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Abstract. In the last decade, location information became easily ob-
tainable using off-the-shelf mobile devices. This gave a momentum to
developing Location Based Services (LBSs) such as location proximity
detection, which can be used to find friends or taxis nearby. LBSs can,
however, be easily misused to track users, which draws attention to the
need of protecting privacy of these users.

In this work, we address this issue by designing, implementing, and
evaluating multiple algorithms for Privacy-Preserving Location Proxim-
ity (PPLP) that are based on different secure computation protocols.
Our PPLP protocols are well-suited for different scenarios: for saving
bandwidth, energy/computational power, or for faster runtimes. Further-
more, our algorithms have runtimes of a few milliseconds to hundreds of
milliseconds and bandwidth of hundreds of bytes to one megabyte. In ad-
dition, the computationally most expensive parts of the PPLP computa-
tion can be precomputed in our protocols, such that the input-dependent
online phase runs in just a few milliseconds.

Keywords: Location Privacy, Proximity, Secure Computation, Homo-
morphic Encryption

1 Introduction

Nowadays, many mobile devices (e.g., smartphones or tablets) can easily mea-
sure and report precise locations in real time, so that several Location-Based
Services (LBSs) over mobile networks have emerged in recent years. A basic
LBS is location proximity detection that enables a user to test whether or not
another user is nearby. This promising function has boosted the development of
social applications to help users to find their nearby friends [22], Uber cars [17],
or medical personnel in an event of emergency [33]. Although some users have
nothing against sharing their location, many privacy-aware users want to protect
it from third parties. The reason for that are the possible privacy threats caused
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by location proximity detection [31] that may lead to serious consequences, in-
cluding unintended tracking, stalking, harassment, and even kidnapping. Po-
tential adversaries range from curious social media contacts to abusive family
members and even professional criminals (e.g., burglars checking if a victim is at
home), and sometimes the level of their technological skills may be high. Hence,
it is desirable to provide location proximity detection services which preserve
the privacy of the users’ exact location. Furthermore, modern law (e.g., the EU
General Data Protection Regulation (GDPR)4) obligates companies to better
protect users’ privacy. This affects companies such as smartphone manufactur-
ers that frequently offer built-in LBSs and LBS providers that provide additional
privacy-preserving LBSs based on the result of the Privacy-Preserving Location
Proximity (PPLP) protocol, e.g., for advertising ongoing movies in nearby cin-
emas to friends in the vicinity.

1.1 Our Contributions

Our contributions are as follows:

Efficient PPLP Schemes. We design and evaluate practically efficient Eu-
clidean distance-based Privacy-Preserving Location Proximity (PPLP) schemes
(i) using a mix of Secure Two-Party Computation (STPC) protocols, (ii) us-
ing DGK encryption [7] and Bloom filters [4], and (iii) using exponential
ElGamal encryption [13] over elliptic curves (ECs) and Bloom filters. This
allows us to provide custom solutions for different PPLP applications with
different requirements with respect to communication, computation, and
runtime.

Optimizations. We present an optimization of the Boolean circuit for com-
puting Euclidean and Manhattan distance for 32-bit values that reduces the
number of AND gates by up to 22 %.

Pre-computation. We consider two scenarios where (i) a precomputation sce-
nario where two parties run a PPLP protocol on an ongoing basis, which
allows pre-computations (e.g., overnight while charging) and substantially
reduces computation and communication in the online phase, and (ii) an
ad-hoc scenario where two strangers run a PPLP protocol only once (e.g.,
for mobile health care), and pre-computations are not possible.

Extensive Performance Evaluation. We give an extensive communication
comparison of our PPLP protocols and the PPLP protocols presented in
recent related work. Furthermore, we implement our most efficient protocols
(two STPC-based and one EC-ElGamal-based algorithm) and give a run-
time comparison of them and the most efficient recently introduced PPLP
protocol of Hallgren et al. [16, 15]. Additionally, we run our protocols in a
real-world mobile Internet setting.

4 https://www.eugdpr.org/
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1.2 Related Work

So far several solutions for privacy-preserving location proximity (PPLP) schemes
have been proposed, e.g., [6, 36, 30, 31, 25, 29, 16, 37, 35]. In early literature [6],
privacy-preserving location proximity computation is realized by an imprecise
location-based range query that allows a user to approximately learn if any of
its communication partners is within a fixed distance from her current location.
To realize such queries, a user’s cloaked location (i.e., the precise location of the
user is put into a larger region) is sent to the service provider which handles
the service request and sends back a probabilistic result to the user. However,
this scheme may leak some location information since the service provider knows
each individual is within a particular region.

