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The cylindrical nanoscale density variations resulting from the interaction of 185 MeV and 

2.2 GeV Au ions with 1.0 µm thick amorphous SiNx:H and SiOx:H layers is determined using 

small angle X-ray scattering measurements. The resulting mean density profile resembles an 

under-dense core surrounded by an over-dense shell with a smooth transition between the 

two regions, consistent with molecular-dynamics simulations. For amorphous SiNx:H, the 

density variations show a radius of 4.2 nm with a relative density change larger than three 

times the value determined for amorphous SiOx:H, with a radius of 5.5 nm. Complementary 

infrared spectroscopy measurements exhibit a damage cross-section comparable to the core 

dimensions. The morphology of the density variations results from freezing in the local 

viscous flow arising from the non-uniform temperature profile in the radial direction of the 

ion path. The concomitant drop in viscosity mediated by the thermal conductivity appears to 

be the main driving force rather than the presence of a density anomaly. 
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I. INTRODUCTION

Ion irradiation has been extensively studied for the fabrication and modification of materials and 

nanostructures and is an industrial method in mainstream microelectronics industries. Amongst the 

many applications, an example is the use of swift heavy ions (SHIs) for the formation of optical 

waveguides in insulating materials, such as amorphous SiO2 and Si3N4, as detrimental effects are 

significantly reduced in comparison to low-energy ion implantation [1]. At high ion energies, processes 

are predominantly based on the interaction of the ions with the electrons in the material as the 

interaction cross section for nuclear collisions dramatically decreases with increasing ion energy. In 

particular in amorphous insulators, there is still a lack of understanding of the structural 

transformations caused by intense electronic energy loss, which needs to be addressed for an efficient 

application of SHIs for the development of advanced materials. 

Cylindrical nanoscale density variations are the residual response of insulator materials to the many-

stage interaction with energetic ions [2] [3]. When swift heavy ions penetrate a solid, intense 

electronic excitations are produced in narrow regions along the ion paths. The energy exchanged 

between the ions and the electrons in the material generates energetic electron cascades moving 

radially outwards, responsible for the temperature profile, interacting with the atoms in the lattice via 

electron-phonon coupling. The energy deposited in the lattice leads to a rapid local increase in 

temperature, a so called “thermal spike” that can exceed the melting temperature of the material in 

a narrow region around the ion trajectory and thus yield the formation of a molten region [4] [5]. The 

following rapid resolidification can leave a trail of permanent damage that is referred to as an “ion 

track”.  

In amorphous materials, the lack of contrast has limited the study and characterization to indirect 

techniques such as infrared spectroscopy or ion track etching [6]. In the first case, a damage cross-

section can be estimated under the assumption that the radiation damage is homogenously 

distributed along a cylindrical region defined by the ion passage, while the second erases the initial 

morphology or residual material response. Recently, the ion track morphology of thermally grown SiO2 

was determined by synchrotron based techniques, where an under-dense core surrounded by an over-

dense shell was reported, yet the absolute density change was not determined [2]. Furthermore, the 

question remained open if the core-shell structure can be ascribed to the density anomaly of SiO2 

above 1800 K [7]. 

The competition between heat and mass transport, together with the rapid quenching of the thermal 

spike have a major impact on the ion track morphology [8]. The temperature profile in the thermal 

spike leads to non-uniform thermal stresses and internal mass transfer [4] [5]. In amorphous materials, 
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such as metallic glasses, if the temperature in the ion track region surpasses a critical value, the 

material experiences a local abrupt decrease in the viscosity [9]. The compressive strains are 

redistributed providing a purely hydrostatic stress. During the cooling period, the track relaxation 

kinetics depends strongly on the viscosity value of the material. As the process occurs from the ion 

track boundary towards the center progressively, it is possible for the generated strains to undergo a 

reversal process. If the ion track cooling down process is quicker than the density oscillation time, the 

density fluctuations are only partially restored and a spatial density profile with an under-dense core 

surrounded by an over-dense shell is expected [9]. 

Silicon nitride possess a higher dielectric constant, density, melting point and thermal conductivity 

while exhibiting a band gap of nearly half the value than amorphous SiO2 (a-SiO2) therefore, a suitable 

material to study the underlying mechanisms involved in the ion track formation process in 

amorphous materials. For amorphous silicon nitride (a- Si3N4), the morphology of ion tracks has been 

characterized previously only in very thin (30 nm) layers grown by low pressure chemical vapor 

deposition (LPCVD) [10]. Here, a similar structure comprised of an under-dense core and an over-

dense shell was observed by HAADF-STEM. In this case, the nature of the core and shell regions were 

ascribed to the quenching of the boiling and melting phase, respectively [11], also known as the two-

threshold model which is a modified version of the two-temperature model where the core region is 

defined by the region where boiling temperature is reached. From their experimental results, the 

determined ion track radius is matched with the numerical calculation of the molten region by 

choosing the appropriate value of the electronic mean free path, thus the boundary of the core region 

defines the boiling energy, which for a-Si3N4 was determined to be 2.5 eV/atom.  

