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Abstract Beavers are ecosystem engineers that modify and maintain a range of special

habitat types in boreal forests. They also produce large quantities of deadwood that provide

substrate for many lignicolous organisms such as calicioid fungi (Ascomycota). We

studied how calicioid diversity differed between boreal riparian forests with and without

beaver activity. The results show that calicioid diversity were significantly higher at beaver

sites compared to the other two forest site types studied. The large quantity and diverse

forms of deadwood produced by beavers clearly promotes calicioid diversity in the boreal

landscape. The specific lighting and humidity conditions within beaver wetlands could be

the reason why they promote the success of certain calicioid species.

Keywords Deadwood � Flood � Pin lichen � Riparian forest � Snag

Introduction

Ecosystem engineers are animals that modify the environment of other organisms while

fulfilling their own needs. The physical processes they perform often include digging,

burrowing, and damming (Gutiérrez and Jones 2006; Wright and Jones 2006). These
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actions tend to increase environmental heterogeneity and thus enhance the biota. The use

of ecosystem engineers in conservation biology and ecosystem restoration is a relatively

new approach for promoting biodiversity (Byers et al. 2006; Bartel et al. 2010).

Beavers are important ecosystem engineers in many Northern Hemisphere forest

ecosystems, and can promote biodiversity in several ways (Jones et al. 1994; Nummi and

Holopainen 2014). These effects arise mainly from damming streams and lakes, and

maintaining these flooded habitats (Baker and Hill 2003). Flooding drastically changes

abiotic and biotic conditions, and creates favorable habitats for many organisms from

invertebrates to fish and frogs to birds (Collen and Gibson 2001; Rosell et al. 2005),

whereas these changes hinder other species groups such as trees and other terrestrial

vegetation. Many ecosystem engineers have been observed to alleviate the physical stress

of certain organisms in severe environments (Crain and Bertness 2006), such as in the

harsh boreal climate, where the ecological role of beaver activity may be especially

important. The induced disturbances generate free space and new niches that are essential

for weak competitors, including many lignum-dependent insects, bryophytes, and fungi

(Rikkinen 2003a; Flecker and Taylor 2004; Caruso et al. 2008; Lõhmus and Lõhmus

2011).

Bryophytes and lichens are an important part of the biological diversity in boreal

forests, with many species having specialized to growing on deadwood (e.g. Laaka 1995;

Johansson 1997; Kuusinen and Siitonen 1998; Stokland et al. 2012). Calicioids, often also

referred to as pin lichens, are a polyphyletic but ecologically distinct group of lichens and

associated fungi (Tibell 1984, 1999; Hawksworth et al. 1995; Rikkinen 1995, 2003b; Selva

2003; Spribille and Björk 2008). They produce tiny (\4 mm), usually well-stalked

apothecia (fruit bodies). Many calicioids are lignicolous and commonly occur on snags

(standing deadwood). Many are also highly substrate-specific and require a specific type of

forest environment. They have consequently been used as biomonitors of forest ecosystem

health, particularly ecological continuity (Tibell 1992; Holien 1998; Selva 2003, 2014;

Lõhmus and Lõhmus 2011).

By flooding shoreline forests and injuring living trees beavers cause tree mortality and

other disturbances (Rosell et al. 2005; Nummi and Kuuluvainen 2013). Locally these

actions may significantly increase the amount of standing deadwood and coarse woody

debris (CWD, C10 cm in diameter) (Thompson et al. 2016), which are limiting resources

for numerous boreal forest species (Hahn and Christensen 2005; Stokland et al. 2012).

Intensive forestry in Fennoscandia has changed many forests into even-aged stands with

very little deadwood (Esseen et al. 1997; Östlund et al. 1997; Gamfeldt et al. 2013). On the

landscape-level the amount of CWD has decreased by over 90% (Siitonen 2001). The

general reduction in deadwood volumes has been accompanied by significant reductions in

the diversity of different deadwood types (Ekbom et al. 2006; Rudolphi et al. 2011). Snags,

deciduous deadwood, and well-decayed deadwood have disappeared from managed forests

(Sippola et al. 1998; Rudolphi et al. 2011), and all these changes have induced population

declines e.g. in nearly 2000 forest-dependent species in Sweden (Gärdenfors 2005).