Since then there is a large number of works (e.g., [31, 12, 31, 35]) on using
a (semi-)trusted third party for assisting the clients in location proximity detec-
tion. [30] introduces a PPLP solution called FriendLocator in the client-server
setting. Here, each user first maps her location into a shared grid cell (granule),
and the converted location is encrypted and sent to the location server who will
blindly compute the proximity results for the user. Similar approaches relying
on geographic grid are adopted in [31, 12].

In the recent work [35], Zheng et al. proposed a novel scheme which is based
on spatial-temporal location tags that are extracted from environmental signals.
A user can learn a group of users that are within her vicinity region with the help
of a semi-trusted server. However, collaborating with a third party (whose repu-
tation is uncertain) for proximity detection may incur the risk of compromising
location privacy or many other security issues. For better privacy protection, it
would therefore be of great interest to develop PPLP schemes without requiring
the existence of a (semi-)trusted third party.

Zhong et al. [36] present three PPLP protocols (called Louis, Lester and
Pierre) [2]. Lester and Pierre do not rely on any third party. The common con-
struction idea behind those protocols is to compute the location distance using
additively homomorphic public key encryption (AHPKE) between two princi-
pals with a distance obfuscation technique. However, in all their schemes the
users learn the mutual distance that might be sensitive information in many
situations.

Narayanan et al. [25] show three PPLP protocols that reduce the proximity
detection problem to private equality testing (in the first two protocols) or pri-
vate set intersection (in the third protocol). Their protocols are run based on
the location which is defined as a set of adjacent triangles of a hexagon (that
divides a grid). The proximity detection is achieved by testing whether two users
share at least one triangle. However, as discussed in [29], the protocols of [25]
may introduce different errors in practice.

Šeděnka et al. [29] present three hybrid PPLP protocols that combine AH-
PKE schemes with secure two-party computation (STPC). Two users would first
use the AHPKE scheme (e.g., Paillier [27]) to privately compute the distance of
their locations (with different distance equations in each protocol), and then run
a STPC protocol (e.g., the private inequality test protocol from [10], or garbled
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circuits [20]) to test whether the resulting location distance is within a pre-
defined threshold. However, these PPLP protocols incur a high communication
and computation overhead. Furthermore their protocols have multiple rounds of
communication and using OT-based multiplication, which we use in our PPLP
protocol ABYAY (cf. §3.2), is substantially more efficient than AHPKE as shown
in [8].

Hallgren et al. [16] develop a PPLP protocol built on only AHPKE to test
whether two users’ locations are within a given distance threshold (without a
trusted third party). Their construction makes use of a similar distance obfus-
cation method as in [36]. The main difference is that Hallgren et al.’s scheme
hides the exact distance between two users.

In recent work, Zhu et al. [37] propose two efficient PPLP schemes for dif-
ferent geometric situations (i.e., polygon or circle). However, their schemes are
subject to linear equation solving attacks. Namely, a malicious sender who hon-
estly follows the protocol execution can learn the location coordinates (x, y) of
a receiver by solving the relevant linear equation (involving x and y) implied by
the proximity answers returned by the receiver (in one query). The major prob-
lem of these schemes is that two equations share the same randomness which can
be eliminated by a division. We show the attacks against Zhu et al.’s protocols
in the full version [19, Appendix A].

2 Preliminaries

General Notations. We let κ be the security parameter and ρ be the statis-
tical security parameter. Let [n] = {1, . . . , n} denote the set of integers between

1 and n. We write a
$← S to denote the operation which samples a uniform

random a element from set S. Let ‖ denote the concatenation operation of two
strings, |a| denote the bit-length of a string a, and #S denotes the number of
elements in set S.

Euclidean Distance. For computing the distance in our Privacy-Preserving
Location Proximity (PPLP) protocols, we use Euclidean distance, which is com-
puted as follows for two dimensions: d ←

√
(x0 − x1)2 + (y0 − y1)2. However,

since the computation of square root is costly in secure computation, we calcu-
late the squared Euclidean distance as d2 ← (x0−x1)2 +(y0−y1)2 and compare

it with the squared threshold d2
?
< T 2 to determine if two users of the PPLP

protocol are close to each other.
In the following, we review the cryptographic tools used in our paper.

