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VARIABLE EXPONENT BESOV-MORREY SPACES

ALEXANDRE ALMEIDA∗ AND ANTÓNIO CAETANO

Abstract. In this paper we introduce Besov-Morrey spaces with all indices variable
and study some fundamental properties. This includes a description in terms of Peetre
maximal functions and atomic and molecular decompositions. This new scale of non-
standard function spaces requires the introduction of variable exponent mixed Morrey-
sequence spaces, which in turn are defined within the framework of semimodular spaces.
In particular, we obtain a convolution inequality involving special radial kernels, which
proves to be a key tool in this work.

1. Introduction

In recent years there has been an increase of interest in studying smoothness spaces
based on the idea of Morrey spaces. The so-called Besov-Morrey spaces N s

p,u,q and the
spaces Bs,τ

p,q of Besov-type are examples of that. Roughly speaking, these spaces differ
from the classical Besov spaces Bs

p,q by the introduction of a local control as on the
Morrey scale Mp,u, though the way that control is implemented differs depending on the
scale of spaces considered. The spaces N s

p,u,q were introduced by Kozono and Yamazaki
[31] and developed later by Mazzucato [39] in connection with the study of Navier-Stokes
equations. We refer to the papers [45] and [47] and the surveys [48, 49] for various
properties and historical remarks. The spaces Bs,τ

p,q seem to have been first introduced
by El Baraka [15, 16], but for a systematic study and further references see [53] and the
surveys [48, 49]. In particular, it is known that the scales N s

p,u,q and Bs,τ
p,q are different

whenever q is finite. Nevertheless, both include the classical Besov spaces Bs
p,q as a

particular case.
The theory of Morrey spaces goes back to Morrey [41] who considered related inte-

gral inequalities in connection with regularity properties of solutions to nonlinear elliptic
equations. A further development of such theory was carried out in [8] leading to a wider
class of spaces known as Morrey-Campanato spaces. The Morrey scale Mp,u refines the
usual scale of Lp spaces since Mp,p = Lp. Morrey spaces and Besov spaces have important
applications in the study of heat and Navier-Stokes equations, see [33, 34, 35], [50]. As
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2 A. ALMEIDA AND A. CAETANO

deeply discussed in [35], the later equations constitute a challenging problem and a better
understanding may require new features in new function spaces.

In the last decades function spaces with variable exponents have attracted the attention
of many researchers not only by theoretical reasons but also by the role played by such
spaces in some applications, including the modeling of electrorheological fluids [46], im-
age restoration [9, 36], PDE and the calculus of variations involving nonstandard growth
conditions [1, 17, 38]. We refer to the monographs [10], [13] and [28] for the main prop-
erties, historical remarks and harmonic analysis results on variable exponent Lebesgue,
Sobolev and Morrey-Campanato spaces (and others). Variable exponent Morrey spaces
Mp(·),u(·) were introduced in [2] and independently in [29, 30] and [40]. The Besov scale

B
s(·)
p(·),q(·) with all the indices variable was introduced by the first named author and Hästö

[3] through the consideration of the mixed Lebesgue-sequence spaces ℓq(·)(Lp(·)). In par-
ticular, the exponent q was allowed to depend on the space variable like p(x). A simpler
case occurs when q is a constant since in that case ℓq(Lp(·)) becomes an iterated space
and hence preserves the properties of the basis space Lp(·). Note that the consideration of
all the indices variable allow us to study important properties involving the interaction
among all the parameters as it occurs, for example, in trace properties.

Recently Drihem [11, 12] and Yang, Yuan and Zhuo [52] studied variable exponent

versions B
s(·),τ(·)
p(·),q(·) and B

s(·),φ
p(·),q(·) of spaces of Besov-type (see also the even more recent paper

[51]). These two scales cover both the variable Besov spaces B
s(·)
p(·),q(·) and the Besov-type

spaces Bs,τ
p,q . On the other hand, Fu and Xu [18] considered spaces N s

p(·),u(·),q, therefore
allowing p and u to vary from point to point but keeping s and q constant. Nevertheless,
up to authors’ knowledge, a full variable generalization of the Besov-Morrey scale N s

p,u,q

is still not available. Probably, the main issue in dealing with such a generalization

N s(·)
p(·),u(·),q(·) with all indices variable has to do with the role played by the exponent q

when it is non constant. Even considering the partial variable generalization N s
p(·),u(·),q

from [18], quite some results presented there are unreliable, as some of the arguments
used are wrong (see the end of Section 5 below for more details).

In this paper we present an appropriate setting to the full scale N s(·)
p(·),u(·),q(·) of Besov-

Morrey spaces with variable smoothness and integrability. Actually, based on the knowl-
edge we have acquired in [4, 5], the new setting even works for 2-microlocal versions
Nw

p(·),u(·),q(·). As discussed in the survey paper [48] for the constant exponents case, there

is no coincidence between this scale and the scales B
s(·),τ(·)
p(·),q(·) and B

s(·),φ
p(·),q(·) mentioned above.

We introduce mixed variable Morrey-sequence spaces ℓq(·)
(

Mp(·),u(·)
)

within the frame-
work of semimodular spaces. For non constant q, these spaces have a mixed structure
like ℓq(·)(Lp(·)), which prevent us to use maximal function inequalities as explained in [3,
Section 4]. The lack of such tools does not allow to fit our spaces in the general axiomatic
approach given in [22]. On the other hand, the approach proposed in [37], based on Pee-
tre maximal functions, does not help us as well, since it does not cover the cases when q
varies from point to point. Apart from possible applications to the study of Navier-Stokes
equations, the new spaces Nw

p(·),u(·),q(·) unify into one single scale various function spaces
treated separately by different authors in the recent years.

The new Morrey-sequence spaces introduced in this paper refine the Lebesgue-sequence
scale introduced in [3] since ℓq(·)

(

Mp(·),p(·)
)

= ℓq(·)(Lp(·)). This implies that the new variable
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Besov-Morrey scale Nw

p(·),u(·),q(·) includes the variable Besov scale Bw

p(·),q(·) as a particular
case, namely Nw

p(·),p(·),q(·) = Bw

p(·),q(·).
In this article much of the substantial work focuses in the study of various fundamental

properties of the mixed Morrey-sequence spaces themselves. This constitutes a first part
of the paper and it includes the study of the semimodular and quasinormed structures
(Section 3) and a key convolution inequality that should replace maximal inequalities in
this context (Section 4). The study of the full variable exponent Besov-Morrey scale is
developed in a second part. After introducing the spaces Nw

p(·),u(·),q(·) in Section 5, we

present a characterization in terms of Peetre maximal functions (in Section 6) and estab-
lish atomic and molecular representations for these spaces (in Section 7). As a by-product
of the discrete decompositions, we also establish the embeddings S →֒ Nw

p(·),u(·),q(·) →֒ S ′

and show the completeness of the new spaces Nw

p(·),u(·),q(·).

2. Preliminaries

As usual, we denote by Rn the n-dimensional real Euclidean space, N the collection of
all natural numbers and N0 = N ∪ {0}. If a is a positive number then ⌊a⌋ denotes its
integer part. We write B(x, r) for the open ball in Rn centered at x ∈ Rn with radius
r > 0. We use c as a generic positive constant, i.e. a constant whose value may change
with each appearance. The expression f . g means that f ≤ c g for some independent
constant c, and f ≈ g means f . g . f .

Throughout the paper we denote by M(Rn) the family of all complex or extended
real-valued measurable functions on Rn, and by M0(R

n) the family consisting of all
those functions from M(Rn) which are finite a.e. (with respect to the Lebesgue measure
in Rn).

2.1. Semimodular spaces. We refer to the monographs [13] and [43] for an exposition
on (semi)modular spaces. For the sake of completeness we give here a brief review on
this subject.

Definition 2.1. Let X be a (real or complex) vector space. A functional ̺ : X → [0,∞]
is called a semimodular on X if:

(i) ̺(0X) = 0;
(ii) ̺(λx) = 0 for all λ > 0 implies x = 0X ;
(iii) ̺(λx) = ̺(x) for all x ∈ X and all λ with |λ| = 1;

The function ̺ is called a modular if, in addition,

(iv) ̺(x) = 0 implies x = 0X .

We say that ̺ is left-continuous if

(v) lim
λ→1−

̺(λx) = ̺(x) for all x ∈ X.

If there exists A ≥ 1 such that

(vi) ̺(θx+ (1− θ)y) ≤ A [θ̺(x) + (1− θ)̺(y)] for all x, y ∈ X and 0 ≤ θ ≤ 1,

then ̺ is said to be quasiconvex (convex if one can take A = 1).

We consider also the functional ‖ · ‖̺ : X → [0,∞] given by

‖x‖̺ := inf {λ > 0 : ̺(x/λ) ≤ 1}

(assuming the usual convention inf ∅ = ∞).
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If the semimodular ̺ is left-continuous then we have

‖x‖̺ ≤ 1 if and only if ̺(x) ≤ 1.

This fact, referred in [13] as the unit ball property, is very useful from the technical point of
view since it allows one to skip working with the complicated structure of the quasinorm
directly, in many situations of interest.

If ̺ is a (quasi)convex semimodular, then

(2.1) X̺ := {x ∈ X : ̺(λx) <∞ for some λ > 0}

is a vector subspace of X and ‖·‖̺ defines a (quasi)norm on it (X̺ is called a semimodular
space).

2.2. Variable exponents. By P(Rn) we denote the set of all measurable functions
p : Rn → (0,∞] (called variable exponents) which are essentially bounded away from
zero. For a measurable set E ⊂ Rn and p ∈ P(Rn), we denote p+E := ess supE p(x) and
p−E := ess infE p(x). For simplicity we use the abbreviations p+ := p+

Rn and p− := p−
Rn .

The variable exponent Lebesgue space Lp(·) := Lp(·)(R
n) is the family of (equivalence

classes of) functions f ∈ M(Rn) such that

(2.2) ̺p(·)(f/λ) :=

∫

Rn

φp(x)

(

|f(x)|

λ

)

dx

is finite for some λ > 0, where

(2.3) φp(x)(t) :=











tp(x) if p(x) ∈ (0,∞),

0 if p(x) = ∞ and t ∈ [0, 1],

∞ if p(x) = ∞ and t ∈ (1,∞].

It is clear that ̺p(·) makes sense in M(Rn) and it is known that it defines a semimodular
in the vector space (of equivalence classes of functions in) M0(R

n) and that Lp(·) becomes
a quasi-Banach space with respect to the quasinorm

‖f |Lp(·)‖ := inf
{

λ > 0 : ̺p(·) (f/λ) ≤ 1
}

.

This functional defines a norm when p− ≥ 1. Simple calculations show that

(2.4)
∥

∥|f |t |Lp(·)/t
∥

∥ =
∥

∥f |Lp(·)
∥

∥

t
, t ∈ (0,∞).

If p(x) ≡ p ∈ (0,∞] is constant, then Lp(·) = Lp is the classical Lebesgue space.
Although the connection between the semimodular and the quasinorm is not so simple

as in the constant exponent case, for variable exponents p ∈ P(Rn) we always have

̺p(·)(f) ≤ 1 if and only if ‖f |Lp(·)‖ ≤ 1

due to the left-continuity of the semimodular ̺p(·).
It is worth noting that Lp(·) has the lattice property and that the assertions f ∈ Lp(·)

and ‖f |Lp(·)‖ < ∞ are equivalent for any f ∈ M(Rn). With an absolute constant,
Hölder’s inequality holds in the form

∫

Rn

|f(x)g(x)| dx ≤ 2 ‖f |Lp(·)‖ ‖g |Lp′(·)‖

for p ∈ P(Rn) with p− ≥ 1, where p′ denotes the conjugate exponent of p defined
pointwisely by 1

p(x)
+ 1

p′(x)
= 1, x ∈ Rn. These and other fundamental properties of the

spaces Lp(·), at least in the case p− ≥ 1, can be found in [32] and in the recent monographs
[10], [13]. The definition above of Lp(·) using the semimodular ̺p(·) is taken from [13].
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2.3. Morrey spaces with variable exponents. For p, u ∈ P(Rn) with 0 < p− ≤
p(x) ≤ u(x) ≤ ∞, the variable exponent Morrey space Mp(·),u(·) := Mp(·),u(·)(R

n) consists
of all functions f ∈ M(Rn) with finite quasinorm

(2.5)
∥

∥f |Mp(·),u(·)
∥

∥ := sup
x∈Rn,r>0

r
n

u(x)
− n

p(x)‖f χB(x,r) |Lp(·)‖.

By the definition of the Lp(·) quasinorm, we see that (2.5) can also be written as
∥

∥f |Mp(·),u(·)
∥

∥ = sup
x∈Rn,r>0

inf
{

λ > 0 : ̺p(·)

(

r
n

u(x)
− n

p(x) f
λ
χB(x,r)

)

≤ 1
}

.

Note that variable exponent Morrey spaces were introduced in [2] in the Euclidean case
and independently in [29, 30] in the more general setting of quasimetric spaces. Embed-
ding results and equivalent norms were given in [2] in the case of bounded domains and
p(x) ≥ 1, under the log-Hölder continuity of the exponents. Morrey spaces with variable
exponents also appeared in [44] and [19], the latter considering even generalized versions.
We also mention [21] where a partition norm was introduced in variable exponent Morrey
spaces, which allows to pass from local results to corresponding global ones on Rn. Not
all definitions found in the literature are equivalent, though. The definition above with
the quasinorm (2.5) follows the approach from [20], where the boundedness of various
classical operators in such spaces was studied on unbounded domains.

