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Abstract: Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and
cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high
malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells
and the extracellular environment. Novel in vitro models that can recapitulate the tumour are
essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived
organoids have opened up new avenues due to their patient-specificity, self-organizing ability and
potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin,
but incorporation into co-culture models can enable the investigation of the cellular component of the
tumour microenvironment. However, the extracellular component also plays a vital role in cancer
progression and representation is lacking within current in vitro models. In this review, organoid
technology is discussed in the context of liver cancer models through comparisons to other cell
culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer
will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel
organoid-based models with models incorporating the native tumour microenvironment could lead
to experimental models that can better recapitulate liver tumours in vivo.
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1. Introduction

Primary liver cancer (PLC) is the second leading cause of cancer mortality worldwide, with a
steady increase in incidence over the last few years [1,2]. Each year there are 782.000 new cases and
746.000 deaths from PLC due to a poor five-year survival rate of 10.1–16.6%, and this is projected
to increase further in the coming years [3–5]. PLC compromises a heterogeneous group of tumours,
the most common subtypes including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA).
Each subtype is characterized by vastly different histological features and a wide variety of mutational
landscapes [6,7]. HCC accounts for 80–90% of all cases of liver cancer, and it arises most often
in a setting of chronic inflammation and fibrosis due to hepatitis B/C infections, alcohol abuse or
autoimmune reactions [8,9]. CCA is subdivided into intrahepatic (iCCA), perihilar (pCCA) and distal
cholangiocarcinoma (dCCA), based on its location [10]. Each subtype vastly differs in its clinical
presentation and associated treatment regimen, and although they are relatively easy to distinguish,
the plethora of subtypes in PLC makes it a very complex cancer to tackle [11,12]. dCCA is beyond the
scope of this manuscript because it is not PLC.
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The highly malignant behaviour of PLC is not solely the consequence of cellular transformation.
Recently, studies have shown the vital role of the tumour microenvironment in the initiation, progression,
invasion and metastasis of cancer, particularly within the context of PLC [13–15]. The tumour
microenvironment is composed of a wide variety of stromal cell types, including cancer-associated
fibroblasts (CAFs), endothelial cells, immune cells, and the extracellular environment.

The complex interplay between primary tumour cells, stromal cells, and extracellular environment
is a limiting factor in the amount of treatment options currently available for PLC. Additionally,
the anatomical and functional restrictions of the liver play a role in this as well [16,17]. Particularly the
dysregulation of the extracellular environment, consisting of various macromolecules, via abnormal
extracellular matrix (ECM) remodelling is an important aspect of cancer progression [18]. Important
HCC treatment options currently are resection, liver transplantation, local ablative therapies,
chemotherapy, and intra-arterial treatments [19]. However, curative intent can only be offered
in 20–25% of patients [20,21]. Treatment options for CCA are similar to HCC, although fewer patients
are eligible for liver transplantation [22,23]. Even after curative-intent resection or liver transplantation,
recurrence rates remain high with 49–64% [23]. Thus, there is a clear unmet medical need to develop
novel systemic and locoregional treatments that are able to effectively combat PLC.

One pertinent cause of the lack of effective treatments in liver cancer is the limited number of
reproducible, reliable models that are able to faithfully recapitulate the complex in vivo situation.
Robust animal and human models for PLC can aid in understanding the molecular mechanisms behind
the pathogenesis of PLC and provide pre-clinical platforms for the development of novel treatments.
Mouse disease models and two-dimensional (2D) cell line cultures have historically been important
pillars for preclinical development of cancer therapeutics. Although they have enabled deeper insights
into cancer biology and tumorigenesis, their characteristics contain inherent limitations towards their
overall applicability. Animal models and their relevance in PLC have been extensively reviewed
elsewhere [24–27] and is beyond the scope of this review. 3D culture has emerged as a superior model
over conventional 2D culture. In particular, the establishment of adult stem-cell derived organoids
have gained popularity, due to their robust long-term cultivation, self-organizing ability and mimicking
architecture and function of the representing organ or tumour [28]. Herein, we first evaluate the
existing in vitro models of PLC, comparing traditional 2D and 3D cell culture to organoid approaches,
with a focus on the limitations and unique aspects of each modality. Building upon this, we highlight
the significance of the extracellular environment in the development of PLC, and argue for the potential
benefit of incorporating the extracellular environment into future in vitro models.