2.1 Secure Two-Party Computation

We implement our PPLP protocols using the ABY framework for mixed-protocol
Secure Two-Party Computation (STPC) [8]. We make use of two sharing types
implemented in ABY: Yao and Arithmetic sharing.
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Yao Sharing. Yao sharing denotes Yao’s Garbled Circuits (GCs) protocol [32].
Using GCs, two mistrusting parties P0 and P1 can securely compute a public
function f on their respective inputs x0 and x1. For this, P0 garbles the plaintext
Boolean circuit C (a Boolean circuit which represents f) into garbled circuit C̃.

P0 sends C̃ and its garbled inputs to P1. P1 obtains its garbled inputs using
Oblivious Transfer (OT) [24, 1], and P1 evaluates C̃. Depending on which party
gets the output, either P0 sends the decryption keys for the output to P1, or P1

sends the obtained garbled outputs to P0, or both parties do this if they both
get the output. We denote shares of input bit x as ((k0, k1), kx), where P0 holds
both keys 〈x〉Y0 = (k0, k1) and P1 holds the key that corresponds to its input bit
x, i.e., 〈x〉Y1 = kx. In Yao sharing, evaluation of XOR gates is performed locally
without communication [21], whereas evaluation of AND gates requires sending
2k bits [34].

Arithmetic Sharing. Arithmetic sharing denotes a generalization of the GMW
protocol [14] for unsigned integer numbers in the ring Z2` . In Arithmetic shar-
ing, an integer x is shared between P0 and P1 as x = 〈x〉A0 + 〈x〉A1 mod 2`,
where P0 holds 〈x〉A0 and P1 holds 〈x〉A1 . The function to be evaluated is rep-
resented as arithmetic circuit, which operates on unsigned integer values and
consists of addition, subtraction, and multiplication gates modulo 2` only. Addi-
tion and subtraction gates can be evaluated locally without interaction between
the parties, whereas evaluation of multiplication gates requires interaction and
OT-based precomputations [8].

Notation. A share of value x held by Party Pi in sharing t ∈ {A, Y }, where
A denotes Arithmetic sharing and Y denotes Yao sharing, is written as 〈x〉ti. In
protocol descriptions, the party index is omitted because both parties perform
the same operations. Operation � on shares 〈x〉t and 〈y〉t in sharing t is denoted
as 〈z〉t = 〈x〉t � 〈y〉t. We write a conversion of Yao sharing 〈x〉Y to Arithmetic
sharing as 〈x〉A = Y 2A(〈x〉Y ) and a conversion of Arithmetic sharing to Yao
sharing as 〈x〉Y = A2Y (〈x〉A).

2.2 Additively Homomorphic Public-Key Encryption Scheme

An additively homomorphic public-key encryption (AHPKE) scheme is a prob-
abilistic encryption scheme which consists of the following three algorithms:

– Key Generation (KGen). Given the security parameter κ, the algorithm
returns the public and private key pair (pk, sk).

– Encryption (Enc). This algorithm takes a message m ∈M from a plaintext
spaceM and a public key pk as inputs, and outputs a ciphertext c ∈ C where
C is the ciphertext space.

– Decryption (Dec). This algorithm takes the secret key sk and a ciphertext
as inputs, and outputs the plaintext m.
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DGK [7] Lifted ElGamal [9]

KGen(κ)

1. Choose two random large primes p, q
s.t. |p| = |q| = κ/2;

2. n := p · q;
3. Choose `-bits prime u,

s.t. u|(p− 1) and u|(q − 1);
4. Choose φ-bits primes (vp, vq),

s.t. vp|(p− 1) and vq|(q − 1);
5. Choose (g, h) of orders (uvpvq, vpvq);
6. pk = (n, g, h, u), sk = (p, q, vp, vq).

1. Choose φ-bits prime p;
2. Choose points P,Q ∈ EC;

3. y
$← Z∗p, Y = yP ;

4. pk = (p, P,Q, Y ), sk = y.

Enc(pk,m) 1. r
$←RD = {0, 1}2.5φ;

2. C = gm · hr mod n.
1. For m ∈ Zp, r

$← Z∗p;
2. C = (R, V ) = (rP, rY +mQ).