In this work, we determined the absolute density variation profile generated after irradiation with 185 

MeV and 2.2 GeV Au ions of 1.0 µm thick a-SiNx:H and a-SiOx:H layers by small angle X-ray scattering 

(SAXS). Molecular dynamics (MD) simulations were performed for comparison. The experimental and 

theoretical results agree with a density profile defined by an under-dense core surrounded by an over-

dense shell with a smooth transition connecting the two regions. We suggest the nature of the 

over/under-densification process results from the mass and defects redistribution induced by the non-

homogeneous temperature profile caused by the thermal spike. MD simulations reveal a change in 

the coordination order in the inner region decreasing towards the boundaries of the ion track. A 

damage cross-section study based on infrared spectroscopy experiments shows good agreement 

between the coordination-defect distribution calculated by MD simulations and the ion track core 

region measured by SAXS. 
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II. EXPERIMENTAL  

A. Synthesis and ion irradiation of thin layers 

Layers with 1.0 µm thickness of a-SiNx:H and a-SiOx:H were deposited on aSi (100) wafer by plasma 

enhanced chemical vapor deposition (PECVD) at 600°C, with the chemistry of 8:14:980:0 

(SiH4:NH3:N2:N2O in sccm) for a-SiNx:H and 8:0:270:710 for a-SiOx:H following the deposition 

conditions presented by Karouta et al. [12], for silicon oxynitrides.  

The ion tracks were produced by irradiation with 185 MeV Au ions at the Heavy Ion Accelerator Facility 

(HIAF) at the Australian National University and with 2.2 GeV Au ions at the UNILAC accelerator at GSI 

in Darmstadt, Germany. Irradiations were performed at room temperature and normal incidence at 

fluences ranging between 1×1011 cm-2 and 5×1012 cm-2. The corresponding electronic energy losses Se 

were calculated with the SRIM2008 code [13], exhibiting an almost constant value across the layer 

thicknesses (∆𝑆𝑒 ≤ 0.5%), supporting the notion of homogeneous ion tracks in the samples. Material 

properties such as density, thickness and stoichiometry were determined by a combination of 

Rutherford backscattering spectrometry (RBS), carried out with alpha particles at 2.5 MeV for a-SiNx:H 

(to guarantee no oxygen incorporation or oxidation above the detection threshold during the 

deposition [14]) and 2 MeV in the case of a-SiOx:H, and spectral reflectometry using a SCI Filmtek 400 

(with a spectral range between 550 to 1660 nm) at different angles. The optical band gap was 

measured using the Tauc-Lorentz [15] [16] dispersion function. A summary of the measured properties 

and irradiation conditions is listed in Table 1.  

B. Small angle X-ray scattering 

The ion track morphology was studied using synchrotron based transmission SAXS. SAXS possess high 

sensitivity to small electron density changes; such changes exhibit strong contrast and can be 

correlated to the morphology of the ion tracks [2] [3] [17]. The measurements were performed at the 

SAXS/WAXS beamline of the Australian Synchrotron with an X-ray energy of 11 keV and a camera 

length of 960 mm. Samples were prepared by thinning the Si substrate down to 100 µm thickness by 

mechanical polishing to reduce parasitic scattering from the substrate yet provide enough support for 

the layers. Data acquisition was carried out with the X-ray beam aligned to the ion track axis and then 

tilted 10° off the normal. The absolute calibration of the scattering cross-section was carried out by 

performing measurements of glassy carbon with 1 mm thickness as a reference [18]. Furthermore, air 

and glassy carbon measurements at three different exposure times were recorded (1, 2 and 5 seconds) 

to account for the linearly dependency of the photon count with exposure time. When the ion tracks 

are perfectly aligned with respect to the X-ray beam it is possible to observe the azimuthal symmetry 

present [Figs. 1 (a) and (b)]. When tilted by 10° an anisotropic scattering pattern is observed due to 
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the high aspect ratio of the ion tracks [Figs. 1 (c) and (d)]. The studied scattering intensities were 

extracted by a selective mask of the streaks shown in the scattering pattern followed by a background 

subtraction defined by a mask outlined in an angular sector perpendicular to the streaks. At fluences 

below 5×1011 cm-2, ion track overlap is rather negligible as discussed in previous results and confirmed 

by a stochastic overlap model [19]. The amorphous nature of our samples supports the assumption of 

an azimuthally symmetry present. While we measure ~107 ion tracks, as they are parallel and almost 

identical (because of the well-defined ion energy and direction), the resulting analysis reveals 

information about the individual ion track structure averaging out fluctuations on atomic scales [20]. 

C. Molecular Dynamics simulations 

We use the two-temperature molecular dynamics model (2T-MD) [21] to analyze ion tracks produced 

in a-Si3N4 and a-SiO2 after ion irradiation with 185 Au MeV ions. In this procedure, the energy 

deposited to the atoms via electronic excitations is obtained by solving the equations of the two-

temperature model [22] up to 30 fs. The electron energy distribution is calculated using the Waligorski 

formula for electrons emitted perpendicularly to the ion trajectory [23]. The free electron gas 

approximation was used to estimate the electronic thermal conductivity and heat capacity for 

temperatures higher than the values corresponding to the optical band gap Tg, as in Dufour et al. [24]. 