2. Limitations of Current in Vitro Cancer Models

Tumour-based in vitro models have been developed with a varying degree of complexity and
a wide range of quantification methods, from reductionist 2D cell line models to full ‘mini-tumours’
including aspects of the tumour microenvironment [29–31]. Cancer model development has historically
been focused on creating an all-in-one encompassing model, but more recently models have been
designed to probe specific segments of cancer development, including migration, invasion, matrix
remodeling, intravasation, and angiogenesis [32–35]. The complexity of the model should be linked
to the objectives of the study, for example an intravasation model has to incorporate an appropriate
environment with vessel-like structures mimicking the basal membrane of blood or lymphatic vessels.
The next sections aim to illustrate the characteristics and strengths and weaknesses of the various
types of in vitro models employed for PLC. Particular focus will be on examples of their applications
and the careful consideration in selecting the appropriate modality. A comparison of the different
models, broadly classified into 2D cell lines, 3D spheroid-based models and organoids, is summarized
in Table 1.
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Table 1. Key differences when comparing cellular characteristics and applications in two-dimensional
(2D) cell lines, three-dimensional spheroids and organoids.

Comparison 2D Cell Lines Spheroids Organoids

Origin of cells Immortalized cell lines Often immortalized cell
lines or tumour biopsies Tissue-specific stem cells

Morphology Sheet-like flat monolayer Cell-clusters within
3D environment

Self-organizing, mimicking
organ structure

Drug sensitivity Very effective due to
2D morphology

More resistant compared
to 2D, better in vivo drug

response predictor

Patient-specific responses
and matched controls for
personalized therapy and

best in vivo drug
response predictor

Throughput drug
screening

Suitable for
high-throughput screening

Less suitable for
high-throughput
drug screening

Less suitable for
high-throughput
drug screening

Resource costs Low Medium Medium-high

Heterogeneity Cell-line derived from a
single cell

Related to initial
cell population

Related to patient used for
cell isolation

In vivo features Cellular properties
Cell-cell interactions,

hypoxia, drug penetration,
production of ECM

Cell-cell interactions,
mutational landscape of
original tumour, cellular

heterogeneity

Long-term expansion Immortalized for
easy expansion

In few cases long-term
reported, loss of

heterogeneity

Robust long-term expansion
with maintenance of

heterogeneity

(Bio)materials for culture Plastic or
biomaterial coatings

Wide variety of
(bio) materials Primarily Matrigel/BME

ECM: Extracellular matrix; BME: Basement Membrane Extract.

2.1. Two-Dimensional Cell Line Models

PLC cell lines have been well-characterized, are low-cost maintenance, and can be used for
genetic modification, providing relatively robust and reproducible results [36]. Due to their unlimited
proliferative capacity, they serve as a platform for high-throughput and simple mechanistic analysis.
For example, a wide panel of 25 HCC cell lines was used to investigate the relationships between HCC
molecular subtype and specific drug responses [37]. Research with 2D cell lines is still ongoing, with a
particular focus on establishing novel cell lines with unique aspects that are not well-represented in
previous cell lines (e.g., gemcitabine resistance in iCCA [38] or a highly tumorigenic HCC) [39].

Efforts have been made using cell lines to model patient-specific tumour characteristics, both in
terms of phenotype and genotype [40,41]. However, 2D culture is inherently disadvantaged due to
its culture conditions on a plastic substrate. This culturing method does not allow for mimicking
of the natural structure of the tumour, and lacks representative cell-cell and cell-ECM interactions.
These interactions have an important role in a wide variety of cellular activity in PLC, including
differentiation, proliferation, gene expression and drug responses [42–44]. Secondly, the monolayer
culture results in unlimited access to a serum-based medium that can lead to a selection procedure for
certain cell types and, thus, another cause for poor translational quality to an in vivo situation. In vivo,
serum is lacking and nutrient, oxygen, and metabolite gradients are important for the development
of PLC [45,46]. These gradients are non-existent in a 2D culture model. As a consequence of the
limitations of 2D systems for modelling PLC, 3D systems were developed as an alternative to better
mimic the natural situation.

2.2. Three-Dimensional Liver Cancer Models

Culturing cells in a 3D environment leads to different morphological and physiological traits
compared to conventional 2D culture [31,43]. This behaviour in 3D is assumed to be more reflective
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of the in vivo behaviour of the tumour, as it is able to more accurately mimic the native tumour
microenvironment. The tempo-spatial arrangement that is present when adding an extra dimension is
crucial in this aspect. This has an effect on cell surface receptor interactions with other cells and their
environment, and also through the physical constraints now placed on the cells in a 3D environment
rather than 2D [43,47,48]. 3D culture has therefore been more widely adopted for cancer research
applications, from drug discovery to investigations into cancer cell biology [49,50]. 3D cultures can be
broadly divided into two approaches: scaffold-based and scaffold-free.

