3 



22 

 

defenses, organisms exposed to stress conditions also activate biotransformation enzymes, 

namely glutathione S-transferases (GSTs) (Townsend and Tew, 2003; Sturve et al., 2008). 

Lipid peroxidation (LPO) has been generally used as a biomarker for cell damage 

(Moreira et al., 2016) because when the defense mechanisms are insufficient to protect the 

cells, the lipids of cell membranes are attacked by ROS, promoting an autocatalytic oxidation 

process (Almeida et al., 2007). Also, if defense mechanisms fail, the excess of ROS may 

promote a protein oxidation known as protein carbonylation (PC) (Suzuki et al., 2010). 

The activity of AChE is used as a biomarker of exposure to neurotoxic compounds 

in aquatic organisms. This enzyme is important to the functioning of the neuro–muscular 

system and it is responsible for the degradation of the neural transmitter acetylcholine to 

choline in cholinergic synapses and neuromuscular junctions (Matozzo et al., 2005). 

To guarantee the validity of the results, the determination of the biochemical 

parameters was done in duplicate. For each biomarker, the extraction was performed with 

specific buffers using a proportion of 1:2 (w/v) with the homogenized tissue. For GLY, 

PROT, SOD, CAT, GPx, GRed, GSTs, PC and AChE the supernatants were extracted in 

potassium phosphate buffer (50 mmol/L potassium dihydrogen phosphate; 50 mmol/L 

potassium phosphate dibasic; 1 mmol/L ethylenediamine tetraacetic acid disodium salt 

dihydrate (EDTA); 1% (v/v) Triton X-100; 1% (w/v) polyvinylpyrrolidone (PVP); 1 mmol/L 

dithiothreitol (DTT); pH 7.0). For ETS supernatants were extracted in 0.1 mol/L Tris- HCl 

buffer (pH 8.5, 15% (w/v) PVP, 153 μmol/L magnesium sulfate (MgSO) and 0.2% (v/v) 

Triton X-100). For LPO quantification supernatants were extracted in 20% (w/v) 

trichloroacetic acid (TCA). All samples were sonicated using a TissueLyser II (Qiagen) for 

90 s, after which they were centrifuged for 20 min at 10,000 g (3,000 g for ETS) and 4 °C. 

Supernatants were stored at -80 °C or immediately used. All measurements were done using 

a microplate reader (Biotek). 

 

2.6.1. Metabolic capacity and energy reserves 

The activity of ETS was measured using the method of King and Packard (1975) and 

the modifications implemented by De Coen and Janssen (1997). Absorbance was measured 

at 490 nm during 10 min with intervals of 25 s. The amount of formazan formed was 

calculated using the extinction coefficient (Ɛ) 15,900 (mmol/L)−1 cm−1. The results were 

expressed in nmol per min per g FW. 
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The GLY content was determined following the sulfuric acid method (Dubois et al. 

1956). Glucose standards (0-10 mg/mL) were used to obtain a calibration curve. Absorbance 

was measured at 492 nm, after incubation during 30 min at room temperature, and the results 

were expressed in mg per g FW.  

The PROT content was quantified according to the spectrophotometric Biuret 

method descibed by Robinson and Hogden (1940). Bovine serum albumin (BSA) was used 

as standards in the range 0–40 mg/mL to obtain a calibration curve. Absorbance was 

measured at 540 nm and results were expressed in mg per g FW.  

 

2.6.2. Antioxidant and biotransformation defenses 

The activity of SOD was determined based on the method described by Beauchamp 

and Fridovich (1971) with modifications implemented by Carregosa et al. (2014). SOD 

standards (0.25 - 60 U/mL) were used in order to obtain a calibration curve. Absorbance was 

read at 560 nm after 20 min of incubation at room temperature. Results were expressed in U 

per g FW, where one unit (U) represents the amount of the enzyme that catalyzes the 

conversion of 1 μmol of substrate per min.  

The activity of CAT was quantified according to the Johansson and Borg (1988) 

method. Formaldehyde standards (0 - 150 μmol/L) were used in order to obtain a calibration 

curve. Absorbance was measured at 540 nm and the activity was expressed in U per g FW, 

where U represents the amount of enzyme that caused the formation of 1.0 nmol 

formaldehyde per min. 

The activity of GPx was determined using the method of Paglia and Valentine (1967). 

Absorbance was measured at 340 nm during 5 min in 10 s intervals. The enzymatic activity 

was determined using the extinction coefficient (Ɛ) 6.22 (mmol/L)-1cm−1. The results were 

expressed as U per g FW, where U represents the quantity of enzymes that caused the 

formation of 1.0 μmol NADPH oxidized per min.   

The activity of GRed was quantified following the method described by Carlberg and 

Mannervik (1985). Absorbance was measured at 340 nm and the activity was determined 

using the extinction coefficient (Ɛ) 6.22 (mmol/L)−1 cm−1. The activity was expressed in U 

per g FW, where U represent the enzymes amount that caused the formation of 1.0 μmol 

NADPH oxidized per min.  
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The activity of GSTs was measured following Habig et al. (1974) with adaptations 

performed by Carregosa et al. (2014). Absorbance was measured spectrophotometrically at 

340 nm during 5 min in 10 s intervals. The amount of thioether formed was calculated using 

the extinction coefficient (Ɛ) 9.6 (mmol/L)-1 cm-1. The enzymatic activity was expressed in 

U per g FW, where U is defined as the quantity of enzyme that causes the formation of 1 

μmol of dinitrophenyl thioether per min.   

 

2.6.3. Cellular damage 

Levels of LPO were assessed trough the measurement of malondialdehyde (MDA) 

content, following the method described by Ohkawa et al. (1979). Absorbance was measured 

at 535 nm and the amount of MDA formed was calculated using the extinction coefficient 

(Ɛ) 156 (mmol/L)-1 cm-1. The results were expressed in nmol per g FW. 

Levels of PC were determined based on the reaction between 2,4-

dinitrophenylhydrazine (DNPH) with carbonyl groups, known as DNPH alkaline method 

described by Mesquita et al. (2014). Absorbance was measured at 450 nm and PC levels 

were determined using the extinction coefficient (Ɛ) 0.022 (mmol/L)-1 cm−1. The results were 

expressed in nmol of protein carbonyls groups formed per g FW. 

 

2.6.4. Neurotoxicity 

The activity of AChE was measured using acetylthiocholine iodide (ATChI, 5 

mmol/L) substrates, following the method of Ellman et al. (1961) with alterations performed 

by Mennillo et al. (2017). Enzyme activity was recorded at 412 nm during 5 min and 

expressed in nmol per min per g FW using the extinction coefficient (Ɛ) 13.6x103 (mol/L)-

1cm-1. 

 

2.7. Statistical analyses 

The results were divided in two experimental datasets. In the first dataset rutile and 

anatase exposure conditions at control temperature were examined, and in the second one 

rutile at 18 °C and 22 °C were considered.  

For the first experiment, results on Ti concentrations, histopathological indexes (Ih G 

and Ih DG) and biochemical markers (ETS, PROT, GLY, SOD, CAT, GPx, GRed, GSTs, 
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LPO, PC and AChE) obtained for mussels exposed to rutile and anatase NPs were submitted 

to a statistical hypothesis testing, using permutational analysis of variance, employing the 

PERMANOVA+add-on in PRIMER v6 (Anderson et al., 2008). The pseudo-F p-values in 

the PERMANOVA main tests were evaluated in terms of significance. When significant 

differences were observed in the main test, pairwise comparisons were performed. Values 

lower than 0.05 (p < 0.05) were considered as significantly different. The null hypotheses 

tested were: i) for each TiO2 NPs (rutile or anatase), biological response (histopathological 

and biochemical markers) and Ti concentration in mussels tissues, no significant differences 

existed among exposure concentrations (0, 5, 50 and 100 µg/L), with significant differences 

represented in figures with different lowercase letters for rutile NPs and uppercase letter for 

anatase NPs; ii) for each biological response (histopathological and biochemical marker) and 

Ti concentration in mussels tissues, no significant differences existed between TiO2 NPs 

(rutile and anatase), with significant differences represented in figures with an asterisk.  

For the second experiment, results on Ti concentrations, histopathological indexes 

(Ih G and Ih DG), and biochemical markers (ETS, PROT, GLY, SOD, CAT, GPx, GSTs, LPO 

and AChE) obtained for mussels exposed to rutile at 18 °C and at 22 °C were submitted to a 

statistical hypothesis testing using permutational analysis of variance, employing the 

PERMANOVA+add-on in PRIMER v6 (Anderson et al., 2008). The pseudo-F p-values in 

the PERMANOVA main tests were evaluated in terms of significance. When significant 

differences were observed in the main test, pairwise comparisons were performed. Values 

lower than 0.05 (p < 0.05) were considered as significantly different. The null hypotheses 

tested were: i) for each temperature (18 and 22 °C), biological response (histopathological 

and biochemical markers) and Ti concentration in mussels tissues, no significant differences 

existed among exposure concentrations (0, 5, 50 and 100 µg/L), with significant differences 

represented in figures with different lowercase letters for 18 °C and uppercase letters for 22 

°C; ii) for each biological response (histopathological and biochemical marker) and Ti 

concentration in mussels tissues, no significant differences existed between temperatures (18 

and 22 °C), with significant differences represented in figures with an asterisk.  

For both experimental datasets, the matrix gathering the biological responses 

(histopathological and biochemical markers) and Ti concentrations in mussels tissues was 

used to calculate the Euclidean distance similarity matrix. This similarity matrix was 

simplified through the calculation of the distance among centroids matrix based on the 
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exposure condition, which was then submitted to ordination analysis, performed by Principal 

Coordinates (PCO). Pearson correlation vectors of biological responses and Ti concentration 

in mussels tissues (correlation >0.75) were provided as supplementary variables being 

superimposed on the top of the PCO graph.   
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3. RESULTS 

3.1. Rutile and Anatase nanoparticles 

3.1.1. Rutile and Anatase characterization 

The physical and textural properties of both anatase and rutile samples were studied 

by X-ray diffraction (XRD), scanning electron microscopy (SEM) and -196 °C N2 

adsorption-desorption isotherms. The characterization obtained by SEM showed that both 

TiO2 NPs presented 8 and 3 m2/g for anatase and rutile, respectively of specific surface area 

(SBET). From the XRD analyses it was verified that both samples were monophasic, 

presenting pure anatase (I41/amd) and rutile (P42/mnm) tetragonal phases. The anatase lattice 

parameters were a=b=3.7924 and c=9.5304 Å. The rutile lattice constants were a=b=4.5922 

and c=2.9578 Å. The densities of the anatase and rutile particles were calculated from the 

lattice parameters as 3.38 and 4.27 g/cm3, respectively. The SEM micrographs (not shown) 

demonstrated that the rutile particles were more agglomerated than the anatase ones. The 

diameters of particles measured on SEM micrographs (calculated based in diameter of 45 

particles) were for rutile 694 nm and for anatase 94 nm (Table 2). 

 

Table 2 Summary of structural and morphological features of commercial TiO2 particles. 

Sample 
Crystal system 

(cell parameters) 

oxide
 a)

 

(g.cm
-3

) 

dparBET
b) 

(nm)
 

dparXRD
c) 

(nm) 

dparSEM 
d) 

(nm) 

SBET 

(m
2 ·g

-1
) 

Source 

np-aTO 
Tetragonal (anatase) 

(a=b=3.7924 c=9.5304) 
3.38 186 50 94 8 Merck 

mp-
rTO 

Tetragonal (rutile) 
(a=b=4.5922 c=2.9578) 

4.27 428 - 694e) 3 
Alfa 

Aesar 

a) 
Calculated using the lattice parameters; 

b) 
calculated through the equation:  considering the 

spherical shape of the particles where S
BET corresponds to specific surface area and ρ is the density; 

c) 

crystallite size obtained through the Scherrer equation: where ksf corresponds at 

dimension less shape factor, 
Cu is the wavelength of the X-ray (Cu K radiation,  = 1.5406 Å), FWHM is 

full width of peak at half maximum in radians and  is the Bragg angle; 
d) 

calculated based in diameter of 45 

particles; 
e) 

aggregates. 
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Concerning the particles characterization for both forms of TiO2 NPs in the exposure 

synthetic seawater, it was not possible to detect the particles on the collected water samples.  

 

3.1.2. Titanium concentration in water and mussel’s tissues 

In all the collected water samples Ti concentration was below the detection limit (2 

µg/L).  

Ti concentration in M. galloprovincialis exposed to rutile NPs increased along the 

exposure gradient, with significant differences only at the highest exposure concentration in 

comparison to the remaining conditions (Table 3). Similarly, Ti concentration in mussels 

exposed to anatase NPs significantly increased along the exposure gradient, with 

significantly higher values in organisms exposed to 100 µg/L in comparison to the remaining 

conditions. Comparing Ti concentration in mussels exposed to rutile and anatase NPs, no 

significant differences was observed at each exposure concentration.  

 

 Table 3 Concentrations of Ti (µg/g) in mussel’s soft tissues after 28 days of exposure to each condition of 

rutile and anatase NPs (CTL, 5, 50 and 100 µg/L of Ti). Results are mean ± standard deviation. Significant 

differences (p < 0.05) among conditions are represented with different letters (lowercase letters for rutile 

NPs; uppercase letters for anatase NPs). Significant differences (p < 0.05) between the two forms of TiO2 

NPs at each exposure concentration are represented with an asterisk. 

 

3.1.3. Histopathological parameters 

The exposure to both forms of TiO2 NPs at different concentrations lead to an 

increase of damage severity in gills in a dose dependent manner. In particular, along the 

increasing exposure gradient, gills of M. galloprovincialis exposed to rutile NPs showed a 

progressive increase of lipofuscin aggregates, enlargement of the central vessel and 

hemocytes infiltration (Fig. 10). Similarly, gills of mussels exposed to anatase NPs showed 

 Exposure conditions [Ti] (µg/g) 

 CTL 2.1±0.3 a, A 

Rutile 

5 µg/L 2.4±1.0 a 

50 µg/L 2.5±0.4 a 

100 µg/L 4.5±0.3 b 

Anatase 

5 µg/L 2.3±0.8 A,B 

50 µg/L 2.8±0.2 B 

100 µg/L 5.3±0.7 C 
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a progressive increase of lipofuscin aggregates, enlargement of the central vessel, loss of 

cilia and hemocytes infiltration with the increasing exposure concentration (Fig. 10).  

 

Mussel’s digestive glands (Fig. 11) showed that exposure to rutile NPs lead to an 

increase of accumulation of lipofuscin, atrophy and hemocytes infiltration. In mussels 

exposed to anatase NPs (Fig. 11) an increase of atrophy and hemocytes infiltration was 

observed and lipofuscin aggregates were higher at 5 and 50 µg/L of Ti. No necrosis was 

observed at any concentration for both forms of TiO2 NPs.  