Like in the Lp(·) case, simple calculations show that
∥

∥|f |t |Mp(·)/t,u(·)/t
∥

∥ =
∥

∥f |Mp(·),u(·)
∥

∥

t
, t ∈ (0,∞).

As in the constant exponent setting, the variable exponent Morrey scale includes the
variable Lebesgue spaces as a particular case. This property is formulated in Lemma 2.6
below.

First we observe that, in a certain sense, the supremum and the infimum involved in
the definition of the Morrey quasinorm may interchange with each other.

Lemma 2.2. Let p ∈ P(Rn), v : Rn → [0,∞) be measurable and g be a complex or
extended real-valued function on Rn × R+ × Rn such that, for any (x, r) ∈ Rn × R+,
g(x, r, ·) is measurable on Rn. Then
(2.6)

sup
x∈Rn,r>0

inf

{

λ > 0 : ̺p(·)

(

g(x, r, ·)

λv(·)

)

≤ 1

}

= inf

{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(

g(x, r, ·)

λv(·)

)

≤ 1

}

.

Proof. For simplicity, let a and b denote, respectively, the right-hand side and the left-
hand side of (2.6). We show first that a ≤ b (assuming the latter finite, otherwise there
is nothing to prove). Given any ε > 0, for all x ∈ Rn and r > 0 we have

b+ ε > inf

{

λ > 0 : ̺p(·)

(

g(x, r, ·)

λv(·)

)

≤ 1

}

.

Thus

̺p(·)

(

g(x, r, ·)

(b+ ε)v(·)

)

≤ 1

by the monotonicity of ̺p(·). Passing to the supremum on x and r, we get b + ε ≥ a.
Hence the claim follows by letting ε → 0. We show now that a ≥ b (for a < ∞). Given
any ε > 0, we have

sup
x∈Rn,r>0

̺p(·)

(

g(x, r, ·)

(a+ ε)v(·)

)

≤ 1
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since sup
x∈Rn,r>0

̺p(·) is order preserving. Consequently, for all x ∈ Rn and r > 0,

̺p(·)

(

g(x, r, ·)

(a+ ε)v(·)

)

≤ 1 ,

which implies

inf

{

λ > 0 : ̺p(·)

(

g(x, r, ·)

λv(·)

)

≤ 1

}

≤ a+ ε.

Therefore b ≤ a+ ε, from which the claim follows by the arbitrariness of ε > 0. �

Using Lemma 2.2 with v(y) ≡ 1 and g(x, r, y) = r
n

u(x)
− n

p(x)f(y)χB(x,r)(y), we get

Corollary 2.3. Let p, u ∈ P(Rn) with p(x) ≤ u(x). For any f ∈ M(Rn) it holds

(2.7)
∥

∥f |Mp(·),u(·)
∥

∥ = inf

{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(

1
λ
r

n
u(x)

− n
p(x)f χB(x,r)

)

≤ 1

}

.

The identification in (2.7) was already observed in [2, Lemma 3] in the case 1 ≤ p(x) ≤
p+ <∞.

Remark 2.4. Note that (2.7) suggests an alternative way of introducing variable expo-
nent Morrey spaces. Instead of presenting the Morrey quasinorm (2.5) directly, one can
introduce it from an appropriate semimodular space setting. In fact, it can be checked
that

̺p(·),u(·)(f) := sup
x∈Rn,r>0

̺p(·)

(

r
n

u(x)
− n

p(x)f χB(x,r)

)

defines a left-continuous semimodular in M0(R
n) and that Mp(·),u(·) coincides with the

space built according to (2.1).

Lemma 2.5. Let p ∈ P(Rn). For any g ∈ M(Rn),

sup
x∈Rn,r>0

̺p(·)
(

g χB(x,r)

)

= ̺p(·) (g) .

Proof. Since φp(y)

(

|g(y)|χB(0,N)(y)
)

increases with N ∈ N, an application of the monotone
convergence theorem yields

sup
x∈Rn,r>0

̺p(·)
(

g χB(x,r)

)

≥ sup
N∈N

̺p(·)
(

g χB(0,N)

)

= sup
N∈N

∫

Rn

φp(y)

(

|g(y)|χB(0,N)(y)
)

dy

= lim
N→∞

∫

Rn

φp(y)

(

|g(y)|χB(0,N)(y)
)

dy = ̺p(·) (g) .

The converse inequality is clear since |g|χB(x,r) ≤ |g| for any x ∈ Rn and r > 0. �

By (2.7) and Lemma 2.5 we obtain the following coincidence:

Lemma 2.6. For any p ∈ P(Rn) we have Mp(·),p(·) = Lp(·) (with equal quasinorms).

2.4. Mixed Lebesgue-sequence spaces. To deal with variable exponent Besov and
Triebel–Lizorkin scales we need to consider appropriate mixed sequences spaces. For
the variable Triebel-Lizorkin scale one can easily define the space Lp(·)(ℓq(·)) for every
p, q ∈ P(Rn) through the quasinorm

(2.8) ‖(fν)ν |Lp(·)(ℓq(·))‖ :=
∥

∥‖(fν(x))ν |ℓq(x)‖ |Lp(·)
∥

∥ ,

on sequences (fν)ν ⊂ M(Rn) where (2.8) is finite (cf. [14]). This is always a norm if
min{p−, q−} ≥ 1. Note that ℓq(x) is just a standard discrete Lebesgue space (for each
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x ∈ Rn), and that (2.8) is well defined since q(x) does not depend on ν and the function
x 7→ ‖(fν(x))ν |ℓq(x)‖ is always measurable when q ∈ P(Rn).

The situation is much harder in the variable Besov scale due to the dependence of
q on the space variable x. Nevertheless, in [3, Definition 3.1] the authors were able to
introduce the mixed Lebesgue-sequence space ℓq(·)(Lp(·)) within the setting of semimodular
spaces as follows. For p, q ∈ P(Rn), the functional

(2.9) ̺ℓq(·)(Lp(·))

(

(fν)ν
)

:=
∑

ν≥0

inf
{

λ > 0 : ̺p(·)

(

fν/λ
1

q(·)

)

≤ 1
}

defines a left-continuous semimodular on M0(R
n) (with the convention λ

1
∞ = 1). Note

that if q+ <∞ then (2.9) takes the simpler form

(2.10) ̺ℓq(·)(Lp(·))

(

(fν)ν
)

=
∑

ν≥0

∥

∥

∥
|fν |

q(·)|L p(·)
q(·)

∥

∥

∥
.

When q+ = ∞ and p(x) ≥ q(x) a.e. we can still use this simpler form of (2.9), with the
interpretation ∞

∞ = 1 and the q(·)-power inside the L p(·)
q(·)

-norm understood as φq(·) (|fν |)

according to (2.3), cf. [27, Remark 1].
The space ℓq(·)(Lp(·)) consists of all sequences (fν)ν such that ̺ℓq(·)(Lp(·))

(

µ(fν)ν
)

< ∞
for some µ > 0. In [3] it was shown that

(2.11) ‖(fν)ν |ℓq(·)(Lp(·))‖ := inf
{

µ > 0 : ̺ℓq(·)(Lp(·))

(

1
µ
(fν)ν

)

≤ 1
}

defines a quasinorm in ℓq(·)(Lp(·)) for every p, q ∈ P(Rn) and that ‖· |ℓq(·)(Lp(·))‖ is a norm
either when q ≥ 1 is constant and p− ≥ 1, or when 1

p(x)
+ 1

q(x)
≤ 1 almost everywhere.

More recently, it was observed in [27] that it also becomes a norm if 1 ≤ q(x) ≤ p(x) ≤ ∞.
Contrarily to the situation when q is constant, the expression (2.11) is not necessarily a
norm when min{p−, q−} ≥ 1 (see [27] for an example showing that the triangle inequality
may fail in this case).

It is not hard to check that ‖(fν)ν |ℓq(·)(Lp(·))‖ < ∞ implies (fν)ν ∈ ℓq(·)(Lp(·)), which
in turn implies fν ∈ Lp(·) for each ν ∈ N0. Note also that the left-continuity of the
semimodular ensures the useful equivalence

‖(fν)ν |ℓq(·)(Lp(·))‖ ≤ 1 if and only if ̺ℓq(·)(Lp(·))

(

(fν)ν
)

≤ 1 (unit ball property).

It is worth noting that ℓq(·)(Lp(·)) is a really iterated space when q ∈ (0,∞] is constant
([3, Proposition 3.3]), and in that case the quasinorm is given by

(2.12) ‖(fν)ν |ℓq(Lp(·))‖ =
∥

∥

(

‖fν |Lp(·)‖
)

ν
|ℓq
∥

∥.

As shown in [3, Example 3.4], the values of q have no influence on ‖(fν)ν |ℓq(·)(Lp(·))‖
when we restrict ourselves to sequences having just one non-zero entry. In fact, as in
the constant exponent case, there holds ‖(fν)ν | ℓq(·)(Lp(·))‖ = ‖f |Lp(·)‖ when fν0 = f for
some fixed ν0 ∈ N0 and fν = 0 for all ν 6= ν0.

3. Variable exponent mixed Morrey-sequence spaces

We introduce new mixed sequence spaces in the variable exponent Morrey setting as
follows.
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Definition 3.1. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x). Given a sequence (fν)ν ⊂ M(Rn),
we set
(3.1)

̺ℓq(·)(Mp(·),u(·))
(

(fν)ν
)

:=
∑

ν≥0

sup
x∈Rn,r>0

inf
{

λ > 0 : ̺p(·)

(

r
n

u(x)
− n

p(x)fν χB(x,r)/λ
1

q(·)

)

≤ 1
}

.

Remark 3.2. Note that the infimum inside the expression (3.1) depends in general on
ν ∈ N0, x ∈ Rn and r > 0. Therefore, we should take into account this fact when
calculating ̺ℓq(·)(Mp(·),u(·))

(

(fν)ν
)

. When q+ < ∞ or q+ = ∞ and p(x) ≥ q(x) we can

simplify (3.1) like in the ℓq(·)
(

Lp(·)
)

case:

(3.2) ̺ℓq(·)(Mp(·),u(·))
(

(fν)ν
)

=
∑

ν≥0

sup
x∈Rn,r>0

∥

∥

∥

∥

φq(·)

(

r
n

u(x)
− n

p(x) |fν |χB(x,r)

)

|L p(·)
q(·)

∥

∥

∥

∥

.

Definition 3.3. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x). The mixed Morrey-sequence space
ℓq(·)
(

Mp(·),u(·)
)

consists of all sequences (fν)ν ⊂ M(Rn) such that ̺ℓq(·)(Mp(·),u(·))
(

µ(fν)ν
)

<

∞ for some µ > 0. For (fν)ν ∈ ℓq(·)
(

Mp(·),u(·)
)

we define

(3.3)
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ := inf
{

µ > 0 : ̺ℓq(·)(Mp(·),u(·))

(

1
µ
(fν)ν

)

≤ 1
}

.

It can be shown that ℓq(·)
(

Mp(·),u(·)
)

is a vector space: the fact that it is closed with
respect to the sum follows simultaneously with the proof of the (quasi)triangle inequality
of
∥

∥ · | ℓq(·)
(

Mp(·),u(·)
)∥

∥ (cf. Proposition 3.11 and Theorem 3.12); the other properties are
simple to prove.

Later we shall prove that ̺ℓq(·)(Mp(·),u(·)) defines a semimodular and that
∥

∥· | ℓq(·)
(

Mp(·),u(·)
)∥

∥

defines a quasinorm in ℓq(·)
(

Mp(·),u(·)
)

. Straightforward calculations show that

(3.4)
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥

t
=
∥

∥(|fν |
t)ν | ℓq(·)/t

(

Mp(·)/t,u(·)/t
)∥

∥ , ∀t > 0.

Although the expressions in (3.1) and (3.3) are quite complicated to deal with in
general, in some situations nice simplifications occur. Let us discuss how the semimodular
and the quasinorm behave in some special cases. The corresponding properties are listed
below as propositions.

As for the variable Lebesgue-sequence space (cf. [3, Proposition 3.3]), we shall have a
really iterated structure when q is a constant:

Proposition 3.4. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x). If q ∈ (0,∞] is constant (almost
everywhere), then

(3.5)
∥

∥(fν)ν | ℓq
(

Mp(·),u(·)
)∥

∥ =
∥

∥

∥

(∥

∥fν |Mp(·),u(·)
∥

∥

)

ν
| ℓq

∥

∥

∥

for every sequence (fν)ν ⊂ M(Rn).

Proof. Using (3.2) and (2.4), for constant q ∈ (0,∞) we have

̺ℓq(Mp(·),u(·))
(

(fν)ν
)

=
∑

ν≥0

∥

∥fν |Mp(·),u(·)
∥

∥

q
=
∥

∥

∥

(∥

∥fν |Mp(·),u(·)
∥

∥

)

ν
| ℓq

∥

∥

∥

q

,

from which (3.5) follows, taking into account (3.3) and the homogeneity of Mp(·),u(·)- and
ℓq-quasinorms.
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Consider now the case q = ∞. In a sense, the arguments we will use are similar
to those mentioned in the proof of Proposition 3.3 in [3]. However, we give details for
completeness. Let s := supν∈N0

∥

∥fν |Mp(·),u(·)
∥

∥ and

A :=

{

µ > 0 :
∑

ν≥0

inf

{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(

1
µ
r

n
u(x)

− n
p(x)fν χB(x,r)

)

≤ 1

}

}

.