Several studies have reported the positive effects beavers bear on various wetland-

associated species groups, including bats (Nummi et al. 2011), frogs (Vehkaoja and

Nummi 2015), and aquatic invertebrates (McDowell and Naiman 1986), and demonstrated

that sometimes entire species groups benefit from beaver activities (Nummi and Holo-

painen 2014). Beavers produce large amounts of deadwood, including several rare dead-

wood types (Thompson et al. 2016). From this background arises the interesting and

relevant question of how beaver-induced flooding affects deadwood-associated
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biodiversity, particularly calicioids that require deadwood and prefer microhabitats with

relatively high atmospheric humidity.

To our best knowledge, our study is the first to specifically investigate the diversity of

organisms on beaver-generated deadwood. We hypothesize that calicioid richness differ

between beaver-occupied riparian forests and non-beaver riparian forests. Secondly, we

assume that the species composition of calicioid communities in boreal forest landscapes

with beaver wetlands differs from those without. Our study has been conducted in con-

junction with Thompson et al. (2016), and the pin lichen samples have been gathered from

the same sites and concurrently as the deadwood surveys conducted in that study.

Materials and methods

Study sites

Our study was conducted at two study areas: Evo (61�100N, 25�050E) with a strong beaver

population and Nuuksio (60�190N, 24�280E) with no beaver habitation. Both sites are

located in southern Finland and represent relatively large and well-preserved forest land-

scapes (Evo 66.5 km2 and Nuuksio 53 km2). They include over 100 small, humic head-

water lakes with an average surface area of 0.043 km2, connected with brooks and thus

forming a complex network within the forest landscape (see Järvinen et al. 2002; Arvola

et al. 2010).

The beavers at Evo are American beavers (Castor canadensis) and most local beaver

lakes have been formed by damming existing lakes (Nummi and Hahtola 2008). Beavers

choose their home lake according to a suitable outlet and the presence of suitable forage.

The resident beavers occupy one site for an average of three years, and tend to recolonize

abandoned patches after a ca. 10-year absence (Hyvönen and Nummi 2008). The original

native Eurasian beaver (Castor fiber) was hunted to extinction in Finland in 1868, but may

have disappeared from the southern parts of the country by the end of the 1500s (Lin-

namies 1956; Lahti and Helminen 1974). Both European and American beavers were

reintroduced to Finland in the mid-1930s, before it was realized that they represent two

different species (Parker et al. 2012). They currently occur in different parts of Finland, but

neither species has yet re-/colonized the Nuuksio region.

Both study areas support boreal coniferous forests with scattered patches of deciduous

forest. Intensive forestry has influenced forest structure at both sites until the 1980s/1990s.

Forest management has for example enhanced the dominance of Scots pine (Pinus syl-

vestris). Nuuksio was designated a national park in 1994, and forest management apart

from small-scale restoration schemes has ceased since then. Evo continues to be managed,

but management practices are fairly light in areas that are not used for silvicultural

teaching. Several small conservation areas have also been established within the area.

A total of 18 riparian forest sites were analyzed in our study, 12 from Evo and six from

Nuuksio. All our study sites represent lakeside forests, and are the same as in Thompson

et al. (2016). Lakes in the Evo area have been monitored for beavers since 1976, giving a

clear indication of which local lakes are suitable for the species. In addition, we have year-

specific information on the impoundment history of each site (when the flood was created,

how long it lasted and how far it reached, and when the lakes were reoccupied). From the

aerial photographs we can identify the time period when the tree stand died/lost its bark.

Six study sites were randomly chosen from all sites with recorded beaver activity during
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2010–2014. Recently occupied habitats were targeted because we wished to study sites

where flooding effects were still clearly evident, and to compare these with sites displaying

no signs of beaver activity. The six randomly chosen non-inhabited sites from Evo were

used as patch controls. These sites were located in the same drainage basins as the beaver

sites, but had remained uninhabited either because of their unsuitable shore vegetation,

lack of an inlet or outlet suitable for damming, and/or other reasons (Vehkaoja et al. 2015).