 

 

 

 

 

 

Fig. 10 Micrographs of histopathological alterations observed in the gills of Mytilus galloprovincialis 

exposed to different Ti concentrations of rutile and anatase NPs stained with hematoxylin: lipofuscin 

aggregates (*); enlargement of the central vessel; hemocytes infiltration (circles) and loss of cilia 

(arrows). Scale bar 50 μm. 
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Regarding the Ih of mussel’s gills (Fig. 12A) the values significantly increased along 

the exposure gradient under both forms of TiO2 NPs, with the highest values at the highest 

tested concentrations. No significant differences were observed between rutile and anatase 

NPs for each of the tested concentrations. The Ih regarding digestive gland of mussels 

exposed to rutile NPs (Fig. 12B) significantly increased along the exposure gradient, with 

the highest values at the highest exposure concentration. The Ih regarding the digestive gland 

of mussels exposed to anatase NPs (Fig. 12B) was significantly higher in contaminated 

mussels in comparison to non-contaminated ones. No significant differences were observed 

between rutile and anatase NPS for each of the tested concentrations. 

Fig. 11 Micrographs of histopathological alterations observed in the digestive tubules of Mytilus 

galloprovincialis exposed to different Ti concentrations of rutile and anatase NPs stained with hematoxylin: 

atrophied digestive tubule (at) and lipofuscin accumulation (*). Scale bar 50 μm. 
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3.1.4. Biochemical parameters 

3.1.4.1. Metabolic capacity and energy reserves 

In terms of ETS values, M. galloprovincialis exposed to rutile NPs showed no 

significant differences in comparison to non-contaminated mussels. In organisms exposed 

to anatase NPs significantly higher ETS values were observed at 50 µg/L of Ti in comparison 

Fig. 12 A: Histopathological index in gills (Ih G); B: Histopathological index in digestive tubules (Ih DG), in 

Mytilus galloprovincialis exposed to different Ti concentrations of rutile and anatase NPs. Results are 

mean + standard deviation. Significant differences (p < 0.05) among conditions are represented with 

different letters (lowercase letters for rutile NPs; uppercase letters for anatase NPs). Significant 

differences (p < 0.05) between the two forms of TiO2 NPs at each exposure concentration are represented 

with an asterisk. 
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to mussels under control. No significant differences were observed between rutile and 

anatase NPs for each of the tested concentrations (Fig. 13A). 

In mussels exposed to both tested forms of TiO2 NPs the GLY content was 

significantly higher in contaminated mussels in comparison to non-contaminated ones. No 

significant differences were observed between rutile and anatase NPs for each of the tested 

concentrations (Fig. 13B). 

The PROT content in mussels exposed to rutile NPs was lower in contaminated 

mussels in comparison to non-contaminated ones, with significant differences only between 

organisms under control and exposed to 5 µg/L of Ti. In mussels exposed to anatase NPs 

significantly lower PROT content was showed in organisms exposed to 5 and 100 µg/L of 

Ti in comparison to organisms at control and exposed to 50 µg/L of Ti. No significant 

differences were observed between rutile and anatase NPs for each of the tested 

concentrations (Fig. 13C). 
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Fig. 13 A: Electron transport system activity (ETS), B: Glycogen content (GLY) and C: Protein content 

(PROT), in Mytilus galloprovincialis exposed to different Ti concentrations of rutile and anatase NPs. 

Results are mean + standard deviation. Significant differences (p < 0.05) among conditions are represented 

with different letters (lowercase letters for rutile NPs; uppercase letters for anatase NPs). Significant 

differences (p <0.05) between the two forms of TiO2 NPs at each exposure concentration are represented 

with an asterisk. 
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3.1.4.2. Antioxidant and biotransformation defenses 

In mussels exposed to rutile NPs SOD activity increased at the lowest exposure 

concentration (5 µg/L of Ti) while significantly decreased at 50 and 100 µg/L of Ti. The 

activity of SOD in mussels exposed to anatase NPs significantly increased in mussels 

exposed to 50 µg/L of Ti. Comparing both forms of TiO2 NPs, SOD activity was significantly 

higher in organisms exposed to rutile NPs at 5 µg/L of Ti while an opposite pattern was 

observed at 50 µg/L of Ti (Fig. 14A).  

The activity of CAT showed no significant differences among mussels exposed to 

rutile NPs and non-contaminated mussels. In mussels exposed to anatase NPs significantly 

higher CAT activity was observed at 50 µg/L of Ti. Differences between rutile and anatase 

NPs were only observed in organisms exposed to 50 µg/L of Ti, with the highest activity in 

mussels exposed to anatase (Fig. 14B). 

Mussels exposed to rutile NPs showed significantly higher GPx activity in 

comparison to non-contaminated mussels. Significantly higher GPx activity was observed 

in mussels exposed to anatase NPs at higher exposure concentrations (50 and 100 µg/L of 

Ti). Comparing both forms of TiO2 NPs, significant differences were observed in organisms 

exposed to 5 µg/L of Ti, with the highest activity in mussels exposed to rutile (Fig. 14C).  

The activity of GRed in mussels exposed to rutile NPs was significantly higher at the 

lowest exposure concentration (5 µg/L of Ti) in comparison to mussels at control and 

organisms exposed to 50 µg/L of Ti. The activity of GRed in mussels exposed to anatase 

NPs was significantly higher at 5 µg/L of Ti in comparison to the remaining conditions. 

When comparing rutile and anatase NPs, significant differences were observed in organisms 

exposed to 50 µg/L of Ti, with the highest activity in mussels exposed to anatase (Fig. 14D). 
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Fig. 14 A: Superoxide dismutase activity (SOD); B: Catalase activity (CAT); C: Glutathione peroxidase 

activity (GPx); and D: Glutathione reductase activity (GRed), in Mytilus galloprovincialis exposed to 

different Ti concentrations of rutile and anatase NPs. Results are mean + standard deviation. Significant 

differences (p <0.05) among conditions are represented with different letters (lowercase letters for rutile 

NPs; uppercase letters for anatase NPs). Significant differences (p < 0.05) between the two forms of TiO2 

NPs at each exposure concentration are represented with an asterisk. 
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The activity of GSTs in mussels exposed to rutile NPs was significantly higher at the 

highest exposure concentration (100 µg/L of Ti) while in mussels exposed to anatase NPs 

GSTs activity significantly decreased at higher exposure concentrations (50 and 100 µg/L 

of Ti) in comparison to mussels exposed to control and 5 µg/L of Ti. Comparing both tested 

forms of TiO2 NPs, significant differences were observed in organisms exposed to 50 and 

100 µg/L of Ti, with the highest activity in mussels exposed rutile (Fig. 15). 

 

3.1.4.3. Cellular damage indicators  

Mussels exposed to rutile NPs significantly decrease their LPO levels at the lowest 

exposure concentration in comparison to mussels under control and exposed to 50 µg/L of 

Ti. LPO levels were significantly higher in mussels exposed to anatase NPs in comparison 

to non-contaminated mussels. Significant differences between rutile and anatase NPs were 

observed in contaminated mussels, with the highest values in mussels exposed to anatase 

(Fig. 16A). 

Fig. 15 Glutathione S-transferases activity (GSTs), in Mytilus galloprovincialis exposed to different Ti 

concentrations of rutile and anatase NPs. Results are mean + standard deviation. Significant differences (p 

< 0.05) among conditions are represented with different letters (lowercase letters for rutile NPs; uppercase 

letters for anatase NPs). Significant differences (p < 0.05) between the two forms of TiO2 NPs at each 

exposure concentration are represented with an asterisk. 
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PC levels in mussels exposed to rutile NPs were significantly lower at the lowest 

exposure concentration and significantly higher at the intermediate exposure concentration 

in comparison to control and the highest concentration. PC levels in organisms exposed to 

anatase NPs were significantly lower only at the highest exposure concentration in 

comparison to the remaining conditions. Comparing both forms of TiO2 NPs, the levels of 

PC were significantly higher in organisms exposed to anatase at 5 µg/L of Ti while an 

opposite pattern was observed at 50 and 100 µg/L of Ti (Fig. 16B). 

Fig. 16 A: Lipid peroxidation levels (LPO); B: Protein carbonylation levels (PC), in Mytilus 

galloprovincialis exposed to different Ti concentrations of rutile and anatase NPs. Results are mean + 

standard deviation. Significant differences (p < 0.05) among conditions are represented with different letters 

(lowercase letters for rutile NPs; uppercase letters for anatase NPs). Significant differences (p < 0.05) 

between the two forms of TiO2 NPs at each exposure concentration are represented with an asterisk. 
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3.1.4.4. Neurotoxicity  

In mussels exposed to rutile NPs the activity of AChE significantly increased at 50 

and 100 µg/L of Ti. Mussels exposed to anatase NPs showed significantly higher AChE 

activity in comparison to non-contaminated mussels. Comparing both forms of TiO2 NPs, 

AChE values were significantly higher in mussels exposed to anatase at 5 µg/L of Ti (Fig. 

17). 

 

3.1.5. Multivariate analysis 

Results from the PCO analysis are presented in Fig. 18. The first principal component 

axis (PCO1), which represents 32.3% of the variability, clearly separated organisms exposed 

to control and the lowest Ti concentration for both rutile and anatase (positive side) from 

organisms exposed to higher concentrations of both forms (negative side). PCO2 axis 

explained 24.7% of the variability, separating organisms exposed higher rutile 

concentrations (negative side) from organisms exposed to remaining conditions (positive 

Fig. 17 Acetylcholinesterase activity (AChE), in Mytilus galloprovincialis exposed to different Ti 

concentrations of rutile and anatase NPs. Results are mean + standard deviation. Significant differences (p 

< 0.05) among conditions are represented with different letters (lowercase letters for rutile NPs; uppercase 

letters for anatase NPs). Significant differences (p < 0.05) between the two forms of TiO2 NPs at each 

exposure concentration are represented with an asterisk. 
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side). Ti concentration, histopatological indices, GLY and GPx were the variables best 

correlated with PCO1 negative side (r > 0.75), being associated with 100 µg/L of Ti both for 

rutile and anatase NPs. The variables LPO, ETS and SOD were highly correlated with PCO2 

positive side (r > 0.75), being close related to 50 µg/L of Ti for anatase NPs. 

 

3.2. Rutile nanoparticles and warming conditions 

3.2.1. Rutile characterization 

The structural and microstructural characterization of rutile NPs was verified by 

XRD, -196 °C N2-sorption isotherms and SEM techniques. It was confirmed that the 

particles used presented rutile tetragonal phase with lattice parameters of a=b=4.5922 Å and 

c=2.9578 Å. The density of the NPs was determined from XRD pattern using the lattice 

Fig. 18 Centroids ordination diagram (PCO) based on biochemical descriptors, histopathological indices 

and Ti concentration, measured in Mytilus galloprovincialis exposed to different Ti concentrations of rutile 

(5, 50 and 100 R) and anatase (5, 50 and 100 A) NPs. Pearson correlation vectors are superimposed as 

supplementary variables (r > 0.75): Ti, Ih G; Ih DG; ETS; GLY; PROT; SOD; CAT; GPx; GRed; GSTs; LPO; 

PC; AChE. 
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parameters and had a value of 4.27 g/cm3. The diameter of particles was measured on 45 

particles of the SEM micrographs (not shown) and had an average value of 694 nm. The 

diameter of the particles calculated using the specific surface area (SBET, determined as being 

equal to 3 m2/g) was 428 nm. The difference between the particle diameter calculated from 

the SEM and SBET measurements indicate the agglomeration of the particles (aggregates) 

(Table 2). 

Regarding the particles characterization in the exposure medium, it was not possible 

to detect the particles on the collected water samples.  

 

3.2.2. Ti concentrations in water and mussel’s samples  

In all the collected water samples Ti concentration was below the detection limit (2 

µg/L). 

Under both temperatures, Ti concentration in M. galloprovincialis was significantly 

higher in mussels exposed to the highest concentration (100 µg/L of Ti) (Table 4). When 

comparing temperatures, significant differences were only obtained at the highest tested 

concentration, with higher values at 18 °C. 

 

Table 4 Concentrations of Ti (µg/g) in mussel’s soft tissues after 28 days of exposure to each condition (CTL, 

5, 50 and 100 µg/L of Ti) and both temperatures (18 and 22 °C). Results are mean ± standard deviation. 

Significant differences (p < 0.05) among conditions are represented with different letters (lowercase letters 

for 18 °C; uppercase letters for 22 °C). Significant differences (p < 0.05) between the two temperatures at 

each exposure concentration are represented with an asterisk. 

 

 

Exposure conditions [Ti] (µg/g) 

18 °C 

CTL 2.1±0.3 a 

5 µg/L 2.4±1.0 a 

50 µg/L 2.5±0.4 a 

100 µg/L 4.5±0.3 b* 

22 °C 

CTL 1.8±0.7 A 

5 µg/L 2.3±0.6 A 

50 µg/L 2.2±0.6 A 

100 µg/L 3.3±0.4 B* 
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3.2.3. Histopathological parameters 

Mussel’s gills and digestive glands showed several histopathological alterations that 

were detectable and measurable.  

The present results showed that exposure to rutile NPs at different concentrations leads 

to an increase of damage severity in a dose dependent manner in mussel’s gills under both 

temperatures. At 18 °C, exposed mussel’ gills showed a progressive increase of hemocytes 

infiltration, lipofuscin aggregates and enlargement of the central vessel (Fig. 19). At 22 °C 

there was a progressive increase of hemocytes infiltration and lipofuscin aggregates. Also, 

at increased temperature both the loss of cilia and the enlargement of the central vessel were 

higher at the highest concentration (Fig. 19).  

 

 

Fig. 19 Micrographs of histopathological alterations observed in the gills of Mytilus galloprovincialis 

exposed to different Ti concentrations stained with hematoxylin: lipofuscin aggregates (*); enlargement of 

the central vessel; hemocytes infiltration (circles) and loss of cilia (arrows). Scale bar 50 μm. 

 

The analysis of the digestive gland (Fig. 20) showed that at 18 °C, exposed mussel’s 

digestive glands presented a progressive increase of hemocytes infiltration, atrophy and 
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accumulation of lipofuscin. No necrosis was found at any concentration. At 22 °C there was 

a progressive increase of hemocytes infiltration and atrophy. The necrosis alterations 

appeared at concentrations of 50 and 100 µg/L of Ti (Fig. 20). 

 

 

Fig. 20 Micrographs of histopathological alterations observed in the digestive tubules of Mytilus 

galloprovincialis exposed to different Ti concentrations stained with hematoxylin: atrophied digestive tubule 

(at) and lipofuscin accumulation (*). Scale bar 50 μm. 