We want to show that s = inf A (here we are using the result from Lemma 2.2 with, in
particular, v(y) = 1/q(y) = 0 a.e.).

We show first that inf A ≤ s by showing that s + ε ∈ A (for s < ∞, otherwise there
is nothing to prove) for any ε > 0. By the alternative definition of Mp(·),u(·) given in
Remark 2.4 and the monotonicity of the expressions involved, we have, for any ε > 0,

sup
x∈Rn,r>0

̺p(·)

(r
n

u(x)
− n

p(x)fν χB(x,r)

ε+ ‖fν |Mp(·),u(·)‖

)

≤ 1 , ∀ν ∈ N0,

and then also

sup
x∈Rn,r>0

̺p(·)

(r
n

u(x)
− n

p(x)fν χB(x,r)

ε+ s

)

≤ 1 , ∀ν ∈ N0.

So, all the infima in A for µ = s+ ε are zero and hence s+ ε ∈ A.
Now we show that s ≤ inf A (with inf A < ∞, otherwise it is clear). For any µ ∈ A

one must have that

(3.6) sup
x∈Rn,r>0

̺p(·)

(

1
µ
r

n
u(x)

− n
p(x)fν χB(x,r)

)

≤ 1 , ∀ν ∈ N0,

as otherwise at least one of the infima in A would be infinite and then µ could not be in A.
From (3.6) and the alternative definition of Mp(·),u(·), we conclude that

∥

∥fν |Mp(·),u(·)
∥

∥ ≤ µ

for all ν ∈ N0. Consequently, s = supν∈N0

∥

∥fν |Mp(·),u(·)
∥

∥ ≤ µ and hence s ≤ inf A. �

The result above justifies the notation ℓq(·)
(

Mp(·),u(·)
)

even when the space is not iterated
and hence the mixed structure prevails.

Next we show that the values of q(x) have no influence when we calculate (3.1) for
sequences with at most one non-zero entry, as it occurs in the constant exponent situation.
This fact was already observed in [3, Example 3.4] for the Lebesgue-sequence spaces
ℓq(·)(Lp(·)).

Proposition 3.5. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x). If fν0 = f for some f ∈ M(Rn)
and ν0 ∈ N0, and fν = 0 for all ν 6= ν0, then

∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ =
∥

∥f |Mp(·),u(·)
∥

∥.

Proof. Notice that the result is immediate when q is constant, since the space is iterated
in that case. For general q ∈ P(Rn), recalling (3.3), we evaluate the infimum

a := inf

{

µ > 0 : sup
x∈Rn,r>0

inf

{

λ > 0 : ̺p(·)

(

1
µ

r
n

u(x)
− n

p(x)f χB(x,r)

λ1/q(·)

)

≤ 1

}

≤ 1

}

.

By Lemma 2.2 with v(y) = 1/q(y) and g(x, r, y) = 1
µ
r

n
u(x)

− n
p(x)f(y)χB(x,r)(y), we have

a = inf

{

µ > 0 : inf

{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(

1
µ

r
n

u(x)
− n

p(x)f χB(x,r)

λ1/q(·)

)

≤ 1

}

≤ 1

}

=: inf A.
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We show that the previous infimum equals

b := inf

{

µ > 0 : sup
x∈Rn,r>0

̺p(·)

(

1
µ
r

n
u(x)

− n
p(x)f χB(x,r)

)

≤ 1

}

=: inf B,

which is precisely
∥

∥f |Mp(·),u(·)
∥

∥ by Corollary 2.3.
Let us prove that a ≥ b (where we can assume a <∞ without loss of generality), which

is equivalent to prove that a+ ε ≥ b for all ε > 0. It suffices to show that a+ ε ∈ B (for
arbitrary ε > 0). For any ε1 > 0, we have

inf

{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(

1

a + ε1

r
n

u(x)
− n

p(x)f χB(x,r)

λ1/q(·)

)

≤ 1

}

≤ 1.

Therefore, for any ε2 > 0,

sup
x∈Rn,r>0

̺p(·)

(

1

a + ε1

r
n

u(x)
− n

p(x)f χB(x,r)

(1 + ε2)1/q(·)

)

≤ 1.

Given any ε > 0, consider ε1, ε2 > 0 such that a + ε > (a + ε1)(1 + ε2)
1/q−. Then

a+ ε > (a + ε1)(1 + ε2)
1/q(·) and hence

sup
x∈Rn,r>0

̺p(·)

(

1

a+ ε
r

n
u(x)

− n
p(x)f χB(x,r)

)

≤ 1.

This implies a+ ε ∈ B, as claimed.
Next we prove a ≤ b by showing that A ⊃ B. Given any µ ∈ B,

sup
x∈Rn,r>0

̺p(·)

(

1
µ

r
n

u(x)
− n

p(x)f χB(x,r)

11/q(·)

)

≤ 1.

Therefore

inf

{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(

1

µ

r
n

u(x)
− n

p(x)f χB(x,r)

λ1/q(·)

)

≤ 1

}

≤ 1,

and hence µ ∈ A. �

The next result shows that if u(x) = p(x) almost everywhere, the variable exponent
mixed Morrey-sequence space coincides with the mixed space ℓq(·)(Lp(·)) introduced in [3].

Proposition 3.6. If p, q ∈ P(Rn) then

̺
ℓq(·)

(

Mp(·),p(·)

)

(

(fν)ν
)

= ̺ℓq(·)(Lp(·))

(

(fν)ν
)

for every sequence (fν)ν ⊂ M(Rn). Consequently,

ℓq(·)
(

Mp(·),p(·)
)

= ℓq(·)(Lp(·)) (with equal quasinorms).



VARIABLE BESOV-MORREY SPACES 11

Proof. The coincidence above follows from Lemmas 2.2 and 2.5:

̺
ℓq(·)

(

Mp(·),p(·)

)

(

(fν)ν
)

=
∑

ν≥0

sup
x∈Rn,r>0

inf

{

λ > 0 : ̺p(·)

(

fν χB(x,r)

λ1/q(·)

)

≤ 1

}

=
∑

ν≥0

inf

{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(

fν χB(x,r)

λ1/q(·)

)

≤ 1

}

=
∑

ν≥0

inf

{

λ > 0 : ̺p(·)

(

fν
λ1/q(·)

)

≤ 1

}

= ̺ℓq(·)(Lp(·))

(

(fν)ν
)

.

�

It is time to show that (3.1) really defines a semimodular.

Theorem 3.7. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x). Then ̺ℓq(·)(Mp(·),u(·)) is a left-

continuous semimodular. Moreover, it is a modular if q+ <∞.

Proof. Recalling Definition 2.1, we need to check properties (i)-(v). Properties (i) and (iii)
are clear. Property (ii) can be shown using the result given in Proposition 3.5. Indeed,
given any β > 0 and any sequence (fν)ν ⊂ M(Rn) such that ̺ℓq(·)(Mp(·),u(·))

(

β(fν)ν
)

= 0,
we have

0 = ̺ℓq(·)(Mp(·),u(·))

(

β(fν)ν
)

≥ ̺ℓq(·)(Mp(·),u(·))

(

(0, . . . , 0, βfν0, 0, . . .)
)

≥ 0

for each ν0 ∈ N0. Thus
∥

∥fν0 |Mp(·),u(·)
∥

∥ =
∥

∥(0, . . . , 0, fν0, 0, . . .) | ℓq(·)(Mp(·),u(·))
∥

∥ = 0

and hence fν0 = 0 almost everywhere. To check property (iv), just use the assumption
that q is bounded and the characterization (3.2).

Let us move now to the proof of the left-continuity (v). We give the details in the case
̺ℓq(·)(Mp(·),u(·))

(

(fν)ν
)

< ∞ only. The arguments can be adapted to treat the other case.

Suppose there exists ε > 0 and a sequence (fν)ν ⊂ M(Rn) such that for every µ ∈ (0, 1)
we have

̺ℓq(·)(Mp(·),u(·))

(

(fν)ν
)

− ̺ℓq(·)(Mp(·),u(·))

(

µ∗(fν)ν
)

≥ ε, for some µ∗ ∈ (µ, 1).

Then, for each ν ∈ N0, we find xν ∈ Rn and rν > 0 such that
∑

ν≥0

inf
{

λ > 0 : ̺p(·)

(

r
n

u(xν)
− n

p(xν )
ν fν χB(xν ,rν)/λ

1
q(·)

)

≤ 1
}

≥
∑

ν≥0

[

sup
x∈Rn,r>0

inf
{

λ > 0 : ̺p(·)

(

r
n

u(x)
− n

p(x) fν χB(x,r)/λ
1

q(·)

)

≤ 1
}

−
ε

2ν

]

= ̺ℓq(·)(Mp(·),u(·))

(

(fν)ν
)

− 2ε ≥ ̺ℓq(·)(Mp(·),u(·))

(

µ∗(fν)ν
)

− ε.

But this implies

̺ℓq(·)(Lp(·))

((

r
n

u(xν)
− n

p(xν )
ν fν χB(xν ,rν)

)

ν

)

≥ ̺ℓq(·)(Lp(·))

(

µ∗
(

r
n

u(xν)
− n

p(xν)
ν fν χB(xν ,rν)

)

ν

)

− ε

which would contradict the left-continuity of the semimodular ̺ℓq(·)(Lp(·)) (see [3, Propo-

sition 3.5]). �
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Remark 3.8. We take the opportunity to fix the formulation of [3, Proposition 3.5(a)].
As we can conclude from the explanation above, the claim there holds if q+ <∞.

For constant exponents the connection between the semimodular and the quasinorm
is immediate. That connection is not so clear when we deal with non-constant indices.
The following inequality gives some information on the estimation of the functional (3.3)
by the semimodular (3.1). This will be useful in Section 4 below.

Lemma 3.9. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x) and q− < ∞. If q+ < ∞ or
̺ℓq(·)(Mp(·),u(·))

(

(fν)ν
)

> 0, then

∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ ≤ max
{

̺ℓq(·)(Mp(·),u(·))
(

(fν)ν
) 1

q− , ̺ℓq(·)(Mp(·),u(·))
(

(fν)ν
) 1

q+

}

.

The proof consists essentially in showing that the right-hand side above is, when pos-
itive, one of the µ’s in the defining formula (3.3) and using also the fact that the semi-
modular being considered here is indeed a modular when q+ <∞ (cf. Theorem 3.7).

Finally, we will show that (3.3) really defines a quasinorm in the space ℓq(·)
(

Mp(·),u(·)
)

.
Since the main issue here is the proof of the (quasi)triangle inequality, for the sake of
intelligibility we prove the other quasinorm properties in a separate lemma.

Lemma 3.10. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x). Then (3.3) defines a homogeneous
modular in the vector space of all sequences contained in M0(R

n).

Proof. The homogeneity can be shown in the standard way using a change of variable in
the infimum: apart from the obvious case α = 0,

∥

∥α(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ = inf
{

µ > 0 : ̺ℓq(·)(Mp(·),u(·))
(

1
µ
|α|(fν)ν

)

≤ 1
}

= |α| inf
{

µ
|α| > 0 : ̺ℓq(·)(Mp(·),u(·))

(

1
µ/|α| (fν)ν

)

≤ 1
}

= |α|
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ .

It remains to prove that (3.3) satisfies properties (i)-(iv) of Definition 2.1. Property (i)
is easy and property (iii) is clear from the homogeneity. On the other hand, property
(ii) follows from (iv), which we proceed to show. If

∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ = 0 then

̺ℓq(·)(Mp(·),u(·))

(

1
µ
(fν)ν

)

≤ 1 for all µ > 0. This implies

̺ℓq(·)(Lp(·))

(

1

µ

(

r
n

u(x)
− n

p(x) fν χB(x,r)

)

ν

)

≤ 1

for all µ > 0, x ∈ Rn and r > 0. Hence
∥

∥

∥

(

r
n

u(x)
− n

p(x) fν χB(x,r)

)

ν
| ℓq(·)(Lp(·))

∥

∥

∥
= 0

for every x ∈ Rn and r > 0. Since
∥

∥· | ℓq(·)(Lp(·))
∥

∥ is a modular in the vector space of
all sequences contained in M0(R

n), then we have fν(y)χB(x,r)(y) = 0 almost everywhere,
for each ν ∈ N0, x ∈ Rn and r > 0. Hence fν = 0 almost everywhere for all ν ∈ N0. �

Proposition 3.11. Let p, q ∈ P(Rn) be such that there exists A ∈ [1,∞) and t ∈ (0,∞)
such that

(3.7)
∥

∥(fν)ν + (gν)ν | ℓq(·)
(

Lp(·)
)∥

∥

t
≤ A

(

∥

∥(fν)ν | ℓq(·)
(

Lp(·)
)∥

∥

t
+
∥

∥(gν)ν | ℓq(·)
(

Lp(·)
)∥

∥

t
)

,

for all (fν)ν , (gν)ν ∈ ℓq(·)
(

Lp(·)
)

. Then, given u ∈ P(Rn) such that p(x) ≤ u(x), (3.7) also

holds with ℓq(·)
(

Lp(·)
)

replaced by ℓq(·)
(

Mp(·),u(·)
)

, for any (fν)ν , (gν)ν ∈ ℓq(·)
(

Mp(·),u(·)
)

.
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Proof. It is not hard to check, using the fact q− > 0, that
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ < ∞

for sequences (fν)ν ∈ ℓq(·)
(

Mp(·),u(·)
)

. Let (fν)ν , (gν)ν ∈ ℓq(·)
(

Mp(·),u(·)
)

and denote

µf :=
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥

t
and µg :=

∥

∥(gν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥

t
.