Dec(sk, C)
1. Cvp mod p = gvpm mod p;
2. Calculate m by Pohlig-Hellman Alg. [28].

1. mQ = V − yR.
Full decryption is not required.

Table 1: Additively homomorphic public-key encryption (AHPKE) schemes used
in this paper.

For two ciphertext C1 = Enc(pk,m1) and C2 = Enc(pk,m2), we have the
following additively homomorphic properties:

Dec(sk, C1 · C2) = m1 +m2 and Dec(sk, C1 · C−1
2 ) = m1 −m2.

Using the above homomorphic additions, it is also possible to efficiently com-
pute multiplications and divisions by a plaintext value v ∈M using the square-
and-multiply algorithm:

Dec(sk, Cv1 ) = v ·m1 and Dec(sk, Cv
−1

1 ) = m1/v.

We require that the AHPKE schemes used in our implementations satisfy
standard semantic security. In Table 1, we briefly review two concrete instan-
tiations of AHPKE, i.e., the construction by Damg̊ard et al. (DGK) [7] and
Lifted ElGamal [9] instantiated with Elliptic Curve Cryptography (ECC). Let
EC : y2 = x3 + ax + b denote an elliptic curve over a prime field GF(p) with
curve parameters a, b ∈ GF(p). When the modulus n is clear from the context,
then the modular operation mod n may be omitted.
Bloom filter (BF) [4] is a probabilistic data structure that provides space-
efficient storage of a set and that can efficiently test whether an element is a
member of the set. The probabilistic property of BF may lead to false positive
matches, but no false negatives. It is well-known that the more elements are
added to the BF, the larger the probability of false positives gets. To reduce the
false positive rate, we follow the approach of [26], i.e., a BF with 1.44εN bits for
a set with size N has a false positive rate (FPR) of 2−ε.

We review the algorithms of a Bloom filter as follows:

– Filter initiation (BF.init). On input a set size N , this algorithm initiates
the Bloom filter of bit length 1.44εN .
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– Element insertion (BF.insert). This algorithm takes an elementm as input,
and inserts m into BF.

– Element check (BF.check). This algorithm returns 1 if an element m is in
BF, and 0 otherwise.

– Element change (BF.Pos). This algorithm computes positions to be changed
for element m in BF.

Random oracles were first introduced by Bellare and Rogaway [3] as a tool to
prove security of a cryptographic scheme. In this work, we assume that the hash
function is modeled as a random oracle. Basically, a random oracle is stateful,
i.e., for a random oracle query H(m) for some input m ∈ {0, 1}∗, it proceeds as
follows:

– With respect to the first query on m, the oracle just returns a truly random
value rm from the corresponding domain, and records the tuple (m, rm) into
its query list HList.

– If m ∈ HList, then the oracle just returns its associated random value rm
recorded in HList.

3 Efficient PPLP Schemes from ABY

We show in this section how the ABY framework for Secure Two-Party Computa-
tion (STPC) [8] can be used for Privacy-Preserving Location Proximity (PPLP).
For describing ABY-based protocols, we use the following notation described in
Table 2. We design two protocols for PPLP: (i) based on Yao sharing only and
(ii) based on a mix of Arithmetic and Yao sharing, which we describe in the
following.

Term Description

P0, P1 Parties that perform secure computation
t ∈ {A, Y } Sharing types: Arithmetic or Yao

〈x〉ti Share x in sharing t held by party Pi
〈z〉t = 〈x〉t � 〈y〉t Operation � on shares 〈x〉t and 〈y〉t
〈x〉Y = A2Y (〈x〉A) Sharing conversion from Arithmetic to Yao sharing

Table 2: Notation used for describing our ABY-based protocols.