 

Under both temperatures, the histopathological index (Ih) obtained for mussel’s gills 

(Fig. 21A) significantly increased along the exposure gradient, with the highest values in 

mussels exposed to the highest concentration. Comparing temperatures, Ih was significantly 

higher at 22 °C in organisms exposed to 50 µg/L of Ti. Under both temperatures the Ih 

obtained for mussel’s digestive gland (Fig. 21B) was significantly higher in rutile NPs 

exposed mussels, with the highest values in mussels exposed to the highest concentration. 

Comparing temperatures, Ih was significantly higher at 22 °C in organisms under control 

condition. 
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Fig. 21 A: Histopathological index in gills (Ih G); B: Histopathological index in digestive tubules (Ih DG), in 

Mytilus galloprovincialis exposed to different Ti concentrations of rutile NPs under different temperatures 

(18 °C and 22 °C). Results are mean + standard deviation. Significant differences (p < 0.05) among 

conditions are represented with different letters (lowercase letters for 18 °C; uppercase letters for 22 °C). 

Significant differences (p < 0.05) between the two temperatures at each exposure concentration are 

represented with an asterisk. 

 

3.2.4. Biochemical parameters 

3.2.4.1. Metabolic capacity and energy reserves 

Under control temperature (18 °C) no significant differences were observed in terms 

of ETS values between contaminated and non-contaminated mussels. At 22 °C significantly 
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higher ETS values were observed in mussels exposed to 5 and 50 µg/L of Ti in comparison 

to mussels and control and the highest exposure concentration (100 µg/L of Ti). Significant 

differences between temperatures were only observed in mussels exposed to the lowest Ti 

concentration (5 µg/L), with the highest values in mussels under increased temperature (Fig. 

22A). 

The GLY content in mussels exposed to 18 °C was significantly higher in 

contaminated mussels in comparison to non-contaminated ones. At warming conditions 

significantly higher values were observed at the highest exposure concentration. No 

significant differences were observed between both temperatures for each of the tested 

concentrations, while in non-contaminated mussels significantly higher GLY content was 

observed in organisms under temperature rise (Fig. 22B). 

In terms of PROT content, under control temperature contaminated mussels tended 

to present lower values than control organisms, but significant differences were only 

observed between control and 5 µg/L exposed organisms. At 22 °C mussels exposed to rutile 

NPs presented significantly lower PROT content in comparison to control organisms. No 

significant differences were observed between temperatures for each of the tested 

concentrations (Fig. 22C). 
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Fig. 22 A: Electron transport system activity (ETS), B: Glycogen content (GLY) and C: Protein content 

(PROT), in Mytilus galloprovincialis exposed to different Ti concentrations of rutile NPs under different 

temperatures (18 °C and 22 °C). Results are mean + standard deviation. Significant differences (p < 0.05) 

among conditions are represented with different letters (lowercase letters for 18 °C; uppercase letters for 22 

°C). Significant differences (p < 0.05) between the two temperatures at each exposure concentration are 

represented with an asterisk. 
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3.2.4.2. Antioxidant and biotransformation defenses 

In comparison to control values, at 18 °C the activity of SOD increased at the lowest 

exposure concentration (5 µg/L of Ti) while significantly decreased at higher exposure 

concentrations (50 and 100 µg/L of Ti). At warming conditions SOD activity significantly 

increased along the exposure gradient, with the highest values in mussels exposed to the 

highest concentration. Comparing temperatures, SOD activity was significantly higher at 18 

°C in organisms exposed to the control and the lowest tested concentration while an opposite 

pattern was observed at higher concentrations (Fig. 23A). 

The activity of CAT showed no significant differences among tested conditions 

under control temperature. At 22 °C contaminated mussels tended to decreased their CAT 

activity with the lowest value in organisms exposed to 50 µg/L of Ti. When comparing 

temperatures significantly higher CAT values were observed in organisms exposed to 5 and 

100 µg/L of Ti at 22 °C (Fig. 23B). 

Under control temperature contaminated mussels showed significantly higher GPx 

activity that non-contaminated mussels. Under increased temperature no significant 

differences were observed among conditions. Differences between temperatures were only 

observed in organisms exposed to 50 µg/L of Ti, with the highest activity at the highest 

temperature (Fig. 23C). 
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Fig. 23 A: Superoxide dismutase activity (SOD); B: Catalase activity (CAT); and C: Glutathione peroxidase 

activity (GPx), in Mytilus galloprovincialis exposed to different Ti concentrations of rutile NPs under 

different temperatures (18 °C and 22 °C). Results are mean + standard deviation. Significant differences (p 

< 0.05) among conditions are represented with different letters (lowercase letters for 18 °C; uppercase 

letters for 22 °C). Significant differences (p < 0.05) between the two temperatures at each exposure 

concentration were represented with an asterisk. 
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Mussels maintained at control temperature showed significantly higher GSTs activity 

at the highest exposure concentration. At increased temperature mussels tended to maintain 

similar GSTS levels, but a significant decrease was observed in organisms exposed to 50 

µg/L of Ti in comparison to the ones exposed to 5 µg/L. Mussels maintained at 18 °C showed 

significantly higher GSTs values, except at 5 µg/L (Fig. 24). 

Fig. 24 Glutathione S-transferases activity (GSTs), in Mytilus galloprovincialis exposed to different Ti 

concentrations of rutile NPs under different temperatures (18 °C and 22 °C). Results are mean + standard 

deviation. Significant differences (p < 0.05) among conditions are represented with different letters 

(lowercase letters for 18 °C; uppercase letters for 22 °C). Significant differences (p < 0.05) between the two 

temperatures at each exposure concentration were represented with an asterisk. 

 

3.2.4.3. Cellular damage  

Organisms under control temperature tended to maintain their LPO levels, with 

significantly lower values only at the lowest exposure concentration in comparison to the 

remaining conditions. At increased temperature contaminated mussels showed lower LPO 

levels than non-contaminated ones, but significant differences to the control were only 

observed at 5 µg/L of Ti. Significantly higher LPO levels were observed in mussels exposed 

to warming conditions in comparison to the ones maintained at 18 °C (Fig. 25). 
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3.2.4.4. Neurotoxicity  

Under control temperature the activity of AChE was significantly increased at 50 and 

100 µg/L of Ti, while at 22 °C no significant differences were observed among conditions. 

Comparing both temperatures, AChE values were significantly higher at 22 °C under control 

and the lowest exposure concentration, and significantly higher at 18 °C under the 

intermediate concentration (Fig. 26). 

Fig. 26 Acetylcholinesterase activity (AChE), in Mytilus galloprovincialis exposed to different Ti 

concentrations of rutile NPs under different temperatures (18 °C and 22 °C). Results are mean + standard 

deviation. Significant differences (p < 0.05) among conditions are represented with different letters 

(lowercase letters for 18 °C; uppercase letters for 22 °C). Significant differences (p < 0.05) between the two 

temperatures at each exposure concentration were represented with an asterisk. 

 

Fig. 25 Lipid peroxidation levels (LPO) in Mytilus galloprovincialis exposed to different Ti concentrations 

of rutile NPs under different temperatures (18 °C and 22 °C). Results are mean + standard deviation. 

Significant differences (p < 0.05) among conditions are represented with different letters (lowercase letters 

for 18 °C; uppercase letters for 22 °C). Significant differences (p < 0.05) between the two temperatures at 

each exposure concentration were represented with an asterisk. 
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3.2.5. Multivariate analysis 

Results from the PCO analysis are presented in Fig. 27. The first principal component 

axis (PCO1), which represents 33.8% of the variability, separated non-contaminated 

organisms (control conditions at both temperatures) and mussels exposed to 5 and 50 µg/L 

under 22 °C in the positive side from the remaining conditions in the negative side. PCO2 

axis explained 29.4% of the variability, clearly separating organisms exposed to the control 

temperature (18 °C) (positive side) from organisms exposed to warming conditions (negative 

side). PROT was positively associated to PCO1 positive axis, while Ti concentration was 

highly correlated with PCO1 negative axis (r > 0.75). CAT and LPO levels were close 

associated with organisms exposed to higher temperature and lower Ti concentrations (5 and 

50 µg/L) while histopathological indices (Ih G and Ih DG), GPx, and GLY were close related 

with organisms exposed to the highest Ti concentration at 22 °C (r > 0.75). GSTs were close 

related to organisms exposed to rutile NPs at 18 °C (r > 0.75). 

Fig. 27 Centroids ordination diagram (PCO) based on biochemical descriptors, histopathological indices 

and Ti concentration, measured in Mytilus galloprovincialis exposed to different Ti concentrations of rutile 

NPs under different temperatures (18 °C and 22 C). Pearson correlation vectors are superimposed as 

supplementary variables (r > 0.75): Ti, Ih G; Ih DG; ETS; GLY; PROT; SOD; CAT; GPx; GRed; GSTs; LPO; 

PC; AChE. 
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4. DISCUSSION 

The present study evaluated the impacts induced by rutile and anatase NPs, as well 

as temperature rise in the species M. galloprovincialis assessing mussel’s Ti 

bioaccumulation, histopathological alterations and biochemical effects, including impacts 

on organisms metabolism, energy reserves, oxidative and neurotoxic status.  

 

4.1. Rutile and Anatase characterization and quantification in water 

samples 

In the present study, it was no possible to characterize and quantify the particles on 

water samples collected from exposure assays, which may be related to the fact that TiO2 

NPs rapidly agglomerates in seawater and tend to precipitate to the bottom of the aquaria. 

Also Canesi et al. (2010) and Zhu et al. (2011) showed that TiO2 NPs form agglomerates in 

artificial seawater and tend to sink rapidly, they correlated this with the high ionic strength 

of the seawater. This happens because with increasing ionic strength the barrier to avoid 

agglomeration decreased (Jiang et al., 2009). Therefore, it was not possible to associate the 

detected differences in terms of biological effects to differences in rutile and anatase 

behaviour in seawater. 

 

4.2. Rutile and Anatase nanoparticles 

The histopathological and biochemical impacts observed in mussels were clearly 

associated with the Ti concentration observed in their soft tissues, which increased along the 

exposure gradient, with the highest impacts and Ti concentrations in mussels at the highest 

tested concentration regardless the TiO2 form (rutile or anatase). Ciacci et al. (2012) showed 

that aggregation increases with increasing concentration and Ward and Kach (2009) 

demonstrated that bivalves more efficiently capture and ingest NPs that are incorporated into 

agglomerates compared to those freely dispersed. So, the present results may indicate that 

higher concentration may result into larger or more aggregates and higher accumulation, 

leading to higher toxicity. 

In detail, histopathological observations confirmed that both forms of TiO2 NPs 

induced alterations in mussel’s gills and digestive tubules. Since gills interact with the 

surrounding environment, they are one of the main target organs for contaminants (Evans, 
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1987; Au, 2004; Rajalakshmi and Mohandas, 2005). In the present study, the exposure to 

rutile and anatase NPs resulted in abundance of lipofuscin aggregates, hemocyte infiltration 

and enlargement of the central vessel. The presence of lipofuscin aggregates was previously 

associated with oxidative stress in bivalves (Livingstone et al., 2006), which is in accordance 

with the present results obtained in mussels exposed to anatase NPs. However, in mussels 

exposed to rutile NPs the appearance of these aggregates was not accompanied by cellular 

damage which may indicate the low toxicity of rutile in terms of biochemical changes and, 

on the other hand, higher responsiveness of mussels in terms of histopathological changes 

towards this TiO2 form. In what regards to hemocytes infiltration these alterations are clearly 

a consequence of mussels exposure to rutile and anatase NPs. Similar alterations were 

already observed by Bignell et al. (2011) and Amachree et al. (2014) in mussels exposed to 

other stressful conditions, namely the presence of pathogens and mercury, respectively. The 

loss of cilia was only observed in mussels exposed to anatase NPs, which again can indicate 

higher toxicity of these NPs in comparison to rutile. According to Pagano et al. (2016), the 

loss of cilia may lead to difficulties in filtering food and breathing problems, highlighting 

possible physiological impairments in mussels exposed to these NPs which can compromise 

mussels growth and reproduction success. Previous studies conducted by D’Agata et al. 

(2014) also showed that mussels suffered histopathological alterations in gills due to 

exposure to ‘bulk’ TiO2 and TiO2 NPs, while Sunila (1988) demonstrate similar impacts due 

to cadmium, copper, lead, cobalt, iron and silver. 

Bivalves’ digestive gland has also been widely used for toxicity evaluation (Bignell 

et al., 2008; Marigómez et al., 2013) because it is the major organ involved in organism’s 

homeostatic regulation, immune defense mechanisms and metabolism (Moore and Allen, 

2002; Livingstone et al., 2006). The results obtained in the present study showed that rutile 

and anatase NPs caused atrophy of this organ that according to Cuevas et al. (2015) 

corresponds to a reduction in the thickness of epithelia followed by the expansion of the 

digestive tubule lumen. Rutile and anatase NPs also caused hemocytes infiltration and 

accumulation of lipofuscin in digestive tubules. Previous studies also demonstrated that 

diamond NPs (Cid et al., 2015), cadmium-based quantum dots (Jimeno-Romero et al., 2019) 

and copper (Calabrese et al., 1984) induced similar histological alterations in bivalves’ 

digestive gland. 
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Regarding mussels biochemical changes, and in particular mussels metabolism, the 

results obtained showed that organisms metabolic capacity was not altered when exposed to 

rutile NPs, which may indicate that the Ti concentrations tested under this form were not 

enough to impact mussel’s metabolism. Other authors also demonstrated that low 

concentrations of mercury and carbon NPs had no effects on mussel’s metabolism (Coppola 

et al., 2017; Andrade et al., 2019). However, when mussels were exposed to anatase NPs an 

increase on their metabolic capacity was observed, especially at intermediate Ti 

concentration, showing that mussels exposed to this TiO2 form were probably trying to 

prevent the effects of Ti, namely activating antioxidant and biotransformation defense 

mechanisms which requires higher metabolic capacity. Similarly, Monteiro et al. (2019b) 

demonstrated that M. galloprovincialis exposed to high concentration of Ti (100 µg/L) 

increased their metabolic capacity. In this way, the present findings may indicate that 

although Ti concentrations were similar in mussels exposed to both TiO2 forms, it seems 

that anatase can induce greater metabolic alterations than rutile. Thus, in accordance to 

published studies and the present findings, it seems that mussel’s metabolic capacity may 

depend on the contaminant type and the concentration tested, with higher concentrations 

exerting higher impacts. 

