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Abstract 14 

 15 

There is increasing evidence that climate change shifts species distributions towards 16 

poles and mountain tops. However, most studies are based on presence-absence data, 17 

and either abundance or the observation effort have rarely been measured. In addition, 18 

hardly any studies have investigated the direction of shifts and factors affecting them. 19 

Here we show using count data on a 1000 km south-north gradient in Finland, that 20 

between 1970–1989 and 2000–2012, 128 bird species shifted their densities, on 21 

average, 37 kilometres towards the north northeast. The species-specific directions of 22 

the shifts in density were significantly explained by migration behaviour and habitat 23 

type. Although the temperatures have also moved on average towards the north 24 

northeast (186 kilometres), the species-specific directions of the shifts in density and 25 



temperature did not correlate due to high variation in density shifts. Findings highlight 26 

that climate change is unlikely the only driver of the direction of species density 27 

shifts, but species-specific characteristics and human land use practices are also 28 

influencing the direction. Furthermore, the alarming results show that former climatic 29 

conditions in the northwest corner of Finland have already moved out of the country. 30 

This highlights the need for an international approach in research and conservation 31 

actions to mitigate the impacts of climate change. 32 

 33 

Keywords: distribution changes, ecological traits, global warming, habitat selection, 34 

monitoring censuses, species distribution models. 35 
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 37 



Introduction 38 

 39 

Understanding the impact of climate change on species populations is a fundamental 40 

question to mitigate the effects of changing climate. There is an increasing body of 41 

literature showing that species of various taxonomic groups including plants, 42 

invertebrates and vertebrates in both northern and southern hemisphere of the globe 43 

have shifted their distribution during both summer and winter season likely due to 44 

climate change (Parmesan et al., 1999; Parmesan & Yohe, 2003; Hickling, et al., 45 

2006; Kelly & Goulden, 2008; Zuckerberg et al., 2009; Booth et al., 2011; Chen et 46 

al., 2011; La Sorte & Jetz, 2012; Breed et al., 2013; Pearce-Higgins & Green, 2014). 47 

Although there is some evidence that species-specific characteristics, such as habitat 48 

preferences, affect how species are responding to climate change (Pöyry et al., 2009) 49 

it is still largely poorly known what factors drive the variation in species-specific 50 

responses.  51 

Distribution changes are typically examined at the edges of the distribution 52 

using presence-absence data often ignoring the importance of survey effort (Kujala et 53 

al., 2013), whereas changes in the central gravity of the populations using abundance 54 

data has much less frequently been examined (Maclean et al., 2008; Lehikoinen et al., 55 

2013; Virkkala & Lehikoinen, 2014). Furthermore, majority of the studies have only 56 

investigated shifts directly towards the poles despite the fact that isotherms are rarely 57 

placed linearly along latitudes in nature (Huntley et al., 2007, see also Fig. 1). 58 

Therefore, predicted distribution changes of species have also been suggested to occur 59 

nonlinearly towards the poles (Huntley et al., 2007; Burrows et al., 2013). 60 

Interestingly, the direction of the distribution changes has often been neglected 61 

(Gillings et al., 2015). This could underestimate the distance in species distribution 62 



changes (Gillings et al., 2015) as most of the earlier studies have often looked at only 63 

on one dimension of the shift (e.g. Thomas & Lennon, 1999; Thomas, 2010).  64 

Hockey et al. (2011) studied the direction of the species distribution changes in 65 

South Africa using only cardinal directions. On the other hand, Gillings et al. (2015) 66 

investigated the actual direction of the shift using presence-absence data from UK. In 67 

view of conservation, it is more important to investigate the changes in species 68 

abundance than occurrence only, as presence-absence data can mask changes in 69 

species abundance (Virkkala & Lehikoinen, 2014). To our knowledge, the directions 70 

of the species’ density shifts using long-term abundance data over decades have not 71 

been investigated before. However, Tayleur et al. (2015) investigated directions of 72 

density shifts of Swedish birds in 21st century and found that shifts were poorly 73 

connected with climatic variables. Furthermore, the impact of potential other 74 

ecological factors than climate on the species-specific variation in the direction of the 75 

density shifts have not been examined. 76 

Here we investigate, based on 128 Finnish birds species, the general direction in 77 

shifts of species’ central gravity of abundance (hereafter density shift), and whether it 78 

is linked with the direction of the temperature change. Our hypothesis is that 79 

directions of the species-specific temperature and density changes would correlate to 80 

support the impact of climate change as the key driver of distribution changes. 81 

Furthermore, we investigate whether the direction of the shift differs between 82 

functional ecological species groups. We compare density shifts in 147 50-km grid 83 

cells between two periods: 1970–1989 and 2000–2012. 84 

We used three different categorizations of species: (i) distribution type, (ii) 85 

habitat type and (iii) migration strategy. We used these groups, because (i) northern 86 

species have shifted their densities toward the north at a faster rate than southern 87 



species (Virkkala & Lehikoinen, 2014). We therefore predict that northern species 88 

would show density shifts towards more northerly directions than southern ones, and 89 

the more diverse distribution of directions among southern species would thus explain 90 

the slower speed of density shifts. (ii) Potential habitats for farmland, urban and 91 

montane species are highly restricted, and the first two ones are highly influenced by 92 

human activities, as e.g. farmland practices have strongly affected farmland bird 93 

population trends in Europe including Finland in recent decades (Donald et al., 2001; 94 

Laaksonen & Lehikoinen, 2013). Our hypothesis is that forest species would show 95 

density shifts to more northerly directions than farmland and urban species. Arable 96 

land in Central Finland is concentrated especially on western part of the country 97 

(Ostrobothnia area), which could cause a more western direction of density shifts in 98 

farmland species compared to other species groups. (iii) In residents and partial 99 

migrants a substantial proportion of the individuals remain in the breeding areas and 100 

can thus better track directly changes in their breeding environment compared to 101 

migratory birds, which are also affected by changes on their migratory route and 102 

wintering grounds. European long-distance migrants especially have declined 103 

substantially in recent decades (Sanderson et al., 2006; Laaksonen & Lehikoinen, 104 

2013). In addition to migration distance, the migration direction may affect the 105 

direction of the density shift. Finnish birds have several migration directions from 106 

West Africa to East Asia, and since species are migrating from different directions, 107 

this can affect their direction of the density shift. We predict that southwest, south and 108 

southeast migrants would show density shifts towards northeast, north and northwest, 109 

respectively.  110 

 111 

 112 



Materials and methods 113 

 114 

Census data and calculation of relative densities 115 

 116 

Line transects have been conducted in Finland regularly since the 1970’s (Virkkala & 117 

Lehikoinen, 2014). The line transects are one-visit censuses in which birds are 118 

counted along a transect with a length typically 3–6 km, and the locations of the 119 

transects have been placed on a map in advance (Lehikoinen et al, 2014; Virkkala & 120 

Lehikoinen, 2014). The methodology is suitable for counting birds over large areas, 121 

and the line transect census can be used to investigate relative densities of species 122 

(Järvinen & Väisänen, 1975, 1981). The census period is June and the counts are 123 

carried out earlier in southern Finland (between June 1–20) compared to northern 124 

Finland (between June 10–30) due to later breeding phenology in northern latitudes. 125 

Transects were censused during early morning, when the singing activity of birds is 126 

highest in dry weather conditions. The observer walks alone at a speed of 45–60 127 

min/km depending on the density of birds along the route using a map, compass or 128 

GPS. Each observation is classified as one of the five following categories: (i) singing 129 

or displaying, (ii) other calls, (iii) sightings (male, female, pair, brood or nest), (iv) 130 

flying bird and (v) flying flock. Flocks are transformed into pairs, normally by 131 

dividing by two (male and female) plus the mean species-specific brood size in case 132 

of brood flocks. The census unit is a pair of birds, not an individual; thus a male and a 133 

female seen separately or together, or a parent with offspring, is transformed into one 134 

pair (see Järvinen et al., 1991). The line transect is divided into a main belt and a 135 

supplementary belt. The main belt is 50 m wide (25 m on both sides of the transect 136 

line) and the supplementary belt is beyond the main belt as far as birds can be 137 



detected. Every observation is placed either on the main belt or on the supplementary 138 

belt. Birds crossing the main belt belong to the supplementary belt even if first 139 

observed above the main belt. Together, the main belt and the supplementary belt 140 

form the survey belt. An earlier study showed that species-specific annual proportions 141 

of displaying birds and birds in the main belt were stable during 1987–2010, which 142 

indicates that there are no major changes in species detectability (Lehikoinen, 2013). 143 