It is clear from the previous lemma that (3.7) is trivial if at least one of the previous
quantities is zero. So, we assume µf , µg > 0. Consider any sequences (xν)ν ⊂ Rn and
(rν)ν ⊂ (0,∞). Let

Fν := r
n

u(xν)
− n

p(xν )
ν fν χB(xν ,rν) and Gν := r

n
u(xν)

− n
p(xν)

ν gν χB(xν ,rν) , ν ∈ N0.

Then (Fν)ν and (Gν)ν belong to ℓq(·)
(

Lp(·)
)

, with
∥

∥(Fν)ν | ℓq(·)
(

Lp(·)
)∥

∥

t
≤ µf and

∥

∥(Gν)ν | ℓq(·)
(

Lp(·)
)∥

∥

t
≤ µg.

Indeed,
∥

∥(Fν)ν | ℓq(·)
(

Lp(·)
)∥

∥ = inf
{

µ > 0 : ̺ℓq(·)(Lp(·))

(

1
µ
(Fν)ν

)

≤ 1
}

= inf







µ > 0 :
∑

ν≥0

inf







λ > 0 : ̺p(·)

(

1
µ

r
n

u(xν)
− n

p(xν)
ν fν χB(xν ,rν)

λ1/q(·)

)

≤ 1







≤ 1







≤ inf

{

µ > 0 :
∑

ν≥0

sup
x∈Rn,r>0

inf

{

λ > 0 : ̺p(·)

(

1
µ

r
n

u(x)
− n

p(x)fν χB(x,r)

λ1/q(·)

)

≤ 1

}

≤ 1

}

= inf
{

µ > 0 : ̺ℓq(·)(Mp(·),u(·))
(

1
µ
(fν)ν

)

≤ 1
}

=
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ = µ
1/t
f ,

and analogously for (Gν)ν , (gν)ν . Hence, by the hypothesis (3.7),
∥

∥(Fν)ν + (Gν)ν | ℓq(·)
(

Lp(·)
)∥

∥

t
≤ A(µf + µg).

Thus
∥

∥

∥

∥

(Fν)ν + (Gν)ν
[A(µf + µg)]1/t

| ℓq(·)
(

Lp(·)
)

∥

∥

∥

∥

≤ 1

and then, by the unit ball property,

∑

ν≥0

inf







λ > 0 : ̺p(·)

(r
n

u(xν)
− n

p(xν )
ν (fν + gν)χB(xν ,rν)

[A(µf + µg)]1/t λ1/q(·)

)

≤ 1







≤ 1.

Observe that this implies that each infimum is at most one and, being valid for any
sequences (xν)ν ⊂ Rn and (rν)ν ⊂ (0,∞), also implies that the corresponding

(3.8) sup
x∈Rn,r>0

inf

{

λ > 0 : ̺p(·)

(r
n

u(x)
− n

p(x) (fν + gν)χB(x,r)

[A(µf + µg)]1/t λ1/q(·)

)

≤ 1

}

is finite (and even at most one). Therefore, given any ε > 0 and ν ∈ N0, it is possible to
find yν ∈ Rn and Rν ∈ (0,∞) such that

(3.8) ≤ inf







λ > 0 : ̺p(·)

(R
n

u(yν)
− n

p(yν)
ν (fν + gν)χB(yν ,Rν)

[A(µf + µg)]1/t λ1/q(·)

)

≤ 1







+
ε

2ν
.
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Taking the sum with respect to ν in both sides, we get, for the Fν , Gν built from yν and
Rν ,

̺ℓq(·)(Mp(·),u(·))

(

( fν + gν
[A(µf + µg)]1/t

)

ν

)

≤ ̺
ℓq(·)

(

Lp(·)

)

(

( Fν +Gν

[A(µf + µg)]1/t

)

ν

)

+ 2ε ≤ 1 + 2ε.

By the arbitrariness of ε > 0, we conclude that

̺ℓq(·)(Mp(·),u(·))

(

( fν + gν
[A(µf + µg)]1/t

)

ν

)

≤ 1

and, consequently,
∥

∥

∥

∥

( fν + gν
[A(µf + µg)]1/t

)

ν
| ℓq(·)

(

Mp(·),u(·)
)

∥

∥

∥

∥

≤ 1,

from which the desired inequality follows by homogeneity. �

From Lemma 3.10 and Proposition 3.11 combined with [3, Theorems 3.6 and 3.8] and
[27, Theorem 1], we get the following final result:

Theorem 3.12. The functional (3.3) defines a quasinorm in the vector space ℓq(·)
(

Mp(·),u(·)
)

for any p, q, u ∈ P(Rn) with p(x) ≤ u(x). Moreover, it induces a norm in the following
cases (each one understood for almost every x ∈ Rn):

(1) p(x) ≥ 1 and q ∈ [1,∞] is constant;
(2) 1 ≤ q(x) ≤ p(x) ≤ u(x) ≤ ∞;
(3) 1

p(x)
+ 1

q(x)
≤ 1.

Remark 3.13. Note that, in particular, the previous theorem summarizes the cases where
we known that

∥

∥ · | ℓq(·)
(

Mp(·),u(·)
)∥

∥ satisfies the triangle inequality. We would like also to
remark that there are exponents p, q ∈ P(Rn) with p(x) ≥ 1 and q(x) ≥ 1 for all x ∈ Rn

(even for constant p) for which
∥

∥ · | ℓq(·)
(

Mp(·),u(·)
)∥

∥ does not satisfy the triangle inequality
(cf. [27, Theorem 2], with p(x) = u(x)).

4. A convolution inequality

It is known that the Hardy-Littlewood maximal operator is bounded in Lp(·) if p− >
1 and 1/p is globally log-Hölder continuous, in the sense of conditions (4.2) and (4.3)
below (see [13, Chapter 4] for a detailed discussion including references). This fact has
been crucial, for instance, for the development of harmonic analysis in variable exponent
Lebesgue spaces. However, the situation is more complicated when we consider the
mixed Lebesgue-sequence spaces. In fact, as observed in [3, Section 4] (see also [14] for
the vector-valued case) we can not expect the so-called maximal inequality to hold in the
spaces ℓq(·)(Lp(·)) when q is non-constant. Therefore, the mixed sequence space loses an
important feature of the iterated space, namely the inheritance of properties from the
starting space Lp(·). We face a similar problem in our setting of mixed Morrey-sequence
spaces.

The difficulty described above was successfully overcome, first in [14] and then in [3],
through the study of convolutions involving nice kernels, namely the η-functions defined
by

ην,m(x) :=
2nν

(1 + 2ν |x|)m
, ν ∈ N0, m > 0.

Note that ην,m ∈ L1 for m > n and the corresponding L1-norm does not depend on ν.
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Convolution inequalities with kernels given by the functions above have been heavily
used as a replacement of the boundedness of the maximal operator in the mixed Lebesgue-
sequence spaces. Consequently, they proved to be key tools for the development of the
theory of the Besov and Triebel-Lizorkin scales with all the indices variable (cf. [3], [14]).
Such a convolution inequality was particularly hard to obtain for the spaces ℓq(·)(Lp(·))
when q is variable (such an inequality is immediate from the corresponding result in Lp(·)
only for constant q). The following inequality was proved in [3, Lemma 4.7]; see also [26,
Lemma 10] for the size condition indicated on m.

Lemma 4.1. Let p, q ∈ P log(Rn) with p− ≥ 1. If m > n + clog(1/q), then there exists
c > 0 such that

(4.1) ‖(ην,m ∗ fν)ν | ℓq(·)(Lp(·))‖ ≤ c ‖(fν)ν | ℓq(·)(Lp(·))‖

for all (fν)ν ∈ ℓq(·)(Lp(·)).

Note that the class of exponents P log(Rn) and the meaning of clog(1/q) are defined
below in Section 4.1 by means of (4.2) and (4.3).

The main goal of this section is to obtain a corresponding convolution inequality for
the mixed Morrey-sequence spaces ℓq(·)

(

Mp(·),u(·)
)

. First we collect some auxiliary results.

4.1. The log-Hölder continuity and auxiliary results. We say that a continuous
function g : Rn → R is locally log-Hölder continuous, abbreviated g ∈ C log

loc (R
n), if there

exists clog(g) ≥ 0 such that

(4.2) |g(x)− g(y)| ≤
clog(g)

log(e+ 1/|x− y|)
, for all x, y ∈ Rn.

The function g is said to be globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if
it is locally log-Hölder continuous and there exists g∞ ∈ R and c∞(g) ≥ 0 such that

(4.3) |g(x)− g∞| ≤
c∞(g)

log(e+ |x|)
, for all x ∈ Rn.

The notation P log(Rn) is used for those variable exponents p ∈ P(Rn) such that 1
p
∈

C log(Rn). Moreover we consider 1
p∞

:=
(

1
p

)

∞.
Sometimes we need to estimate norms of characteristic functions on balls. The following

result is taken from [13, Corollary 4.5.9].

Lemma 4.2. Let p ∈ P log(Rn) with p(x) ≥ 1. Then

‖χB(x,r) |Lp(·)‖ ≈

{

r
n

p(x) , if r ≤ 1,

r
n

p∞ , if r ≥ 1,

with the implicit constants independent of x ∈ Rn and r > 0.

The convolution operator behaves well in Lp(·) for log-Hölder continous exponents if
we take radially decreasing integrable kernels (cf. [13, Lemma 4.6.3]).

Lemma 4.3. Let p ∈ P log(Rn) with p(x) ≥ 1. Let ψ ∈ L1 and ψε(x) := ε−nψ(x/ε),
for ε > 0. Suppose that Ψ(x) := sup|y|≥|x| |ψ(y)| (the radial decreasing majorant of ψ) is
integrable and f ∈ Lp(·). Then

‖ψε ∗ f |Lp(·)‖ . ‖Ψ |L1‖ ‖f |Lp(·)‖

(where the implicit constant depends only on n and p).
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Remark 4.4. It is not hard to see that the η-functions above are good convolution kernels
in the sense of the previous lemma. Indeed, taking ψ = η0,m, with m > n, then we have
Ψ = η0,m ∈ L1. Thus, putting ψε = ην,m with ε = 2−ν , we get the inequality

(4.4) ‖ην,m ∗ f |Lp(·)‖ . ‖f |Lp(·)‖ , f ∈ Lp(·),

if m > n and p ∈ P log(Rn), with p(x) ≥ 1.

The following result allow us to move some special weights inside convolutions with
η-functions; see [14, Lemma 6.1] and [26, Lemma 19].

Lemma 4.5. Let α be a locally log-Hölder continuous function on Rn and m ≥ 0. If
l ≥ clog(α) then

2να(x) ην,m+l(x− y) . 2να(y) ην,m(x− y)

with the implicit constant depending only on the function α.

4.2. A convolution inequality in mixed Morrey-sequence spaces. The next the-
orem gives a corresponding inequality to (4.1) now for variable mixed Morrey-sequence
spaces ℓq(·)

(

Mp(·),u(·)
)

.

Theorem 4.6. Let p ∈ P log(Rn) and q, u ∈ P(Rn) with 1 ≤ p− ≤ p(x) ≤ u(x) ≤ ∞ and
1/q locally log-Hölder continuous. If

m > n+ clog(1/q) + n max
{

0, sup
x∈Rn

(

1
p(x)

− 1
u(x)

)

− 1
p∞

}

then there exists c > 0 such that

(4.5)
∥

∥(ην,m ∗ fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ ≤ c
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ .

for all sequences (fν)ν ∈ ℓq(·)
(

Mp(·),u(·)
)

.

Proof. We assume first that q− <∞ (the case q = ∞ will be detailed in the last part of
the proof).

Step 1: Let x0 ∈ Rn and r0 > 0 be (arbitrarily) fixed. We prove that inequality (4.5)
follows if we show that there exists c0 ∈ (0, 1] (independent of x0, r0, ν and (fν)ν) such
that

inf







λ > 0 : ̺p(·)





c0 r
n

u(x0)
− n

p(x0)

0 (ην,m ∗ fν)χB(x0,r0)

λ
1

q(·)



 ≤ 1







≤ sup
x∈Rn,r>0

inf

{

λ > 0 : ̺p(·)

(

r
n

u(x)
− n

p(x) fν χB(x,r)

λ
1

q(·)

)

≤ 1

}

+ 2−ν ,(4.6)

provided the supremum on the right-hand side is at most one.
Let (fν)ν ∈ ℓq(·)

(

Mp(·),u(·)
)

with
∥

∥(fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ ≤ 1. If (4.6) holds, passing to the
supremum with respect to x0 and r0 and then taking the summation on ν, we get

̺ℓq(·)(Mp(·),u(·)) (c0(ην,m ∗ fν)ν) ≤ ̺ℓq(·)(Mp(·),u(·)) ((fν)ν) + 2 ≤ 3.

By Lemma 3.9 we have
∥

∥(ην,m ∗ fν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ ≤ 31/q
−

c−1
0 .