Regarding mussels energy reserves, the present study demonstrated that organisms 

were able to avoid the expenditure of GLY, regardless the TiO2 form. These results followed 

the ability of mussels to maintain their ETS activity when exposed to rutile NPs, indicating 

that in stressful conditions mussels try to prevent the impacts by limiting their metabolic 

activity and saving GLY expenditure. The ability to maintain the ETS activity followed by 

the increased of GLY content was observed by Coppola et al. (2018) in M. galloprovincialis 

after exposure to arsenic. The results obtained further revealed that the increased of 

metabolic capacity in mussels exposed to anatase NPs was not high enough to lead to the 

expenditure of GLY. Once again, such results may highlight that the Ti concentrations tested 

were not high enough to lead to mussel’s energy reserves expenditure or other energy 

reserves (such as lipids) were used to fuel up defense mechanisms. This pattern was also 

observed by Monteiro et al. (2019b) in M. galloprovincialis after exposure to Ti. 

Nevertheless, in what regards to PROT content, this reserve decreased in mussels exposed 

to rutile and anatase NPs, indicating that organisms were using proteins and were not able 
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to increase their production under the exposure conditions, probably because the stress 

induced was not sufficient to activate the production of enzymes.  

In what regards to oxidative stress, my findings suggest that the activity of 

antioxidant defenses in mussels exposed to rutile NPs were, for most of the enzymes, not 

increased with the increasing exposure concentration, corroborating the hypothesis that the 

conditions tested were not sufficient to induce biochemical changes in mussels, namely 

increase on their antioxidant defenses. Another possibility is that biotransformation 

defenses, namely GSTs enzymes, were involved in cells detoxification from Ti, which was 

noticed at the highest exposure concentration and, for this reason, there was no need for 

antioxidant enzymes activation. The GSTs are an important group of enzymes whose 

function is catalyze the conjugation of a xenobiotic with glutathione (GSH) (Townsend and 

Tew, 2003) as well as inactivate lipid peroxidation products through the use of GSH as a 

reducing agent (Sturve et al., 2008). Previous studies demonstrated the non-activation of 

antioxidant enzymes while GSTs were activated, namely in M. galloprovincialis exposed to 

arsenic (Coppola et al., 2018) and in the same species exposed to silver NPs (Ale et al., 

2019). Nevertheless, in mussels exposed to anatase NPs an opposite behaviour was detected, 

with mussels increasing their antioxidant defenses while decreasing the biotransformation 

defenses (GSTs). These findings may result from the higher ROS production resulting from 

higher toxicity of anatase but also from the activation of mussel’s metabolic capacity, 

assessed by the activity of ETS, since the mitochondrial transport system is one of the main 

ROS generators, leading to the activation of antioxidant enzymes.  

As a consequence of low rutile toxicity, the results obtained revealed low cellular 

damages in mussels exposed to this TiO2 form. Since antioxidant defenses were not 

significantly activated, the present results highlight the low toxicity of rutile NPs as well as 

the efficiency of the biotransformation defense system to detoxify rutile NPs. Nonetheless, 

mussels exposed to anatase NPs suffered cellular damages despite the increase in antioxidant 

defenses. In this case, cellular damages may result from the excessive production of ROS 

and the inefficient ability of mussels to activate GSTs. Similarly, Andrade et al. (2019) also 

demonstrated that M. galloprovincialis exposed to carbon nanotubes lead to cellular 

damages and decreased in GSTs activity. 

Overall, the present study showed that, although at each exposure concentration 

similar Ti concentrations were observed in mussels exposed to both forms, higher metabolic 
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and oxidative stress impacts were caused by anatase. These results are in agreement with 

several studies that already proved that anatase NPs are more toxic than rutile NPs 

(Braydich-Stolle et al., 2009; Zhang et al., 2013), which authors associated with the structure 

and the lower particle size of anatase. In particular, Zhang et al. (2013) demonstrated that 

the 25 nm anatase particles induced the strongest cytotoxicity and oxidative stress, followed 

by 5 and 100 nm anatase particles; in contrast, 100 nm rutile particles induced the lowest 

toxicity. The results showed that the diameters of particles measured on SEM micrographs 

(calculated based in diameter of 45 particles) were 694 nm for rutile and 94 nm for anatase, 

which may explain higher toxicity of anatase. Also Iswarya et al. (2016) demonstrated that 

anatase NPs were highly toxic than rutile NPs under visible irradiation in Ceriodaphnia 

dubia, and also correlated with crystalline form and the aggregation of NPs. 

The present study further revealed that rutile and anatase NPs induced neurotoxicity 

in mussels. The increased in AChE activity is probably due to organisms' attempts to reduce 

neurotransmitter excess in the synaptic clefts (Pan et al., 2012; Rajkumar, 2013). It has been 

reported the increase on AChE activities reflected neurotoxicity of TiO2 NPs in the scallop 

Chlamys farreri (Xia et al., 2017), with higher values in contaminated organisms. 

 

4.3. Rutile nanoparticles and warming conditions 

The present study revealed that differences in Ti concentrations found in mussel’s 

tissues were only observed at the highest exposure concentration, with higher values at lower 

temperature (18 ºC, control). These findings may be explained by Ti behavior at higher 

temperature. Studies conducted by Mikulášek et al. (1997) revealed that the interactive 

forces of TiO2 are affected by temperature, showing that the increase of the temperature 

leads to a reduction of dispersion shear stress of these NPs. The authors explained this effect 

as a result of a decrease in the interactive forces between particles with temperature. For this 

reason, it was expected that at higher temperature higher aggregation occurred which, 

previous studies identified as a factor that contributes to higher accumulation and toxicity. 

In particular, Ward and Kach (2009) demonstrated that bivalves more efficiently capture and 

ingest NPs that are incorporated into agglomerates compared to those freely dispersed. 

However, in the present study higher accumulation was observed at lower temperature 

(smaller particles). Therefore, at higher temperature the lowest accumulation may be 

explained by higher precipitation of larger aggregates limiting the availability and 
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accumulation of the NPs. Canesi et al. (2010) and Zhu et al. (2011) showed that TiO2 NPs 

form aggregates in artificial seawater and thus tend to precipitate rapidly. Therefore, higher 

aggregates at higher temperature may precipitate faster.  

In terms of histopathological impacts, the present study clearly revealed that both 

gills and digestive glands were responsive to rutile NPs, in a dose-dependent response, with 

higher alterations observed at increased temperature (22 °C). In particular, the results 

obtained demonstrated that rutile NPs and temperature induced histopathological alterations 

in gills and digestive tubules of contaminated mussels. Regarding gills, the presence of rutile 

NPs caused mainly hemocyte infiltration which, according to different authors (Bignell et 

al., 2011; Costa et al., 2013; Cuevas et al., 2015; Rocha et al., 2016), are associated with 

inflammatory responses. Also, rutile NPs caused enlargement of the central vessel and 

abundance of lipofuscin aggregates. According to Höhn and Grune (2013), the presence of 

lipofuscin aggregates may indicate oxidative stress in the affected cells, which corroborates 

LPO levels observed in mussels exposed to 22 ºC. On the other hand, at 18 ºC there were no 

evidences of LPO which may show the low toxicity of rutile NPs at control temperature in 

terms of biochemical changes despite the effects in terms of histopathological changes. At 

increased temperature contaminated organisms also evidenced loss of cilia that can lead to 

difficulties in filtering food and breathing problems (Pagano et al., 2016). Therefore, the 

present findings are in line with other studies that already demonstrated histological 

alterations in bivalve’s gills when exposed to pollutants, namely lanthanum (La) (Pinto et 

al., 2019), mercury (Amachree et al., 2014), and ‘bulk’ TiO2 and TiO2 NPs (D’Agata et al., 

2014).  

Regarding digestive tubules, for both temperatures the exposure to rutile NPs caused 

mainly hemocytes infiltration, accumulation of lipofuscin and atrophy that consists in a 

reduction in the thickness of epithelia accompanied by the enlargement of the digestive 

tubule lumen (Cuevas et al., 2015). At 22 °C, mussels exposed to 50 and 100 µg/L of rutile 

NPs showed signs of necrosis that is characterized by cellular rupture (do Amaral et al., 

2019). Similarly, studies assessing impacts of contaminants, such as La (Pinto et al., 2019), 

cadmium-based quantum dots (Rocha et al., 2016) and various metals (cadmium, chromium, 

copper, mercury, nickel, lead, zinc) (Cuevas et al., 2015) demonstrated histological 

alterations in digestive tubules in mussels. 
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The results obtained further evidenced that temperature greatly influenced mussel’s 

biochemical performance, however, the present study also demonstrated that rutile NPs were 

responsible for biochemical alterations in mussels. This response may be related to higher 

Ti bioaccumulation in mussels exposed to the highest exposure concentration. Furthermore, 

temperature influenced the accumulation of Ti in mussel’s tissues, with higher accumulation 

levels at 18 °C. Therefore, differences in mussel’s biochemical responses observed at both 

temperatures may be related to increased sensitivity of organisms to rutile due to temperature 

rise. Previous studies already demonstrated that bivalves increased the accumulation of 

pollutants along an increasing exposure gradient (Velez et al., 2015, 2016) while studies 

with TiO2 demonstrated significantly higher accumulation in mussel’s tissues only at the 

highest exposure concentration (5, 50, 100 µg/L, Monteiro et al., 2019b). Studies assessing 

the impacts of pollutants under warming conditions evidenced contrasting results, with 

higher accumulation levels of arsenic in mussels under increased temperatures (Coppola et 

al., 2018), while triclosan concentrations were higher in mussels exposed to control 

temperature and no temperature effects were noticed on chromium bioaccumulation (Pirone 

et al., 2019). Thus, the present findings and results from studies already published may 

indicate that under temperature rise bioaccumulation of pollutants may differ with the 

pollutant. 

The present results also demonstrated that the effects caused by the presence of rutile 

NPs and temperature seemed to be additive for some of the responses measured, with higher 

impacts in contaminated organisms exposed to warming conditions (22 °C) compared to 

contaminated mussels at control temperature (18 °C). In particular, the metabolic capacity 

of mussels was not altered in organisms exposed to rutile NPs at 18 °C, revealing that the 

concentrations tested were not enough to impact mussel’s metabolism. However, when 

exposed to increased temperature the impacts of the NPs on mussel’s metabolism were 

noticed, especially at 5 and 50 µg/L, evidencing that the toxicity of rutile NPs may be 

enhanced under warming conditions or, on the other hand, the sensitivity of mussels to these 

NPs may increase under higher temperature. Because non-contaminated mussels exposed to 

22 °C did not show any significant alteration on ETS activity compared to non-contaminated 

mussels exposed to 18 °C I may hypothesize that alterations on mussel’s metabolism resulted 

from the increased toxicity of rutile NPs under 22 °C, with mussels increasing their 

metabolic capacity to activate defense mechanisms. These results can indicate that mussels 
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exposed to higher temperature and lower rutile concentrations were able to activate their 

metabolism probably to fight against high stress levels, but with increasing exposure 

concentrations mussels were no longer able to maintain this behaviour. Metabolic depression 

was already described in mussels as a response to pollutants exposure, normally associated 

with bivalve’s capacity to maintain their valves closed and reduce the filtration rate and 

avoid accumulation of xenobiotics. Thus, the present findings are in agreement with previous 

studies also conducted with M. galloprovincialis which demonstrated a metabolic depression 

as a response to the exposure to pollutants, namely Ti (Monteiro et al., 2019a), La (Pinto et 

al., 2019) and gadolinium (Henriques et al., 2019).  

In terms of energy reserves the present study showed that mussels were able to 

preserve the expenditure of GLY, especially noticed at the most stressful conditions (100 

µg/L at both temperatures). These results follow the decreased of ETS activity at 22 °C, 

indicating that higher stressful conditions mussels try to prevent the impacts by limiting their 

metabolic activity and saving GLY. Previous studies already evidenced the capacity of 

bivalves to preserve their energy reserves when under stressful conditions, a behaviour 

normally associated with a decreasing metabolic activity. In particular, Monteiro et al. 

(2019a,b) showed an increase in GLY content in M. galloprovincialis with increasing Ti 

concentration. Also, Duquesne et al. (2004) demonstrated the same pattern in Macoma 

balthica exposed to cadmium.  

However, in what concerns to PROT content the results obtained showed a different 

response, with a tendency to decrease the PROT content with the increase of rutile NPs 

exposure concentration, especially noticed at higher temperature. These findings may 

indicate that mussels were not able to increase the production of proteins under the stress 

conditions, which can point out that the stress induced was not enough to increase the 

production of proteins (namely enzymes) and therefore this energy resource tended to 

decrease, especially at the highest exposure concentration. De Marchi et al. (2018) showed 

a decrease in PROT content in Ruditapes philippinarum exposed to carbon nanotubes. 

In terms of oxidative stress the present results suggest that at 18 °C the activity of 

antioxidant defenses was not activated with the increasing exposure concentration, 

corroborating the hypothesis that the concentrations tested were not enough to activate 

antioxidant defenses, or other mechanisms of defense, such as detoxification mechanisms, 

were enough to prevent impacts especially at higher concentrations. In fact, the limited 
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increase in mussel’s antioxidant defenses could be related to increased activity of their 

detoxification capacity, here evidenced by increased glutathione-S-transferases (GSTs) 

activity, especially at higher rutile concentrations. When exposed to pollutants organisms 

develop mechanisms of defense that are responsible for lowering the stress induced. Such 

mechanisms involve the detoxification of xenobiotic substances as the case of GSTs that 

main function is to catalyse the conjugation of a diverse array of electrophilic compounds 

with glutathione (Regoli and Giulianni, 2014). Coppola et al. (2018) demonstrated that at 

control temperature and in the presence of arsenic the activity of antioxidant defenses (SOD 

and CAT) in M. galloprovincialis were not significantly increased which was associated 

with the capacity of bivalves to activate detoxification mechanisms (GSTs). Also Ale et al. 

(2019) showed that the activity of CAT was not activated in M. galloprovincialis exposed to 

silver NPs while the activity of GSTs was activated. A study conducted by Mezni et al. 

(2018) showed that the activity of SOD was not significantly increased in digestive glands 

of M. galloprovincialis at control temperature exposed to a gradients of TiO2 NPs. Monteiro 

et al. (2019a) demonstrated an increase of GSTs activity with increasing exposure 

concentrations of Ti in M. galloprovincialis. Nevertheless, at higher temperature an opposite 

behaviour was observed, with mussels increasing the activity of SOD with the increase of 

rutile NPs concentration while CAT was inhibited in contaminated organisms. Such findings 

may result from the inefficient capacity of GSTs to detoxify rutile at warming conditions 

which, in turn, resulted into higher stress levels and activation of antioxidant defenses (SOD) 

and inhibition of CAT that could result from extreme stress conditions. It was already 

demonstrated that GSTs may be inhibited in bivalves exposed to warming conditions which 

may result into higher stress levels and inhibition of antioxidant enzymes at extreme 

conditions. Coppola et al. (2018) showed that M. galloprovincialis increased the activity of 

antioxidant defenses when exposed to 1 mg/L of arsenic and under warming conditions. 