We divided Finland into 50-km grids and calculated how many kilometres of 144 

line transects have been conducted in each grid during the two different periods, 145 

1970–1989 and 2000–2012 (on average 25 years apart). We omitted the 1990s, since 146 

this period has slightly poorer coverage than other decades in some parts of the 147 

country. Nevertheless, the decadal data has shown that abundances of the 94 most 148 

common species shifted progressively toward higher latitudes (Virkkala & 149 

Lehikoinen, 2014). Altogether 147 grid cells, covering most parts of the country, 150 

included at least 10 kilometres of line transects during both the periods (see Fig. 1a). 151 

During our study periods of 1970–1989 and 2000–2012, altogether 303,647 and 152 

490,474 pairs of birds were observed, respectively. 128 species having at least 20 153 

observations during both periods were included in the analyses (Supplementary 154 

Table 1). 155 

We calculated species-specific densities for each grid, based on the number of 156 

pair observations and the length of the line transects in each block and species-157 

specific correction coefficients (Järvinen & Väisänen, 1983). The relative density of a 158 

species (D, pairs/km2, hereafter density) based on the Finnish line transect census was 159 

calculated as: 160 

D = K × N/L,      (1) 161 



where K = species-specific correction coefficient, N = numbers of pair observations 162 

of a species on the whole survey belt, and L = transect length (in km). Species-163 

specific correction coefficients are based on distance sampling, where ratios of bird 164 

observations on the main belt to those on the supplementary belt are used to calculate 165 

densities of species in a larger (survey belt) line transect (Järvinen & Väisänen, 1983). 166 

We used the earlier published correction coefficients (Virkkala & Lehikoinen, 2014, 167 

Supplementary Table 1) and, using the same data, calculated correction coefficients 168 

for the additional 34 species that were not included in the earlier study 169 

(Supplementary Table 1). 170 

Järvinen & Väisänen (1983) have presented correction coefficients based on 171 

data prior to the 1980s. However, since then a lot of new data have been gathered, so 172 

we have revised the coefficients. We calculated species-specific correction 173 

coefficients for southern and northern Finland (divided by the 710 latitude in the 174 

Finnish coordinate system) and for the whole country based on the whole of the 175 

Finnish monitoring data since the 1970s, when both the main belt and the 176 

supplementary belt had been used. The species-specific correction coefficient (K) was 177 

calculated as (Järvinen & Väisänen, 1983): 178 

K = 40 – 40 √  (1–p),      (2) 179 

where p = proportion of main belt observations (range 0–1); for details of the 180 

calculations, see Järvinen (1976) and Järvinen & Väisänen (1975, 1976a, 1983). 181 

Observability of species is also affected by the overall density of bird specimens. The 182 

higher the total bird density, the lower the observability on the supplementary belt 183 

(see Järvinen & Väisänen, 1976b). This can be corrected by studying the number of 184 

observations on the main belt. Therefore we also used density dependent correction 185 

coefficient (y) calculated as (see Järvinen & Väisänen, 1983): 186 



y = 0.0320x + 0.684     (3) 187 

where x is the number of main belt observations of all species per km. The correction 188 

coefficient (y) receives values above one in regions of high main belt density and 189 

below one in regions of low density. Thus, the density values calculated (equation 1) 190 

were multiplied by the density dependent correction coefficient (y) (Järvinen & 191 

Väisänen, 1983). The density dependent correction coefficient was calculated 192 

separately for each 50-km square for both periods.  193 

We used these grid-specific densities to calculate arithmetic central gravity of 194 

densities for each species during both the periods. This was done by first calculating 195 

the northern latitude using mean densities per each latitude grid row (Virkkala & 196 

Lehikoinen, 2014) and then calculating the longitude using mean densities per each 197 

grid column (species-specific density maps and central gravity of densities are shown 198 

in Supplementary Figs 1–128). In addition, gravity of densities was affected by the 199 

location of censuses inside each grid. The point of each grid cell used in the analyses 200 

was calculated based on mean coordinates of all line transects conducted in the grid 201 

during that particular period. We preferred arithmetic mean instead of median or 202 

geometric mean, since using median the shift would be occurring mainly on grid level 203 

in compass points and intercardinal directions, whereas arithmetic mean allows higher 204 

resolution in direction of the shifts. We declined to use geometric mean, since many 205 

grid cells have zero values which complicates the calculation of geometric mean. 206 

Based on latitude and longitude it was possible to calculate direction and 207 

distance of the density shift of species between the two periods. Direction in degrees 208 

could be calculated using inverse hyperbolic tangent and distance using Pythagoras’ 209 

Theorem.  210 



We divided species into groups using four different classifications 211 

(Supplementary Table 1). First, we divided species into groups based on their general 212 

distribution (southern edge and northern edge species and species which occur in the 213 

larger part of country). This was done using the bird atlas data from Finland from 214 

2006–2010 (see Valkama et al., 2011). Southern and northern species, which had 215 

been observed in less than 20% of the grid cells in Finland during this atlas period, 216 

were classified as edge species. Rest were classified into one group that inhabit larger 217 

geographic areas. Second, we divided species into four categories based on their 218 

habitat use: farmland-urban, forest, wetlands (including rocky outcrops) and montane 219 

(Virkkala et al., 1994; Väisänen et al., 1998; Laaksonen & Lehikoinen, 2013). Third, 220 

species were classified into four groups based on their migration distance (residents, 221 

partial migrants, short- and long-distance migrants (Cramp et al., 1977–1994; 222 

Valkama et al., 2014). We first divided species into two groups, residents-partial 223 

migrants and true migrants (short- and long-distance migrants) and later performed a 224 

more detailed analysis where all four groups were included. Last, we divided species 225 

into three groups based on their main migration direction: southwest (wintering in 226 

West Europe and West Africa), south (South and Central Europe, South and East 227 

Africa) and southeast (Southeast Europe and Asia (Cramp et al., 1977–1994, Valkama 228 

et al., 2014). There was no strong collinearity between groups (all |r| < 0.27). 229 

The general direction of density shifts could also be caused by the geographical 230 

shape of Finland, since the shape of the country is not a rectangle. We investigated 231 

how this could affect the direction of the density shifts by moving densities of the grid 232 

cells directly towards north. We moved the densities of the first period one grid 233 

northwards (except the most southernmost grids which remained similar) to mimic the 234 

northwards density shifts. In cases where the grid did not have density value on the 235 



southern side, we used mean density values of the nearest southwest and southeast 236 

side of the grid (Supplementary Fig. 129). We did these movements of densities for 237 

each species and calculated the direction of density shifts similarly as in the observed 238 

density shifts of species, and thus calculated the hypothetical density shift of each 239 

species.  240 

The temperature data originates from the Finnish Meteorological Institute and 241 

included daily values in 10-km grid cells (Fig. 1b). We calculated mean temperatures 242 

for 50-km grids used in the analyses of bird data during the two study periods. 243 

Furthermore, we searched, using temperature of the first period for each 50-km grid, 244 

where the nearest as cold grid cell within Finland was located during the second 245 

period. Based on this information we could calculate which direction the climate has 246 

shifted regionally (Fig. 1c), and thus what would be the direction that species should 247 

have shifted to remain in the same climatic conditions. Last, for each species we 248 

calculated the mean direction and distance of the temperature change from the grid 249 

cells where the species had been observed in the first study period. 250 

 251 

Statistical analyses 252 

 253 

All the statistical analyses were conducted in Matlab R2014a. Significance of the 254 

species-specific density shifts along compass directions and impact of sampling effort 255 

and temperature were tested using log-linear Poisson regression model  256 

N = L + Temp + Latitude + Longitude   (4),  257 

where the grid specific change in the number of observed pairs in grid cell (N) is 258 

explained by corresponding change in the length of the line transect (L), temperature 259 