Thus (4.5) follows by homogeneity.
Step 2: We prove (4.6).

Suppose that q+ <∞ (the case q+ = ∞ can be treated in a similar way; technically it is
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more complicated since we have to work directly with infima properties instead of L p(·)
q(·)

quasinorms as below). Then (4.6) can be written as
(4.7)
∥

∥

∥

∥

∣

∣

∣
c0 r

n
u(x0)

− n
p(x0)

0 (ην,m ∗ fν)χB(x0,r0)

∣

∣

∣

q(·)
|L p(·)

q(·)

∥

∥

∥

∥

≤ sup
x∈Rn,r>0

∥

∥

∥

∥

∣

∣

∣
r

n
u(x)

− n
p(x) fν χB(x,r)

∣

∣

∣

q(·)
|L p(·)

q(·)

∥

∥

∥

∥

+2−ν

(assuming the supremum on the right-hand side be at most one). For each ν ∈ N0, let

δν := sup
x∈Rn

r>0

∥

∥

∥

∥

∣

∣

∣
r

n
u(x)

− n
p(x) fν χB(x,r)

∣

∣

∣

q(·)
|L p(·)

q(·)

∥

∥

∥

∥

+ 2−ν .

Then we want to show that there exists c0 ∈ (0, 1] (as indicated above) such that
∥

∥

∥

∥

∥

∣

∣

∣

∣

c0 δ
− 1

q(·)
ν r

n
u(x0)

− n
p(x0)

0 (ην,m ∗ fν)χB(x0,r0)

∣

∣

∣

∣

q(·)
|L p(·)

q(·)

∥

∥

∥

∥

∥

≤ 1.

By the unit ball property the latter is equivalent to

(4.8) ̺ p(·)
q(·)

(

∣

∣

∣

∣

c0 δ
− 1

q(·)
ν r

n
u(x0)

− n
p(x0)

0 (ην,m ∗ fν)χB(x0,r0)

∣

∣

∣

∣

q(·)
)

≤ 1.

To obtain (4.8) we decompose each fν , ν ∈ N0, into the sum

fν = f 0
ν +

∞
∑

i=1

f i
ν ,

where

f 0
ν := fν χB(x0,2r0) and f i

ν := fν χB(x0,2i+1r0)\B(x0,2ir0) , i ∈ N.

Then we have

(4.9)
∣

∣

∣
δ
− 1

q(x)
ν (ην,m ∗ fν)(x)

∣

∣

∣
≤

∞
∑

i=0

δ
− 1

q(x)
ν

(

ην,m ∗ |f i
ν |
)

(x) .

∞
∑

i=0

(

ην,m′ ∗
∣

∣δ
− 1

q(·)
ν f i

ν

∣

∣

)

(x).

The second inequality follows from Lemma 4.5 with l = clog(1/q) and m′ := m − l > n.
Let us give some details on the application of this lemma. Due to the assumption on the
right-hand side of (4.7), we have 2−ν ≤ δν ≤ 1 + 2−ν for every ν ∈ N. If log2 δν

ν
∈ [0, 1] we

use Lemma 4.5 with α = −1/q (observing that clog(−1/q) = clog(1/q) ≥ 0) to get

δ
− 1

q(x)
ν =

(

2−
ν

q(x)

)

log2 δν
ν

.
(

2−
ν

q(y)
(

1 + 2ν |x− y|
)clog(−1/q)

)

log2 δν
ν

. δ
− 1

q(y)
ν

(

1+2ν |x−y|
)clog(1/q).

The same argument works when log2 δν
ν

∈ [−1, 0] (choosing this time α = 1/q). The case
ν = 0 can be handled in a similar way using that log2 δ0 ∈ [0, 1].

Returning to (4.9), the lattice property and the triangle inequality in Lp(·) yield
∥

∥

∥

∥

δ
− 1

q(·)
ν r

n
u(x0)

− n
p(x0)

0 (ην,m ∗ fν)χB(x0,r0) |Lp(·)

∥

∥

∥

∥

. I1 + I2,

where

I1 :=

∥

∥

∥

∥

r
n

u(x0)
− n

p(x0)

0

(

ην,m′ ∗
∣

∣δ
− 1

q(·)
ν f 0

ν

∣

∣

)

χB(x0,r0) |Lp(·)

∥

∥

∥

∥
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and

I2 :=

∥

∥

∥

∥

∥

∞
∑

i=1

r
n

u(x0)
− n

p(x0)

0

(

ην,m′ ∗
∣

∣δ
− 1

q(·)
ν f i

ν

∣

∣

)

χB(x0,r0) |Lp(·)

∥

∥

∥

∥

∥

.

Thus we obtain the desired inequality if we show that I1 + I2 . 1.
Step 3: We show that I1 . 1 and I2 . 1.

For the first, we apply Lemma 4.3 (and Remark 4.4) and get

I1 .

∥

∥

∥

∥

r
n

u(x0)
− n

p(x0)

0

∣

∣δ
− 1

q(·)
ν f 0

ν

∣

∣ |Lp(·)

∥

∥

∥

∥

.

∥

∥

∥

∥

δ
− 1

q(·)
ν (2r0)

n
u(x0)

− n
p(x0)

∣

∣f 0
ν

∣

∣ |Lp(·)

∥

∥

∥

∥

,

which gives the desired estimate taking into account the definition of δν .
The estimation of I2 is harder. We start by estimating the convolution appearing in

that part. For x ∈ B(x0, r0) and y ∈ B(x0, 2
i+1r0) \B(x0, 2

ir0), we have |x− y| ≥ 2i−1r0,
and hence

ην,m′(x− y) ≤ 2νn(1 + 2ν+i−1r0)
−m′

≤ 2νn2m
′

(1 + 2ν+ir0)
−m′

.

Using this fact and applying Hölder’s inequality, we have

(

ην,m′ ∗
∣

∣δ
− 1

q(·)
ν f i

ν

∣

∣

)

(x) . 2νn(1 + 2ν+ir0)
−m′

‖χB(x0,2i+1r0) |Lp′(·)‖ ‖δ
− 1

q(·)
ν f i

ν |Lp(·)‖

for every x ∈ B(x0, r0). Therefore,

I2 .
∞
∑

i=1

2νn(1 + 2ν+ir0)
−m′

r
n

u(x0)
− n

p(x0)

0 (2i+1r0)
n

p(x0)
− n

u(x0)

×
∥

∥χB(x0,2i+1r0) |Lp′(·)
∥

∥

∥

∥

∥
(2i+1r0)

n
u(x0)

− n
p(x0) δ

− 1
q(·)

ν f i
ν |Lp(·)

∥

∥

∥

∥

∥χB(x0,r0) |Lp(·)
∥

∥.

Since the last but one norm is at most one (by the definition of δν), we have I2 . I3
where

I3 :=

∞
∑

i=1

2νn(1 + 2ν+ir0)
−m′

(2i+1)
n

p(x0)
− n

u(x0) ‖χB(x0,2i+1r0) |Lp′(·)‖ ‖χB(x0,r0) |Lp(·)‖.

In order to estimate I3, we consider two cases.
The case 0 < r0 ≤ 1: Choose J ∈ N such that 2Jr0 ≤ 1 < 2J+1r0 (consider J = 1 if no

such number exists) and split the sum with respect to i ∈ N into two parts,
∑J−1

i=1 and
∑∞

i=J (the first sum does not exist if J = 1). Denote by I3A and I3B the corresponding
splitting implied in I3.

If i ≤ J − 1 we have 2i+1r0 ≤ 2Jr0 ≤ 1. By Lemma 4.2

‖χB(x0,r0) |Lp(·)‖ ≈ r
n

p(x0)

0 and ‖χB(x0,2i+1r0) |Lp′(·)‖ ≈ (2i+1r0)
n

p′(x0) .

Using these estimates, we get

I3A ≤
J−1
∑

i=1

2νn(1 + 2ν+ir0)
−m′

rn0 (2
i+1)

n− n
u(x0) .

For ν ∈ {0, 1} we use (1 + 2ν+ir0)
−m′

≤ 1 to obtain

I3A . rn0

J−1
∑

i=1

2i n . (2Jr0)
n . 1.



VARIABLE BESOV-MORREY SPACES 19

For ν ≥ 2 we have 2ν ≥ 4 > (2J−1r0)
−1 (recall that 2J+1r0 > 1), which implies J − 1 >

−ν − log2 r0. We consider two separate cases depending on the size of 2νr0:
The case 2νr0 > 1/2: here we use that (1 + 2ν+ir0)

−m′

≤ (2ν+ir0)
−m′

and m′ > n, and
obtain

I3A . 2νn rn0

J−1
∑

i=1

(2ν+ir0)
−m′

(2i)
n− n

u(x0) 2
n− n

u(x0) . 2ν(n−m′) rn−m′

0

∞
∑

i=1

2i(n−m′) . (2νr0)
n−m′

. 1.

The case 2νr0 ≤ 1/2: here we have −ν − log2 r0 ≥ 1 and we can split the summation in
I3A as

I3A =

⌊−ν−log2 r0⌋
∑

i=1

· · · +
J−1
∑

i=⌊−ν−log2 r0⌋+1

· · · =: I3A1 + I3A2.

To handle I3A1 we use again that (1 + 2ν+ir0)
−m′

≤ 1, and get

I3A1 . 2νn rn0

⌊−ν−log2 r0⌋
∑

i=1

(2i+1)n . 2νn rn0 2
n(−ν−log2 r0) ≈ 1.

In order to handle I3A2 , we note that (1 + 2ν+ir0)
−m′

≤ (2ν+ir0)
−m′

and m′ > n. Then
we obtain

I3A2 . 2νn rn0

J−1
∑

i=⌊−ν−log2 r0⌋+1

(2ν+ir0)
−m′

(2i+1)
n− n

u(x0)

. (2νr0)
n−m′

∞
∑

i=⌊−ν−log2 r0⌋+1

2i(n−m′) . (2νr0)
n−m′

2(n−m′)(−ν−log2 r0) = 1.

Let now i ≥ J . Since 2i+1r0 > 1, by Lemma 4.2 we have

‖χB(x0,2i+1r0) |Lp′(·)‖ ≈ (2i+1r0)
n

(p′)∞ = (2i+1r0)
n

(p∞)′ .

We have

I3B .

∞
∑

i=J

2νn(1 + 2ν+ir0)
−m′

(2i+1)
n

p(x0)
− n

u(x0) (2i+1r0)
n− n

p∞ r
n

p(x0)

0

≈ 2ν(n−m′) r0
−m′+n− n

p∞
+ n

p(x0)

∞
∑

i=J

2
(i+1)(−m′+ n

p(x0)
− n

u(x0)
+n− n

p∞
)
.

Since, by hypothesis, −m′+supx∈Rn

(

n
p(x)

− n
u(x)

)

+n− n
p∞

< 0, the series above converges.

Recalling also that m′ > n and that here r0 ≤ 1 and 2J+1r0 > 1, we get

I3B . r0
−m′+n− n

p∞
+ n

p(x0) 2
(J+1)(−m′+ n

p(x0)
− n

u(x0)
+n− n

p∞
)
= (2J+1r0)

(−m′+ n
p(x0)

− n
u(x0)

+n− n
p∞

)
r

n
u(x0)

0 ≤ 1.

The case r0 > 1: In this case Lemma 4.2 gives

‖χB(x0,r0) |Lp(·)‖ ≈ r
n

p∞
0 and ‖χB(x0,2i+1r0) |Lp′(·)‖ ≈ (2i+1r0)

n
p′∞ .
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Using again the size conditions m′ > n and −m′ + supx∈Rn

(

n
p(x)

− n
u(x)

)

+n− n
p∞

< 0, we

have

I3 .

∞
∑

i=1

2νn 2m
′

(1 + 2ν+i+1r0)
−m′

(2i+1)
n

p(x0)
− n

u(x0) (2i+1r0)
n− n

p∞ r
n

p∞
0

≈ 2ν(n−m′) rn−m′

0

∞
∑

i=1

2
(i+1)(−m′+ n

p(x0)
− n

u(x0)
+n− n

p∞
)
. 1.

Step 4: Now we consider the case q− = ∞ (i.e., q(x) = ∞ almost everywhere).
In this case we do not have an error term like in (4.6). Instead of such inequality, now
we want to show that there exists a constant c0 ∈ (0, 1], not depending on x0, r0, ν and
(fν)ν , such that

∥

∥

∥
c0 r

n
u(x0)

− n
p(x0)

0 (ην,m ∗ fν)χB(x0,r0) |Lp(·)

∥

∥

∥
≤ sup

x∈Rn

r>0

∥

∥

∥
r

n
u(x)

− n
p(x) fν χB(x,r) |Lp(·)

∥

∥

∥
.

for all (fν)ν ∈ ℓ∞
(

Mp(·),u(·)
)

. This is equivalent to show that there exists c1 ≥ 1 (also
independent of x0, r0, ν and (fν)ν), such that

(4.10)
∥

∥

∥
r

n
u(x0)

− n
p(x0)

0 (ην,m ∗ fν)χB(x0,r0) |Lp(·)

∥

∥

∥
≤ c1 sup

x∈Rn

r>0

∥

∥

∥
r

n
u(x)

− n
p(x) fν χB(x,r) |Lp(·)

∥

∥

∥
.

for all (fν)ν ∈ ℓ∞
(

Mp(·),u(·)
)

.
As in the last part of Step 2, we have

∥

∥

∥
r

n
u(x0)

− n
p(x0)

0 (ην,m ∗ fν)χB(x0,r0) |Lp(·)

∥

∥

∥
≤

≤
∥

∥

∥
r

n
u(x0)

− n
p(x0)

0

(

ην,m ∗ |f 0
ν |
)

χB(x0,r0) |Lp(·)

∥

∥

∥
+

∥

∥

∥

∥

∥

∞
∑

i=1

r
n

u(x0)
− n

p(x0)

0

(

ην,m ∗
∣

∣f i
ν

∣

∣

)

χB(x0,r0) |Lp(·)

∥

∥

∥

∥

∥

.