2.2.1. Scaffold-Based Models

Scaffold-based 3D cultures can be produced via cell seeding on a cellular 3D scaffold or by
encapsulation into a liquid solution followed by solidification or polymerization of the liquid into
a hydrogel. Both synthetic and natural materials are used in PLC research, either singular or as a
combination, including polyvinyl alcohol (PVA)-gelatin [51], matrigel [52], chitosan-alginate [53] and
collagen [54]. Utilizing an alginate-based scaffold with multiple HCC cell lines, Takai et al. [55] showed
that a 3D environment results in better mimicking of glandular epithelium and showed more resistance
to chemotherapeutic agents compared to 2D. The increased resistance to (chemo)therapeutic agents in
3D compared to 2D is a widespread phenomenon within HCC culture systems [53,54,56], because they
better mimic the in vivo situation. Similar findings are present for 3D CCA cultures [57,58]. A current
issue with scaffold-based models for PLC is the wide variety of (bio)materials and cell sources that
are utilized, making direct comparisons between the effectiveness and biological relevance strenuous,
thus hindering reproducibility. Creating a more systematic approach for spheroid tumour creation,
for example through a pre-selection for spheroids with homogenous shape and volume [59], is a
possible solution to the cell source variability issue. Additionally, comparative studies on materials
that are appropriate for PLC mimicking could provide more insight into the material of choice.

2.2.2. Scaffold-Free Models

Scaffold-free cultures do not require a base for cells to attach to and are mostly produced with
bioreactors to direct single cells into spheroid-like structures, including forced floating, hanging
drop, and agitation-based bioreactors [50,60,61]. Spheroid cultures are also more resistant to
chemotherapy, possible due to the increased cell-cell interactions and steric hindrance caused by their
aggregation [62]. HCC cells cultured within a Rotating Wall Vessel (RWV)-bioreactor were used to
screen for metastasis-related genes [63]. The 3D spheroid was required to identify adhesion molecules
and other cell-cell interaction-related genes [63], which is not possible with 2D cell culture. Combining
scaffold-free and scaffold-based techniques, Tang et al. [64] used a poly (lactic-co-glycolic acid)-scaffold
within a RWV-bioreactor to create tumour-like spheroids with high metastatic potential. The 3D
spheroid was more closely resembling in vivo metastatic HCC tumours in regards to metastasis-related
gene expression, protein secretion, and tumorigenicity compared to 2D models [64]. Nevertheless,
this study did not compare the tumour characteristics of the 2D and 3D model to the original
patient-specific tumour, but rather to general metastatic HCC tumours.

Thus, 3D cultures using both patient-derived and mutation-induced PLC cell lines, whether
scaffold-based or scaffold-free, still exhibit important limitations. These include lack of genetic diversity
found in the original tumour after long-term expansion and unavailability of patient-matching healthy
control cells.

3. Emerging Organoid Models

The term ‘organoid’ has been used for a variety of different culture conditions [65,66], predating
back to 1992 for mammary gland cell cultures [67]. For this review, the term organoid will refer to
continuously proliferating primary epithelial cells that are embedded in a 3D matrix, specifically driven
by Lgr5+ stem cells [68].
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3.1. Organoid Culture Systems

The establishment of organoid culture is fundamentally based on the notion that there are cells
residing within each organ that possess stem cell characteristics and a self-organizing capacity. Various
culture systems have been reported for these epithelial cells, but the missing ingredient was the
lack of robust long-term culture possibilities. With the discovery of Lgr5 as a marker for these
adult stem cells about a decade ago, a novel in vitro system was developed that was able to sustain
long-term culture [68]. The embedment into a laminin-rich 3D matrix, Matrigel or Basement Membrane
Extract (BME), allows epithelial organoids to form from single Lgr5+ adult stem cells [68]. Through
organ-dependent adaptations to the protocol, organoids have since then been established from a
multitude of organs, including liver [69], prostate [70], colon [71], lung [72], pancreas, [73] and recently
also for human cancers, including PLC [74].