Pirone et al. (2019) also demonstrated that the activity of antioxidant defenses was not 

activated in M. galloprovincialis at control temperature exposed to 50 μg/L of lead but at 22 

°C mussels increased the activity of SOD. The inhibition of GSTs was demonstrated by 

Andrade et al. (2019) when exposed M. galloprovincialis to carbon nanotubes under 

warming conditions. 

In what regards to cellular damage, the results here presented showed that no lipid 

peroxidation (LPO) occurred in contaminated mussels at 18 °C evidencing that no cellular 
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damage was observed in mussels exposed to rutile NPs under control temperature, probably 

due to low toxicity of rutile. These results also highlight the efficiency of the 

biotransformation defense system to detoxify rutile NPs. Such response may result from the 

increased capacity of mussels to activate their detoxification mechanisms, preventing 

organisms from cellular damage and oxidative stress. On the other hand, at increased 

temperature cellular damages were observed although antioxidant mechanisms were 

enhanced in contaminated organisms resulting into a general oxidative status in mussels 

exposed to higher temperature and rutile NPs. This situation may also result from the 

inefficient capacity of mussels to activate GSTs and eliminate rutile NPs. Previous studies 

conducted by Coppola et al. (2017, 2018) have already showed that no LPO occurred in 

contaminated mussels (M. galloprovincialis) exposed mercury and arsenic respectively 

during 14 days at control temperature, while under higher temperature (22 °C) LPO levels 

increased. Also Freitas et al. (2017) showed higher LPO levels in M. galloprovincialis 

exposed to mercury under warming conditions compared to control temperature.  

The present study further demonstrated the neurotoxic capacity of rutile NPs at 

control temperature while no changes were observed at warming conditions. Such results 

may indicate that at 18 °C the activity of AChE is enhanced probably because the organisms 

attempt to reduce neurotransmitter excess in the synaptic clefts, which was already showed 

in the bivalve Perna indica exposed to arsenic (Rajkumar, 2013) and in Scrobicularia plana 

exposed to gold nanoparticles (Pan et al., 2012). At higher temperature it seems that the 

effect of temperature overlaps the effect of rutile NPs. It has been reported that TiO2 NPs 

may induced alterations in the nervous system (Skocaj et al., 2011). 
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5. CONCLUSIONS 

This study provides information concerning the potential risk of anatase and rutile 

TiO2 NPs and warming conditions for the aquatic environment and inhabiting organisms, by 

assessing biochemical and histopathological effects in Mytilus galloprovincialis, a species 

with high ecological and economical relevance.  

The most common form of TiO2 is rutile and this study demonstrate that rutile NPs 

induced less biochemical alterations in M. galloprovincialis in comparison to anatase NPs, 

especially in term of oxidative stress. In particular, the increase in cellular damage and 

antioxidant defenses. However, both forms of TiO2 NPs were responsible for Ti 

bioaccumulation as well as histopathological alterations in mussels, in a concentration-

dependent way, with higher injuries identified in mussels exposed to higher Ti 

concentrations, regardless the TiO2 form. From the results obtained it is possible to identify 

that the most sensitive biomarkers for the different NPs were the ETS, representing the 

metabolic capacity, antioxidant defenses (SOD and CAT), biotransformation defenses 

(GSTs) and cellular damage (LPO), because they demonstrated that anatase NPs induce 

higher toxic effect in this species than rutile. 

When organisms are exposed to rutile NPs at two different temperatures, higher toxic 

impacts are revealed under warming conditions in comparison to mussels exposed to rutile 

NPs at control temperature, suggesting that temperature rise may significantly increase the 

sensitivity of bivalves towards pollutants. Such increased under warming conditions can 

result from the inefficient capacity of biotransformation enzymes (GSTs) that under increase 

temperature were inhibited. The most sensitive biomarkers for temperature were the ETS, 

SOD, GSTs, LPO and AChE, since they showed that warming increased the toxicity of rutile 

NPs. 

In future works it is important to investigate the effects of anatase NPs in combination 

with warming and the combination of both forms of TiO2 NPs, as well as the NPs under 

other climate stressors, such as pH and salinity variations. 

It is possible to conclude that both TiO2 forms may generate ecological and socio-

economic consequences, such as mussels reproductive and feeding capacity, growth and, 

consequently, mussels heath and survival, which may eventually result in biodiversity loss 

and socio-economic impacts in cultures of this species.  



68 

 

 

 

 

  



69 

 

 

 

 

 

 

Chapter 6 

References 

 

 

 

 

 

 



70 

 

 

 

  



71 

 

6. REFERENCES 

Abdel-Maksoud, Y.K., Imam, E., Ramadan, A.R. (2018). TiO2 water-bell photoreactor for 

wastewater treatment. Solar Energy, 170: 323–335.  

Ale, A., Liberatori, G., Vannuccini, M.L., Bergami, E., Ancora, S., Mariotti, G., Bianchi., 

N., Galdopórpora, J.M., Desimone, M.F., Cazenave, J., Corsi, I. (2019). Exposure to a 

nanosilver-enabled consumer product results in similar accumulation and toxicity of 

silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquatic 

Toxicology, 211: 46–56.  

Allen, N.S., Edge, M., Verran, J., Caballero, L., Abrusci, C., Stratton, J., Maltby, J., Bygott, 

C. (2010). Photocatalytic surfaces: environmental benefits of nanotitania. The Open 

Materials Science Journal, 3: 6–27.  

Almeida, E., Bainy, A.C.D., Loureiro, A.P.M., Martinez, G.R., Miyamoto, S., Onuki, J., 

Barbosa, L.F., Garcia, C.C.M., Prado, F.M., Ronsein, G.E., Sigolo, C.A., Brochini, 

C.B., Martins, A.M.G., Medeiros, M.H.G.M., Di Mascio, P. (2007). Oxidative stress in 

Perna perna and other bivalves as indicators of environmental stress in the Brazilian 

marine environment: Antioxidants, lipid peroxidation and DNA damage. Comparative 

Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146: 588–

600.  

Amachree, D., Moody, A.J., Handy, R.D. (2014). Comparison of intermittent and continuous 

exposures to inorganic mercury in the mussel, Mytilus edulis: Accumulation and sub-

lethal physiological effects. Ecotoxicology and Environmental Safety, 109: 133–142.  

Amorim, S.M., Suave, J., Andrade, L., Mendes, A.M., José, H.J., Moreira, R.F.P.M. (2018). 

Towards an efficient and durable self-cleaning acrylic paint containing mesoporous 

TiO2 microspheres. Progress in Organic Coatings, 118: 48–56.  

Amtout, A., Leonelli, R. (1995). Optical properties of rutile near its fundamental band gap. 

Physical Review B, 51(11): 6842–6851.  

Anderson, M.J., Gorley, R.N., Clarke, K.R. (2008). PERMANOVA+ for PRIMER: Guide 

to Software and Statistical Methods. PRIMER-E, Plymouth. 



72 

 

Andrade, M., De Marchi, L., Soares, A.M.V.M., Rocha, R.J.M., Figueira, E., Freitas, R. 

(2019). Are the effects induced by increased temperature enhanced in Mytilus 

galloprovincialis submitted to air exposure? Science of the Total Environment, 647: 

431–440.  

Angel, M.V. (1991). Variations in time and space: is biogeography relevant to studies of 

long-time scale change? Journal of the Marine Biological Association of the United 

Kingdom, 71(1): 191–206.  

Artifon, V., Zanardi-Lamardo, E., Fillmann, G. (2019). Aquatic organic matter: 

Classification and interaction with organic microcontaminants. Science of The Total 

Environment, 649: 1620–1635.  

Au, D.W.T. (2004). The application of histo-cytopathological biomarkers in marine 

pollution monitoring: a review. Marine Pollution Bulletin, 48(9–10): 817–834.  

Azizi, G., Layachi, M., Akodad, M., Yáñez-Ruiz, D. R., Martín-García, A. I., Baghour, M., 

Mesfioui, A., Skalli, A., Moumen, A. (2018). Seasonal variations of heavy metals 

content in mussels (Mytilus galloprovincialis) from Cala Iris offshore (Northern 

Morocco). Marine Pollution Bulletin, 137: 688–694.  

Baalousha, M., Stolpe, B., Lead, J. R. (2011). Flow field-flow fractionation for the analysis 

and characterization of natural colloids and manufactured nanoparticles in 

environmental systems: A critical review. Journal of Chromatography A, 1218(27): 

4078–4103.  

Banerjee, S., Dubey, S., Gautam, R.K., Chattopadhyaya, M.C., Sharma, Y.C. (2017). 

Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, 

Orange G from aqueous solutions. Arabian Journal of Chemistry, In Press.  

Banni, M., Hajer, A., Sforzini, S., Oliveri, C., Boussetta, H., Viarengo, A. (2014). 

Transcriptional expression levels and biochemical markers of oxidative stress in 

Mytilus galloprovincialis exposed to nickel and heat stress. Comparative Biochemistry 

and Physiology Part C: Toxicology & Pharmacology, 160: 23–29.  

Barbosa, J.S., Neto, D.M.A., Freire, R.M., Rocha, J.S., Fechine, L.M.U.D., Denardin, J.C., 

Valentini, A., de Araújo, T.G., Mazzetto, S.E., Fechine, P.B.A. (2018). Ultrafast 



73 

 

sonochemistry-based approach to coat TiO2 commercial particles for sunscreen 

formulation. Ultrasonics Sonochemistry, 48: 340–348.  

Barmo, C., Ciacci, C., Canonico, B., Fabbri, R., Cortese, K., Balbi, T., Marcomini, A., 

Pojana, G., Gallo, G., Canesi, L. (2013). In vivo effects of n-TiO2 on digestive gland 

and immune function of the marine bivalve Mytilus galloprovincialis. Aquatic 

Toxicology, 132–133: 9–18.  

Barreto, A., Luis, L.G., Pinto, E., Almeida, A., Paíga, P., Santos, L.H.M.L.M., Delerue-

Matos, C., Trindade, T., Soares, A.M.V.M., Hylland, K., Loureiro, S., Oliveira, M. 

(2019). Effects and bioaccumulation of gold nanoparticles in the gilthead seabream 

(Sparus aurata) – Single and combined exposures with gemfibrozil. Chemosphere, 

215: 248–260.  

Batley, G.E., Kirby, J.K., McLaughlin, M.J. (2013). Fate and Risks of Nanomaterials in 

Aquatic and Terrestrial Environments. Accounts of Chemical Research, 46(3): 854–

862.  

Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay 

applicable to acrylamide gels. Analytical Biochemistry, 44 (1): 276–287.  

Benali, I., Boutiba, Z., Grandjean, D., de Alencastro, L.F., Rouane-Hacene, O., Chèvre, N. 

(2017). Spatial distribution and biological effects of trace metals (Cu, Zn, Pb, Cd) and 

organic micropollutants (PCBs, PAHs) in mussels Mytilus galloprovincialis along the 

Algerian west coast. Marine Pollution Bulletin, 115(1–2): 539–550.  

Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., Wahli, T. (1999). Histopathology 

in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22: 

25–34.  

Bignell, J.P., Dodge, M.J., Feist, S.W., Lyons, B., Martin, P.D., Taylor, N.G.H., Stone, D., 

Travalent, L., Stentiford, G.D. (2008). Mussel histopathology: Effects of season, 

disease and species. Aquatic Biology, 2(1): 1–15.  

Bignell, J.P., Stentiford, G.D., Taylor, N.G.H., Lyons, B.P. (2011). Histopathology of 

mussels (Mytilus sp.) from the Tamar estuary, UK. Marine Environmental Research, 

72(1–2): 25–32.  



74 

 

Boss, C.B., Fredeen, K.J. (2004). ICP-OES instrumentation. In: Concepts, instrumentation 

and techniques in inductively coupled plasma optical emission spectrometry. Third 

Edition. PerkinElmer, 2–35.  

Boukadida, K., Banni, M., Gourves, P.Y., Cachot, J. (2016). High sensitivity of embryo-

larval stage of the Mediterranean mussel, Mytilus galloprovincialis to metal pollution 

in combination with temperature increase. Marine Environmental Research, 122: 59–

66.  

Branch, G.M., Steffani, C.N. (2004). Can we predict the effects of alien species? A case-

history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). Journal 

of Experimental Marine Biology and Ecology, 300: 189–215.  

Brar, S.K., Verma, M., Tyagi, R.D., Surampalli, R.Y. (2010). Engineered nanoparticles in 

wastewater and wastewater sludge – Evidence and impacts. Waste Management, 30(3): 

504–520.  

Braydich-Stolle, L.K., Schaeublin, N.M., Murdock, R.C., Jiang, J., Biswas, P., Schlager, J.J., 

Hussain, S.M. (2009). Crystal structure mediates mode of cell death in TiO2 

nanotoxicity. Journal of Nanoparticle Research, 11(6): 1361–1374.  

Cai, Y., Li, C., Wu, D., Wang, W., Tan, F., Wang, X., Wong, P.K., Qiao, X. (2017). Highly 

active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal 

removal from aqueous solution. Chemical Engineering Journal, 312: 158–166.  

Calabrese, A., MacInnes, J.R., Nelson, D.A., Greig, R.A., Yevich, P.P. (1984). Effects of 

long-term exposure to silver or copper on growth, bioaccumulation and histopathology 

in the blue mussel Mytilus edulis. Marine Environmental Research, 11(4): 253–274.  

Caldeira, K., Wickett, M.E. (2003). Anthropogenic carbon and ocean pH. Nature, 425: 365.  

Canesi, L., Ciacci, C., Fabbri, R., Marcomini, A., Pojana, G., Gallo, G. (2012). Bivalve 

molluscs as a unique target group for nanoparticle toxicity. Marine Environmental 

Research, 76: 16–21.  

Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A., Pojana, G. (2010). Biomarkers 

in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano 

carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquatic Toxicology, 100(2): 

168–177.  



75 

 

Carlberg, I., Mannervik, B. (1985). Glutahione reductase. Methods Enzymol, 113: 484–490. 

Carregosa, V., Figueira, E., Gil, A.M., Pereira, S., Pinto, J., Soares, A.M.V.M., Freitas, R. 

(2014). Tolerance of Venerupis philippinarum to salinity: Osmotic and metabolic 

aspects. Comparative Biochemistry and Physiology Part A: Molecular & Integrative 

Physiology, 171: 36–43.  