The estimation of the last two norms can be done as we did in I1 and I2 in Step 3,
except that now we get them dominated by the right-hand side of (4.10) instead of being
dominated by constants alone. Note that Lemma 4.5 is not necessary here, which means
that we can proceed just with m′ = m in the calculations. �

Remark 4.7. The arguments used in Step 4 of the proof above work not only for q− = ∞
but also for any constant exponent q ∈ (0,∞] (with some minor modifications). We can
see from the proof that the big difference between the constant q case and the variable q
case appears in Steps 1-2.

From Theorem 4.6 with constant q (so clog(1/q) = 0) combined with Proposition 3.5
we can establish a convolution inequality for variable exponent Morrey spaces as follows.

Corollary 4.8. Let p ∈ P log(Rn) and u ∈ P(Rn) with 1 ≤ p− ≤ p(x) ≤ u(x) ≤ ∞. If

m > n+ n max
{

0, supx∈Rn

(

1
p(x)

− 1
u(x)

)

− 1
p∞

}

, then there exists c > 0 such that

(4.11)
∥

∥ην,m ∗ f |Mp(·),u(·)
∥

∥ ≤ c
∥

∥f |Mp(·),u(·)
∥

∥

for all ν ∈ N0 and f ∈Mp(·),u(·).

Note that (4.11) extends to variable Morrey spaces the convolution inequality (4.4)
already known for variable Lebesgue spaces. Note that when u(x) = p(x) we recover the
same assumption on m used in (4.4).
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5. Variable exponent Besov-Morrey spaces

In the recent years there was an increase of interest in studying so-called smoothness
Morrey spaces (with constant exponents). Basically, they are function spaces built on
Morrey spaces with additional information on the smoothness of their elements. Let us
give some details on the definition of such spaces of Besov type.

The set S denotes the usual Schwartz class of infinitely differentiable rapidly decreasing
complex-valued functions on Rn and S ′ denotes its dual space of tempered distributions.
By f̂ we denote the Fourier transform of f ∈ S given by

f̂(ξ) := (2π)−n/2

∫

Rn

e−iξ·xf(x) dx, ξ ∈ R
n,

and by f̌ we denote the inverse Fourier transform of f . Both transforms are extended to
S ′ in the usual way.

A pair (ϕ̌, Φ̌) of functions in S is called admissible if

• suppϕ ⊂ {x ∈ Rn : 1
2
≤ |x| ≤ 2} and |ϕ(x)| ≥ c > 0 when 3

5
≤ |x| ≤ 5

3
;

• suppΦ ⊂ {x ∈ Rn : |x| ≤ 2} and |Φ(x)| ≥ c > 0 when |x| ≤ 5
3
.

Set ϕ0 := Φ and ϕj := ϕ(2−j·) for j ∈ N. Then ϕj ∈ S for all j ∈ N0 and

suppϕj ⊂ {x ∈ R
n : 2j−1 ≤ |x| ≤ 2j+1} , j ∈ N.

Accordingly, {ϕj} constructed as above is called an admissible system.
Let s ∈ R, 0 < p ≤ u ≤ ∞ and 0 < q ≤ ∞. The Besov-Morrey space N s

p,u,q is the set
of all distributions f ∈ S ′ such that

‖f | N s
p,u,q‖ :=

∥

∥

(

2js(ϕj f̂)
∨)

j
| ℓq(Mp,u)

∥

∥ <∞.

Hence the Besov-Morrey space N s
p,u,q generalizes the usual Besov space Bs

p,q (recall that
the latter is modeled on Lp spaces instead of Morrey spaces). The spaces N s

p,u,q were
introduced by Kozono and Yamazaki [31] motivated by applications to partial differential
equations and they were further developed by Mazzucato [39] in connection with the
study of Navier-Stokes equations.

Besov spaces B
s(·)
p(·),q(·) on Rn with all parameters variable were introduced in [3]. More

recently, Besov spaces Bw

p(·),q(·) with variable integrability have been studied in the general

setting of 2-microlocal spaces, [4] and [24, 25]. Here w = (wj)j∈N0 belongs to the class
Wα

α1,α2
, consisting of sequence of positive measurable functions wj on Rn such that

(i) there exists c > 0 such that

(5.1) 0 < wj(x) ≤ c wj(y)
(

1 + 2j|x− y|
)α

for all j ∈ N0 and x, y ∈ Rn;
(ii) there holds

2α1 wj(x) ≤ wj+1(x) ≤ 2α2 wj(x)

for all j ∈ N0 and x ∈ Rn.

Then we say that w = (wj)j∈N0 constitutes an admissible weight sequence. In the sequel
the parameters α ≥ 0 and α1, α2 ∈ R (with α1 ≤ α2) are arbitrary but fixed num-
bers. We refer to [23, Remark 2.4] for some useful properties of class Wα

α1,α2
, and to [4,

Examples 2.4–2.7] for a compilation of basic examples of admissible weight sequences.
On the other hand, variable exponent Morrey spaces Mp(·),u(·) have been recently stud-

ied by many authors. Then one may ask for a full variable exponent generalization for
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the spaces N s
p,u,q above. Now that we have mixed Morrey-sequence spaces available, we

can introduce 2-microlocal Besov-Morrey spaces with all indices variable. This new scale
provides an unification for various function spaces recently introduced in the literature.

Definition 5.1. Consider an admissible system {ϕj}. Let w = (wj)j ∈ Wα
α1,α2

be ad-
missible weights and let p, q, u ∈ P(Rn) with 0 < p− ≤ p(x) ≤ u(x) ≤ ∞. We define
Nw

p(·),u(·),q(·) as the collection of all f ∈ S ′ such that
∥

∥f | Nw

p(·),u(·),q(·)
∥

∥ :=
∥

∥(wj(ϕj f̂)
∨)j | ℓq(·)

(

Mp(·),u(·)
)∥

∥ <∞.

In the particular case wj(x) = 2js(x), with s ∈ C log
loc (R

n), we have Besov-Morrey spaces
with variable smoothness and integrability, and we write in that case

Nw

p(·),u(·),q(·) = N s(·)
p(·),u(·),q(·).

Remark 5.2. In view of Theorem 3.12 we see that Nw

p(·),u(·),q(·) are quasinormed spaces

(normed spaces in each one of the cases listed in Theorem 3.12). Moreover, as we shall see
below (cf. Remark 6.5) the spaces Nw

p(·),u(·),q(·) are independent of the admissible system

{ϕj} taken in its definition, at least when some parameters satisfy regularity assumptions
like log-Hölder continuity. This means that different admissible systems should produce
equivalent quasinorms in the corresponding spaces.

Remark 5.3. As regards the partial variable generalization N s
p(·),u(·),q given in [18] (already

mentioned in the Introduction), it contains wrong arguments used in some proofs. For
example, they mix results concerning two different approaches for variable Morrey spaces
when working in Rn and state, in their Lemma 2.1, a maximal inequality which is not
clear to hold without some restrictions on the parameters for the variable Morrey spaces
considered in that paper. Related to this, in [20, Corollary 5.1] a maximal inequality
is presented, however with some extra restrictions on the parameters. Still in [18], an
important vector-valued maximal inequality is given in their Theorem 2.2, but the proof
uses their Lemma 2.5, which does not hold in the setting of Rn.

6. Maximal functions characterization

For (ψj)j ⊂ S we set Ψj := ψ̂j ∈ S. The Peetre maximal functions of f ∈ S ′ are
defined, for every j ∈ N0 and a > 0, by

(

Ψ∗
jf
)

a
(x) := sup

y∈Rn

|(Ψj ∗ f)(y)|

1 + |2j(x− y)|a
, x ∈ R

n.

We consider here the construction starting with two given functions ψ0, ψ1 ∈ S and

ψj(x) := ψ1(2
−j+1x), j ∈ N \ {1}, x ∈ R

n.

Then we write Ψj = ψ̂j as mentioned above.
The Peetre maximal functions are important tools in the study of properties of various

classical functions spaces. The main goal of this section is to present a characterization
of the spaces Nw

p(·),u(·),q(·) in terms of such functions and, consequently, the independence

of their definition with respect to the admissible system considered (cf. Remark 6.5).
The following technical lemma gives a discrete convolution type inequality in mixed

Morrey-sequence spaces. It can be proved by adapting the arguments used in the proof
of [4, Lemma 3.4]. For completeness we give the details in the Appendix.
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Lemma 6.1. Let p, q, u ∈ P(Rn) with p(x) ≤ u(x). Let δ > 0. For any sequence (gj)j∈N0

of nonnegative measurable functions on Rn, we denote

Gν(x) :=

∞
∑

j=0

2−|ν−j|δgj(x), x ∈ R
n, ν ∈ N0.

Then it holds

(6.1)
∥

∥(Gν)ν | ℓq(·)
(

Mp(·),u(·)
)∥

∥ .
∥

∥(gj)j | ℓq(·)
(

Mp(·),u(·)
)∥

∥.

The next theorem compares maximal functions built from different starting functions.

Theorem 6.2. Let w ∈ Wα
α1,α2

and p, q, u ∈ P(Rn) with p(x) ≤ u(x). Let a > 0 and
R ∈ N0 with R > α2. Let further ψ0, ψ1 ∈ S with

Dβψ1(0) = 0 for 0 ≤ |β| < R,

and φ0, φ1 ∈ S with

|φ0(x)| > 0 on {x ∈ R
n : |x| ≤ kε},

|φ1(x)| > 0 on
{

x ∈ R
n : ε ≤ |x| ≤ 2kε

}

for some ε > 0 and k ∈ (1, 2]. Then
∥

∥

((

Ψ∗
jf
)

a
wj

)

j
| ℓq(·)

(

Mp(·),u(·)
)∥

∥ .
∥

∥

((

Φ∗
jf
)

a
wj

)

j
| ℓq(·)

(

Mp(·),u(·)
)∥

∥

holds for every f ∈ S ′.

Proof. We follow the details given in the proof of [6, Theorem 4.9]: near the end of that
proof the following inequality is stated:

(

Ψ∗
νf
)

a
(x)wν(x) ≤ c

∞
∑

j=0

2−|j−ν|δ(Φ∗
jf
)

a
(x)wj(x), x ∈ R

n, ν ∈ N0 f ∈ S ′,

with δ := min{1, R−α2}. It was derived with no reference to p, q or u (so, in particular,
without any consideration of a concrete space of functions, apart from S ′). Using now
Lemma 6.1 and the lattice property of ℓq(·)

(

Mp(·),u(·)
)

, the desired result follows. �

Below we use the following abbreviation:

c∞(1/p, 1/u) := max
{

0, sup
x∈Rn

(

1
p(x)

− 1
u(x)

)

− 1
p∞

}

.

Note that c∞(1/p, 1/u) = 0 when p(x) = u(x) or p(x) = p is constant.

Theorem 6.3. Let w ∈ Wα
α1,α2

. Assume p ∈ P log(Rn) and q, u ∈ P(Rn) with p(x) ≤ u(x)
and 1/q locally log-Hölder continuous. Let ψ0, ψ1 ∈ S with

|ψ0(x)| > 0 on {x ∈ R
n : |x| ≤ kε},

|ψ1(x)| > 0 on
{

x ∈ R
n : ε ≤ |x| ≤ 2kε

}

for some ε > 0 and k ∈ (1, 2]. If

(6.2) a > α + clog(1/q) + n
(

1
p−

+ c∞(1/p, 1/u)
)

,

then
∥

∥

((

Ψ∗
jf
)

a
wj

)

j
| ℓq(·)

(

Mp(·),u(·)
)∥

∥ .
∥

∥

(

(Ψj ∗ f)wj

)

j
| ℓq(·)

(

Mp(·),u(·)
)∥

∥

holds for all f ∈ S ′.
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Proof. Now we follow the proof of [6, Theorem 4.10] (and the references mentioned there)
where almost all the details can be found: for a > α one has

(

(

Ψ∗
νf
)

a
(x)
)t
(

wν(x)
)t

.

∞
∑

j=ν

2−(j−ν)(N−a+α1)t
(

ηj,(a−α)t ∗
(

|Ψj ∗ f |wj

)t
)

(x),

with the involved constant independent of f ∈ S ′, x ∈ Rn and ν ∈ N0, and where t > 0
and N ∈ N0 with N ≥ a are at our disposal. It is clearly stated in the mentioned proof
in [6] that the above estimate has nothing to do with the consideration of the parameters
p, q, u (so, it was obtained without any consideration of a particular space of functions,
apart from S ′).

Consider now a > 0 satisfying (6.2), N > a+ |α1| and t ∈ (0, p−) such that still

a > α + clog(1/q) + n
(

1
t
+ c∞(1/p, 1/u)

)

.