3.1 ABYY: A PPLP Scheme from Yao Sharing

The advantage of the Yao-based PPLP protocol is that it has a small and con-
stant number of rounds, which makes it well-suited for high-latency networks.
Since we operate on unsigned integers in ABY, we must make sure that no
underflows occur for which we see two possible options for computing the Eu-
clidean distance: (i) compute the extended equation of Euclidean distance, i.e.,
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x2
0 + x2

1 − 2x0x1 + y2
0 + y2

1 − 2y0y1, or subtract the smaller coordinate from the
larger coordinate, i.e., (xmax − xmin)2 + (ymax − ymin)2. PPLP calculation us-
ing the extended equation results in 6 multiplications (which are very expensive
operations as they require a number of AND gates which is quadratic in the
bitlength of the operands), whereas determining maxima requires only a linear
overhead in the bitlength and only two expensive multiplications. This is why we
choose and further improve approach (ii) as follows. The intuitive approach for
the Yao-based Euclidean distance computation requires two MUX gates for each
dimension for selecting xmax and xmin (resp. ymax and ymin). The functionality
of multiplexer c← MUX(a, b, s) on inputs a and b, and selection bit s is defined
as c← s == 0 ? a : b. We slightly improve this circuit by observing that instead
of individually selecting the maximum and the minimum, we can also swap the
order of the two x values if x1 > x0 (and the same for the y values). Hence,
we replace the two MUX gates by one Conditional Swap gate, which using the
construction of [21] has the same costs as only one MUX gate (` AND gates,
where ` is the bitlength of the operands). The functionality of Conditional Swap
(a′, b′)←CondSwap(a, b, s) on inputs a and b, and selection bit s is defined as
a′ ← a⊕ [(a⊕ b)∧ s], b′ ← b⊕ [(a⊕ b)∧ s]. Although this technique brings only
slight performance improvement for Euclidean distance (0.4 % fewer AND gates
for 32-bit coordinates), it gains more significance when used in other privacy-
preserving distance metrics, e.g., Manhattan distance (22 % fewer AND gates
for 32-bit coordinates).

In our Yao-based PPLP scheme (denoted as ABYY) given in Figure 1, the
following gates are used: 2(GT(`)+CondSwap(`)+SUB(`)+MUL(σ))+ADD(σ),
where GT(`) is an `-bit greater-than circuit (` AND gates [20]), CondSwap(`) is
an `-bit Conditional Swap gate (` AND gates [21]), SUB(`) is an `-bit subtraction
circuit (` AND gates [20]), MUL(σ) is a σ-bit multiplication circuit (2σ2 − σ
AND gates [20]), and ADD(σ) is a σ-bit addition circuit (σ AND gates [5]).
The values ` and σ are the bitlengths of the computed values. In our setting,
` = 32 bits (the bitlength of a coordinate) and σ = 64 bits (the bitlength of the
resulting squared value).

The aforementioned gates result in the following communication require-
ments between parties: 6` + 4σ2 − σ = 16 512 AND gates = 528 384 bytes of
communication with 256 bit communication per AND gate using the half-gates
technique of [34]. This scheme requires 2 messages in the online phase.

3.2 ABYAY: A PPLP Scheme from Arithmetic and Yao Sharing

We design a protocol for PPLP using a mix of Arithmetic and Yao sharing,
which we denote as ABYAY. The use of Arithmetic sharing is advantageous for
this scheme — it (i) decreases the communication and computation overhead
for the PPLP, and (ii) can decrease protocol runtimes in low-latency networks.
However, ABYY can still be significantly faster in high-latency networks, such as
LTE in areas with very poor signal reception, which is, however, uncommon in
crowded areas where people usually meet. Our protocol requires the following
gates: 6 ·MULA(σ) + A2Y(σ) + GT(σ), where MULA(σ) is a σ-bit multiplication
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〈isNear〉Y ← ABYY(〈x0〉Y , 〈x1〉Y , 〈y0〉Y , 〈y1〉Y , 〈T 〉Y )
1 : 〈gtX〉Y ← GT(〈x1〉Y , 〈x0〉Y )

2 : swappedX← CondSwap(〈x0〉Y , 〈x1〉Y , 〈gtX〉Y )

3 : 〈xmax〉Y ← swappedX[0]

4 : 〈xmin〉Y ← swappedX[1]

5 : 〈gtY〉Y ← GT(〈y1〉Y , 〈y0〉Y )

6 : swappedY← CondSwap(〈y0〉Y , 〈y1〉Y , 〈gtY〉Y )

7 : 〈ymax〉Y ← swappedY[0]

8 : 〈ymin〉Y ← swappedY[1]

9 : 〈d〉Y ← (〈xmax〉Y − 〈xmin〉Y )2 + (〈ymax〉Y − 〈ymin〉Y )2

10 : return 〈d〉Y < 〈T 〉Y

Fig. 1: Our PPLP protocol ABYY using only Yao sharing in ABY [8].

in Arithmetic sharing, A2Y(σ) is a σ-bit Arithmetic to Yao sharing conversion,
GT(σ) is a σ-bit greater-than gate (σ AND gates [20]), and σ is the bitlength
of the squared distance. Our protocol for mixed-protocol SMPC-based PPLP is
shown in Figure 2.