For a-SiO2 we considered the electron-phonon coupling to be g=1.25×1013 W/cm3K [25], while for a-

Si3N4 it was estimated from the expression 𝑔 = 𝑘𝑒 𝜆2⁄  for the electron-phonon mean-free path values 

λ=4.3 nm (estimated from the band gap according to Toulemonde et al. [26]) and λ=3 nm (the same 

value as a-SiO2). For the lattice physical properties of a-Si3N4, we used the lattice thermal conductivity 

Kl=6 W/m∙K [27] [28] [29] and the heat capacity from Ben-Hai et al. [30]. For a-SiO2 the lattice 

parameters are the same as in Dufour et al. [24]. The de Mota MD potential [31] was applied for our 

simulations for a-Si3N4, and the Watanabe-Samela [32] [33] many-body potential for a-SiO2. The 

Munetoh [34] potential was also used to confirm the absence of artifacts due to the potential selected 

and showed agreement with the other potentials. Nonetheless, it is well known that all three 

potentials fail to reproduce the melting point of the studied materials sufficiently close to the 

experiment [35]. We overcame this problem by scaling the deposited energy by the factor obtained 

as the ratio of the MD melting temperature and the experimental one. We simulated the development 

of the ion track for 100 ps applying the Berendsen boundary temperature control [36].  

The a-SiO2 cell was created using the Wooten-Winer-Weaire (WWW) method, and the a-Si3N4 by 

heating a random stoichiometric mixture of atoms and then cooling it slowly such that the atoms relax 

towards their local minima. For both methods we followed the procedure described in detail in [37]. 

The a-SiO2 structure produced with the WWW method shows small amount of initial defects (<1%). 
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The a-Si3N4 structure produced with the heat and cool method contained even in the initial state 

(before irradiation) rather significant amount of coordination defects, which is a known problem of 

Tersoff-type potentials [38]. The dimensions of the cells employed were 263 Å × 258 Å × 38 Å for a-

Si3N4 and 241 Å × 227 Å × 46 Å for a-SiO2. To account for statistical uncertainties, the presented 

simulations were averaged over 5 routines for each material. 

D. Infrared spectroscopy 

The structural bond configurations of a-SiN0.95:H and a-SiO1.85:H are infrared active, permitting the 

establishment of the corresponding nature and density. The FTIR measurements were conducted 

using a Bruker Optics Vertex 80V spectrometer with a resolution of 2 cm-1 within the 400 – 4000 cm-1 

range, and with an untreated Si wafer as a reference. The main absorbance signals were normalized 

to volume and deconvoluted into different Gaussian peaks, to establish their origin and characterize 

their evolution with fluence following the procedures reported by other authors [39] [40]. 

III. RESULTS 

A. SAXS deduced ion track morphology 

The scattering intensities extracted from the narrow streaks are shown in Fig. 2 (a) and (b). The best 

fit to the data was obtained with a cylindrical core-shell model with a smooth transition between core 

and shell densities. The model is sketched in Fig. 2 (c), where the scattering amplitude 𝑓(𝑞) for the 

radial density distribution is expressed as:  

𝑓(𝑞) =
2𝜋𝐿𝜌𝑠

𝑞
[(𝜌 − 1) ((𝑅𝑐 + 𝑇𝑡)

𝐽1(𝑞∙(𝑅𝑐+𝑇𝑡))

𝑞
+ 𝑅

𝐽1(𝑞∙𝑅)

𝑞
) − ∫

(𝜌−1)

𝑇𝑡
𝑟2𝐽0(𝑞 ∙ 𝑟)𝑑𝑟

𝑅𝑐+𝑇𝑡

𝑅𝑐
]. 

The length of the ion track L is equal to the layer thickness and 𝑞 is the radial component of the 

scattering vector. The factor 𝜌 corresponds to the density change ratio between the core and the shell 

regions, 𝜌𝑠 is the maximum absolute density change of the shell. 𝐽0 and 𝐽1are the Bessel function of 

zeroth and first order respectively, 𝑅𝑐 is the inner radius considered to have a constant density change 

value 𝜌𝑐, 𝑇𝑡 corresponds to the width of the transition region and St is the shell width. The total track 

radius corresponds to 𝑅 = 𝑅𝑐 + 𝑇𝑡 + 𝑆𝑡. We are considering a smooth transition between the core 

and shell region approximated by a linear function. We considered a normalized Schulz-Zimm 

distribution for the core dimensions to account for deviations from the proposed model (σc) while 

scaling the distribution of the shell region following the method from Kluth et al. [2]. 

The numerical fits with the proposed scattering amplitude shown in Fig. 2 (a) and (b), describe the 

observed measurements with high accuracy, for the data resolved in the extended q-range, in 

comparison with previous models where a sharp transition between the two regions was considered 
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[2]. Therefore, we assign the nature of the weak secondary oscillations to the scattering originated in 

the transition region. The fitted intensities are shown in Figure 3 (a) for SiN0.95:H and SiO1.85:H with 

both irradiation energies and a fluence of 1×1011 cm-2. The total track radius R for 185 MeV Au ions 

extracted from the theoretical fits amounts to 4.2 ± 0.1 nm for SiN0.95:H, and 5.5 ± 0.1 nm for SiO1.85:H; 

while for 2.2 GeV Au ions, the determined total track radius was 4.1 ± 0.1 nm and 5.3 ± 0.1 nm for 