Applying first Lemma 6.1 with δ = (N−a+α1)t and then Theorem 4.6 with m = (a−α)t
(and p/t, q/t, u/t instead of p, q, u, respectively), we get
∥

∥

(((

Ψ∗
νf
)

a
wj

)t)

ν
| ℓq(·)/t

(

Mp(·)/t,u(·)/t
)∥

∥ .
∥

∥

(

ηj,(a−α)t ∗
(

|Ψj ∗ f |wj

)t)

j
| ℓq(·)/t

(

Mp(·)/t,u(·)/t
)∥

∥

.
∥

∥

(

(|Ψj ∗ f |wj)
t
)

j
| ℓq(·)/t

(

Mp(·)/t,u(·)/t
)∥

∥.

The conclusion follows now from (3.4). �

Now we are ready to formulate the main result on the characterization of the spaces
Nw

p(·),u(·),q(·) in terms of Peetre maximal functions. Its proof works exactly as the proof of

[6, Theorem 4.5] (given just before the References in [6]), using now our Theorems 6.2
and 6.3 above instead of [6, Theorem 4.9] and [6, Theorem 4.10], respectively.

Theorem 6.4. Let w ∈ Wα
α1,α2

. Assume p ∈ P log(Rn) and q, u ∈ P(Rn) with p(x) ≤ u(x)
and 1/q locally log-Hölder continuous. Let R ∈ N0 with R > α2 and ψ0, ψ1 ∈ S with

Dβψ1(0) = 0 for 0 ≤ |β| < R,

and

|ψ0(x)| > 0 on {x ∈ R
n : |x| ≤ kε},

|ψ1(x)| > 0 on
{

x ∈ R
n : ε ≤ |x| ≤ 2kε

}

for some ε > 0 and k ∈ (1, 2]. If a > α + clog(1/q) + n
(

1
p−

+ c∞(1/p, 1/u)
)

, then

∥

∥f | Nw

p(·),u(·),q(·)
∥

∥ ≈
∥

∥

(

(Ψj ∗ f)wj

)

j
| ℓq(·)

(

Mp(·),u(·)
)∥

∥ ≈
∥

∥

((

Ψ∗
jf
)

a
wj

)

j
| ℓq(·)

(

Mp(·),u(·)
)∥

∥

holds for all f ∈ S ′.

Remark 6.5. Notice that the above theorem contains the conclusion that the spaces
Nw

p(·),u(·),q(·) given in Definition 5.1 are independent of the admissible system considered,

when p ∈ P log(Rn) and 1/q is locally log-Hölder continuous. Note also that Theorem 6.4
generalizes to the Morrey setting the maximal function characterization [4, Theorem 3.1]
already established in the Lebesgue setting. In particular, the assumption a > α +
clog(1/q) + n

(

1
p−

+ c∞(1/p, 1/u)
)

agrees with the corresponding one in [4, Theorem 3.1]

since c∞(1/p, 1/u) = 0 when p(x) = u(x).
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7. Atomic and molecular characterizations

In this section we characterize the spaces Nw

p(·),u(·),q(·) in terms of atoms and molecules.
As a by-product, we establish the embeddings

S →֒ Nw

p(·),u(·),q(·) →֒ S ′

and, moreover, we show that Nw

p(·),u(·),q(·) are complete spaces.
We use the notation Qjm, with j ∈ N0 and m ∈ Zn, for the closed cube with sides

parallel to the coordinate axes, centred at 2−jm and with side length 2−j. By χjm we
denote the corresponding characteristic function. The notation dQjm, d > 0, will stand
for the closed cube concentric with Qjm and of side length d2−j.

The building blocks we are interested in are defined as follows:

Definition 7.1 (Atoms). Let K,L ∈ N0 and d > 1. For each j ∈ N0 and m ∈ Zn, a
CK-function ajm on Rn is called a (K,L, d)-atom (supported near Qjm) if

supp ajm ⊂ dQjm ,

sup
x∈Rn

|Dγajm(x)| ≤ 2|γ|j , for 0 ≤ |γ| ≤ K,

and

(7.1)

∫

Rn

xγ ajm(x) dx = 0 , for j ≥ 1 and 0 ≤ |γ| < L.

Definition 7.2 (Molecules). Let K,L ∈ N0 and M > 0. For each j ∈ N0 and m ∈ Zn,
a CK-function [aa]jm on Rn is called a (K,L,M)-molecule (concentrated near Qjm) if

|Dγ[aa]jm(x)| ≤ 2|γ|j(1 + 2j|x− 2−jm|)−M , x ∈ R
n, 0 ≤ |γ| ≤ K,

and
∫

Rn

xγ [aa]jm(x) dx = 0 , for j ≥ 1 and 0 ≤ |γ| < L.

Remark 7.3.

(i) A (K, 0, d)-atom is an atom for which condition (7.1) is not required (so, no
moment conditions are required). A similar interpretation applies to a (K, 0,M)-
molecule.

(ii) It is easy to check that if ajm is a (K,L, d)-atom (so supported near Qjm), then,

given any M > 0,
(

1 + d
√
n

2

)−M
ajm is a (K,L,M)-molecule concentrated near

Qjm.

For the atomic and molecular representations of the spaces Nw

p(·),u(·),q(·) we need to
introduce appropriate sequence spaces.

Definition 7.4. Let w ∈ Wα
α1,α2

and p, q, u ∈ P(Rn) with p(x) ≤ u(x). The set nw

p(·),u(·),q(·)
consists of all (complex-valued) sequences λ = (λjm) j∈N0

m∈Zn
such that

‖λ |nw

p(·),u(·),q(·)‖ :=

∥

∥

∥

∥

∥

∥

(

∑

m∈Zn

λjmwj(2
−jm)χjm(·)

)

j

|ℓq(·)(Mp(·),u(·))

∥

∥

∥

∥

∥

∥

<∞.
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Using standard arguments, it is easy to see that the set nw

p(·),u(·),q(·) become a quasi-
normed space equipped with the functional above. Furthermore, taking into account the
properties of class Wα

α1,α2
, we can use wj(x) in place of wj(2

−jm) in the expression above,
up to equivalent quasinorms.

For short we will write (λjm) instead of (λjm) j∈N0
m∈Zn

when it is clear we are working with

the exhibited set of indices.
Below we shall use the next embedding. Its proof will be given in the Appendix.

Lemma 7.5. For every w ∈ Wα
α1,α2

and p, q, u ∈ P(Rn), with p(x) ≤ u(x), it holds

nw

p(·),u(·),q(·) →֒ nw

p(·),u(·),∞.

The next statement shows that any Besov-Morrey function can somehow be written as
a linear combination of atoms.

Theorem 7.6. Let w ∈ Wα
α1,α2

, p ∈ P log(Rn) and q, u ∈ P(Rn) with p(x) ≤ u(x) and 1/q
locally log-Hölder continuous. Further, let K,L ∈ N0 and d > 1. For each f ∈ Nw

p(·),u(·),q(·)
there exist (K,L, d)-atoms ajm ∈ S , j ∈ N0, m ∈ Zn, and λ(f) ∈ nw

p(·),u(·),q(·) such that

(7.2) f =

∞
∑

j=0

∑

m∈Zn

λjm(f) ajm (convergence in S ′)

and there exists a constant c > 0 (independent of f) such that
∥

∥λ(f) |nw

p(·),u(·),q(·)
∥

∥ ≤ c
∥

∥f | Nw

p(·),u(·),q(·)
∥

∥.

The proof follows exactly the scheme given in the proof of [7, Theorem 5.5], using
now Theorem 6.4 above instead of [6, Theorem 4.5] and directly the lattice property of
the Morrey-sequence spaces ℓq(·)(Mp(·),u(·)) instead of the corresponding property of the
Morrey spaces Mp(·),u(·). In the last part, to prove that the inner sum in (7.2) converges in
S ′ for the regular distribution given by the pointwise sum, we can use the arguments given
in second step of the proof of [7, Theorem 5.6], since we have nw

p(·),u(·),q(·) →֒ nw

p(·),u(·),∞
(cf. Lemma 7.5). Note that the hypothesis on L there was not used and we can consider
our atoms to be essentially molecules with the required M (actually, M > α + n will be
enough for that effect).

Corollary 7.7. Let w ∈ Wα
α1,α2

, p ∈ P log(Rn) and q, u ∈ P(Rn) with p(x) ≤ u(x) and
1/q locally log-Hölder continuous. Then it holds

Nw

p(·),u(·),q(·) →֒ S ′.

The proof of this corollary is essentially the same as the proof of [7, Corollary 5.7]. We
have to replace Ew

p(·),u(·),q(·), e
w

p(·),u(·),q(·) and [7, Theorem 5.5] respectively by Nw

p(·),u(·),q(·),
nw

p(·),u(·),q(·) and Theorem 7.6 above, and use again that nw

p(·),u(·),q(·) →֒ nw

p(·),u(·),∞.
The next statement establishes the completeness of the variable Besov-Morrey spaces.

Corollary 7.8. Let w ∈ Wα
α1,α2

, p ∈ P log(Rn) and q, u ∈ P(Rn) with p(x) ≤ u(x) and
1/q locally log-Hölder continuous. Then the spaces Nw

p(·),u(·),q(·) are complete.

Since the proof contains many complicated technical details intrinsic to the definition
of the semimodular ̺ℓq(·)(Mp(·),u(·)), we prefer to write it down in the Appendix and hence

continue here to the atomic/molecular representation of our spaces.
The next theorem gives a result in the opposite direction to Theorem 7.6 above. We

use the standard notation σt := n
(

1
min{1,t} − 1

)

.
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Theorem 7.9. Let w ∈ Wα
α1,α2

, p ∈ P log(Rn) and q, u ∈ P(Rn) with p(x) ≤ u(x) and
1/q locally log-Hölder continuous. Let λ ∈ nw

p(·),u(·),q(·) and [aa]jm be (K,L,M)-molecules
with K > α2,

(7.3) L > −α1 +max
{ n

inf u
, σp− + clog(1/q) + n c∞(1/p, 1/u)

}

and

(7.4) M > L+ 2n+ 2α + σp− + clog(1/q) + n c∞(1/p, 1/u).

Then

(7.5) f :=
∞
∑

j=0

∑

m∈Zn

λjm [aa]jm (convergence in S ′)

belongs to Nw

p(·),u(·),q(·) and there exists c > 0, independent of λ and [aa]jm (as long as

K,L,M are kept fixed), such that
∥

∥f | Nw

p(·),u(·),q(·)
∥

∥ ≤ c
∥

∥λ |nw

p(·),u(·),q(·)
∥

∥.

Proof. We follow the scheme of the proof of [7, Theorem 5.21]. Note, however, that here
the exponent u needs not be bounded (cf. [7, Remark 5.16]).

Step 1: First we observe that the iterated sum in (7.5) converges in S ′. This follows
from [7, Theorem 5.6], observing that λ ∈ nw

p(·),u(·),q(·) ⊂ nw

p(·),u(·),∞. Following the first

step of the proof of [7, Theorem 5.21] for the set of special hypotheses (70), (71) of that
theorem on L and M , we have to replace Ew

p(·),u(·),q(·) and ewp(·),u(·),q(·) by Nw

p(·),u(·),q(·) and
nw

p(·),u(·),q(·), respectively. In our case, the hypotheses on L and M above guarantee that

(7.6) L > −α1 + σp− + clog(1/q) + n c∞(1/p, 1/u)

and

(7.7) M > L+ 2n+ α + σp− + clog(1/q) + n c∞(1/p, 1/u),

so that it is possible to choose t ∈
(

0,min{1, p−}
)

such that

α + n/t + clog(1/q) + n c∞(1/p, 1/u) < min{M − L− n, L+ n+ α1 + α},

and N strictly in between these two quantities. In what follows we assume that t and N
have been chosen in such a way.

Step 2: It works much as the second and third steps of the proof of [7, Theorem 5.21].
Note now that the choices made in Step 1 guarantee that

(N − α)t > n + t clog(1/q) + n t c∞(1/p, 1/u).

Then using the lattice property of the mixed Morrey-sequence space ℓq(·)
(

Mp(·),u(·)
)

,
Lemma 6.1 above with δ := min{L+ n+ α1 − (N − α), K − α2}, (3.4) and Theorem 4.6
with m := (N − α)t (and p/t, q/t, u/t instead of p, q, u, respectively), we get that

∥

∥f | Nw

p(·),u(·),q(·)
∥

∥ .
∥

∥

∥

(

∑

m∈Zn

|λjm|wj(2
−jm)χjm

)

j

∣

∣ ℓq(·)
(

Mp(·),u(·)
)

∥

∥

∥
=
∥

∥λ |nw

p(·),u(·),q(·)
∥

∥,

finishing the proof. �
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Remark 7.10. As in [7, Theorem 5.21], in the situation sup
x∈Rn

(

1 − p(x)
u(x)

)

< p− (which

necessarily holds when p− ≥ 1), the conclusion given in Theorem 7.9 above also holds
under the alternative conditions

L > −α1 + σp− + clog(1/q) + n c∞
(

1/p, 1/u,min{1, p−}
)

and

M > L+ 2n + 2α+max{1, 2clog(1/p)} σp− + clog(1/q) + n c∞
(

1/p, 1/u,min{1, p−}
)

,

with the abbreviation c∞
(

1/p, 1/u, r
)

:= max
{

0, sup
x∈Rn

(

1/p(x) − 1/u(x)
)

− r/p∞

}

. In

fact, following the arguments above with [7, Theorem 5.14 and Remark 5.20] instead of
[7, Theorem 5.6 and Remark 5.16], this set of assumptions also guarantees that (7.6) and
(7.7) hold, hence concluding similarly.