Although organoids possess qualities that are similar to 3D spheroid culture of established cell
lines, there are certain fundamental differences between the two culture methods. Firstly, a unique
aspect of organoid culture is their ability to be established from patient-specific material and, thus,
provide a solid platform for potential precision medicine approaches through direct chemotherapeutic
testing or through molecular characterization [75]. Organoids initiated from non-tumour healthy cells
from the same patient additionally provide a reliable control for comparative studies to malignant,
neoplastic cancer cells. Furthermore, through organoid culture pre-cancerous cell types can be
propagated, expanding the different stages of cancer progression that can be investigated in vitro.
Lastly, organoids, although relatively complex 3D structures, are highly amendable to a variety of
characterization techniques, both molecular and cellular. Furthermore, they can be genetically modified
to investigate cancer progression-related mechanisms including, but not limited to, the discovery of
cancer driver genes and drug resistance.

3.2. Primary Liver Cancer (PLC) Organoids

Human PLC organoids have been established in several studies [74,76,77] (Figure 1A). The principal
study successfully developed organoids representing three major types of PLC: HCC, CCA, and a
combined hepatocellular-cholangiocarcinoma (CHC) [74]. Since the differences in PLC subtypes,
different media were developed and used for culturing these different organoids. There was a high
level of similarity between the histological appearance of the primary tumours and the associated
tumour organoids, even after long-term culture [74]. With this in mind, the organoids were used for a
variety of applications including prognostic biomarker discovery, drug response studies with a small
panel of drugs, and the identification of genes that are associated with a worse prognosis in PLC.
Correlations between mutational profiles and drug sensitivities were probed, as well as the discovery of
a potential new therapeutic drug, SCH772984, for PLC. In a similar fashion, Nuciforo et al. confirmed
the maintenance of morphology, tumour marker expression, and genetic heterogeneity of organoids
compared to the originating tumour by obtaining the organoids from tumour needle biopsies [76].

Building upon this, Li et al. expanded drug responses from PLC organoids by using a panel of
129 cancer drugs on HCC and CCA organoid lines, finding that there is a substantial intertumour as
well as intratumour heterogeneity present [77], highlighting the importance of using organoids as
part of the pre-clinical drug discovery pipeline. To note, the generation efficiency of organoids from
HCC patients reported in these studies ranged from 26–47%, and successful generation has not been
established for Edmondson grade I and II HCC tumours [74,76]. The next vital step for organoids to
become established as a valid pre-clinical platform is to investigate the similarities between patient
responses and the responses of the patient-derived organoids to therapeutics. Combining these efforts
with the set-up of an organoid biobank, as already underway for colorectal and breast cancer [78,79],
will be important next steps in the validation of organoids.
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carcinoma; CCA: Cholangiocarcinoma; 3D: Three-dimensional. 
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progression and drug responsiveness of PLC. To this extent, murine liver organoids were transduced 
with lentiviral vectors to induce Ki-ras (KRAS) activation, known to control cell proliferation and 
often associated with cancer development [80]. In this study, no single genetic alteration could induce 
tumour formation, but mutant KRAS with repression of other major tumour suppressor genes co-
operating was required to induce tumour development. Additionally, two presumed oncogenes 
(mutant Pik3ca and FGFR2-AHCYL1 fusion) in iCCA were induced, but showed to be only modest 
drivers for tumorigenesis in liver-derived organoids, suggesting that additional mutations and/or 
environmental or epigenetic factors are required. 
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Although organoids are widely regarded as a highly promising personalized in vitro model, 
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organoid-initiation potential [74]. Organoids are solely epithelial-sourced and, thus, cannot fully 
recapitulate the complicated tumour microenvironment. They lack blood vessels, immune cells, 
CAFs, amongst other relevant cell types. Drug responses and cancer progression are heavily 
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Figure 1. Generation of human primary liver cancer organoids. (A) Primary liver cancer organoids
can be generated from neoplastic tissue via cell isolation. Paired non-neoplastic tissue can be obtained
for control liver-derived organoids of the same patient. (B) Alternatively, liver tissue from healthy
individuals or patients with liver disease at premalignant stages could be isolated and genetically
modified in vitro to create various stages of primary liver cancer development. HCC: Hepatocellular
carcinoma; CCA: Cholangiocarcinoma; 3D: Three-dimensional.