SiN0.95:H and SiO1.85:H, respectively. The value for the total ion track radius determined for SiO1.85:H 

agrees with previous experiments carried out for thermally grown a-SiO2 [2] (R = 5.4 ± 0.1 nm). The 

slightly smaller radius for 2.2 GeV compared to 185 MeV Au ions, despite the higher electronic energy 

loss (23.9 and 20.7 keV/nm respectively for a-SiN0.95:H, while 19.5 and 16.3 keV/nm for a-SiO1.85:H), 

can be ascribed to the velocity effect [41]. Despite the higher energy deposition during the ion 

irradiation, SiN0.95:H exhibits a significantly smaller track radius than SiO1.85:H in spite of the higher 

stopping power (20.7 and 16.3 keV/nm, respectively). This behavior can be the result of the higher 

melting point (~1900°𝐶 𝑎𝑛𝑑 ~1700°𝐶, respectively) but we attribute it mainly to the lower value of 

the optical band gap, which can be as low as 3 eV for nearly stoichiometric silicon nitride [40] and 

around 5 eV for silicon dioxide [42]. This results in a higher electron-phonon mean-free path leading 

to a comparatively lower value for the electron-phonon coupling [43]. Information on the ion track 

morphology is summarized in Table 1. 

The absolute density change can be obtained from the absolute scattering intensity by 

considering lim
𝑞→0

𝐼(𝑞). The corresponding absolute SAXS intensity can be re-written as: 

𝐼(𝑞 = 0) = 𝑁𝑉2𝜌𝑠
2 {(𝜌 − 1) (

𝑅𝑐+𝑇𝑡

𝑅
) + 1 −

1

6
(𝜌 − 1) [(

𝑅𝑐+𝑇𝑡

𝑅
)

2
+ (

𝑅𝑐

𝑅
)

2
+ (

𝑅𝑐(𝑅𝑐+𝑇𝑡)

𝑅2 )]}
2

. 

 The absolute density change is calculated following the existing relation between the X-ray scattering 

length density (SLD) β and the local density variations: 𝜌 𝜌𝑏𝑢𝑙𝑘⁄ = 𝛽 𝛽𝑏𝑢𝑙𝑘⁄ . The calculated absolute 

density change for SiN0.95:H was then determined to be -8.5 ± 0.3%/2.1 ± 0.3 % for the core/shell 

configuration, while -1.2 ± 0.1%/0.25 ± 0.1 % in the case of SiO1.85:H when irradiated with 185 MeV Au 

ions. A larger density change was determined for SiN0.95:H compared to SiO1.85:H, consistent with the 

higher scattering intensity present [Fig. 2 (a) and (b)] while exhibiting a smaller ion track radius. The 

density profiles showing the absolute density change in % calculated from this equation are shown in 

Figure 2 (d). The ion track morphology corresponds to a constant under-dense region surrounded by 

a thin transition region and an over dense shell. The determination of the configuration is supported 

by the negative values fitted for  𝜌 , the minus sign implies an over/under or under/over dense 

configuration.  

B. Molecular dynamics 



Preprint to the paper published in Nanotechnology 29 (2018) 144004 (13pp) 

Figures 4 (a) and (b) show the relative radial density change distribution calculated by MD simulations 

across the ion track region 30 ps after the passage of a single Au ion with an energy of 185 MeV in 

amorphous Si3N4 and SiO2. The simulations illustrate the formation of ion tracks with an under-dense 

core surrounded by an over-dense shell in both cases.  

In the 2T-MD formalism, the radial energy distribution is determined by solving two coupled heat 

transport equations, one for the electronic subsystem and a second one for the atomic lattice. The 

coupling factor between the electronic and the lattice temperatures, known as the electron-phonon 

coupling, is commonly determined through the relation 𝑔 = 𝑘𝑒 𝜆2⁄ , here 𝑘𝑒  corresponds to the 

thermal conductivity of the electronic subsystem and 𝜆 is defined as the electron-phonon mean free 

path [26]. The first can be approximated by the free electron model while the latter is regularly left as 

a free parameter, defined by matching the region surpassing the boiling threshold with the 

experimental value of the ion track radius [11]. On the other hand, the value of 𝜆 can also be estimated 

following the empirical rule for amorphizable insulators, between the value of the optical band gap 

and the electron-phonon mean free path [26]. For a-Si3N4, the value for 𝜆  has been previously 

reported following the first approximation to be λ=3 nm [10]. For this value, a total radius of 5.7 nm 

with an underdense core of 1.9 nm was simulated. Under the second approximation, we determined 

the value for the electron mean-free-path to be 4.3 nm after resolve experimentally the optical band 

gap to be 4.9 ± 0.1 eV; the under-dense region of the ion track exhibited then a radius of 1.7 nm with 

a total radius of 4.5 nm. The experimental density change profiles were added in Figure 4 (a) showing 

better agreement with the MD simulations for the ion track radius with the value λ=4.3 nm. The latter 

suggests a lower electron-phonon coupling value for a-Si3N4, leading to the decrease of the energy 

transferred to the lattice subsystem limiting the melted volume during the ion track formation process.  