(Temp), latitude and longitude of the same grid cell.   260 



The species-specific directions of the density shifts were calculated by using 261 

inverse tangent (Matlab function atand) and by using the values of the Finnish 262 

uniform coordinate system, where a change of one unit corresponds distance of 10 263 

kilometres (see Fig. 1). For circular analyses, Circular Statistics Toolbox was used. 264 

All the functions of the toolbox and their codes are freely available on the web 265 

(Berens, 2009). The mean direction was calculated using the function circ_mean and 266 

the 95 % confidence intervals were calculated using the function circ_confmean. 267 

Rayleigh’s test (function circ_rtest; test for the significance of the mean direction in 268 

the cycle histogram) was used to test whether the directions differ from an even 269 

distribution. Furthermore, the Harrison-Kanji test (function circ_hktest; circular 270 

analog of two-factor ANOVA) was used to analyse whether the direction of different 271 

groups differed. The Watson-Williams test (function circ_wwtest; circular analog of 272 

the one-factor ANOVA) was used to test whether the direction of temperature and 273 

density shifts differed, and the function circ_corrcc was used to test whether the 274 

species-specific directions in temperature and density correlate. Last, because closely 275 

related species may show similar type of responses, we investigated whether the 276 

findings were linked to the phylogeny of the species. We tested whether the residuals 277 

of results were correlated with the relative phylogenetic distance on the order and 278 

family level. We did this by correlating the differences in residuals of a pair of species 279 

with the corresponding relative phylogenetic distance between the species. The 280 

phylogeny was based on the taxonomy of AERC TAC (http://www.aerc.eu/tac.html). 281 

Function circ_corrcl was used to test the potential influence of phylogeny by 282 

correlating the differences in residuals of each pair of species with the corresponding 283 

relative phylogenetic distance between the species. In addition, the average direction 284 



and distance of shifts (vector) was calculated by using the arithmetic mean of a 285 

species’ latitude and longitude change. 286 

Since the analyses of the significance of the density shifts (128 tests per 287 

variable) and the investigation of impacts of different groups required multiple testing 288 

(5 tests) we used a sequential Bonferroni correction to adjust the P-values (Rice, 289 

1989). 290 

 291 

 292 



Results 293 

 294 

The findings show that the mean direction of the density shift was on average towards 295 

the north northeast (α = 12°, 0° is north with rotation clockwise). The distribution of 296 

directions differed significantly from an even distribution (Rayleigh’s test, z = 17.7, 297 

n = 128, P < 0.001), but not from the direct north direction (Fig. 2a). On average, 298 

species densities shifted 35.9 kilometres towards the north and 7.0 kilometres toward 299 

the east in 25 years (36.6 km in total, 1.5 km / year). However, there was a large 300 

variation in the density shift between species. Among the 128 study species, 96 301 

species shifted their densities northward (mean α = 17°, north northeast, c.i. 7–27°) 302 

with an average of 60.2 kilometres shift north and 18.9 km shift east (mean average 303 

total length of density shift of 82.1 km, 3.3 km / year). About half of these species, 49 304 

species, shifted their densities northward more than 50 kilometres, and for only 25 305 

species the shift towards north was less than 20 kilometres (Supplementary Table 1).  306 

Correspondingly, 32 species shifted their densities in the southern directions 307 

(mean α = 216°, c.i. 197–235°) with an average of 33.8 km shift south and of 34.7 km 308 

shift west (mean average total length of density shift of 72.7 km, 2.9 km/ year). Half 309 

of these species (16) shifted their densities less than 20 kilometres towards south and 310 

only seven species shifted their densities more than 50 kilometres southwards 311 

(Supplementary Table 1). The glm test revealed that 63 of the species shifted their 312 

densities significantly towards north and 17 significantly towards south 313 

(Supplementary Table 1). Correspondingly 11 species shifted their densities 314 

significantly towards east and ten towards west. Grid-specific changes in temperature 315 

explained only shifts of four species, and changes in length of line transects did not 316 

showed significant results.  317 



The modelled northwards movement of densities of species produced on 318 

average density shift towards the north (α = 9°, c.i. 358–20°), which did not differ 319 

either from the direct north or the corresponding observed density shift of species (α 320 

= 12°). 321 

The mean direction of the temperature shift was north northeast (α = 13°, Fig. 322 

2a) and did not differ from mean direction of the species’ density shift (Watson-323 

Williams test, F1,254 = 0.02, P = 0.90). There was however a clear geographical pattern 324 

in the direction of the temperate shift. In the southern half of Finland, the direction 325 

was on average toward the northeast, whereas in the northern part of the country the 326 

temperatures shifted westward toward the mountainous region in the northwest (Fig. 327 

1c). In the northwest corner, the climatic conditions of the 1970’s and 1980’s, in the 328 

resolution of 50-km grids, have already moved outside the borders of Finland (Fig. 329 

1c). Despite the similar mean direction of both the temperature and density shifts of 330 

species, the species-specific directions did not correlate significantly (rho = -0.03, n = 331 

128, P = 0.71). Furthermore, the distance of the temperature change was on average 332 

186 km (min-max 143–301 km), which is more than five times the mean distance that 333 

all species have shifted toward the north. 334 

Habitat type and migration distance significantly explained the difference in 335 

distribution of directions (Harrison-Kanji test, χ2
2 = 17.92, P = 0.0064, χ2

6 = 8.84, 336 

P = 0.012, respectively, Fig. 2b-c). Despite the high variation in the directions, 337 

farmland-urban, wetland and montane species shifted their densities towards the north 338 

northwest (α = 335°, α = 339°, and α = 350, respectively; Fig. 2b-c), whereas forest 339 

species moved towards the north northeast (α = 32°, Fig. 2b, Supplementary Fig. 340 

130). For instance typical farmland species like Lapwing Vanellus vanellus, Skylark 341 

Alauda arvensis, Barn Swallow Hirundo rustica and Eurasian Starling Sturnus 342 



vulgaris shifted their densities more than 40 km westward. In contrast, Eurasian 343 

Sparrowhawk Accipiter nisus, Osprey Pandion haliaetus, Merlin Falco columbarius, 344 

Red-breasted Flycatcher Ficedula parva, Willow Tit Poecile montanus, Coal Tit 345 

Periparus ater and Common Crossbill Loxia curvirostra showed the strongest shifts 346 

among forest birds towards north and east (all shifted more than 150 km, 347 

Supplementary Table 1). Among montane birds, the strongest shifts were observed in 348 

Long-tailed Skua Stercorarius longicaudus and Lapland Longspur Calcarius 349 

lapponicus which shifted towards northeast more than 100 kilometres and Snow 350 

Bunting Plectrophenax nivalis whose densities shifted towards the highest mountains 351 

in the northwest more than 80 kilometres. 352 

Furthermore, when grouping species into residents-partial migrants and true 353 

migrants, there was a significant difference in the directions between groups (Fig. 2d). 354 

Almost all resident and partial migratory species shifted their densities towards the 355 

northeast (α = 39°, Fig. 2d), whereas many migratory species showed density shifts 356 

towards the west and southwest (α = 358°, Fig. 2d, Supplementary Fig. 131). 357 

However, a more complicated model with the four migration type categories did not 358 

explain species-specific variation in the shift of the densities (H-K test, χ2
6 = 9.54, 359 

P = 0.15). This was likely because both residents and partial migrants moved towards 360 

the northeast and short- and long-distance migrants towards the north (Supplementary 361 