A different approach to study PLC with organoids is through driving healthy organoids towards
cancer through engineered genetic mutations (Figure 1B). Via this mechanism, tailor made PLC
organoids can be created to examine the effects of certain genetic mutations on the initiation, progression
and drug responsiveness of PLC. To this extent, murine liver organoids were transduced with lentiviral
vectors to induce Ki-ras (KRAS) activation, known to control cell proliferation and often associated
with cancer development [80]. In this study, no single genetic alteration could induce tumour
formation, but mutant KRAS with repression of other major tumour suppressor genes co-operating was
required to induce tumour development. Additionally, two presumed oncogenes (mutant Pik3ca and
FGFR2-AHCYL1 fusion) in iCCA were induced, but showed to be only modest drivers for tumorigenesis
in liver-derived organoids, suggesting that additional mutations and/or environmental or epigenetic
factors are required.

3.3. Current Limitations of Organoid Models

Although organoids are widely regarded as a highly promising personalized in vitro model, several
limitations are still present. As PLC contains substantial intertumour and intratumour heterogeneity,
at present it is unknown how this cellular heterogeneity is recapitulated in the organoid cultures.
Even though PLC organoids presumably are derived from rare cancer stem cell populations residing
in tumours, to date it is unclear whether all cancer stem cell clones have similar organoid-initiation
potential [74]. Organoids are solely epithelial-sourced and, thus, cannot fully recapitulate the
complicated tumour microenvironment. They lack blood vessels, immune cells, CAFs, amongst other
relevant cell types. Drug responses and cancer progression are heavily influenced not only by the
primary tumour cells themselves but also the complete microenvironment in which these cells thrive.
Various studies have focused on combining organoids with the restoration of the immune-component of
the TME, including co-cultures with lymphocytes [81] and stromal cells [82], and the combination with
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immune cells relevant for PLC could aid in the development of novel immunotherapies. These efforts
are instrumental in creating a cancer model that faithfully recapitulates the complete tumour.

Concurrently, the predominant protocol of organoid culture requires animal-derived hydrogels,
such as Matrigel or BME. Although well-suited for the culture of organoids, finding better matrices
is pertinent due to the lack of controlled modifications and undefined growth factors present.
Next generations of matrices for organoid culture are being explored, for example a synthetic
polyethylene glycol (PEG)-based hydrogel was able to support murine liver organoid expansion to a
certain extent [83]. Building upon this, other attempts have successfully managed to create alternative
hydrogels that allow for organoid formation and expansion with, in some cases, similar efficiency as
Matrigel [84,85].

Converging these last two limitations of tumour organoids show a clear common denominator
and underexplored topic: the extracellular environment of the tumour. Shifting the focus towards
the extracellular environment allows for investigations into cell-ECM interactions, while at the same
time exploring ways to find alternative culturing methods for cancer organoids. Hence, this review
will delve more into the critical role the extracellular environment plays in PLC. We will discuss the
possibility of converging organoid-based models with systems incorporating models of the tumour
microenvironment. In turn, this can lead to a better understanding of the biology behind ECM
composition and its influence on carcinogenesis.

4. The Liver Cancer Extracellular Environment

The classical view of cancer development through cancer cells accumulating consecutive
genetic mutations in a multi-step process has been the predominant outlook for the last decades.
Genomic-focused studies have found various important (driver) oncogenes and tumour suppressor
genes but with relative modest success. This has led to a more comprehensive view that sees tumour
progression as a dynamic crosstalk-driven element that encompasses the complete microenvironment
of the tumour [86,87]. Thus, a deeper understanding of these interactions occurring in the tumour
microenvironment, herein focused on the tumour extracellular environment (TEE), is required
to fully understand biology in both HCC and CCA. This extracellular environment consists of a
wide variety of components including macromolecules (i.e., collagen, fibronectin, laminin, elastin),
remodelling proteins, matrix metalloproteinases (MMPs), and cytokines, each playing a different role
in carcinogenesis [88–90]. HCC often develops in already damaged environments containing large
areas of inflammation and fibrosis [91], while CCA is often characterized by notable desmoplasia [92].
Important to enhancing our understanding of the tumour environment is to elucidate the contribution
of distinct components within the TME towards the tumour progression.