Casse, M., Montero-Serrano, J.C., St-Onge, G., Poirier, A. (2019). REE distribution and Nd 

isotope composition of estuarine waters and bulk sediment leachates tracing lithogenic 

inputs in eastern Canada. Marine Chemistry, 211: 117–130.  

Catsiki, V.-A., Florou, H. (2006). Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, 

Fe, Mn and 137Cs in an estuarine ecosystem using Mytilus galloprovincialis as a 

bioindicator species: the case of Thermaikos gulf, Greece. Journal of Environmental 

Radioactivity, 86(1): 31–44.  

Cho, W.S., Kang, B.C., Lee, J.K., Jeong, J., Che, J.H., Seok, S.H. (2013). Comparative 

absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles 

after repeated oral administration. Particle and Fibre Toxicology, 10: 9.  

Ciacci, C., Canonico, B., Bilaniĉovă, D., Fabbri, R., Cortese, K., Gallo, G., Marcomini, A., 

Pojana, G., Canesi, L. (2012). Immunomodulation by different types of N-Oxides in 

the hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS ONE, 7(5): 

e36937.  

Cid, A., Picado, A., Correia, J.B., Chaves, R., Silva, H., Caldeira, J., de Matos, A.P.A., Diniz, 

M.S. (2015). Oxidative stress and histological changes following exposure to diamond 

nanoparticles in the freshwater Asian clam Corbicula fluminea (Müller, 1774). Journal 

of Hazardous Materials, 284: 27–34.  

Clarke, A. (2003). Costs and consequences of evolutionary temperature adaptation. Trends 

in Ecology & Evolution, 18(11): 573–581.  

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, 

X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., 

Wehner, M. (2013). Long-term Climate Change: Projections, Commitments and 

Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 



76 

 

Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., 

Boschung, J., Nauels, A., Xia, Y., Bex, V. Midgley, P.M. (eds.)]. Cambridge University 

Press, Cambridge, United Kingdom and New York, NY, USA. 

Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. 

Nature Biotechnology, 21: 1166–1170.  

Coppola, F., Almeida, Â., Henriques, B., Soares, A.M.V.M., Figueira, E., Pereira, E., 

Freitas, R. (2017). Biochemical impacts of Hg in Mytilus galloprovincialis under 

present and predicted warming scenarios. Science of the Total Environment, 601–602: 

1129–1138.  

Coppola, F., Almeida, Â., Henriques, B., Soares, A.M.V.M., Figueira, E., Pereira, E., 

Freitas, R. (2018). Biochemical responses and accumulation patterns of Mytilus 

galloprovincialis exposed to thermal stress and Arsenic contamination. Ecotoxicology 

and Environmental Safety, 147: 954–962.  

Coppola, F., Tavares, D.S., Henriques, B., Monteiro, R., Trindade, T., Soares, A.M.V.M., 

Figueira, E., Polese, G., Pereira, E., Freitas, R. (2019). Remediation of arsenic from 

contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological 

evaluation in Mytilus galloprovincialis. Environmental Research, 175: 200–212.  

Costa, P.M., Carreira, S., Costa, M.H., Caeiro, S. (2013). Development of histopathological 

indices in a commercial marine bivalve (Ruditapes decussatus) to determine 

environmental quality. Aquatic Toxicology, 126: 442–454.  

Cuevas, N., Zorita, I., Costa, P.M., Franco, J., Larreta, J. (2015). Development of 

histopathological indices in the digestive gland and gonad of mussels: Integration with 

contamination levels and effects of confounding factors. Aquatic Toxicology, 162: 

152–164.  

Cui, S., Yang, L., Wang, J., Wang, X. (2016). Fabrication of a sensitive gas sensor based on 

PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in 

food storage. Sensors and Actuators B: Chemical, 233: 337–346.  

D’Agata, A., Fasulo, S., Dallas, L.J., Fisher, A.S., Maisano, M., Readman, J.W., Jha, A.N. 

(2014). Enhanced toxicity of ‘bulk’’ titanium dioxide compared to “fresh’’ and “aged’’ 



77 

 

nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology, 8(5): 549–

558.  

Dame, R.F. (2008). Estuaries. In Encyclopedia of Ecology (Second Edition), 2: 484–490. 

Chichester, UK: Elsevier.  

D’Aniello, B., Polese, G., Luongo, L., Scandurra, A., Magliozzi, L., Aria, M., Pinelli, C. 

(2016). Neuroanatomical relationships between FMRFamide-immunoreactive 

components of the nervus terminalis and the topology of olfactory bulbs in teleost fish. 

Cell and Tissue Research, 364(1): 43–57.  

Dauvin, J.-C., Ruellet, T. (2009). The estuarine quality paradox: Is it possible to define an 

ecological quality status for specific modified and naturally stressed estuarine 

ecosystems? Marine Pollution Bulletin, 59(1–3): 38–47.  

Dayton, P., Curran, S., Kitchingman, A., Wilson, M., Catenazzi, A., Birkeland, C., Blaber, 

S., Saifullah, S., Branch, G., Boersma, D., Nixon, S., Dugan, P., Davidson, N.,n 

Vörösmarty, C. (2005). Coastal systems. In: Ecosystems and Human Well-being: 

Current State and Trends, 513–549. 

De Coen, W., Janssen, C.R. (1997). The use of biomarkers in Daphnia magna toxicity 

testing. IV.Cellular Energy Allocation: a new methodology to assess the energy budget 

of toxicant-stressed Daphnia populations. Journal of Aquatic Ecosystem Stress and 

Recovery, 6(1): 43–55.  

de la Calle, I., Menta, M., Klein, M., Séby, F. (2017). Screening of TiO2 and Au 

nanoparticles in cosmetics and determination of elemental impurities by multiple 

techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES). Talanta, 171: 291–306.  

De Marchi, L., Neto, V., Pretti, C., Chiellini, F., Morelli, A., Soares, A. M. V. M., Figueira, 

E., Freitas, R. (2019a). The influence of Climate Change on the fate and behavior of 

different carbon nanotubes materials and implication to estuarine invertebrates. 

Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 219: 

103–115.  

De Marchi, L., Neto, V., Pretti, C., Figueira, E., Chiellini, F., Morelli, A., Soares, A.M.V.M., 

Freitas, R. (2018). Toxic effects of multi-walled carbon nanotubes on bivalves: 



78 

 

Comparison between functionalized and nonfunctionalized nanoparticles. Science of 

the Total Environment, 622–623: 1532–1542.  

De Marchi, L., Pretti, C., Chiellini, F., Morelli, A., Neto, V., Soares, A.M.V.M., Figueira, 

E., Freitas, R. (2019b). The influence of simulated global ocean acidification o--+’n the 

toxic effects of carbon nanoparticles on polychaetes. Science of The Total 

Environment, 666: 1178–1187.  

Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., Laffont-Schwob, I. (2018). 

Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the 

Mediterranean aquatic environment? Science of The Total Environment, 639:1334–

1348.  

Dey, C., Baishya, K., Ghosh, A., Goswami, M.M., Ghosh, A., Mandal, K. (2017). 

Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt 

ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 427: 168–174.  

Dias, J.M., Lopes, J., Dekeyser, I. (1999). Hydrological characterisation of Ria de Aveiro, 

Portugal, in early summer. Oceanologica Acta, 22(5): 473–485.  

Dias, J.M., Lopes, J.F., Dekeyser, I. (2000). Tidal propagation in Ria de Aveiro lagoon, 

Portugal. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and 

Atmosphere, 25(4): 369–374.  

do Amaral, Q.D.F., Da Rosa, E., Wronski, J.G., Zuravski, L., Querol, M.V.M., dos Anjos, 

B., de Andrade, C.F.F., Machado, M.M., de Oliveira, L.F.S. (2019). Golden mussel 

(Limnoperna fortunei) as a bioindicator in aquatic environments contaminated with 

mercury: Cytotoxic and genotoxic aspects. Science of The Total Environment, 675: 

343–353.  

Dorier, M., Béal, D., Tisseyre, C., Marie-Desvergne, C., Dubosson, M., Barreau, F., 

Houdeau, E., Herlin-Boime, N., Rabilloud, T., Carriere, M. (2019). The food additive 

E171 and titanium dioxide nanoparticles indirectly alter the homeostasis of human 

intestinal epithelial cells in vitro. Environmental Science: Nano, 6(5): 1549–1561.  

 



79 

 

Dubois, M., Gilles, K.A., Hamilton, J.K.J., Rebers, P.A., Smith, F. (1956). Colorimetric 

method for determination of sugars and related substances. Analytical Chemistry, 28 

(3): 350–356.  

Duquesne, S., Liess, M., Bird, D.J. (2004). Sub-lethal effects of metal exposure: 

Physiological and behavioural responses of the estuarine bivalve Macoma balthica. 

Marine Environmental Research, 58(2–5): 245–250.  

Elderfield, H., Upstill-Goddard, R., Sholkovitz, E. R. (1990). The rare earth elements in 

rivers, estuaries, and coastal seas and their significance to the composition of ocean 

waters. Geochimica et Cosmochimica Acta, 54(4): 971–991.  

Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M. (1961). A new and rapid 

colorimetric determination of acetylcholinesterase activity. Biochemical 

Pharmacology, 7(2): 88–95.  

Evans, D.H. (1987). The fish gill: site of action and model for toxic effects of environmental 

pollutants. Environmental Health Perspectives, 71: 47–58.  

Fadeel, B., Garcia-Bennett, A.E. (2010). Better safe than sorry: Understanding the 

toxicological properties of inorganic nanoparticles manufactured for biomedical 

applications. Advanced Drug Delivery Reviews, 62(3): 362–374.  

FAO, Food and Agriculture Organization of the United Nations. (1998). Integrated coastal 

area management and agriculture, forestry and fisheries. FAO guidelines. Rome. 

FAO, Food and Agriculture Organization of the United Nations (2019). Species Facts 

Sheets: Mytilus galloprovincialis (Lamarck, 1819). In: FAO Fisheries and Aquaculture 

Department [online]. Rome. 

Fernández-Rubio, J., Rodríguez-Gil, J.L., Postigo, C., Mastroianni, N., López de Alda, M., 

Barceló, D., Valcárcel, Y. (2019). Psychoactive pharmaceuticals and illicit drugs in 

coastal waters of North-Western Spain: Environmental exposure and risk assessment. 

Chemosphere, 224: 379–389.  

Freitas, R., Coppola, F., Costa, S., Pretti, C., Intorre, L., Meucci, V., Soares, A.M.V.M., 

Solé, M. (2019). The influence of temperature on the effects induced by Triclosan and 

Diclofenac in mussels. Science of The Total Environment, 663: 992–999.  

 



80 

 

Freitas, R., Coppola, F., Henriques, B., Wrona, F., Figueira, E., Pereira, E., Soares, 

A.M.V.M. (2017). Does pre-exposure to warming conditions increase Mytilus 

galloprovincialis tolerance to Hg contamination? Comparative Biochemistry and 

Physiology Part C: Toxicology & Pharmacology, 203: 1–11.  

Gabe, M. (1968). Metachromacity of products of secretion rich in cystine after oxidation by 

certain peracids. Comptes Rendus des Séances de l’Académie des Sciences. Série D: 

Seances Naturelles, 267(6): 666-668. 

Gagné, F., Blaise, C., Fournier, M., Hansen, P.D. (2006). Effects of selected pharmaceutical 

products on phagocytic activity in Elliptio complanata mussels. Comparative 

Biochemistry and Physiology Part C: Toxicology & Pharmacology, 143(2): 179-86.  

Gambardella, C., Morgana, S., Bari, G. Di, Ramoino, P., Bramini, M., Diaspro, A., Falugi, 

C., Faimali, M. (2015). Multidisciplinary screening of toxicity induced by silica 

nanoparticles during sea urchin development. Chemosphere, 139: 486–495.  

Gao, W., Wang, W., Yao, S., Wu, S., Zhang, H., Zhang, J., Jing, F., Mao, H., Jin, Q., Cong, 

H., Jia, C., Zhang, G., Zhao, J. (2017). Highly sensitive detection of multiple tumor 

markers for lung cancer using gold nanoparticle probes and microarrays. Analytica 

Chimica Acta, 958: 77–84.  

Gao, Y., Zhou, C., Gaulier, C., Bratkic, A., Galceran, J., Puy, J., Zhang, H., Leermakers, M., 

Baeyens, W. (2019). Labile trace metal concentration measurements in marine 

environments: From coastal to open ocean areas. TrAC Trends in Analytical Chemistry, 

116, 92–101.  

Gondikas, A.P., Kammer, F. von der, Reed, R.B., Wagner, S., Ranville, J.F., Hofmann, T. 

(2014). Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-

Year Survey at the Old Danube Recreational Lake. Environmental Science & 

Technology 48(10): 5415–5422.  

Gong, X.-Q., Selloni, A. (2007). First-principles study of the structures and energetics of 

stoichiometric brookite TiO2 surfaces. Physical Review B, 76: 235307.  

Google Maps. (2019). Accessed July 2019. Available at: https://www.google.com/maps 

Gosling, E. (2003). Circulation, respiration, excretion and osmoregulation. In: Bivalve 

Molluscs: Biology, Ecology and Culture. Blackwell Publishing, 201-225. 

https://www.google.com/maps


81 

 

Gottschalk, F., Nowack, B. (2011). The release of engineered nanomaterials to the 

environment. Journal of Environmental Monitoring, 13(5): 1145–1155.  

Grant, W.S., Cherry, M.I. (1985). Mytilus galloprovincialis Lmk. in Southern Africa. Journal 

of Experimental Marine Biology and Ecology, 90: 179–191.  

Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414: 338–344.  

Guzman, K.A.D., Finnegan, M.P., Banfield, J.F. (2006). Influence of surface potential on 

aggregation and transport of titania nanoparticles. Environmental Science & 

Technology, 40(24): 7688–7693.  

Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974). Glutathione S-Transferases. The fist 

enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 

249(22): 7130–7139. 

Harley, C.D.G., Hughes, A.H., Hultgren, K.M., Miner, B.G., Sorte, C.J.B., Thornber, C.S., 

Rodriguez, L.F., Tomanek, L., Williams, S.L. (2006). The impacts of climate change 

in coastal marine systems. Ecology Letters, 9(2), 228–241.  

Henriques, B., Coppola, F., Monteiro, R., Pinto, J., Viana, T., Pretti, C., Soares, A., Freitas, 

R., Pereira, E. (2019). Toxicological assessment of anthropogenic Gadolinium in 

seawater: Biochemical effects in mussels Mytilus galloprovincialis. Science of the 

Total Environment, 664: 626–634.  

Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. (1995). Environmental 

Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1): 69–96.  

Hoffmann, A.A., Sørensen, J.G., Loeschcke, V. (2003). Adaptation of Drosophila to 

temperature extremes: Bringing together quantitative and molecular approaches. 