Fig. 132a–d). In the case of either habitat type or the migration distance the residuals 362 

of the models were not correlated with the phylogeny either at the order or family 363 

level (all P’s > 0.26). 364 

There was some evidence that migration direction explains part of the variation 365 

in density shifts (H-K test, χ2
4 = 11.1, P = 0.086). Species wintering in the southwest 366 

shifted their densities on average towards the north northeast direction (α = 13°), 367 



whereas species wintering in the south and southeast shifted their densities towards 368 

north northwest (α = 339° and α = 335°, respectively, Fig. 2e), as would have been 369 

expected based on their migration routes. The distribution of the directions did not 370 

differ between southern edge (α = 323°) or northern edge (α = 72°) species or species 371 

that occur in the large part of the country (α = 8°, H-K test, χ2
4 = 7.12, P = 0.13; 372 

Fig. 2f). In general, the group of species that shifted their densities westwards 373 

included several types of species, such as migrants wintering in Asia (e.g. Blyth’s 374 

Reed Warbler Acrocephalus dumetorum and Greenish Warbler Phylloscopus 375 

trochiloides), farmland species (mentioned above), and other species with declining 376 

population dynamics (e.g. Common Buzzard Buteo buteo, Honey Buzzard Pernis 377 

apivorus, Hen Harrier Circus cyaneus and Sedge Warbler Acrocephalus 378 

schoenobaenus) (see Supplementary Table 1).  379 

 380 

 381 

 382 



Discussion 383 

 384 

The findings reveal that directions of species’ density and temperature shifts are not 385 

directly towards the north, but most often towards the north northeast and north 386 

northwest. Although these directions can partly be driven by the geographical shape 387 

of the country, this underlines that the rate of species density shifts are 388 

underestimated, if the shift is only measured using one north-south dimension. 389 

However, the speed of the temperature change has been much faster than 390 

corresponding speed in the change of bird species densities, which has also been 391 

found in some earlier studies both in Europe and North America (Devictor et al., 392 

2008, 2012; La Sorte & Jetz, 2012). Importantly, although the species and 393 

temperature had on average the same direction, the species-specific values were not 394 

significantly correlated as we predicted. This is probably due to the large variation in 395 

the species density shifts, since 25% of the species show a move towards southern 396 

directions. In a recent work, Tayleur et al. (2015) showed that only 20% of the 397 

Swedish bird species had shifted their densities towards the expected direction during 398 

21th century according to the temperature change and changes in rainfall had hardly 399 

any impact on density changes. On the other hand, Virkkala et al. (2014) showed that 400 

observed changes in Finnish bird distributions between 1974–89 and 2006–2010 were 401 

largely in the same direction as predicted range shifts by 2051–2080 based on 402 

bioclimatic envelope models. Understanding causes of the variation in species-403 

specific directions and the speed of change is crucial for making predictions in species 404 

distributions and for conservation actions. 405 

This study shows that forest bird species have on average shifted towards a 406 

northeastern direction, whereas species of other habitats have on average shifted their 407 



densities towards northwestern directions. Finland is situated on the western edge of 408 

the Eurasian boreal forest zone (see e.g. Huntley et al., 2007; Virkkala et al., 2008), 409 

which is why it is logical that forest species show density shift towards the northeast. 410 

Nevertheless, management of forest can also affect species ability to move their 411 

distributions (Felton et al., 2014). On the other hand, declining montane species 412 

(Lehikoinen et al., 2014) were moving on average towards the north northwest, where 413 

the highest and coldest montane areas are situated in Finland. Thus, the physiography 414 

of Finland explains some of the shifts. Northwards density shifts of bird species have 415 

also been observed in Finnish protected areas, where human-caused land use is 416 

prohibited, suggesting that climate change was the main cause for species density 417 

shifts in natural habitats (forests, wetlands and montane habitats) (Virkkala & 418 

Rajasärkkä, 2011). In addition, land use changes also influence our results. Farmland 419 

birds have generally declined in Finland since the 1970’s, mainly due to changes in 420 

farmland practices (Rintala & Tiainen, 2007; Laaksonen & Lehikoinen, 2013). Mean 421 

density shifts of farmland species towards a northwestern direction is supported by 422 

our predictions, as the largest arable land areas in the northern and central part of the 423 

country are situated on the western side. Moreover, densities of several farmland 424 

species have shifted towards the southwest indicating that these species have retracted 425 

towards their core breeding areas. In the UK, land use changes have been shown to be 426 

more important drivers of the farmland bird species than climatic factors (Eglington & 427 

Pearce-Higgins, 2012). 428 

Furthermore, migration behaviour, especially the comparison between residents 429 

(including partial migrants) and true migrants explained the differences in species-430 

specific variation in the shift direction. Residents and partial migrants shifted their 431 

densities very strongly toward the northeast, whereas among migrants, many species 432 



showed western or southwestern density shifts. This could indicate that residents and 433 

partial migrants could better track climatic changes than migratory species, which are 434 

away for the winter (Pearce-Higgins & Green, 2014).  435 

Many south-eastern and southern migrants tend to spread in western directions, 436 

whereas southwestern migrants tend to spread towards the north northeast. Although 437 

these groups did not differ between each other significantly, this kind of pattern would 438 

make sense as species migration direction classifies the angle along which birds tend 439 

to move most during their life cycle. One of the widely known impact of climate 440 

change is advanced spring arrival dates of many bird species (Jonzén et al., 2006; 441 

Lehikoinen & Sparks, 2010, Vaitkuviene et al. 2015). The advanced spring migration 442 

potentially together with more favourable migration conditions could be one of the 443 

mechanisms behind climate induced distribution shifts due prolonged to migration 444 

distances (Otterlind, 1954; Berthold, 2001). This emphasizes that the migration 445 

direction and route of dispersal should be investigated in more detail. However, since 446 

our study showed that residents and partial migrants shifted more towards northeast 447 

than true migrants other mechanisms are also acting here. 448 

Although this study is based on large-scale data covering over 1000 km in a 449 

north-south direction through the boreal zone and over 600 kilometres in a west-east 450 

direction, it is still conducted within one country and does not cover the whole 451 

population of any of the study species. Such analyses dealing with abundance shifts at 452 

a whole population level are very rare (see, however, Lehikoinen et al., 2013: Pavón-453 

Jordan et al., 2015), and require harmonious monitoring schemes. Furthermore, the 454 

conservation decisions and management actions are typically done on a national level, 455 

which is why these borders need to be taken into account although species do not 456 

recognize border lines (Pouzols et al., 2014).  457 



Unfortunately corresponding long-term census data from the border countries, 458 

especially from the Russian side, are lacking. Furthermore, the alarming results show 459 

that the former climatic conditions in the northwest corner of Finland have already 460 

moved out of Finland at least on the 50-km grid scale. Although in this mountainous 461 

region, in the short-term species could cope with climate change by shifting their 462 

densities uphill, in the long-term their currently declining populations (Lehikoinen et 463 

al., 2014) may become extirpated from northwestern Europe (Huntley et al., 2007; 464 

Virkkala et al., 2008). This underlines that international collaboration should be 465 

increased to improve our understanding of species abundance and distribution 466 

changes (Jiguet et al., 2010; Lehikoinen et al., 2014) and to design management 467 

actions to conserve biodiversity in the face of changing climate (Pearce-Higgins & 468 

Green, 2014; Pouzols et al., 2014). 469 
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 634 
 635 

Fig. 1. Map of Finland showing a) 50-km grid cells in grey and individual census sites 636 

in circles in the 1970s, 1980s and 2000s, b) isoterms in annual temperature during 637 

1970–1989 (darker colour indicate warmer tempeature) and c) directions that 638 
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temperature has changed in Finland between 1970–1989 and 2000–2012. Longer 639 

arrows indicate stronger temperature shifts. ‘x’-marks show grids where climate in the 640 

1970s and 1980s no longer exists in Finland during the second study period. 641 

 642 

 643 

Fig. 2. Distribution of directions of density shifts. (a) Densities of all species (95% c. 644 

i. of the mean direction 358–30°) and corresponding temperature (95 % c. i. 8–17°) in 645 

their same breeding range from 1970–1989 to 2000–2012. Distribution of directions 646 

of density shifts according to main habitat type of the species [b) farmland and forest 647 

species and c) wetland and montane species], migration behaviour [d) residents -  648 

partial migrants and fully migratory species], spring migration direction [e) southwest, 649 

south or southeast] and general distribution of the species [f) southern edge, large part 650 

of the country and northern edge]. The colour lines show the distribution of directions 651 

in 15° intervals and the colour arrows next to the degrees show the mean direction of 652 

the particular distribution. 653 
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Supporting information 655 