4.1. Role of the Extracellular Environment in Hepatocellular Carcinoma

Hepatocellular carcinoma is a fairly unique carcinoma in that fibrosis and chronic inflammation,
by hepatitis B and C commonly precedes the development of HCC [93], with up to 90% of
HCC cases experiencing fibrogenesis [94]. In general, a pathological hallmark of carcinoma is
the abundant deposition of ECM. Multiple cellular sources are responsible for this phenomenon,
most prominently CAFs, inflammatory cells, and to some extent primary tumour cells undergoing
epithelial-to-mesenchymal transition (EMT) [95]. CAFs are able to efficiently turnover the composition
of the matrix by, on the one hand, producing ECM components and, on the other hand, secreting
matrix metalloproteinases (MMPs) [96]. These fluctuations in proteomic-content can cause genetically
similar cells to exhibit highly differential responses, and this heterogeneity in phenotype has been
shown to be important for diagnosis and treatment [97]. Matrix remodelling exhibits itself in a variety
of ways, including the distribution of laminins, fibronectin and collagen IV indicating the level of
differentiation of the tumour. Particularly, Laminin-322 is important in hepatocellular carcinoma [98,99].
Giannelli et al. showed that the presence of Laminin-5, recently renamed to Laminin-322, was associated
with a higher occurrence of metastasis and a worse prognosis in HCC patients [99]. It also plays
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a prominent role in maintaining quiescence and increasing resistance of the cells residing in the
cancer stem cell niche in HCC cases that have hepatic progenitor cell features [100]. More than just
singling out the importance of Laminin-322, these studies show that tumour behaviour is highly
plastic and dependent on the micro-environmental components for input. Additionally, differentiated
tumours show an intact basement membrane whereas undifferentiated tumours show a more defective
basement membrane composition, possibly linked to increased invasion and metastasis [101,102].
By using a novel quantum dot-based multiplex imaging technique in combination with conventional
immunohistochemistry, Fang et al. showed that the remodelling of the ECM is a continuous process
that occurs throughout HCC progression and allows for invasion of HCC cells into the surrounding
tissue, particularly through collagen type IV degradation [103]. Furthermore, Zhang et al. [104] used
large-scale transcriptome analysis to show that extracellular matrix protein interactions contributed to
portal vein tumour thrombus (PVTT), a serious complication of HCC. It is evident from these studies
that the composition and presence of specific ECM-related proteins are important in altering cancer
cell behaviour in HCC. Particularly EMT is heavily intertwined with a deregulated environment in
HCC, as tumour metastasis is prompted by Twist1, a vital regulator of EMT, through subsequent MMP
activation [105]. Furthermore, periostin, an EMT protein, has been found to be overexpressed in HCC
compared to healthy liver [106].

In addition to composition, the physical properties of the TEE also influences PLC through
providing biochemical and mechanical cues to PLC cells, with integrins regulating internal signalling
pathways. Lysyl oxidase 2 (LOXL2) modifies the stiffness of the extracellular environment in HCC
through cross-linking of fibrillary collagen I, which is involved in tumour growth and metastasis [107].
Subsequently, integrin beta-1 expression was upregulated with an increased mechanical stiffness of the
TEE in vivo, and was correlated with Edmondson’s pathological grade, metastasis and Hepatitis B
infection [108].

4.2. Role of the Extracellular Environment in Cholangiocarcinoma

A prominent desmoplastic extracellular environment is a hallmark of CCA, the bulk consisting of
collagen type I and fibronectin [109]. Particularly increased deposition of tenascin is correlated with
worse patient outcomes, increased tumour size, and metastasis to the lymph node [110]. Similarly
to HCC, periostin is also expressed in stroma and epithelium of CCA, and a prognostic marker for
shortened survival, thus showing the potential link with EMT and the extracellular environment in
CCA [106]. Modulation of the TEE in CCA is caused by MMP-7 and MMP-9, and their expression
is associated with a worse prognosis and lymph node metastasis, respectively [111,112]. The TEE
indirectly influences other important processes related to tumour progression, e.g., localized matrix
modulation is required for the formation of new blood vessels within the tumour environment [13].
Angiogenesis is necessary for sufficient nutrients and oxygen to support growth of the tumour, and this
process is regulated by metalloproteinases and cathepsin B in CCA [13]. Lower survival rates, higher
re-occurrence rates and increased metastasis are all linked to angiogenesis in iCCA patients [113].
Possible targeting of the matrix to prevent angiogenesis occurrence could provide novel therapeutic
targets for CCA in the future.

Another effect of the desmoplastic TEE is through an increased rigidity resulting from remodelling
proteins, particularly LOXL2 in CCA, crosslinking collagens and elastins [114]. Cells respond to different
stiffness levels through re-organization of the cytoskeleton, with mechanosensors Yes-associated protein
(YAP) and its transcriptional co-activator with PDZ-binding motif (TAZ) playing important roles acting
as transducers of mechano-information [115–117]. Under healthy circumstances, the rigidity of the
ECM provides tumour-suppressor functions [118], but during tumour progression the increased rigidity
of the ECM can increase malignant behaviour of tumour cells through stimulating the nuclearization
of YAP [119]. As a result, almost all CCA patients exhibit a high expression of YAP and TAZ [120],
and increased interest has been taken in strategies targeting YAP. With only limited animal models of
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CCA available that give attention to YAP/TAZ, a focus on better in vitro models that incorporate the
ECM could give more mechanistic insight into its role in CCA progression.