In contrast with a-Si3N4, a-SiO2 has been extensively studied under this formalism and a value of 

g=1.25×1013 W/cm3K has been determined, and adopted in our model. We explored the density 

change profile for the Watanabe-Samela many body interatomic potential, which shows good 

agreement with the experimental under-dense core (3.0 nm) and the total ion track radius (5.9 nm) 

but exhibits larger density change values (Figure 3 (b)). Such behavior can be the result of the frozen-

in shock waves obtained after 100 ps simulation, however, the material relaxation may in reality 

proceed for much longer periods. Also, the MD simulations timescale is of the order of hundreds of 

picoseconds, much smaller than the timescale of atomic diffusion. Thus, MD simulations do not 

include the diffusion of atoms from the under-dense core towards the over-dense shell and vice-versa 

and hence the simulated density variations should be consider as an estimate when compared to 

experiments. 
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From the 2T-MD modelling, we also extracted the change in the content of coordination defects for Si 

after the passage of an energetic ion for both systems. The numerical model predicts several atoms 

being displaced outwards, changing environment and ending trapped in their corresponding new 

position, because of the density waves propagating through both materials. By analyzing the Si 

environment at different radial distances, before and after the passage of the swift heavy-ion, we 

determined the production of under- and over-coordinated defects. The coordination number, as well 

as the relative increase of under- and over-coordinated defects after the irradiation with respect to 

the unirradiated structure are shown in Figure 4 (a) and (b). We prefer to show the data in terms of 

relative increase of defects instead of absolute numbers, since we aim to analyze the formation of 

new defects formed after the swift heavy-ion impact. For a-Si3N4, we observe a decrease in the 

coordination number of Si within 3 nm from the ion track axis (Figure 4 (a)); additionally, the 

distribution of under- and over-coordinated defects are in good agreement with the under-dense and 

over-dense region within the ion track. In the case of a-SiO2, the main change in the coordination 

number for Si is also encompassed within the first 3 nm of the ion track (Figure 4 (b)), and remains 

under-coordinated at distances further than the total track radius. The increase of under- and over-

coordinated defects in the over-dense shell is considerably smaller than in a-Si3N4.  

C. Fourier transform infrared spectroscopy 

Figure 6 shows the FTIR spectra for a-Si3N4 and a-SiO2 and their respective deconvolution into Gaussian 

contributions of their main absorbance peak before irradiation. Between the 400 – 4000 cm-1 range 

[Fig. 5 (a) and (b)], the characteristic absorption bands are ascribed to the respective vibrational 

modes of Si-N and Si-O and those related to the presence of residual H. For a-SiN0.95:H, the main 

infrared absorption peak is centered at 874 cm-1 and presents a shoulder around 1200 cm-1, which can 

be deconvoluted into four contributions [Fig. 5 (c)]: (i) around 816 cm-1 the Si-N stretching mode in 

the N-Si3 configuration is present, (ii) the main contribution is located at 890 cm-1 and is attributed to 

the Restsrahlen effect or TO mode: due to the forbidden photon propagation in the IR  leading to a 

high reflectivity [32,33], (iii) the 1040 cm-1 band originates from the asymmetric stretching mode of 

the Si-N bond in the H-SiN3 configuration, and (iv) near 1200 cm-1 we found the contribution of the N-

H rocking mode [14] [39] [44]. At 2180 cm-1 different Si-H vibrational modes are present [40], while 

around 3340 cm-1 the absorption peaks from N-H2 asymmetric stretching modes are observed due to 

the H content of around 10 atomic percent [12] [14] [39] [44]. 

The infrared spectrum of a-SiO1.85:H present two absorption peaks in the region 750-1400 cm-1. The 

first, centered at 815 cm-1, corresponds to the Si-O-Si bending mode [42] [45] [46]. In the region 900-

1400 cm-1 the main absorbance signal centered at 1050 cm-1 encompasses the Si-O-Si stretching and 

Si-O symmetrical modes, while exhibiting a shoulder at 1200 cm-1 due to the stretching modes 
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associated to the Si(O4) configuration [Fig. 5 (d)]. Very weak absorption peaks are located around 2300 

cm-1 and 3500 cm-1 corresponding to Si-H and SiO-H. The former confirms a very low concentration of 

H, below 3% [Fig. 5 (a)]. 

After irradiation, we observed a decrease in the absorbance of all our samples, which can be 

correlated to the radiation damage from the swift heavy ion irradiation process (Figure 6 (a) and (b)). 

Contrary to previous studies involving IR spectroscopy [47] [48], no significant shift towards higher 

wavenumbers is observed below a fluence of 5×1012 cm-2, where overlapping effects become relevant. 