 656 

Supplementary Table 1. Species-specific data with sample sizes, habitat, migration 657 

and distribution classifications, central gravity of density expressed as latitudes and 658 

longitudes during both study periods, direction of the density shift, total distance of 659 

shift density shift along latitude and longitude directions and direction of the species-660 

specific temperature shift.  661 

 662 

Supplementary Figs. 1–128. Species-specific density maps during the first (1970-663 

1989, left panel) and second (2000-2012, right panel) study period. 664 

 665 

Supplementary Fig. 129. Illustration of moved densities of species to estimate the 666 

potential effect of shape of the country on the direction of density shifts. 667 

 668 

Supplementary Fig. 130. Grid specific changes of relative densities of groups of 669 

species classified based on their main habitat type.  670 

 671 

Supplementary Fig. 131. Grid specific changes of relative densities of groups of 672 

species classified based on their migration type.  673 

 674 

Supplementary Fig. 132. Distribution of directions of changes in densities based on 675 

four migration groups. 676 

 677 



Supplementary figs 1–128. Species-specific density maps during the first (1970-1989, 
left panel) and second (2000-2012, right panel) study period. The 50-km grid-specific 
densities are shown in grey scale illustrated by three values on the up left corned or 
each panel. Large asterisk shows the central gravity of the densities and small black 
crosses are grids that did not have enough data (excluded from the analyses). 
 
 

 
Supplementary fig. 1. Tetrastes bonasia 
 

 
Supplementary fig.  2. Lagopus lagopus 
 



 
Supplementary fig. 3. Lagopus muta 
 

 
Supplementary fig. 4. Tetrao tetrix 
 



 
Supplementary fig. 5. Tetrao urogallus 
 
 

 
Supplementary fig. 6. Phasianus colchicus 
 
 
 



 
Supplementary fig. 7. Pernis apivorus 
 

 
Supplementary fig. 8. Circus cyaneus 
 



 
 
Supplementary fig. 9. Accipiter gentilis 
 

 
Supplementary fig. 10. Accipiter nisus 
 



 
Supplementary fig. 11. Buteo buteo 
 

 
Supplementary fig. 12. Buteo lagopus 
 



 
Supplementary fig. 13. Pandion haliaetus 

 
Supplementary fig. 14. Falco tinnunculus 
 



 
Supplementary fig. 15. Falco columbarius 
 

 
 
Supplementary fig. 16. Falco subbuteo 



 
Supplementary fig. 17. Grus grus 
 

 
Supplementary fig. 18. Haematopus ostralegus 
 



 
Supplementary fig. 19. Charadrius hiaticula 
 

 
Supplementary fig. 20. Pluvialis apricaria 
 



 
Supplementary fig. 21. Vanellus vanellus 
 

 
Supplementary fig. 22. Calidris pugnax 
 



 
Supplementary fig. 23. Calidris falcinellus 
 
 

 
Supplementary fig. 24. Lymnocryptes minumus 
 



 
Supplementary fig. 25. Gallinago gallinago 
 

 
Supplementary fig. 26. Scolopax rusticola 
 



 
Supplementary fig. 27. Numenius phaeopus 
 

 
Supplementary fig. 28. Numenius arquata 
 



 
Supplementary fig. 29. Tringa erythropus 
 

 
Supplementary fig. 30. Tringa totanus 
 



 
Supplementary fig. 31. Tringa nebularia 
 

 
Supplementary fig. 32. Tringa ochropus 



 
Supplementary fig. 33. Tringa glareola 
 

 
Supplementary fig. 34. Actitis hypoleucos 
 



 
Supplementary fig. 35. Phalaropus lobatus 
 

 
Supplementary fig. 36. Stercorarius longicaudus 
 



 
Supplementary fig. 37. Columba livia 
 

 
Supplementary fig. 38. Columba oenas 
 



 
Supplementary fig. 39. Columba palumbus 
 

 
Supplementary fig. 40. Cuculus canorus 
 



 
Supplementary fig. 41. Surnia ulula 
 

 
Supplementary fig. 42. Asio flammeus 
 



 
Supplementary fig. 43. Apus apus 
 

 
Supplementary fig. 44. Jynx torquilla 
 
 



 
Supplementary fig. 45. Picus canus 
 

 Supplementary fig. 46. Dryocopus martius 
 



 
Supplementary fig. 47. Dendrocopos major 
 

 
Supplementary fig. 48. Dendrocopos minor 
 



 
Supplementary fig. 49. Picoides tridactylus 
 

 
Supplementary fig. 50. Lullula arborea 
 



 
Supplementary fig. 51. Alauda arvensis 
 

 
Supplementary fig. 52. Riparia riparia 
 



 
Supplementary fig. 53. Hirundo rustica 
 

 
Supplementary fig. 54. Delichon urbicum 
 



 
Supplementary fig. 55. Anthus trivialis 
 
 

 Supplementary fig. 56. Anthus prantensis 
 



 
Supplementary fig. 57. Motacilla flava 
 

 
Supplementary fig. 58. Motacilla alba 
 



 
Supplementary fig. 59. Bombycilla garrulus 
 

 
Supplementary fig. 60. Troglodytes troglodytes 
 



 
Supplementary fig. 61. Prunella modularis 
 

 
Supplementary fig. 62. Erithacus rubecula 
 



 
Supplementary fig. 63. Luscinia luscinia 
 

 
Supplementary fig. 64. Luscinia svecica 
 



 
Supplementary fig. 65. Phoenicurus phoenicurus 
 

 
Supplementary fig. 66. Saxicola rubetra 
 



 
Supplementary fig. 67. Oenanthe oenanthe 
 

 
Supplementary fig. 68. Turdus torquatus 
 



 Supplementary fig. 69. Turdus merula 
 

 
Supplementary fig. 70. Turdus pilaris 
 



 
Supplementary fig. 71. Turdus philomelos 
 

 
Supplementary fig. 72. Turdus iliacus 
 



 
Supplementary fig. 73. Turdus viscivorus 
 

 
Supplementary fig. 74. Locustella naevia 
 



 
Supplementary fig. 75. Acrocephalus schoenobaenus 
 

 
Supplementary fig. 76. Acrocephalus dumetorum 
 



 
Supplementary fig. 77. Acrocephalus palustris 
 

 
Supplementary fig. 78. Acrocephalus scirpaceus 
 



 
Supplementary fig. 79. Hippolais icterina 
 

 
Supplementary fig. 80. Sylvia curruca 
 



 
Supplementary fig. 81. Sylvia communis 
 

 
Supplementary fig. 82. Sylvia borin 
 



 
Supplementary fig. 83. Sylvia atricapilla 
 

 
Supplementary fig. 84. Phylloscopus trochiloides 
 



 
Supplementary fig. 85. Phylloscopus sibilatrix 
 

 
Supplementary fig. 86. Phylloscopus collybita 
 



 
Supplementary fig. 87. Phylloscopus trochilus 
 

 
Supplementary fig. 88. Regulus regulus 
 



 
Supplementary fig. 89. Muscicapa striata 
 

 
Supplementary fig. 90. Ficedula parva 
 



 
Supplementary fig. 91. Ficedula hypoleuca 
 

 
Supplementary fig. 92. Cyanistes caeruleus 
 



 
Supplementary fig. 93. Parus major 
 

 
Supplementary fig. 94. Periparus ater 
 



 Supplementary fig. 95. Lophophanes cristatus 
 

 
Supplementary fig. 96. Poecile montanus 
 



 
Supplementary fig. 97. Poecile cinctus 
 
 
 
 
 
 
 