Journal of Thermal Biology, 28(3): 175–216.  

Hofmann, G.E., Todgham, A.E. (2010). Living in the Now: Physiological Mechanisms to 

Tolerate a Rapidly Changing Environment. Annual Review of Physiology, 72: 127–

145.  

Höhn, A., Grune, T. (2013). Lipofuscin: Formation, effects and role of macroautophagy. 

Redox Biology, 1(1): 140–144.  



82 

 

Hood, E. (2004). Nanotechnology: Looking As We Leap. Environmental Health 

Perspectives, 112(13).  

Hosseinzadeh, F., Shirazian, F., Shahsavari, R., Khoei, A.R. (2016). Local density variation 

of gold nanoparticles in aquatic environments. Physica E: Low-Dimensional Systems 

and Nanostructures, 84: 489–497.  

Huang, J., Nkrumah, P.N., Anim, D.O., Mensah, E. (2014). E-waste disposal effects on the 

aquatic environment: Accra, Ghana. In: Reviews of Environmental Contamination and 

Toxicology. Springer, 229: 19-34.  

Im, H.J., Koo, B., Kim, M.-S., Lee, J.E. (2019). Solvothermal synthesis of Sb2Te3 nanoplates 

under various synthetic conditions and their thermoelectric properties. Applied Surface 

Science, 475: 510–514.  

IPCC. (2007). Climate change 2007: the physical science basis. In: Contribution of Work 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate. 

Cambridge University Press, Cambridge, UK. 

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, 

II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, 

Switzerland, 151 pp. 

Islam, M.S., Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems 

including coastal and marine fisheries and approach for management: a review and 

synthesis. Marine Pollution Bulletin, 48(7–8): 624–649.  

ISO, International Standards Organisation. (2015). Nanotechnologies – Vocabulary – Part 

2: Nano-Objects. ISO 80004-2, Geneva, Switzerland. 

Iswarya, V., Bhuvaneshwari, M., Alex, S.A., Iyer, S., Chaudhuri, G., Chandrasekaran, P.T., 

Bhalerao, G.M., Chakravarty, S., Raichur, A.M., Chandrasekaran, N., Mukherjee, A. 

(2015). Combined toxicity of two crystalline phases (anatase and rutile) of Titania 

nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicology, 161: 

154–169.  



83 

 

Iswarya, V., Bhuvaneshwari, M., Chandrasekaran, N., Mukherjee, A. (2016). Individual and 

binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aquatic 

Toxicology, 178: 209–221.  

Iswarya, V., Bhuvaneshwari, M., Chandrasekaran, N., Mukherjee, A. (2018). Trophic 

transfer potential of two different crystalline phases of TiO2 NPs from Chlorella sp. to 

Ceriodaphnia dubia. Aquatic Toxicology, 197: 89–97.  

Iswarya, V., Palanivel, A., Chandrasekaran, N., Mukherjee, A. (2019). Toxic effect of 

different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater 

system. Environmental Science and Pollution Research, 26(12): 11998–12013.  

Izagirre, U., Errasti, A., Bilbao, E., Múgica, M., Marigómez, I. (2014). Combined effects of 

thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding 

lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis. Aquatic 

Toxicology, 149: 145–156.  

Jansen, J.M., Hummel, H., Bonga, S.W., (2009). The respiratory capacity of marine mussels 

(Mytilus galloprovincialis) in relation to the high temperature threshold. Comparative 

Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 153(4): 

399–402.  

Jiang, J., Oberdörster, G., Biswas, P. (2009). Characterization of size, surface charge, and 

agglomeration state of nanoparticle dispersions for toxicological studies. Journal of 

Nanoparticle Research, 11(1): 77–89.  

Jimeno-Romero, A., Bilbao, E., Valsami-Jones, E., Cajaraville, M.P., Soto, M., Marigómez, 

I. (2019). Bioaccumulation, tissue and cell distribution, biomarkers and toxicopathic 

effects of CdS quantum dots in mussels, Mytilus galloprovincialis. Ecotoxicology and 

Environmental Safety, 167: 288–300.  

Johansson, L.H., Borg, L.A.H. (1988). A spectrophotometric method for determination of 

catalase activity in small tissue samples. Analytical Biochemistry, 174(1): 331–336.  

Johnson, A.C., Bowes, M.J., Crossley, A., Jarvie, H.P., Jurkschat, K., Jürgens, M.D., Lawlor, 

A.J., Park, B., Rowland, P., Spurgeon, D., Svendsen, C., Thompson, I.P.,  Barnes, R.J., 

Williams, R.J ., Xu, N. (2011). An assessment of the fate, behaviour and environmental 



84 

 

risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of the 

Total Environment, 409(13): 2503–2510.  

Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., 

Brunner, S., Vonmont, H., Burkhardt, M., Boller, M. (2008). Synthetic TiO2 

nanoparticle emission from exterior facades into the aquatic environment. 

Environmental Pollution, 156(2): 233–239.  

Kennedy, V.C., Zellweger, G.W., Jones, B.F. (1974). Filter pore-size effects on the analysis 

of Al, Fe, Mn, and Ti in water. Water Resources Research, 10(4): 785–790.  

Kimbrough, K.L., Johnson, W.E., Lauenstein, G.G., Christensen, J.D., Apeti, D.A. (2008). 

An assessment of two decades of contaminant monitoring in the nation’s coastal zone. 

NOAA Technical Memorandum NOS NCCOS 74. Silver Spring, MD. 105 pp. 

King, F.D., Packard, T.T. (1975). Respiration and the activity of the respiratory electron 

transport system in marine zooplankton. Limnology and Oceanography, 20: 849–854.  

Kiser, M.A., Westerhoff, P., Benn, T., Wang, Y., Pérez-Rivera, J., Hristovski, K. (2009). 

Titanium nanomaterial removal and release from wastewater treatment plants. 

Environmental Science & Technology, 43(17): 6757–6763.  

Lecoanet, H.F., Wiesner, M.R. (2004). Velocity effects on fullerene and oxide nanoparticle 

deposition in porous media. Environmental Science & Technology, 38(16): 4377–4382.  

Leong, H.J., Oh, S.-G. (2018). Preparation of antibacterial TiO2 particles by hybridization 

with azelaic acid for applications in cosmetics. Journal of Industrial and Engineering 

Chemistry, 66: 242–247. 

Livingstone, D.R., Dixon, D.R., Donkin, P., Lowe, D.M., Moore, M.N., Widdows, J. (1989). 

Molecular, cellular and physiological responses of the common mussel Mytilus edulis 

to pollution: uses in environmental monitoring and management. Ecotoxicology, The 

Institute of Biology, London, pp. 26–30. 

Livingstone, D.R., Martinez, P.G., Michel, X., Narbonne, J.F., O’Hara, S., Ribera, D., 

Winston, G.W. (2006). Oxyradical Production as a Pollution-Mediated Mechanism of 

Toxicity in the Common Mussel, Mytilus edulis L., and Other Molluscs. Functional 

Ecology, 4(3): 415-424.  



85 

 

Liu, W.-T. (2006). Nanoparticles and their biological and environmental applications. 

Journal of Bioscience and Bioengineering, 102(1): 1–7.  

Lopes, C.L., Azevedo, A., Dias, J.M. (2013). Flooding assessment under sea level rise 

scenarios: Ria de Aveiro case study. Journal of Coastal Research, 65: 766–771.  

Lower, W.R., Kendall, R. (1990). Sentinel Species and Sentinel Bioassay. In: Biomarkers of 

Environmental Contamination. Lewis Publishers, 309–331 pp. 

Lu, P.J., Huang, S.C., Chen, Y.P., Chiueh, L.C., Shih, D.Y.C. (2015). Analysis of titanium 

dioxide and zinc oxide nanoparticles in cosmetics. Journal of Food and Drug Analysis, 

23(3): 587–594.  

Manciocco, A., Calamandrei, G., Alleva, E. (2014). Global warming and environmental 

contaminants in aquatic organisms: The need of the etho-toxicology approach. 

Chemosphere, 100: 1–7.  

Marigómez, I., Garmendia, L., Soto, M., Orbea, A., Izagirre, U., Cajaraville, M.P. (2013). 

Marine ecosystem health status assessment through integrative biomarker indices: A 

comparative study after the Prestige oil spill “Mussel Watch”. Ecotoxicology, 22(3): 

486–505.  

Markert, B.A., Breure, A.M., Zechmeister, H.G. (2003). Definitions, strategies and 

principles for bioindication/biomonitoring of the environment. Trace Metals and other 

Contaminants in the Environment, 6: 3–39).  

Martín-Pozo, L., de Alarcón-Gómez, B., Rodríguez-Gómez, R., García-Córcoles, M.T., 

Çipa, M., Zafra-Gómez, A. (2019). Analytical methods for the determination of 

emerging contaminants in sewage sludge samples. A review. Talanta, 192: 508–533. 

Măruţescu, L., Chifiriuc, M.C., Postolache, C., Pircalabioru, G.G., Bolocan, A. (2019). 

Nanoparticles’ toxicity for humans and environment. In: Nanomaterials for Drug 

Delivery and Therapy. Elsevier, 515–535 pp.  

Maskos, M., Stauber, R.H. (2016). 3.21 Characterization of Nanoparticles in Biological 

Environments. Comprehensive Biomaterials II, 3: 467–481.  

 



86 

 

Masunga, N., Mmelesi, O.K., Kefeni, K.K., Mamba, B.B. (2019). Recent advances in copper 

ferrite nanoparticles and nanocomposites synthesis, magnetic properties and 

application in water treatment: Review. Journal of Environmental Chemical 

Engineering, 7(3): 103179.  

Matozzo, V., Tomei, A., Marin, M.G. (2005). Acetylcholinesterase as a biomarker of 

exposure to neurotoxic compounds in the clam Tapes philippinarum from the Lagoon 

of Venice. Marine Pollution Bulletin, 50(12): 1686–1693.  

Menard, A., Drobne, D., Jemec, A. (2011). Ecotoxicity of nanosized TiO2. Review of in vivo 

data. Environmental Pollution, 159(3): 677–684.  

Mennillo, E., Casu, V., Tardelli, F., De Marchi, L., Freitas, R., Pretti, C. (2017). Suitability 

of cholinesterase of polychaete Diopatra neapolitana as biomarker of exposure to 

pesticides: In vitro characterization. Comparative Biochemistry and Physiology Part C: 

Toxicology & Pharmacology, 191: 152–159.  

Mesquita, C.S., Oliveira, R., Bento, F., Geraldo, D., Rodrigues, J.V., Marcos, J.C. (2014). 

Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of 

carbonyls in oxidized proteins. Analytical Biochemistry, 458: 69–71.  

Mezni, A., Alghool, S., Sellami, B., Saber, N.B., Altalhi, T. (2018). Titanium dioxide 

nanoparticles: synthesis, characterisations and aquatic ecotoxicity effects. Chemistry 

and Ecology, 34(3): 288–299.  

Middlemas, S., Fang, Z.Z., Fan, P. (2013). A new method for production of titanium dioxide 

pigment. Hydrometallurgy, 131–132: 107–113.  

Mikulášek, P., Wakeman, R.J., Marchant, J Q. (1997). The influence of pH and temperature 

on the rheology and stability of aqueous titanium dioxide dispersions. Chemical 

Engineering Journal, 67(2): 97–102.  

Mnasri, N., Charnay, C., de Ménorval, L.-C., Elaloui, E., Zajac, J. (2016). Rod-shaped silica 

particles derivatized with elongated silver nanoparticles immobilized within 

mesopores. Journal of Solid State Chemistry, 243: 207–214.  

Moellmann, J., Ehrlich, S., Tonner, R., Grimme, S. (2012). A DFT-D study of structural and 

energetic properties of TiO2 modifications. Journal of Physics: Condensed Matter, 

24(42): 424206.  



87 

 

Mogilevsky, G., Chen, Q., Kleinhammes, A., Wu, Y. (2008). The structure of multilayered 

titania nanotubes based on delaminated anatase. Chemical Physics Letters, 460(4–6): 

517–520.  

Monteiro, R., Costa, S., Coppola, F., Freitas, R., Vale, C., Pereira, E. (2019a). Evidences of 

metabolic alterations and cellular damage in mussels after short pulses of Ti 

contamination. Science of the Total Environment, 650: 987–995.  

Monteiro, R., Costa, S., Coppola, F., Freitas, R., Vale, C., Pereira, E. (2019b). Toxicity 

beyond accumulation of Titanium after exposure of Mytilus galloprovincialis to spiked 

seawater. Environmental Pollution, 244: 845–854.  

Moore, M.N., Allen, J.I. (2002). A computational model of the digestive gland epithelial cell 

of marine mussels and its simulated responses to oil-derived aromatic hydrocarbons. 

Marine Environmental Research, 54(3–5): 579–584.  

Moreira, A., Figueira, E., Soares, A.M.V.M., Freitas, R. (2016). The effects of arsenic and 

seawater acidification on antioxidant and biomineralization responses in two closely 

related Crassostrea species. Science of Total Environment, 545-546: 569-581.  

Mubiana, V.K., Blust, R. (2007). Effects of temperature on scope for growth and 

accumulation of Cd, Co, Cu and Pb by the marine bivalve Mytilus edulis. Marine 

Environmental Research, 63(3): 219–235.  

Murawski, S.A. (1993). Climate Change and Marine Fish Distributions: Forecasting from 

Historical Analogy. Transactions of the American Fisheries Society, 122(5): 647–658.  

Nardi, A., Mincarelli, L.F., Benedetti, M., Fattorini, D., D’Errico, G., Regoli, F. (2017). 

Indirect effects of climate changes on cadmium bioavailability and biological effects in 

the Mediterranean mussel Mytilus galloprovincialis. Chemosphere, 169: 493–502.  

Nowack, B., Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the 

environment. Environmental Pollution, 150(1): 5–22.  

Nowack, B., Ranville, J.F., Diamond, S., Gallego-Urrea, J.A., Metcalfe, C., Rose, J., Horne, 

N., Koelmans, A.A., Klaine, S.J. (2012). Potential scenarios for nanomaterial release 

and subsequent alteration in the environment. Environmental Toxicology and 

Chemistry, 31(1): 50–59.  



88 

 

Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by 

thiobarbituric acid reaction. Analytical Biochemistry, 95(2): 351–358.  

Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., 

Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., 

Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.-K., Rodgers, K.B., Sabine, C.L., 

Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.-F., Yamanaka, 

Y., Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century 

and its impact on calcifying organisms. Nature, 437: 681–686.  

Pagano, M., Capillo, G., Sanfilippo, M., Palato, S., Trischitta, F., Manganaro, A., Faggio, C. 