The non-beaver sites in Nuuksio were used as landscape controls. While they were located

in a different drainage basin, they otherwise closely resembled the Evo beaver sites and

would have represented ideal habitat for beavers in both resource availability and inlet/

outlet occurrence, if only the species were present in the region. The landscape controls

were used to compare landscape-level differences of calicioid diversity. The selection

criteria for all study sites were lake size, characteristics of shoreline vegetation, and the

presence of an aboveground inlet or outlet suitable for beaver damming. After categorizing

all potential Nuuksio sites based on these criteria, six sites were randomly chosen for our

study. The forests within the three different site groups were very similar in characteristics,

displaying no significant differences in measured forest structure variables (e.g. species

composition, proportion of coniferous vs. deciduous trees, canopy height, and diameter at

breast height) (online Appendix). Forest structure variables were calculated using relas-

cope measurements (Bitterlich 1947, 1948).

Sampling

Primary edge influences produced by beavers (e.g. tree mortality) extend at least tens of

meters from the shoreline into the forest (Harper et al. 2005). We defined the width of the

riparian zone as 40 m, so as to ensure the inclusion of the entire primary edge (Komonen

et al. 2008). We established two equal-sized rectangular sampling plots at each site,

running 10 m along the shore and 40 m perpendicular from the shoreline, with a total area

of 0.04 ha per plot. At sites where flooding was still present, we waded out as far into the

flooded area as possible, to reach the original shoreline of the lake. The first sampling plot

was situated on the widest flood meadow section of the riparian zone and the other plot

directly across from it on the opposite side of the lake. No differences were observed in the

average deadwood amounts between the two sampling plots of the sites (online Appendix).

We randomly selected ten standing dead trees (with a diameter of 5 cm or more and at least

80 cm high) from each sampling plot, and recorded all calicioid species present from the

base to a height of 200 cm. If less than ten standing dead trees were present at a site, we

sampled living trees instead. The field inventories were carried out during the summer of

2014 at the same sites, sampling plots, and time as the deadwood surveys in Thompson

et al. (2016).

Species identification

All selected tree trunks were carefully searched to locate all calicioid lichens and fungi

present. Specimens were collected for later analysis whenever calicioid fungi were

encountered. The specimens were identified in the laboratory by examining their

anatomical details under dissecting and compound microscopes, and checking for species-

specific color reactions to KOH solution from squash mounts of ascomata in water (Tibell

1999; Tuovila 2013). The nomenclature follows Tibell (1999).
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Statistical analyses

Calicioid species richness was calculated for each site (n = 18) and each tree (n = 360) by

comparing the data between the site types, trees and whether the trees were standing in

water or on land. Species richness is a count data variable with a Poisson distribution (log-

link function). The study site type effect (Evo beaver, Evo non-beaver and Nuuksio) on

species richness was analyzed using generalized linear modeling with the glm function and

the tree-scale species richness and in-water/on-land species richness were analyzed using a

generalized linear mixed model (Bolker et al. 2009; Zuur et al. 2009) fit by maximum

likelihood with the glmer function in the lme4 library (Bates and Maechler 2009) in R 3.0.2

(R Development Core team 2013). The tree-scale data are zero-inflated, but to retain

simplicity we used the data as it was. However, this must be kept in mind when interpreting

the results. Site type explained the calicioid species richness observed in the 18 study sites.

Site type also explained the calicioid species richness of the 360 trees. Site type was used

as a categorical parameter. Standing in water and on land were also used as categorical

parameters. A random part (Site) was included in the tree-scale models.

Spearman’s rank correlation coefficient was used to determine whether calicioid species

richness correlated with the amount of total deadwood, snags, deciduous deadwood, and

trunk diameter of the studied trees (for deadwood measurements, see Thompson et al.

2016).

We calculated the Jaccard index of similarity to examine the similarity of pin lichen

communities between site types (Evo beaver, Evo non-beaver and Nuuksio). Jaccard’s

index of similarity is

SJ ¼ c= a þ b þ cð Þ; ð1Þ

where a is the number of unique species in habitat A, b is the number of unique species in

habitat B, and c is the number of species shared by both habitats. The Jaccard index

compares samples based on the presence or absence of species. We selected this similarity

index to emphasize species composition and because it does not dilute the importance of

rare species. We combined the two sampling plots from within each site to arrive at a

composite community for that given site. We then estimated the dissimilarity between the

sites as 1 - SJ. In a broad sense, dissimilarity can be considered turnover (Koleff et al.