5. Adapting Organoid Models to Study Liver Cancer Cell Interactions with the
Extracellular Environment

With the vital role the extracellular environment plays in all facets of tumour biology, it is
evident that creating an improved in vitro model of tumour performance requires a close mimicking
of the composition, morphology and characteristics of the environment. Currently, research into
elucidating interactions between the extracellular environment and cancer cells in PLC is relatively
scarce. Particularly organoids as a platform for studying cellular interactions with the tumour
extracellular environment in the context of PLC is non-existent, thus we look towards alternative
culture models to highlight the importance of adapting organoid models to study these interactions.
Broguiere et al. [85] used a soft fibrin gel with laminin-111 supplementation to allow for the culture
of multiple organoid types, including pancreatic ductal adenocarcinoma (PDAC). This well-defined
matrix is the first to show formation and long-term expansion of organoids encompassing progenitor
as well as differentiated cells, in a similar fashion to Matrigel. Using this novel culture method,
they were able to probe the mechanical forces related to the interactions between intestinal organoids
and the environment, finding that the transition from spherical to budding organoids also showed a
transition in contractile forces present. Although not directly coupled to tumour biology, this proof
of concept shows the possibilities in uncovering tumour organoid interactions with the extracellular
environment through exploring alternative culturing methods and probing singular effectors such as
specific ECM components.

In direct relation to PLC, but using cell lines, Schrader et al. [121] showed that an increased matrix
stiffness, characteristic of a fibrotic and cirrhotic liver environment, increased the proliferative capacity
and chemotherapeutic resistance of HCC cells in vitro (Figure 2A). Interestingly, cancer stem cell
characteristics were also influenced by the stiffness of the matrix, with low stiffness resulting in a cell
population with increased clonogenic capacity. It is evident that the mechanical characteristics of the
environment profoundly impact the phenotype of liver cancer cells in vitro, congruent with in vivo
findings [122]. Tang et al. [123] uncovered the interplay between mechanotransduction and biochemical
signalling on regulation of cell fates in HCC by using a stiffness-tunable scaffold and TGF-β1 as a
biochemical cue. Synergies between matrix stiffness and biochemical signalling was seen through
different levels of migratory and invasive activity in HCC cells (Figure 2B). Some aspects of tumour
biology are regulated by single aspects of the extracellular environment, while others require the
synergy of the encompassing environment and the multiple functions of the environment, and different
in vitro models should be utilized depending on the objective. For example, in hepatic progenitor cell
(HPC)-related HCCs the presence of laminin-332 in vitro induced a phenotypic switch resulting in a
more quiescent cell state, and an increased resistance to doxorubicin and sorafenib [100] (Figure 2C).
Chaijan et al. [124] attempted to model invasion of CCA within Matrigel in vitro, by showing that the
ECM, in this case Matrigel, promotes invasive outgrowth through L-plastin upregulation. However,
Matrigel is considered a poor substitute for true in vivo recapitulation of the TEE, and this was confirmed
through the lack of correlation between L-plastin expression in CCA tumours and tumour differentiation
and metastatic status [124]. Alternative ECM-mimicking materials that more closely resemble the
intricate composition and structure of the TEE could prove fruitful for these applications, however,
engineering highly complicated structures is a difficult challenge. Decellularization, a technique
used to isolate the extracellular matrix of a tissue, is a promising top-down approach to study the
extracellular environment that can complement the more bottom-up approaches currently utilized.
Through harnessing the body’s ability to create complex structures, specific features of the tumour
environment remain intact. Although more widely adopted in (healthy) tissue engineering strategies
for organs including heart [125], kidney [126], cartilage [127], and liver [128], decellularization could
also play a role in unravelling tumour biology and matrix-cell interactions. Miyauchi et al. [129]
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used decellularized fibrotic rat livers to create a native-like scaffold for HCC cells. Compared to a
healthy decellularized liver scaffold, HCC cells showed an increased induction of EMT phenotype,
increased proliferation and increased chemoresistance, all vital ingredients for cancer progression
in vivo (Figure 2D). This culture system is optimally suited to explore the biological behaviour of
cancer cells within natural fibrotic or healthy environments. Recently, Salim et al. [130] were able to
decellularize and compare healthy, fibrotic and hepatocellular carcinoma rat liver samples on a primarily
histological basis. Although the study design was basic and lacking any type of recellularization,
it paves the path for more research into the use of decellularized scaffolds as a basis for in vitro
PLC research. The usage of rat-derived livers in both previous studies is an important limitation of
this technique. Additionally, this top-down approach is not suitable for studying singular aspects
or components of the TEE, thus, should be seen as complementary to other extracellular matrix
mimicking techniques.
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cytometric analysis of cancer stem cell markers cluster of differentiation 133 (CD133) and cluster
of differentiation 44 (CD44) in HepG2 cells cultured on soft or stiff matrices for five days shows
effect of matrix and chemotherapy on stem cell marker expression. Adapted with permission [121].
Copyright 2019 American Chemical Society. (B) Representative trajectories of HCC cell migrations
in different matrices. Adapted with permission [123]. (C) Proliferative capacity of coated and
non-coated HepG2 cells after doxorubicin or sorafenib treatment for 48h (n = 4). Laminin-322 (Ln-332)
coating increased chemoresistance of HepG2 cells (scale bars: 100 µm) Adapted with permission [100].
(D) Immunofluorescence staining showing the number of vimentin-positive cells is increased and
E-cadherin-positive cells is decreased in a fibrotic liver scaffold compared to normal liver, indicating
the promotion of EMT phenotype. (scale bars: 100 µm). Adapted with permission [129]. BrdU:
5-bromo-2’deoxyuridine; DAPI: 4′,6-diamidino-2-phenylindole; TGF: transforming growth factor.
* p < 0.05; *** p < 0.001.
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6. Conclusions