A non-uniform decrease of the main absorbance band is observed as a function of the irradiation 

fluence in both materials. The combined behavior corresponding to Si-H and N-H bands shows no 

obvious trend. For example, at 620 cm-1, the Si-H wagging mode is present for both materials [40] [44] 

yet, no change in intensity is observed while increasing the irradiation fluences. Also, at 2280 and 2250 

cm-1 the Si-H bending modes of a-Si3N4 and a-SiO2 show no decrease in absorbance with increasing 

fluence; instead, a clear increase occurs above 5×1012 cm-2 probably a result of the complex behavior 

of H and its corresponding interaction with the Si dangling bonds product of the Si-N and Si-O rupture 

due to the irradiation damage [40] [46]. As the density of Si-N or Si-O bonds is related to the stretching 

modes [24] [44] [45], the decrease in the corresponding integrated absorbance signal is considered a 

direct result of radiation damage being created by the ion track formation process. For Si-N, the TO 

mode is indicative of the Si-N density [14], and we considered it to be a direct measurement of the Si-

N bond density in our study. In our analysis, we are not considering compaction or swelling effects 

due to the low fluence values used. To quantify the radiation-induced modification we describe the 

decrease in the 600-1200 cm-1 integrated absorbance signal by a Poisson distribution [48]: 

𝐴𝑆𝑖−𝑁/𝑆𝑖−𝑂(𝑅, 𝐹) = 𝐶𝑆𝑖−𝑁/𝑆𝑖 −𝑂 + (1 − 𝐶𝑆𝑖−𝑁/𝑆𝑖−𝑂) ∙ exp(−𝜋𝑅2𝐹), 

where the term 𝐴𝑆𝑖−𝑁/𝑆𝑖−𝑂, corresponds to the integrated absorption bands for both materials at a 

given fluence and, 𝐶𝑆𝑖−𝑁/𝑆𝑖−𝑂 is the relative contribution to the absorbance peak, R is the radius of 

the modified region under the presumption of exhibiting a homogeneous radiation damage density, 

and F is the irradiation fluence. Figures 6 (c) and (d) show the fitted curves of the corresponding 

absorbance values for different irradiation fluences normalized to the as-deposited integrated 

absorbance. Track radii of 1.9 ± 0.3 nm and 1.6 ± 0.2 nm were determined in the case of SiN0.95:H for 

185 MeV and 2.2 GeV Au irradiation, respectively, and values of 2.8 ± 0.4 nm and 2.2 ± 0.5 nm for 

SiO1.85:H, respectively. The results show good agreement with the ion track core dimensions deduced 

from SAXS, supporting the idea of a high damage concentration in the inner region of the ion track. 

IV. DISCUSSION 



Preprint to the paper published in Nanotechnology 29 (2018) 144004 (13pp) 

The complex interaction of an energetic ion with a solid target involves different electronic and atomic 

processes and occurs at different timescales. The duration of the ion passage is 10-18-10-17 s, followed 

by an electron cascade moving radially outwards between 10-15-10-13 s known as δ-electrons. The 

excited electrons interact with the target atoms transferring energy from the electronic to the atomic 

subsystem via the electron-phonon coupling building up a thermal spike, which commonly occurs in 

insulators between 10-13 and 10-11 s, leading to local melting and finally to the plastic flow of the molten 

region in the last stage. A key part of the ion track formation process is the thermal spike, which can 

be described by two coupled heat diffusion equations corresponding to the excited electrons and the 

atoms in the lattice. We have previously computed the time evolution of the temperature profile 

based on the i-TS model and the impact of the material properties of the target [49] by following the 

framework described in [24] with one fundamental difference: we determined experimentally the 

optical band gap to approximate the electron mean-free-path (λ) using the empirical relationship 

known between them [43] instead of numerically fitting the λ-value using experimentally determined 

ion track radii. From the numerical results we observed two fundamental differences in the thermal 

spike evolution between silicon nitride and silicon dioxide: the difference in the optical band gap is 

mainly responsible for the variation in the ion track dimensions between the two materials as it leads 

to an electron-phonon coupling value in a-Si3N4 of less than half the value of a-SiO2 and, the higher 

thermal conductivity of a-Si3N4 (nearly one order of magnitude higher than a-SiO2) reduces the 

duration of the occurrence of the molten phase in a-Si3N4 by one order of magnitude compared to a-

SiO2. 

SAXS experiments offer several advantages over other available techniques to determine with high 

accuracy the mean ion track morphology in amorphous materials. The density variation profiles 

determined by SAXS support the time evolution numerically calculated from the i-TS model and the 

impact of the bulk material properties on the target response. Previous studies on the density 

evolution within the ion track core region in insulators have shown that in the case of amorphous 

silicon dioxide, an abrupt decrease in density is achieved around 4 ps followed by a reduction in the 

density change at 150 ps without a full recovery of the initial density [8]. When the duration of the 

thermal spike is reduced, it leads to a more efficient energy dissipation and faster freeze-in of the 

density wave induced by the incident ion. As a consequence, the recovery process is much shorter as 

for a-Si3N4, explaining the high density fluctuations in the core region (of nearly 10%) while for silicon 

dioxide we observe a density change within 2%, in agreement with previous [8] and the present MD 

simulations. A similar ion track morphology with high density fluctuations in the core region has been 

observed in very thin layers of low-pressure chemical vapor deposited silicon nitride (thicknesses 

between 5-100 nm) where the variation in density within the ion track region was estimated by 
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HAADF-STEM [10]. While the results are in good agreement with our measurements, it is important 

to highlight that the track length in our experiments is far greater than that (~1 µm) and the 

measurement technique is noninvasive such that we can rule out surface effects and artifacts due to 

sample preparation and measurement. Our results clearly demonstrate: (i) the track radius in a-Si3N4 

is smaller than in a-SiO2 possibly resulting from the difference in the optical band gap; (ii) the density 

change is comparably larger in a-Si3N4 compared to a-SiO2 due to a larger thermal conductivity, which 

leads to shorter relaxation times, i.e. time for the density change to recover; (iii) the ion tracks are 

continuous with a morphology exhibiting a core-shell density change distribution where the boundary 

between the under-dense and the over-dense regions is smooth and can be estimated by a linear 

function satisfactorily rather than an abrupt transition [2], also supported by the 2T-MD density 

calculations presented. 