2003), and it produces an estimate of the sum of the species unique to either habitat divided

by the regional pool (Gaston et al. 2001).

1� SJ ¼ a þ bð Þ= a þ b þ cð Þ ð2Þ

(Sabo and Soykan 2014).

To estimate the proportion of unique species in each site type (Evo beaver, Evo non-

beaver and Nuuksio), we used the formula created by Sabo and Soykan (2014)

a X, u ¼ a= a þ b þ cð Þ: ð3Þ

We additionally estimated the proportional increase in the regional species pool due to

X site types as

cX ¼ a= b þ cð Þ: ð4Þ
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Results

A total of 23 calicioid species representing six different genera were recorded from the

study sites (online Appendix). Twenty species were found from beaver sites, whereas 13

and six species were observed from the patch control (Evo non-beaver) and landscape

control (Nuuksio) sites, respectively. The highest calicioid diversity (13 species) was

recorded from Kärppijärvi (beaver site), while three Nuuksio sites had no calicioids

(Table 1). Approximately 26% of calicioid species were recorded from only one site and

no single species was recorded from all the study sites (online Appendix). We found

calicioids on 96 of the 360 studied trees, and therefore only 26.7% of the sampled trees had

calicioids. Only seven deadwood specimens sampled at the beaver sites were standing on

dry land, while the rest were standing in water. All the calicioid species found solely from

beaver sites grew on snags standing in water (Table 2).

The most commonly encountered calicioid species were Chaenotheca ferruginea (11

sites/35 trees), Mycocalicium subtile (9 sites/30 trees), and Calicium glaucellum (6 sites/13

trees). Beaver sites had eight calicioid species that did not occur on other site types, while

three species from the total 23 were not found from a single beaver site (online Appendix).

Calicioid species richness was significantly higher in the shoreline forests of beaver sites

than in the other two site types (Table 3). However, tree-scale species richness did not

differ between Evo beaver and Evo non-beaver sites. On the other hand, tree-scale species

richness was significantly higher at the Evo beaver sites compared to the Nuuksio sites

Table 1 Species richness of the study sites

Site Site type Number of
pin lichen
species

Number of
snags
sampled

Number of
live trees
sampled

Number of
deciduous
trees sampled

Amount of
deadwood
m3/ha (snag)

Huhmari 1 Evo beaver 8 20 [16] 0 12 [9] 35.60 (28.52)

Huhmari 2 Evo beaver 5 20 [7] 0 9 [3] 45.08 (42.37)

Kärppijärvi Evo beaver 13 20 [8] 0 11 [1] 32.90 (25.36)

Löytjärvi Evo beaver 2 20 [2] 0 0 19.29 (8.54)

Saarijärven oja Evo beaver 6 20 [7] 0 0 276.9 (125.77)

Vähä-Keltajärvi Evo beaver 10 20 [14] 0 4 [3] 20.71 (7.36)

Mustarimpi Evo non-beaver 6 8 [5] 12 [3] 2 [2] 13.65 (1.85)

Pitkänniemenjärvi Evo non-beaver 3 6 [0] 14 [6] 1 [0] 20.25 (1.56)

Rahtijärvi Evo non-beaver 2 20 [2] 0 1 [0] 13.11 (6.56)

Ruuttanajärvi Evo non-beaver 4 10 [1] 10 [2] 1 [1] 20.73 (9.10)

Valkjärvi Evo non-beaver 4 0 20 [6] 1 [0] 22.38 (0)

Ylinen Mustajärvi Evo non-beaver 5 8 [4] 12 [6] 0 10.76 (1.76)

Haukjärvi Nuuksio 4 5 [4] 15 [0] 2 [0] 14.64 (4.74)

Majalampi Nuuksio 2 3 [0] 17 [1] 3 [0] 5.32 (0.03)

Mustalampi Nuuksio 0 2 18 5 11.41 (2.30)

Myllyjärvi Nuuksio 0 5 15 10 1.58 (0.94)

Mylly-Majalampi Nuuksio 0 0 20 6 9.99 (0)

Väärä Musta Nuuksio 2 2 [1] 18 [4] 1 [0] 4.79 (0.36)