 
Supplementary fig. 98. Certhia familiaris 
 



 
Supplementary fig. 99. Oriolus oriolus 
 

 
Supplementary fig. 100. Lanius collurio 
 



 
Supplementary fig. 101. Lanius excubitor 
 

 
Supplementary fig. 102. Garrulus glandarius 
 



 
Supplementary fig. 103. Perisoreus infaustus 
 

 
Supplementary fig. 104. Pica pica 
 



 
Supplementary fig. 105. Corvus monedula 
 

 
Supplementary fig. 106. Corvus corone 
 



 
Supplementary fig. 107. Corvus corax 
 

 
Supplementary fig. 108. Sturnus vulgaris 
 



 
Supplementary fig. 109. Passer domesticus 
 

 
Supplementary fig. 110. Fringilla coelebs 
 



 
Supplementary fig. 111. Fringilla montifringilla 
 

 
Supplementary fig. 112. Carduelis chloris 
 



 
Supplementary fig. 113. Carduelis spinus 
 

 
Supplementary fig. 114. Carduelis cannabina 
 



 
Supplementary fig. 115. Carduelis flammea 
 

 
Supplementary fig. 116. Loxia leucoptera 
 



 
Supplementary fig. 117. Loxia curvirostra 
 

 
Supplementary fig. 118. Loxia pytyopsittacus 
 



 
Supplementary fig. 119. Carpodacus erythrinus 
 

 
Supplementary fig. 120. Pinicola enucleator 
 



 
Supplementary fig. 121. Pyrrhula pyrrhula 
 
 

 
Supplementary fig. 122. Calcarius lapponicus 
 



 
Supplementary fig. 123. Plectrophenax nivalis 
 

 
Supplementary fig. 124. Emberiza citrinella 
 



 
Supplementary fig. 125. Emberiza hortulana 
 

 
Supplementary fig. 126. Emberiza rustica 
 



 
Supplementary fig. 127. Emberiza pusilla 
 

 
Supplementary fig. 128. Emberiza schoeniclus 



 

 

Supplementary Fig. 1. Illustration of how we moved densities of species one grid 

northwards to estimate the potential effect of shape of the country on the direction of 

density shifts. In a normal situation (a), the densities were moved one grid 

northwards. In situations, where the density value was missing from the southern side 

(b), we used mean of the nearest southwest and southeast grids, or only one of them 

(c) if both values were not available. The dashed line grids in the figure illustrate the 

former situation and the solid line grids represents the corresponding grids after the 

moved densities in Brambling Fringilla montifringilla (see also Supplementary Figs 

1-129). In case of examples b and c, the densities in the dashed grids were also moved 

directly northwards like in case a. 

a 

b 
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Supplementary Fig. 130. Grid specific changes of relative densities of groups of species classified 

based on their main habitat type: (a) farmland species, (b) forest species, (c) wetland species and (d) 

montane species. In graphs the species-specific relative densities have been scaled into the same unit in 

all species so that all species would have equal impact (in contrast to a situation where the most 

abundant species would dominate the change) corresponding direction analyses (Fig. 1). These grid 

specific relative densities of species in the first period were subtracted from the corresponding densities 



of the latter period. These density changes of the same habitat category were combined grid-

specifically and are expressed in colours. Red colour means increasing relative densities and blue 

declining relative densities. The black crosses show grids without data. 

 



Supplementary Fig. 131. Grid specific changes of relative densities of groups of species classified 

based on their migration type: (a) residents and partial migrants and (b) short- and long-distance 

migrants. In graphs the species-specific relative densities have been scaled into the same unit in all 

species so that all species would have equal impact (in contrast to a situation where the most abundant 

species would dominate the change) corresponding direction analyses (Fig. 1). These grid-specific 

relative densities of species in the first period were subtracted from the corresponding densities of the 

latter period. These density changes of the same migration category were combined grid-specifically 



and are expressed in colours. Red colour means increasing relative densities and blue declining relative 

densities. The black crosses show grids without data. 

 

 
 

 
 
 



 
Supplementary Fig. 132. Distribution of directions of changes in densities based on four migration 
groups (resident: α = 43, partial: α = 35, short-distance: α = 359, and long-distance migrants: α = 357), 
 
 



Supplementary Table 1. Species-specific sample sizes (N 70-80, N 2000), habitat (Hab), migration (Mig, Mdir) and distribution (Dist) classifications, central gravity of 
density expressed as latitudes (La70-80, La00) and longitudes (Lo70-80, La00) during both study periods, direction of the density shift (Dir in degrees), total distance of 
shift (Dist2), density shift along latitude (Ndist) and longitude (Edist) directions (negative values mean shifts towards south and west, respectively) and direction of the 
species-specific temperature shift. Bolded values in density shifts along latitude and longitude mean that separate Poisson regression analyses of the particular species 
revealed significant shift in latitude or longitude after Bonferroni correction (note that this is different than changes in the mean central gravity, see more accurately in the 
text). 

Species N 70-80 N 2000 Hab Mig Mdir Dist La70-80 La00 Lo70-80 Lo00 Dir (Deg) Dist2 Ndist Edist Tdir (Deg) 
Tetrastes bonasia 462 868 2 0 4 2 692.9 701.4 342.9 347.9 30.3 99.1 85.6 50.1 25.2 
Lagopus lagopus 267 293 2 0 4 2 751.0 756.4 343.8 343.2 353.4 54.8 54.4 -6.3 350.1 
Lagopus muta 43 41 4 0 4 3 766.2 763.5 324.9 326.1 155.6 29.7 -27.0 12.3 325.9 
Tetrao tetris 1048 1916 2 0 4 2 699.0 708.9 334.2 344.1 45.3 139.8 98.4 99.4 21.3 
Tetrao urogallus 228 418 2 0 4 2 714.6 714.9 347.9 352.1 85.9 42.3 3.0 42.2 14.1 
Phasianus colchicus 384 515 1 0 4 2 671.6 683.5 330.3 330.2 359.4 119.5 119.5 -1.3 38.0 
Pernis apivorus 22 36 2 1 2 2 689.9 690.8 351.4 340.9 274.6 105.9 8.6 -105.5 19.4 
Circus cyaneus 45 44 3 1 1 2 725.5 713.7 350.2 341.2 217.6 148.0 -117.3 -90.3 9.5 
Accipiter gentilis 60 59 2 0 4 2 699.1 702.2 334.9 335.6 11.5 31.4 30.8 6.3 30.3 
Accipiter nisus 40 70 2 1 1 2 698.7 701.3 323.9 338.8 80.1 151.0 25.9 148.7 24.6 
Buteo buteo 98 66 2 1 4 2 698.9 684.1 348.7 334.3 224.1 206.1 -148.1 -143.3 22.2 
Buteo lagopus 96 66 2 0 3 3 763.0 767.0 341.4 346.5 51.9 64.8 40.0 51.0 309.6 
Pandion haliaetus 41 54 2 1 2 2 685.8 704.2 333.3 347.2 37.0 230.3 183.9 138.7 18.3 
Falco tinnunculus 39 121 1 1 1 2 701.3 728.1 338.7 343.5 10.0 271.9 267.7 47.4 22.8 
Falco columbarius 21 32 2 1 1 2 745.3 763.9 333.1 339.2 18.2 195.5 185.7 61.2 333.2 
Falco subbuteo 21 52 2 1 2 2 697.8 690.4 352.7 342.1 235.6 129.4 -73.1 -106.7 22.5 
Grus grus 330 1696 3 1 2 2 710.2 708.4 344.0 333.7 260.3 105.2 -17.8 -103.7 20.8 
Haematopus ostralegus 31 102 3 1 1 1 674.1 689.5 312.4 317.3 17.7 161.6 153.9 49.1 33.8 
Charadrius hiaticula 34 69 4 1 1 2 754.8 758.8 330.2 337.5 61.1 82.9 40.0 72.6 310.7 
Pluvialis apricaria 1139 1237 4 1 1 2 760.6 759.5 347.8 342.5 258.8 54.3 -10.6 -53.3 355.1 
Vanellus vanellus 1308 2201 1 1 1 2 691.8 691.6 338.3 331.9 267.9 64.0 -2.3 -64.0 25.6 
Calidris pugnax 407 156 3 1 1 3 746.3 750.2 344.5 345.6 15.6 40.2 38.8 10.8 351.0 
Calidris falcinellus 114 206 3 1 3 3 751.1 752.1 339.4 343.4 76.3 41.4 9.8 40.2 328.1 
Lymnocryptes minumus 205 172 3 0 1 3 754.1 752.6 346.5 345.7 207.8 17.0 -15.0 -7.9 334.4 
Gallinago gallinago 1836 2146 3 1 1 2 723.7 729.8 338.2 342.2 33.3 72.5 60.6 39.7 12.6 
Scolopax rusticola 158 440 2 1 1 2 690.7 691.5 327.3 334.1 83.4 67.6 7.8 67.2 28.9 
Numenius phaeopus 1130 755 3 1 1 2 744.7 755.3 353.9 350.1 340.2 112.5 105.9 -38.2 352.0 
Numenius arquata 1734 2744 1 1 1 2 703.5 705.6 341.4 341.5 4.1 21.1 21.0 1.5 26.5 
Tringa erythropus 222 135 3 1 2 3 758.8 756.6 345.7 347.1 148.2 26.0 -22.1 13.7 332.2 
Tringa totanus 313 342 3 1 1 2 701.5 712.6 316.0 320.9 23.5 121.3 111.3 48.4 35.6 
Tringa nebularia 737 1284 3 1 2 2 733.1 730.1 355.1 352.8 217.3 38.8 -30.8 -23.5 4.0 