The 2T-MD density calculations of the radial distribution of the density variations exhibit a morphology 

of an underdense core surrounded by an over-dense shell with a smooth transition region in between. 

This occurs because of the over-densification arising from the movement of atoms radially outwards 

from the center of the ion track, increasing the number of coordination defects in the inner region of 

the ion track. This answers the open question if the under-dense core/over-dense shell track in a-SiO2 

is a result of the density anomaly above 1800K [50] [2] [8].  

For amorphous silicon nitride the morphology was ascribed to the high temperature reached in the 

inner region, surpassing the vaporization point, however no experimental support was provided for 

this argument [10]. It is in fact questionable if the equilibrium vaporization point is relevant in a 

spatially enclosed area such as the track area away from the surface where the temperature increase 

leads to high pressure around the track center. In contrast, our 2T-MD simulations suggested that the 

results above can be explained by the plastic viscous flow in the framework of the inelastic thermal 

spike model instead. In this formalism, the swift heavy ion deposits energy in the thin layer via 

electronic interactions leading to a band gap dependent radial cascade of energetic free electrons 

[43]. During this process, most of the energy is deposited within a radius of 1 nm [23]. Part of the 

energy is diffused by inelastic electron collisions (electronic thermal conductivity) and the rest is 

transferred to the lattice at later stages through electron-phonon coupling [5]. As discussed by Borodin 

et al. [9], the determination and evolution of the temperature profile in the ion track play a crucial 

role. The temperature profile described by the i-TS calculations leads to a non-uniform thermal 

expansion in the molten track restricted by a cold boundary imposed by the matrix. The generated 

internal stresses leads to redistribution of matter due to defect diffusion. Although different to 

amorphous metals, where above a critical temperature Tc, a glass transition takes place exhibiting a 

viscosity drop [9], a-SiO2 undergoes a transition towards a critical flow state and a drastic decrease in 
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viscosity [51] while a-Si3N4 experiences a transition from ceramics towards a ductile state [52] [53]. At 

this stage, the density variation, described as a damped density wave, is dependent on the relation 

between the cooling down period and the oscillation period. In our case, the viscosity cannot be 

disregarded, therefore the damping constant can exceed the oscillation frequency quenching in a 

steady-state that partially compensates the thermal strain gradients, similar to the behavior reported 

in [8]. Thus, the ion track does not fully return to the original state, leaving a trace of redistributed 

matter.  

The information extracted from our 2T-MD results regarding the change in coordination numbers for 

Si (Fig. 5) shows that the increment in coordination defects inside the ion track region is smoothly 

decreasing with increasing radial distance from the track origin for both materials. This indicates that 

the radius of the damage cross-section obtained by our FTIR analysis can be understood as an effective 

cross-section area where most of the coordination defects are located. Under this approximation, the 

radius of the effective damage cross-section is comparable with the dimension of the core region for 

both materials. However, we did not observe a direct relation between the dimension of the damage 

region define by IR analysis and the total ion track radius, different to what is often observed for the 

case of amorphizable insulators [11]. This is not surprising as in the latter case a phase change of the 

material from crystalline to amorphous often defines the track region. 

The accurate determination of the morphology of ion tracks in amorphous materials is of crucial 

relevance in order to understand the corresponding effects on the modification of the material 

properties. Previous results based on indirect techniques such as electrical conductivity or infrared 

spectroscopy have been applied to estimate the ion track dimensions in a-Si3N4 and a-SiO2, where 

concepts developed for crystalline materials were applied. In a-SiO2, the evolution of the absorbance 

band located around 1080 cm-1 has been used to study the radiation damage in the local structure 

induced by SHI [54] [55] [56] [57]. The decrease of the absorbance peak area is considered as direct 

indication of the bond-breaking after the ion passage and therefore, a direct measurement of the ion 

track dimensions. However, a study of the Si-O bond density evolution as a function of fluence has 

shown that the modification of the IR signal cannot be uniquely attributed to bond breaking but also 

to structural deformation and irradiation-induced strain, responsible for the observed red shift and 

increase in peak width [57]. The red shift of the absorbance band position is indicative of the variation 

of the Si-O-Si angle, suggesting a decrease in the bond angle as a consequence of the irradiation-

induced strain. It is noteworthy that the observed changes in bond angles are mostly reported for 

fluences above 5×1012 cm-2, where superposition becomes relevant [19] and it becomes difficult to 

correlate the overall irradiation-induced strain to the single ion track morphology. For a-Si3N4, only 

few experiments have been carried out and mainly in very thin layers where the ion track dimensions 
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are estimated solely by the decrease of the absorbance peak followed by a shoulder around 900 cm-1 

and 1200 cm-1 [48]. The decrease of the absorbance signal was fitted with a single Poisson statistical 

model to determine the ion-induced damage cross-section for fluences below 5×1013 cm-2 while at 

higher fluences a second damage cross-section was added to account for nuclear interactions, without 

considering any other aspect in the evolution of the infrared spectra. No observation regarding a red 

shift of the asymmetric Si-N stretching modes were reported. Our experiments presented in Fig 7, 

show no apparent shift in the FTIR spectra below 5×1012 cm-2, as consequence of the small extent of 

the radiation damage cross-section. This suggest that the coordination defects, following the radial 

distribution calculated by Molecular Dynamics, does not lead to an observable effect at low fluences 

as it is below the detection limit and only becomes important as a collective effect at high fluences 

where sufficient radiation-induced damage is present. 