(2016). Evaluation of functionality and biological responses of Mytilus 

galloprovincialis after exposure to quaternium-15 (Methenamine 3-

Chloroallylochloride). Molecules, 21(2): 1–12.  

Paglia, D.E., Valentine, W.N. (1967). Studies on the quantitative and qualitative 

characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and 

Clinical Medicine, 70(1): 158–169. 

Pan, J.F., Buffet, P.E., Poirier, L., Amiard-Triquet, C., Gilliland, D., Joubert, Y., Pilet, P., 

Guibbolini, M., de Faverney, C.R., Roméo, M., Valsami-Jones, E., Mouneyrac, C. 

(2012). Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an 

endobenthic invertebrate: The Tellinid clam Scrobicularia plana. Environmental 

Pollution, 168: 37–43.  

Paz, Y. (2010). Application of TiO2 photocatalysis for air treatment: Patents’ overview. 

Applied Catalysis B: Environmental, 99(3–4): 448–460.  

Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, 

T., Di Cosmo, A., Soares, A.M.V.M., Polese, G., Pereira, E., Freitas, R. (2019). 

Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and 

histopathological impacts. Aquatic Toxicology, 211: 181–192.  

Pirone, G., Coppola, F., Pretti, C., Soares, A.M.V.M., Solé, M., Freitas, R. (2019). The effect 

of temperature on Triclosan and Lead exposed mussels. Comparative Biochemistry and 

Physiology Part B: Biochemistry and Molecular Biology, 232: 42–50.  



89 

 

Polese, G., Bertapelle, C., Di Cosmo, A. (2016).  Olfactory organ of Octopus vulgaris: 

morphology, plasticity, turnover and sensory characterization. Biology Open, 5: 611–

619.  

Pörtner, H.-O. (2010). Oxygen- and capacity-limitation of thermal tolerance: a matrix for 

integrating climate-related stressor effects in marine ecosystems. Journal of 

Experimental Biology, 213: 881–893.  

Pörtner, H.-O., Karl, M.D., Boyd, P.W., Cheung, W.W.L., Lluch-Cota, S.E., Nojiri, Y., 

Schmidt D.N., Zavialov P.O. (2014). Impacts, adaptation, and vulnerability. Part A: 

Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change, Cambridge University 

Press. 

Pörtner, H.-O., Knust, R. (2007). Climate change affects marine fishes through the oxygen 

limitation of thermal tolerance. Science, 315(5808): 95–97.  

Pörtner, H.-O., Langenbuch, M., Michaelidis, B. (2005). Synergistic effects of temperature 

extremes, hypoxia, and increases in CO2 on marine animals: From earth history to 

global change. Journal of Geophysical Research, 110: 2156–2202.  

Pörtner, H.O., Peck, L., Somero, G. (2007). Thermal limits and adaptation in marine 

Antarctic ectotherms: An integrative view. Philosophical Transactions of the Royal 

Society B: Biological Sciences, 362(1488): 2233–2258.  

Priyadarshini, E., Pradhan, N. (2017). Gold nanoparticles as efficient sensors in colorimetric 

detection of toxic metal ions: A review. Sensors and Actuators B: Chemical, 238: 888–

902. 

Quintino, V., Azevedo, A., Magalhães, L., Sampaio, L., Freitas, R., Rodrigues, A.M., Elliott, 

M. (2012). Indices, multispecies and synthesis descriptors in benthic assessments: 

Intertidal organic enrichment from oyster farming. Estuarine, Coastal and Shelf 

Science, 110: 190–201.  

Rajalakshmi, S., Mohandas, A. (2005). Copper-induced changes in tissue enzyme activity in 

a freshwater mussel. Ecotoxicology and Environmental Safety, 62(1): 140–143.  

 



90 

 

Rajkumar, J.S.I. (2013). Reduced glutathione and acetylcholinesterase expressions in Perna 

indica exposed to trivalent arsenic. International Journal of Biological Research, 1(1): 

1–4.  

Regoli, F., Giuliani, M.E. (2014). Oxidative pathways of chemical toxicity and oxidative 

stress biomarkers in marine organisms. Marine Environmental Research, 93: 106–117.  

Robinson, H., Hodgen, C. (1940). The biuret reaction in the determination of serum proteins: 

a study of the conditions necessary for the production of a stable color which bears a 

quantitative relationship to the protein concentration. Journal of Biological Chemistry, 

135: 707–725.  

Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A., Bandala, E.R. (2017). 

Treatment technologies for emerging contaminants in water: A review. Chemical 

Engineering Journal, 323: 361–380.  

Rocha, T.L., Sabóia-Morais, S.M.T., Bebianno, M.J. (2016). Histopathological assessment 

and inflammatory response in the digestive gland of marine mussel Mytilus 

galloprovincialis exposed to cadmium-based quantum dots. Aquatic Toxicology, 177: 

306–315.  

Santos, S., Cardoso, J.F.M.F., Carvalho, C., Luttikhuizen, P.C., van der Veer, H.W. (2011). 

Seasonal variability in somatic and reproductive investment of the bivalve 

Scrobicularia plana (da Costa, 1778) along a latitudinal gradient. Estuarine, Coastal 

and Shelf Science, 92(1): 19–26.  

Shi, X., Li, Z., Chen, W., Qiang, L., Xia, J., Chen, M., Zhu, L., Alvarez, P.J.J. (2016). Fate 

of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in 

the receiving streams. NanoImpact, 3–4: 96–103.  

Skocaj, M., Filipic, M., Petkovic, J., Novak, S. (2011). Titanium dioxide in our everyday 

life; Is it safe? Radiology and Oncology, 45(4): 227–247.  

Skrabal, S.A. (2006). Dissolved titanium distributions in the Mid-Atlantic Bight. Marine 

Chemistry, 102(3–4): 218–229.  

Sokolova, I.M. (2004). Cadmium effects on mitochondrial function are enhanced by elevated 

temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: 

Ostreidae). Journal of Experimental Biology, 207: 2639–2648.  



91 

 

Sousa, A.I., Santos, D.B., da Silva, E.F., Sousa, L.P., Cleary, D.F.R., Soares, A.M.V.M., 

Lillebø, A.I. (2017). ‘Blue Carbon’ and Nutrient Stocks of Salt Marshes at a Temperate 

Coastal Lagoon (Ria de Aveiro, Portugal). Scientific Reports, 7: 41225.  

Starling, M.C.V.M., Amorim, C.C., Leão, M.M.D. (2019). Occurrence, control and fate of 

contaminants of emerging concern in environmental compartments in Brazil. Journal 

of Hazardous Materials, 372: 17–36.  

Sturve, J., Almroth, B.C., Förlin, L. (2008). Oxidative stress in rainbow trout (Oncorhynchus 

mykiss) exposed to sewage treatment plant effluent. Ecotoxicology and Environmental 

Safety, 70(3): 446–452.  

Su, C., Tseng, C.-M., Chen, L.-F., You, B.-H., Hsu, B.-C., Chen, S.-S. (2006). Sol–

hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films, 

498(1–2): 259–265.  

Sunila, I. (1988). Acute histological responses of the gill of the mussel, Mytilus edulis, to 

exposure by environmental pollutants. Journal of Invertebrate Pathology, 52(1): 137–

141.  

Sureda, A., Capó, X., Busquets-Cortés, C., Tejada, S. (2018). Acute exposure to sunscreen 

containing titanium induces an adaptive response and oxidative stress in Mytillus 

galloprovincialis. Ecotoxicology and Environmental Safety, 149: 58–63.  

Suzuki, Y.J., Carini, M., Butterfield, D.A. (2010). Protein Carbonylation. Antioxidants & 

Redox Signaling, 12(3): 323-325.  

The European Commission. (2011). Commission recommendation of 18 October 2011 on 

the definition of nanomaterial. Official Journal of the European Union, 696: 38–40. 

Townsend, D.M., Tew, K.D. (2003). The role of glutathione-S-transferase in anti-cancer 

drug resistance. Oncogene, 22: 7369–7375.  

Velez, C., Figueira, E., Soares, A.M.V.M., Freitas, R. (2016). Accumulation and sub-cellular 

partitioning of metals and As in the clam Venerupis corrugata: Different strategies 

towards different elements. Chemosphere, 156: 128–134.  



92 

 

Velez, C., Figueira, E., Soares, A.M.V.M., Freitas, R. (2017). Effects of seawater 

temperature increase on economically relevant native and introduced clam species. 

Marine Environmental Research, 123: 62–70.  

Velez, C., Galvão, P., Longo, R., Malm, O., Soares, A.M.V.M., Figueira, E., Freitas, R. 

(2015). Ruditapes philippinarum and Ruditapes decussatus under Hg environmental 

contamination. Environmental Science and Pollution Research, 22(15): 11890–11904.  

Verlecar, X.N., Jena, K.B., Chainy, G.B.N. (2007). Biochemical markers of oxidative stress 

in Perna viridis exposed to mercury and temperature. Chemico-Biological Interactions, 

167(3): 219–226.  

Viarengo, A., Dondero, F., Pampanin, D.M., Fabbri, R., Poggi, E., Malizia, M., Bolognesi, 

C., Perrone, E., Gollo, E., Cossa, G.P. (2007). A biomonitoring study assessing the 

residual biological effects of pollution caused by the HAVEN wreck on marine 

organisms in the Ligurian sea (Italy). Archives of Environmental Contamination and 

Toxicology, 53(4): 607–616.  

Wahie, S., Lloyd, J.J., Farr, P.M. (2007). Sunscreen ingredients and labelling: A survey of 

products available in the UK. Clinical and Experimental Dermatology, 32(4): 359–364.  

Wang, Y., Huang, Y., Ho, W., Zhang, L., Zou, Z., Lee, S. (2009). Biomolecule-controlled 

hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO 

removal under simulated solar light irradiation. Journal of Hazardous Materials, 169(1–

3): 77–87.  

Wang, Z., Li, Y., Chen, H., Fan, J., Wang, X., Ma, X. (2019). Correlation between the radius 

of acceptor ion and the dielectric properties of co-doped TiO2 ceramics. Ceramics 

International, 45(12): 14625-14633.  

Wang, W.-X, Fisher, N.S., Luoma, S.N. (1996). Kinetic determinations of trace element 

bioaccumulation in the mussel Mytilus edulis. Marine Ecology Progress Series, 140: 

91–113.  

Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., Li, 

Y., Jiao, F., Zhao, Y., Chai, Z. (2007). Acute toxicity and biodistribution of different 

sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 

168(2): 176–85.  



93 

 

Ward, J.E., Kach, D.J. (2009). Marine aggregates facilitate ingestion of nanoparticles by 

suspension-feeding bivalves. Marine Environmental Research, 68(3): 137–142.  

Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., von Goetz, N. (2012). Titanium 

dioxide nanoparticles in food and personal care products. Environmental Science & 

Technology, 46(4): 2242–2250.  

Winkler, J. (2003). Production of Titanium Dioxide Pigments. European Coatings 

Literature, Vincentz, pp. 37–40. 

Xia, B., Zhu, L., Han, Q., Sun, X., Chen, B., Qu, K. (2017). Effects of TiO2 nanoparticles at 

predicted environmental relevant concentration on the marine scallop Chlamys farreri: 

An integrated biomarker approach. Environmental Toxicology and Pharmacology, 50: 

128–135.  

Yan, L., Stallard, R.F., Key, R.M., Crerar, D.A. (1991). Trace metals and dissolved organic 

carbon in estuaries and offshore waters of New Jersey, USA. Geochimica et 

Cosmochimica Acta, 55(12): 3647–3656.  

Yang, W.-E., Hsu, M.-L., Lin, M.-C., Chen, Z.-H., Chen, L.-K., Huang, H.-H. (2009). 

Nano/submicron-scale TiO2 network on titanium surface for dental implant application. 

Journal of Alloys and Compounds, 479(1–2): 642–647.  

Yang, K., Xing, B. (2009). Sorption of Phenanthrene by Humic Acid-Coated Nanosized 

TiO2 and ZnO. Environmental Science & Technology, 43(6): 1845–1851.  

Yazdi, M.H., Sepehrizadeh, Z., Mahdavi, M., Shahverdi, A.R., Faramarzi, M.A. (2016). 

Metal, metalloid, and oxide nanoparticles for therapeutic and diagnostic oncology. 

Nano Biomedicine and Engineering, 8(4): 246–267.  

Yokoi, K., van den Berg, C.M.G. (1991). Determination of titanium in sea water using 

catalytic cathodic stripping voltammetry. Analytica Chimica Acta, 245: 167–176.  

Yuzer, B., Guida, M., Ciner, F., Aktan, B., Aydin, M.I., Meric, S., Selcuk, H. (2016). A 

multifaceted aggregation and toxicity assessment study of sol–gel-based TiO2 

nanoparticles during textile wastewater treatment. Desalination and Water Treatment, 

57(11): 4966–4973.  



94 

 

Zanjani, J.S.M., Oğuz, O., Okan, B.S., Yildiz, M., Menceloğlu, Y.Z. (2018). Polymer 

Composites Containing Functionalized Nanoparticles and the Environment. In: 

Polymer Composites with Functionalized Nanoparticles, 437–466.  

Zhang, J., Song, W., Guo, J., Zhang, J., Sun, Z., Li, L., Ding, F., Gao, M. (2013). 

Cytotoxicity of different sized TiO2 nanoparticles in mouse macrophages. Toxicology 

and Industrial Health, 29(6): 523–533.  

Zhang, X., Zheng, J. (2019). Hollow carbon sphere supported Ag nanoparticles for 

promoting electrocatalytic performance of dopamine sensing. Sensors and Actuators B: 

Chemical, 290: 648–655.  

Zhou, X., Xu, C., Jin, Y., Li, B. (2019). Visual chiral recognition of D/L-leucine using cube-

shaped gold nanoparticles as colorimetric probes. Spectrochimica Acta Part A: 

Molecular and Biomolecular Spectroscopy, 223: 117263.  

Zhu, Z., Cai, H., Sun, D.W. (2018). Titanium dioxide (TiO2) photocatalysis technology for 

nonthermal inactivation of microorganisms in foods. Trends in Food Science & 

Technology, 75: 23–35.  

Zhu, X., Zhou, J., Cai, Z. (2011). TiO2 Nanoparticles in the Marine Environment: Impact on 

the Toxicity of Tributyltin to Abalone (Haliotis diversicolor supertexta) Embryos. 

Environmental Science & Technology, 45(8): 3753–3758.  

Zupo, V., Glaviano, F., Paolucci, M., Ruocco, N., Polese, G., Di Cosmo, A., Costantini, M., 

Mutalipassi, M. (2019). Roe enhancement of Paracentrotus lividus: Nutritional effects 

of fresh and formulated diets. Aquaculture Nutrition, 25(1): 26–38.  

 

 