Tringa ochropus 683 2394 2 1 1 2 689.6 697.4 345.6 338.5 317.9 105.6 78.3 -70.8 23.2 
Tringa glareola 2970 3803 3 1 2 2 740.9 747.5 347.8 346.2 346.4 67.2 65.3 -15.8 7.0 
Actitis hypoleucos 303 356 3 1 2 2 707.6 722.5 336.1 339.1 11.2 151.5 148.6 29.5 16.5 
Phalaropus lobatus 85 34 3 1 3 3 758.9 762.1 341.0 338.1 317.1 43.3 31.7 -29.5 326.1 
Stercorarius longicaudus 33 49 4 1 1 3 767.2 773.4 338.6 346.9 53.2 104.0 62.3 83.3 326.4 
Columba livia 102 561 1 0 4 1 674.9 687.5 347.3 329.6 305.4 216.9 125.7 -176.8 20.9 
Columba oenas 382 302 1 1 1 1 670.1 670.3 314.2 319.1 88.0 48.4 1.7 48.4 41.9 
Columba palumbus 3682 8195 1 1 1 2 686.7 686.4 330.9 330.2 240.2 7.7 -3.8 -6.7 28.2 
Cuculus canorus 4650 7760 2 1 2 2 710.5 711.0 339.5 345.2 85.5 57.5 4.5 57.4 14.0 
Surnia ulula 27 25 2 0 4 3 740.5 744.3 345.9 349.9 46.8 55.6 38.1 40.5 327.5 
Asio flammeus 66 69 3 1 1 2 740.4 753.8 343.5 340.6 347.5 137.2 134.0 -29.7 357.5 
Apus apus 1231 2086 1 1 2 2 684.3 688.8 331.7 335.7 41.6 60.0 44.9 39.8 26.9 
Jynx torquilla 376 206 2 1 1 2 696.7 707.1 337.7 334.1 340.9 110.2 104.1 -36.1 17.2 
Picus canus 29 36 2 0 4 2 669.1 673.7 317.6 327.6 64.9 109.5 46.5 99.1 38.2 
Dryocopus martius 270 1043 2 0 4 2 688.6 694.0 330.5 334.1 33.7 64.8 53.9 35.9 18.1 
Dendrocopos major 1326 3648 2 0 4 2 694.8 702.4 341.8 338.3 335.3 83.5 75.8 -34.9 26.1 
Dendrocopos minor 30 37 2 0 4 2 688.9 680.8 321.4 334.3 122.0 152.1 -80.5 129.0 27.8 
Picoides tridactylus 74 148 2 0 4 2 735.7 730.6 351.5 349.9 197.2 53.4 -51.0 -15.8 337.5 
Lullula arborea 31 101 2 1 1 1 668.1 666.3 325.4 316.1 259.2 95.2 -17.8 -93.5 34.6 
Alauda arvensis 3912 3581 1 1 1 2 684.8 685.5 327.9 323.2 278.2 46.7 6.7 -46.2 25.7 
Riparia riparia 341 532 3 1 2 2 714.5 713.3 353.7 348.5 256.9 52.5 -11.9 -51.2 16.2 
Hirundo rustica 1552 1761 1 1 2 2 693.3 693.3 339.7 334.9 270.9 47.5 0.7 -47.5 26.9 
Delichon urbicum 1031 758 1 1 2 2 687.2 697.1 338.1 336.0 347.8 101.6 99.4 -21.4 26.0 
Anthus trivialis 15580 18958 2 1 2 2 700.5 701.3 340.2 342.6 71.0 25.9 8.4 24.4 16.4 
Anthus prantensis 5147 4754 3 1 1 2 750.6 755.3 343.4 340.6 329.7 55.2 47.7 -27.8 8.7 
Motacilla flava 4301 2805 3 1 1 2 735.2 748.7 349.0 345.5 345.6 139.4 135.0 -34.7 12.0 
Motacilla alba 2283 3315 3 1 2 2 696.7 695.2 335.2 332.6 241.2 30.6 -14.7 -26.8 16.9 
Bombycilla garrulus 73 611 2 0 4 2 737.8 741.9 353.6 355.0 18.8 43.3 41.0 14.0 326.3 
Troglodytes troglodytes 289 1371 2 1 1 2 678.4 684.0 347.0 330.3 288.4 176.9 55.9 -167.8 22.5 
Prunella modularis 2260 4949 2 1 1 2 686.7 693.0 340.3 343.3 25.5 69.8 63.0 30.1 23.2 
Erithacus rubecula 5127 16046 2 1 1 2 688.4 695.8 338.7 336.7 344.9 77.2 74.5 -20.1 23.1 
Luscinia luscinia 288 574 3 1 2 2 673.3 672.3 325.5 334.0 96.3 86.2 -9.5 85.7 31.5 
Luscinia svecica 862 930 4 1 3 3 764.7 768.4 335.2 336.6 20.8 39.5 36.9 14.0 312.3 
Phoenicurus phoenicurus 4109 7841 2 1 1 2 730.3 735.8 346.2 350.2 35.6 68.1 55.4 39.6 14.1 
Saxicola rubetra 1687 1601 1 1 1 2 703.4 711.2 342.2 341.0 351.2 78.6 77.7 -12.1 16.8 
Oenanthe oenanthe 1467 594 3 1 1 2 738.1 747.3 336.7 338.7 12.5 94.1 91.9 20.4 12.0 
Turdus torquatus 25 35 4 1 1 3 769.9 768.5 326.1 326.4 169.0 14.0 -13.8 2.7 331.0 