Numbers in brackets indicate the number of trees with calicioids present for each given tree type (snag, live
tree and deciduous)
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(Table 3). Additionally, the regional species pool of the beaver sites was more versatile

than that of the other two site types (Table 4). As a landscape feature it should be noted

that the two Evo site types resembled each other more than they resembled the Nuuksio

sites. All species recorded from beaver sites were collected from deadwood. Both the total

Table 2 Characteristics of substrates from which pin lichen species were found

Coniferous Deciduous Corticated Decorticated In water On land

Only from beaver sites

Calicium abietinum 1 1 1

Chaenotheca brachypoda 2 2 2

Chaenotheca chrysocephala 2 2 2

Chaenotheca gracillima 3 3 3

Chaenotheca trichialis 4 4 4

Chaenothecopsis savonica 4 2 6 6

Microcalicium disseminatum 2 2 2

Species A 1 1 1

Only from non-beaver sites

Calicium denigratum 1 1 1

Chaenothecopsis pusiola 4 4 4

Cyphelium inquinans 1 1 1

Table shows species found solely from either beaver or non-beaver sites. The deadwood characteristics are
coniferous or deciduous, corticated or decorticated, and whether the deadwood was standing in water or on
land. Species A represents potentially an undescribed species

Table 3 Differences between Evo beaver, Evo non-beaver, and Nuuksio sites in terms of pin lichen species
richness

Estimate SE z-value p-value

Site-scale richness

Evo beaver sites (intercept) 1.992 0.151 13.216 0.000

Evo non-beaver sitesa -0.606 0.254 -2.389 0.017

Nuuksio sitesa -1.705 0.384 -4.435 \0.001

Tree-scale richness

Evo beaver sites (intercept) -0.571 0.303 -1.884 0.059

Evo non-beaver sites -0.457 0.433 -1.054 0.292

Nuuksio sitesa -1.864 0.507 -3.672 \0.001

Tree-scale richness

Trees standing on land (intercept) -1.463 0.271 -5.394 0.000

Trees standing in water 0.492 0.401 1.228 0.219

Estimate represents the lake type coefficient, SE denotes standard error, z-value the test value, and p-value
the statistical significance. The value of the intercept is compared to values of the other sites/categories. If
this value is negative, it is subtracted from the intercept value and if it is positive, it is added to the intercept
value
a Statistically significant
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amount of deadwood and the number of snags (Table 1) positively correlated with cali-

cioid species richness, whereas the amount of deciduous deadwood or deadwood diameter

did not (Table 5).

While the ascomata of one mycocalicioid taxon (Chaenothecopsis sp. A) resembled

those of Chaenothecopsis nana and Mycocalicium subtile, it could also potentially rep-

resent an undescribed species. Many undescribed members of this diverse and poorly

studied group (Mycocaliciales) are estimated to exist even in the comparatively well-

known boreal forests of Northern Europe (Tuovila 2013).

Discussion

Our results show that beaver activity can enhance calicioid species richness. The high

species richness we observed around beaver ponds is obviously mainly explained by the

large amounts and diverse forms of deadwood produced by beaver activity. The species

richness of calicioid lichens and fungi positively correlated both with the overall amount of

deadwood and with the number of snags at the forest sites. Ecosystem engineers often

increase species richness especially at initially low-productivity sites (Wright and Jones

2004), and this also appears to be true in our boreal setting. Beaver activity produces a

range of different deadwood substrates (Thompson et al. 2016), which can then be colo-

nized by a wide range of calicioid species.

Wright et al. (2002) found that species richness between beaver and non-beaver sites did

not differ, but on the other hand species richness was significantly higher in beaver

Table 4 Species pool similarities between study site types

SJ 1 - SJ aA aB c

Beaver sites (A) - Evo non beaver sites(B) 0.476 0.524 0.381 0.143 0.615

Beaver sites (A) - Nuuksio sites (B) 0.300 0.700 0.700 0.000 2.333

Evo non beaver sites (A) - Nuuksio sites (B) 0.267 0.733 0.600 0.133 1.500

SJ is Jaccard’s index of similarity, which express how similar the species pools of two habitat types are to
each other. 1 - SJ is the Jaccard distance, which measures the dissimilarity in a species pool between two
habitat types. aA is the proportion of unique species in habitat A and aB is the proportion of unique species
in habitat B. c is the proportional increase in the regional species pool due to habitat A