 CONCLUSIONS 

In conclusion, SAXS measurements in combination with 2T-MD simulations and infrared spectroscopy 

provide not only an accurate picture of the morphology of ion tracks in amorphous silicon nitride and 

silicon dioxide but also explaine the nature of the underdense core surrounded by an overdense shell 

morphology with a smooth transition. The morphology is a result of the viscous flow present in the 

molten region driven by thermal stresses arising from the non-uniform temperature profile. As the 

decrease of the viscosity in the inner region is not as abrupt as in the case of amorphous metals, the 

freeze-in process is faster than the oscillation frequency or relaxation period, leading to large density 

fluctuations. Thus, the larger value of the lattice thermal conductivity of amorphous silicon nitride 

appears to have a major role in the larger values of the density variations compared to a-SiO2. The 

core-shell structure with a smooth transition is then the result of the quenched density wave.  
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TABLE I. Physical parameters measured from RBS and spectral reflectometry, irradiation parameters 
including electronic energy loss Se as calculated by SRIM2008 considering 1 µm thick layers, and fitting 
parameters from the SAXS measurements: Rc (inner core radius), Tt (width of transition region) and R 
(total ion track radius) for samples irradiated with a fluence of 1×1011 cm-2. The term σc corresponds to 
the polydispersity of the inner core radius, while the ratio ρc/ρs represents the ratio between the density 
change of the inner core region and the density change of the shell section. 
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FIG 1. Scattering patterns of tracks formed by 185 MeV 1X1011 cm-2 Au ions in a-SiN0.95 (a) and a-SiO1.85 
(b) aligned and tilted with respect to the X-ray beam by 10° (c) and (d) respectively. 

FIG 2. Numerical fit of the integrated SAXS scattering intensities for samples irradiated with 185 MeV 
(filled markers) and 2.2 GeV (open markers) Au ions with fluences of 1×1011 cm-2 for a-SiN0.95 (a) and a-
SiO1.85 (b), solid lines represent the numerical fit considering a core-shell with a linear transition model. 
(c) Diagram of the core-shell model adopted with a linear density transition between core and shell. 
(d) Corresponding normalized density change profile extracted from the numerical calculations for ion 
tracks formed in a-SiN0.95 and a-SiO1.85. 

FIG 3. Normalized radial density change calculated by molecular dynamics simulations after 30 ps. and 
their corresponding comparison with the normalized density profile determined from SAXS for: (a) a-
Si3N4 (MD) and SiN0.95 (SAXS), (b) a-SiO2 (MD) and SiO1.85 (SAXS). 

FIG 4. The left axis corresponds to the coordination number of Si (solid lines) for a-Si3N4 (a) and a-SiO2 
(b), while the right axis represents the relative increase of under- and over-coordination defects 
(dashed lines) after the passage of one 185 MeV Au ion, both as a function of the distance from the 
ion track center.  

FIG 5. FTIR absorbance spectra of unirradiated a-SiN0.95:H (a) and a-SiO1.85:H (b) and the corresponding 
deconvolution (b) and (d) in Gaussian contributions of the principal signal between 600-1200 cm-1. 

FIG 6. FTIR spectra for various fluences for the wavenumber range 2000-3600 cm-1. The absorbance 
was multiplied by 5x for clarity for SiN0.95:H (a) and SiO1.85:H (b). Absorbance of Si-N (c) and Si-O (d) 
bands as a function of fluence with the lines representing exponential fits based on the Poisson law 
described above. 
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Table 1 

 

  

 
Sample 

Physical properties Irradiation conditions Morphology 

x 
 

Density 
 (g/cm3) 

n 
@600 

nm 

Energy 
(MeV) 

Se 
(keV/nm) 

Rc  
(nm) 

Tt 

(nm) 
R 

(nm) 
σc 

(nm) 
𝜌𝑐

𝜌𝑠
⁄  

SiNx 0.95±0.03 2.72±0.02 1.95 

185 20.7 1.5±0.1 1.2±0.1 4.2±0.1 0.5±0.1 -4.02±0.02 

2300 23.9 1.3±0.1 1.1±0.1 4.1±0.1 0.4±0.1 -4.51±0.02 

SiOx 1.85±0.02 2.15±0.02 1.48 

185 16.3 1.7±0.1 1.2±0.1 5.5±0.1 0.3±0.1 -4.92±0.02 

2300 19.5 1.8±0.1 0.9±0.1 5.3±0.1 0.2±0.1 -5.02±0.02 
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