Turdus merula 2108 6764 2 0 1 2 672.8 677.8 319.0 324.9 49.4 77.5 50.5 58.8 32.2 
Turdus pilaris 5173 13779 1 1 1 2 694.5 697.9 339.4 338.9 351.6 33.5 33.1 -4.9 16.1 
Turdus philomelos 6892 13336 2 1 1 2 695.8 701.4 335.4 339.8 38.1 70.3 55.3 43.3 17.3 
Turdus iliacus 12476 14609 2 1 1 2 713.8 724.3 341.4 342.7 7.1 106.2 105.4 13.2 13.7 
Turdus viscivorus 448 1675 2 1 2 2 705.4 706.7 333.2 336.4 68.6 34.5 12.6 32.1 16.2 
Locustella naevia 20 39 3 1 1 2 681.0 685.3 337.2 337.8 8.0 43.4 43.0 6.0 22.4 
Acrocephalus schoenobaenus 1234 1691 3 1 2 2 701.6 701.9 339.9 332.8 273.0 71.1 3.8 -71.0 18.5 
Acrocephalus dumetorum 51 176 3 1 3 2 686.6 682.4 363.6 352.0 249.8 124.2 -42.9 -116.6 17.1 
Acrocephalus palustris 39 86 3 1 2 2 672.5 671.3 331.0 316.7 265.3 144.0 -11.8 -143.5 19.8 
Acrocephalus scirpaceus 349 265 3 1 1 1 668.7 668.6 315.5 316.9 97.0 14.0 -1.7 13.9 33.7 
Hippolais icterina 164 182 2 1 2 2 667.2 670.2 321.2 324.9 50.8 47.7 30.1 36.9 25.9 
Sylvia curruca 1467 2885 2 1 2 2 689.0 689.9 338.7 334.7 283.3 41.7 9.6 -40.6 27.4 
Sylvia communis 1939 3147 1 1 2 2 677.9 678.0 329.0 328.3 273.3 7.5 0.4 -7.5 30.1 
Sylvia borin 6484 9260 2 1 2 2 685.9 687.4 337.2 340.5 66.6 35.5 14.1 32.6 26.9 
Sylvia atricapilla 628 1334 2 1 2 2 672.3 671.9 317.4 316.8 229.1 7.3 -4.8 -5.5 31.6 
Phylloscopus trochiloides 88 216 2 1 3 2 681.8 679.1 348.1 341.9 246.9 67.8 -26.6 -62.3 22.4 
Phylloscopus sibilatrix 2475 1966 2 1 1 2 680.1 682.8 342.1 343.9 33.0 32.1 26.9 17.4 26.7 
Phylloscopus collybita 2430 3336 2 1 2 2 685.7 687.8 330.9 332.3 34.2 25.4 21.0 14.3 29.3 
Phylloscopus trochilus 58187 76890 2 1 2 2 711.8 716.5 343.2 342.3 349.0 47.9 47.0 -9.1 13.7 
Regulus regulus 3122 5344 2 0 1 2 684.5 689.5 330.2 331.0 9.0 50.7 50.1 8.0 26.0 
Muscicapa striata 4340 6815 2 1 2 2 700.1 701.5 337.3 340.4 65.8 33.6 13.8 30.6 16.9 
Ficedula parva 43 125 2 1 3 2 669.0 680.5 330.2 353.8 64.0 262.6 115.2 235.9 31.4 
Ficedula hypoleuca 3157 6607 2 1 1 2 702.9 698.2 337.1 338.2 166.7 48.6 -47.3 11.2 16.7 
Poecile montanus 2744 3700 2 0 4 2 697.4 706.2 333.4 346.2 55.7 155.0 87.4 128.0 18.7 
Poecile cinctus 223 152 2 0 4 3 757.1 758.6 345.6 348.1 59.4 28.7 14.6 24.7 316.0 
Lophophanes cristatus 1071 2169 2 0 4 2 681.8 683.4 329.8 342.0 82.8 122.6 15.3 121.6 28.8 
Periparus ater 398 690 2 0 1 2 670.9 673.8 312.6 327.7 79.1 154.1 29.0 151.3 34.5 
Cyanistes caeruleus 442 4257 2 0 1 2 671.0 681.3 319.1 327.7 39.7 134.6 103.6 85.9 25.6 
Parus major 3815 13145 2 0 1 2 685.4 690.5 329.0 332.6 34.5 62.2 51.2 35.2 21.1 
Certhia familiaris 523 1245 2 0 1 2 676.0 684.5 323.7 330.5 39.0 109.2 84.8 68.8 25.9 
Oriolus oriolus 98 37 2 1 2 1 680.1 680.3 352.3 350.1 274.2 22.1 1.6 -22.0 25.3 
Lanius collurio 352 335 1 1 2 2 676.0 677.8 329.9 336.3 74.6 67.0 17.8 64.6 27.9 
Lanius excubitor 38 51 2 1 1 2 729.9 731.1 346.8 348.9 60.4 23.7 11.7 20.6 359.3 
Garrulus glandarius 534 936 2 0 4 2 686.1 687.1 334.6 338.1 74.0 36.5 10.1 35.1 31.3 
Perisoreus infaustus 264 339 2 0 4 2 743.7 752.0 351.8 348.8 340.0 88.3 83.0 -30.1 334.6 
Pica pica 1397 2978 1 0 4 2 700.0 698.6 337.4 333.2 252.1 43.6 -13.4 -41.5 19.6 
Corvus monedula 452 2663 1 0 1 2 676.9 682.9 316.8 322.7 44.8 84.8 60.2 59.7 36.6 



Corvus corone 4179 5956 1 0 1 2 698.8 697.8 331.4 331.6 166.5 10.0 -9.7 2.3 15.6 
Corvus corax 448 1129 2 0 4 2 734.2 715.8 336.1 336.9 177.3 184.5 -184.3 8.8 11.4 
Sturnus vulgaris 2120 1165 1 1 1 2 680.7 675.2 328.9 319.2 240.3 111.2 -55.0 -96.6 29.2 
Passer domesticus 1291 3970 1 0 4 2 683.6 697.8 333.4 331.8 353.7 142.4 141.5 -15.7 25.2 
Fringilla coelebs 40860 72779 2 1 1 2 688.0 691.5 335.4 338.5 42.1 46.6 34.5 31.2 20.3 
Fringilla montifringilla 17398 13105 2 1 1 2 747.8 754.1 348.1 347.4 353.7 64.0 63.6 -7.0 8.2 
Carduelis chloris 575 5110 1 0 1 2 679.7 689.9 320.2 328.2 37.8 129.8 102.5 79.6 27.5 
Carduelis spinus 7562 20079 2 1 1 2 695.7 705.7 341.2 341.2 359.9 100.4 100.4 -0.2 19.7 
Carduelis cannabina 101 180 1 1 1 1 679.0 674.5 321.9 323.0 166.7 47.1 -45.8 10.8 33.6 
Carduelis flammea 6215 5976 2 0 3 2 749.3 756.5 348.8 343.9 325.5 87.0 71.7 -49.2 4.4 
Loxia leucoptera 123 113 2 0 4 3 742.5 749.8 352.5 348.5 331.8 82.8 73.0 -39.2 338.5 
Loxia curvirostra 1868 4196 2 0 4 2 694.9 710.3 334.2 344.8 34.3 186.7 154.2 105.2 17.8 
Loxia pytyopsittacus 213 295 2 0 4 2 712.2 713.6 337.4 342.0 72.7 47.9 14.2 45.7 13.2 
Carpodacus erythrinus 2177 1952 3 1 3 2 693.6 697.4 347.0 343.0 313.5 54.8 14.2 45.7 28.9 
Pinicola enucleator 107 62 2 0 4 3 757.1 753.1 347.3 351.8 131.5 60.8 37.7 -39.7 319.5 
Pyrrhula pyrrhula 1169 2121 2 0 4 2 701.7 710.7 341.9 348.1 34.8 109.4 -40.3 45.5 21.0 
Calcarius lapponicus 337 497 4 1 3 3 771.5 768.2 343.9 336.0 247.0 86.4 89.8 62.4 307.2 
Plectrophenax nivalis 92 97 4 1 3 3 763.8 765.6 328.8 326.6 308.9 28.5 -33.8 -79.5 325.9 
Emberiza citrinella 6044 9415 1 0 1 2 687.0 687.9 330.4 327.6 286.8 30.2 17.9 -22.2 21.9 
Emberiza hortulana 1119 182 1 1 1 2 690.8 703.6 338.3 333.7 340.1 135.6 8.7 -28.9 29.2 
Emberiza rustica 916 554 3 1 3 2 722.3 730.5 353.1 354.9 12.2 84.3 127.5 -46.2 12.2 
Emberiza pusilla 77 106 3 1 3 3 744.2 742.6 354.4 354.4 180.5 16.5 82.4 17.8 319.6 
Emberiza schoeniclus 1907 2490 3 1 1 2 727.8 735.2 338.2 339.5 9.6 74.8 -16.5 -0.1 10.3 

 