Table 5 Correlation between species richness

rs p

Species richness

Amount of deadwooda 0.758 0.000

Amount of deciduous deadwood 0.294 0.236

Diameter of deadwood -0.373 0.127

Amount of snagsa 0.599 0.009

Association of species richness with the amount of deadwood, snags, deciduous deadwood, and diameter
(n = 18). Spearman’s rank correlation coefficient (rs) was used for all correlation analyses. p—statistical
significance
a Statistically significant

Biodivers Conserv

123

Author's personal copy



landscapes compared to non-beaver landscapes. Our study shows a similar phenomenon,

but at a smaller scale. Tree-scale species richness did not differ between Evo’s beaver and

non-beaver sites, while site-scale richness did. Moreover, Evo as a beaver landscape had

higher species richness when compared to the landscape without beavers (Nuuksio).

Therefore the beaver effect was evident in our study both at the site and landscape scales,

but not at the tree scale.

Wetlands in the boreal landscape generally experience few disturbances (Liu and

Hytteborn 1991; Kuuluvainen 1994). However, beaver activity produces a whole contin-

uum of disturbances in such areas (Nummi and Kuuluvainen 2013). Moreover, these

disturbances tend to create new relatively competitor-free living spaces for calicioids and

other small organisms that have adopted to growing on hard standing lignum. Many

calicioids are known to be substrate-specific and only occur on vertical deadwood surfaces

(Rikkinen 1995, 2003a, b; Holien 1998; Kuusinen and Siitonen 1998; Lõhmus and Lõhmus

2011), which, in turn, represent a suboptimal substrate for lignicolous bryophytes and

macrolichens. The latter rapidly colonize stumps and fallen logs and can effectively out-

compete calicioids and crustose lichens from such substrates (Prestø 1994; Caruso et al.

2008).

Many species of calicioid lichens and fungi benefit from high atmospheric humidity and

are vulnerable to abrupt changes in forest microclimate (Holien 1996; Lõhmus and Lõh-

mus 2011). The close relationship between calicioids and old-growth forest structures is

well established (Tibell 1992; Selva 1994, 2013, 2014; Holien 1996; Kuusinen and

Siitonen 1998). Old-growth forest features of boreal forests enhance calicioid diversity in

several ways. Aged forests provide a variety of suitable substrates and microenvironments

that combine favorable lighting conditions with high atmospheric humidity. Most calicioid

species suffer from major disturbances such as extensive forest fires. However, they appear

to benefit from a legacy of small- and medium-scale disturbances such as those caused by

local storms, slope and shoreline processes, insect outbreaks, and as in this case, beaver

activity. On the whole, differences in disturbance histories may often explain a significant

proportion of present-day variations in calicioid diversity (Rikkinen 1995, 2003b).

Nearly all calicioid lichens and fungi recorded from the beaver sites were found

growing on snags standing in water. Such snags are typically exposed to direct sunlight but

can also provide fungi with a more or less constant supply of water through capillary

conduction. Atmospheric humidity also remains constantly high and light reflection from

the water and/or ice and snow may also benefit the lichenized species. Many boreal

calicioid lichens are believed to be cheimophotophytic, i.e. they are often found from

microhabitats that are exposed to highest light levels during late winter and/or early spring

(Rikkinen 1995, 2003b). Thus, in addition to the wide range of suitable substrates produced

by beaver activity (cf. Rikkinen 2003a), the favorable lighting and humidity regime is also

likely to contribute to the high diversity of calicioid lichens and fungi around beaver ponds.

Old, unmanaged boreal forests typically have a high quantity and wide diversity of

different deadwood substrate types (Kuusinen and Siitonen 1998; Lassauce et al. 2011).

Such forests have unfortunately been affected and often severely degraded by human

activities, resulting not only in degraded but also highly fragmented forest landscapes.

Human activities have led to a major decline of old-growth forests in Europe and to the

subsequent regional extinctions of old-growth-associated species, including many ligni-

colous species (Berg et al. 1994; Samuelsson et al. 1994). Many calicioid lichens and fungi

are also currently more or less restricted to old-growth forests.