Remark 7.11. Since (K,L, d)-atoms are, up to a multiplicative constant, (K,L,M)-
molecules (cf. Remark 7.3), Theorems 7.6 and 7.9 (see also Remark 7.10) above allow us
to obtain both atomic and molecular characterizations for the spaces Nw

p(·),u(·),q(·). This

generalizes, in particular, the results obtained by the authors in [5] for the non-Morrey
case (cf. [5, Corollaries 4.14 and 4.15]).

The same type of arguments as in the proof of [7, Corollary 5.22] can now be used to
show that the Schwartz space is embedded into the spaces Nw

p(·),u(·),q(·). Using Theorem 7.9
above and taking advantage of Proposition 3.5, we get then

Corollary 7.12. Let w ∈ Wα
α1,α2

, p ∈ P log(Rn) and q, u ∈ P(Rn) with p(x) ≤ u(x) and
1/q locally log-Hölder continuous. Then it holds

S →֒ Nw

p(·),u(·),q(·).

Appendix

7.1. Proof of Lemma 6.1. We can assume that p, q ≥ 1, otherwise one can always take
t ∈ (0,min{1, p−, q−}) and use (3.4) as follows:

∥

∥(Gν)ν |ℓq(·)
(

Mp(·),u(·)
)∥

∥

t
=

∥

∥

∥
(Gt

ν)ν |ℓ q(·)
t

(

M p(·)
t

,
u(·)
t

)

∥

∥

∥
≤

∥

∥

∥

∥

∥

∞
∑

j=0

2−|j−ν|δ t gtj |ℓ q(·)
t

(

M p(·)
t

,
u(·)
t

)

∥

∥

∥

∥

∥

.
∥

∥

∥
(gtj)j |ℓ q(·)

t

(

M p(·)
t

,
u(·)
t

)

∥

∥

∥
=
∥

∥(gj)j |ℓq(·)
(

Mp(·),u(·)
)∥

∥.

So, let us prove Lemma 6.1 for any p, q ≥ 1 (with u ≥ p). Suppose that

µ :=
∥

∥(gj)j |ℓq(·)
(

Mp(·),u(·)
)∥

∥ ∈ (0,∞)

(otherwise there is nothing to show). By the unit ball property of ̺ℓq(·)(Mp(·),u(·)), inequality

(6.1) will follow from the inequality

̺ℓq(·)(Mp(·),u(·))

(

(Gν)ν
c µ

)

≤ 1,

for some constant c > 0 independent of µ, which will be derived next. With the convention

gj ≡ 0 for j < 0 and the abbreviation hx,r(·) := r
n

u(x)
− n

p(x)χB(x,r)(·), x ∈ Rn, r > 0, by the
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unit ball property of ̺p(·) and Minkowski’s inequality we get

̺ℓq(·)(Mp(·),u(·))

(

(Gν)ν
c µ

)

=
∑

ν≥0

sup
x∈Rn,r>0

inf

{

λ > 0 :

∥

∥

∥

∥

hx,r(·)Gν

c µ λ1/q(·)
|Lp(·)

∥

∥

∥

∥

≤ 1

}

≤
∑

ν≥0

sup
x∈Rn,r>0

inf

{

λ > 0 :
∑

l∈Z
2−|l|δ

∥

∥

∥

∥

hx,r(·) gν+l

c µ λ1/q(·)
|Lp(·)

∥

∥

∥

∥

≤ 1

}

.(7.8)

Let us define

Iν,l(x, r) := inf

{

λ > 0 : c−1c(δ)2−|l|δ/2
∥

∥

∥

∥

hx,r(·) gν+l

µλ1/q(·)
|Lp(·)

∥

∥

∥

∥

≤ 1

}

for ν ∈ N0, l ∈ Z, x ∈ Rn, r > 0, where c(δ) :=
∑

l∈Z 2
−|l|δ/2. We claim that, for each

ν ∈ N0 (and each x ∈ Rn, r > 0), the sum
∑

l∈Z Iν,l(x, r) is not smaller than the infimum
in (7.8). We may assume that this sum is finite. For any ε > 0 we have

c−1c(δ)2−|l|δ/2
∥

∥

∥

∥

hx,r(·) gν+l

µ [Iν,l(x, r) + ε2−|l|]1/q(·)
|Lp(·)

∥

∥

∥

∥

≤ 1,

so that

c−1c(δ)
∑

l∈Z
2−|l|δ

∥

∥

∥

∥

hx,r(·) gν+l

µ [Iν,l(x, r) + ε2−|l|]1/q(·)
|Lp(·)

∥

∥

∥

∥

≤
∑

l∈Z
2−|l|δ/2.

Therefore

c−1
∑

l∈Z
2−|l|δ

∥

∥

∥

∥

∥

∥

∥

hx,r(·) gν+l

µ
(

∑

k∈Z[Iν,k(x, r) + ε2−|k|]
)1/q(·) |Lp(·)

∥

∥

∥

∥

∥

∥

∥

≤ 1,

and hence

inf

{

λ > 0 : c−1
∑

l∈Z
2−|l|δ

∥

∥

∥

∥

hx,r(·) gν+l

µλ1/q(·)
|Lp(·)

∥

∥

∥

∥

≤ 1

}

≤
∑

k∈Z
Iν,k(x, r) + ε

∑

k∈Z
2−|k|.

The claim follows by the convergence of the second series on the right-hand side and the
arbitrariness of ε > 0. Now using it in (7.8) and making a convenient change of variables
(choosing the constant c ≥ c(δ) and noting that q ≥ 1), we have

̺ℓq(·)(Mp(·),u(·))

(

(Gν)ν
c µ

)

≤
∑

ν≥0

sup
x∈Rn,r>0

∑

k∈Z
inf

{

λ > 0 : c−1c(δ)2−|k|δ/2
∥

∥

∥

∥

hx,r(·) gν+k

µλ1/q(·)
|Lp(·)

∥

∥

∥

∥

≤ 1

}

≤
∑

ν≥0

∑

k∈Z
sup

x∈Rn,r>0
c−1c(δ)2−|k|δ/2 inf

{

σ > 0 :

∥

∥

∥

∥

hx,r(·) gν+k

µ σ1/q(·) |Lp(·)

∥

∥

∥

∥

≤ 1

}

=
∑

k∈Z
c−1c(δ)2−|k|δ/2

∑

ν≥0

sup
x∈Rn,r>0

inf

{

σ > 0 :

∥

∥

∥

∥

hx,r(·) gν+k

µ σ1/q(·) |Lp(·)

∥

∥

∥

∥

≤ 1

}

=
∑

k∈Z
c−1c(δ)2−|k|δ/2 ̺ℓq(·)(Mp(·),u(·))

(

(gj)j
µ

)

≤ 1,

with the choice c = c(δ)2 and taking into account our definition of µ. The proof is
complete.
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7.2. Proof of Lemma 7.5. We use the following auxiliary result which can be of inde-
pendent interest:

Lemma 7.13. Let ̺ be an increasing and left-continuous semimodular in M0(R
n). Let

q ∈ P(Rn) and f ∈ M0(R
n). If inf

{

λ > 0 : ̺
(

f
λ1/q(·)

)

≤ 1
}

≤ 1, then ̺(f) ≤ 1.

Proof. If inf
{

λ > 0 : ̺
(

f
λ1/q(·)

)

≤ 1
}

≤ 1, then ̺
(

f
λ1/q(·)

)

≤ 1 for every λ > 1. Hence

̺
( f

λ1/q−
)

≤ ̺
( f

λ1/q(·)
)

≤ 1

for such values of λ. Since 1

λ1/q−
→ 1− as λ→ 1+, by the left-continuity of ̺ we get

̺(f) = lim
λ→1+

̺
( f

λ1/q−

)

≤ 1.

�

The embedding in Lemma 7.5 follows if we show that
∥

∥(fj)j |ℓ∞
(

Mp(·),u(·)
)∥

∥ ≤
∥

∥(fj)j |ℓq(·)
(

Mp(·),u(·)
)∥

∥

for every (fj)j ⊂ S ′. The inequality is clear when the quasinorm on the right-hand
side equals 0 or ∞. If this is not the case, by homogeneity it is enough to prove that
∥

∥(fj)j |ℓ∞
(

Mp(·),u(·)
)∥

∥ ≤ 1 when such quasinorm is less than or equal to one.

As above, let us use the abbreviation hx,r(·) := r
n

u(x)
− n

p(x)χB(x,r)(·), x ∈ Rn, r > 0. By

the unit ball property we have ̺ℓq(·)(Mp(·),u(·))
(

(fj)j
)

≤ 1. Thus

inf

{

λ > 0 : ̺p(·)

(hx,r(·) fj
λ1/q(·)

)

≤ 1

}

≤ 1

for each x ∈ Rn, r > 0 and j ∈ N0. By Lemma 7.13 (applied to the semimodular ̺p(·))

we also have ̺p(·)
(

hx,r(·) fj
)

≤ 1. Therefore

̺
ℓ∞

(

Mp(·),u(·)

)

(

(fj)j
)

=
∑

j≥0

sup
x∈Rn,r>0

inf
{

λ > 0 : ̺p(·)
(

hx,r(·) fj
)

≤ 1
}

= 0 ≤ 1.

7.3. Proof of Corollary 7.8. Let (fk)k be a Cauchy sequence in Nw

p(·),u(·),q(·). By Corol-

lary 7.7 and the completeness of S ′, there exists f ∈ S ′ such that limk→∞ fk = f in S ′.
We have to show that the convergence occurs also in Nw

p(·),u(·),q(·).

Given ε > 0, let k0 ∈ N be such that, for k, l ≥ k0,
∥

∥fk − fl | Nw

p(·),u(·),q(·)
∥

∥ < ε/2.
Together with the unit ball property and Lemma 2.2, this implies that

∑

j≥0

Aj,k,l :=
∑

j≥0

inf
{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(hx,r wj(ϕj f̂k − fl)
∨

λ
1

q(·) ε/2

)

≤ 1
}

≤ 1,

with hx,r as in the previous proof. For any k ≥ k0, we show that, given any j ∈ N0, there
exists lj such that

(7.9) Bj,k := inf
{

λ > 0 : sup
x∈Rn,r>0

̺p(·)

(hx,r wj(ϕj f̂k − f)∨

λ
1

q(·) ε

)

≤ 1
}

≤ Aj,k,l

for l ≥ lj. Assume, on the contrary, that for some j0 ∈ N0 and any l there would always
exist L ≥ l such that Bj0,k > Aj0,k,L. We then could construct the following:

• for l = k0 fix such a L and call it l1. So, Bj0,k > Aj0,k,l1 and l1 ≥ k0;
• for l = l1 + 1 fix such a L and call it l2. So, Bj0,k > Aj0,k,l2 and l2 > l1;
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• for l = l2 + 1 fix such a L and call it l3. So, Bj0,k > Aj0,k,l3 and l3 > l2;
• · · ·

In this way we construct sequences (li)i∈N and
(

Aj0,k,li

)

i∈N with li → ∞ as i → ∞ and
Bj0,k > Aj0,k,li for all i ∈ N. Suppose that Bj0,k < ∞. For each x ∈ Rn and r > 0, we
have

hx,r wj0(ϕj0 f̂k − fli)
∨

B
1

q(·)

j0,k
ε/2

−→
hx,r wj0(ϕj0 f̂k − f)∨

B
1

q(·)

j0,k
ε/2

as i→ ∞

pointwisely. Since the Lp(·) semimodular of the left-hand side is at most one and ̺p(·)
satisfies Fatou’s lemma (cf. [13, Lemma 2.3.16(a)]), the corresponding semimodular of
the right-hand side is also less than or equal to one. Hence

sup
x∈Rn,r>0

̺p(·)





hx,r wj0(ϕj0 f̂k − f)∨

B
1

q(·)

j0,k
ε/2



 ≤ 1.

If q− <∞, using the fact 1
2
≤
(

1

2q−

)1/q(·)
and monotonicity properties, we get

sup
x∈Rn,r>0

̺p(·)





hx,r wj0(ϕj0 f̂k − f)∨

(Bj0,k

2q−

)
1

q(·) ε



 ≤ 1.

But this contradicts the definition of Bj0,k. Note that if q− = ∞, then either Bj0,k = ∞
(ruled out here) or Bj0,k = 0, in which case (7.9) is clear.
Using similar arguments, it is not hard to check that the case Bj0,k = ∞ leads also to a
contradiction. Hence inequality (7.9) is proved.

Consider now J ∈ N. From (7.9), for l ≥ max{l0, . . . lJ} we have

J
∑

j=0

Bj,k ≤
J
∑

j=0

Aj,k,l.

Choosing, in addition, l ≥ k0, we also have

J
∑

j=0

Bj,k ≤
∞
∑

j=0

Aj,k,l ≤ 1,

and hence also
∑∞

j=0Bj,k ≤ 1. This shows that
∥

∥fk − f | Nw

p(·),u(·),q(·)
∥

∥ ≤ ε for k ≥ k0.

Finally, we conclude that

f = (f − fk) + fk ∈ Nw

p(·),u(·),q(·) and lim
k→∞

fk = f in Nw

p(·),u(·),q(·).
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