The ideal in vitro pre-clinical PLC model would eliminate species differences encountered in
in vivo mouse models, and be able to accurately recapitulate the in vivo tumour of each individual
patient, and allow for (direct) drug response testing. To this extent, the emergence of organoids in PLC
has been highly promising as a physiologically relevant in vitro model. The fact that organoids can be
established with high efficiency from patient-derived tissues, can represent the diverse spectrum of
cancer subtypes, and can be used for both basic and translational research shows the high potential
and versatility of this platform. In the future, it is vital to confirm the currently anecdotal validation,
mainly in cystic fibrosis, of organoids as diagnostic tools and obtain robust specificity and sensitivity
data on drug responses in organoids derived from individual patient’s tumours. Recent results with
gastrointestinal organoids in a clinical setting have been hopeful [131]. Well-designed prospective
clinical trials on transcriptome, genome and biochemical analysis on organoids for correct stratification
of PLC subtypes could result in organoids profiling becoming a mainstay in both preclinical drug
discovery and personalized guidance on future treatment of cancer patients.

However, the ideal in vitro model should also include the incorporation of the tumour
microenvironment. Efforts are underway by co-culturing cancer organoids with cellular components
of the microenvironment, but the dependence on a basement membrane-like matrix is a hindrance
for revealing the full potential of tumour organoids. Thus, incorporation of improved extracellular
matrix mimicking substrates into a physiologically relevant in vitro system for experimental liver
cancer models could increase our understanding of the biology behind tumour extracellular matrix
composition and its influence on cancer. Converging novel organoid-based models with systems
incorporating the native tumour microenvironment could lead to experimental models that can better
recapitulate liver tumours in vivo.
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Abbreviations

PLC Primary liver cancer
CCA Cholangiocarcinoma
iCCA Intrahepatic cholangiocarcinoma
pCCA Perihilar cholangiocarcinoma
dCCA Distal cholangiocarcinoma
CAF Cancer-associated fibroblast
ECM Extracellular matrix
PVA Poly(vinyl alcohol)
RWV Rotary wall vessel
LGR5 Leucine-rich repeat-containing G-protein coupled receptor 5
KRAS Ki-ras
Pik3ca Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
FGFR2-AHCYL1 Fibroblast growth factor receptor 2-adenosylhomocysteinase like 1
PEG Polyethylene glycol
MMP Matrix metallopeptidases
TME Tumour microenvironment
PVTT Portal vein tumour thrombus
EMT Epithelial-to-mesenchymal transition
TEE Tumour extracellular environment
LOXL2 Lysyl oxidase like 2
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YAP Yes-associated protein
TAZ Transcriptional co-activator with PDZ-binding motif
PDAC Pancreatic ductal adenocarcinoma
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