Beaver sites clearly represent important retention patches for a plethora of old-growth-

associated organisms at Evo, where forestry has molded the forest landscape for centuries.
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Beaver activity maintains a diverse matrix of retention patches, and provides a constant

supply of new substrates for saproxylic organisms. It also simultaneously generates new

suitable habitats for many non-saproxylic species including mayflies, fish, frogs, water-

fowl, and bats (Nummi 1989; Schlosser and Kallemeyn 2000; Nummi and Hahtola 2008;

Nummi et al. 2011; Vehkaoja and Nummi 2015). These biodiversity hot spots wander in

the landscape as beavers move in search of new resources (Vehkaoja et al. 2015).

Conclusions

Our current findings support the idea that beavers, as ecosystem engineers, can aid the

conservation of many rare and/or threatened species and species groups. Pin lichens are

considered good bio-indicators of forest ecological continuity and health (e.g. Selva 2003).

Therefore our new results show a link between the deadwood dynamics created by beavers

and pin lichen richness, and how the riparian forests of beaver sites can further the eco-

logical continuity of boreal forests at both the site and landscape scales.

Previously beavers have been shown to facilitate species groups that depend on aquatic

environments at least during some part of their life (e.g. frogs, waterfowl). Our findings

show that beavers also promote species groups that occur on land. By conserving beavers

we can concurrently conserve species with varying habitat requirements. The conservation

of ecosystem engineers has been described as an all-inclusive and cost-effective tool for

ecosystem conservation (Bangert and Slobodchikoff 2006; Byers et al. 2006; Crain and

Bertness 2006). And, as even the International Union for Conservation of Nature (IUCN) is

moving from single-species conservation towards larger scales, a clear interest can be seen

in focusing conservation aims towards whole ecosystems and landscapes exhibiting high

biodiversity (Franklin 1993; Hanski 1999; Turner et al. 2003). Beavers, as ecosystem

engineers, play a key role in maintaining ecosystem functions and retaining biodiversity,

and therefore ecosystem engineer conservation should be given more emphasis in con-

servation biology.
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Esseen PA, Ehnström B, Ericson L, Sjöberg K (1997) Boreal forests. Ecol Bull 46:16–47
Flecker AS, Taylor BW (2004) Tropical fishes as biological bulldozers: density effects on resource

heterogeneity and species diversity. Ecology 85:2267–2278
Franklin JF (1993) Preserving biodiversity: species, ecosystems, or landscapes? Ecol Appl 3:202–205
Gamfeldt L et al (2013) Higher levels of multiple ecosystem services are found in forests with more tree

species. Nat Commun 4:1340. doi:10.1038/ncomms2328
Gärdenfors U (2005) The 2005 red list of Swedish species. Swedish University of Agricultural Sciences,

Uppsala
Gaston KJ, Rodrigues ASL, van Rensburg BJ, Koleff P, Sl Chown (2001) Complementary representation

and zones of ecological transition. Ecol Lett 4:4–9
Gutiérrez JL, Jones CG (2006) Physical ecosystem engineers as agents of biogeochemical heterogeneity.

Bioscience 56:227–236
Hahn K, Christensen M (2005) Dead wood in European forest reserves—a reference for forest management.

In: Marchetti M (ed) Monitoring and indicators of forest biodiversity in Europe—from ideas to
operationality, vol 51. European Forest Institute Proceedings, Florence, pp 181–191

Hanski I (1999) Metapopulation ecology. Oxford University Press, New York
Harper KA, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D,

Jaiteh MS, Esseen P-A (2005) Edge influence on forest structure and composition in fragmented
landscapes. Conserv Biol 19(3):768–782

Hawksworth DL, Kirk PM, Sutton BC, Pegler DM (1995) Ainsworth & Bisby’s dictionary of the fungi, 8th
edn. CAB International, Wallingford

Holien H (1996) Influence of site and stand factors on the distribution of crustose lichens of the caliciales in
a suboceanic spruce forest area in central Norway. Lichenologist 28(4):315–330

Holien H (1998) Lichens in spruce forest stands of different successional stages in central Norway with
emphasis on diversity and old growth species. Nova Hedwig 66:283–324

Hyvönen T, Nummi P (2008) Habitat dynamics of beaver Castor canadensis at two spatial scales. Wildl
Biol 14:302–308

Järvinen M, Rask M, Ruuhijärvi J, Arvola L (2002) Temporal coherence in water temperature and chemistry
under the ice of boreal lakes (Finland). Water Res 36:3949–3956
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