In total, 6 multiplication gates in Arithmetic sharing, 1 Arithmetic to Yao
conversion gate, and σ AND gates in Yao sharing are required in this scheme.
This results in 12σ2 + 19κσ bits of communication. In our setting with the
bitlength of the squared value σ = 64, this yields 45 056 bytes of communi-
cation, which is a factor 11× improvement over ABYY. However, this scheme
requires 4 messages in the online phase (2× more than for ABYY).

〈isNear〉Y ← ABYAY(〈x0〉A, 〈x1〉A, 〈y0〉A, 〈y1〉A, 〈T 〉Y )
1 : 〈x〉A ← (〈x0〉A)2 + (〈x1〉A)2 − 〈x0〉A〈x1〉A − 〈x0〉A〈x1〉A

2 : 〈y〉A ← (〈y0〉A)2 + (〈y1〉A)2 − 〈y0〉A〈y1〉A − 〈y0〉A〈y1〉A

3 : 〈d〉Y ← A2B(〈x〉A + 〈y〉A)
4 : return 〈d〉Y < 〈T 〉Y

Fig. 2: Our PPLP protocol ABYAY using Arithmetic and Yao sharing in ABY [8].
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4 Efficient PPLP Schemes from Homomorphic
Encryption

In this section, we show how to build efficient privacy preserving location prox-
imity (PPLP) schemes which are suitable for mobile devices. In our construction,
we will extensively use a one-way hash function H : {0, 1}∗ → Zp which will be
modeled as a random oracle in the security analysis, where p is a large prime
chosen in each scheme.

Overview. We first give an overview of our constructions. Consider the general
scenario that a party A at location with coordinates (xA, yA) wants to know
whether the other party B at location (xB , yB) is close to her without learning
any information about B’s location. Intuitively, if the distance d between their
locations are smaller than a threshold τ , then we can say that they are near.
If set T = {d1, . . . , dm} denotes all possible Euclidean distances between two
adjacent parties, then the location proximity problem is to determine whether d
is in this public set or not. Since Euclidean distances are calculated as the sum

of two squares m = |T| ≈ λ · τ2
√

2 ln τ
, where λ = 0.7642 is the Landau-Ramanujan

constant, since we insert only unique elements in T that are smaller than or
equal to τ2 [11, §2.3].

However, the distance d should be also hidden from both parties to preserve
privacy. Hence, we cannot let party A directly input the distance x = d to test
the location proximity. To protect the distance from A, we make use of additively
homomorphic PKE scheme (either DGK or ElGamal shown in Table 1) to enable
both parties to jointly compute a distance d based on party A’s public key but
B blinds d with two fresh random values (i.e., (r, s)). Namely, A will decrypt

the ciphertext computed by B to get the blinded distance d̃ = s · (r + d) mod p
where p is a prime. Our distance obfuscation method is inspired by the Lester
protocol [36], but is tailored to the additively homomorphic PKE schemes we
use. To allow A to get the location proximity result, we further randomize the
set T to another set X = {x1, . . . , xm}, s.t. xi = H(s · (r + di) mod p). It is not

hard to see that if H(d̃) ∈ X , then d ∈ T. We use a Bloom filter to store the set
X to reduce the storage and communication costs.

Security Model. We consider the honest-but-curious (semi-honest) setting
where both parties honestly follow the protocol specification without deviating
from it in any way, e.g., providing malicious inputs. However, any party might
passively try to infer information about the other party’s input from the protocol
messages. This model is formulated by ideally implementing the protocol with
a Trusted Third Party (TTP) T which receives the inputs of both parties and
outputs the result of the defined function. Security requires that, in the real
implementation of the protocol (without a TTP), none of the parties learns more
information than what is returned by T in the ideal implementation. Namely, for
any semi-honest adversary that successfully attacks a real protocol, there must
exist a simulator S that successfully attacks the same protocol in the ideal world.
Let Dist be a function which takes as input the coordinates (xA, yA, xB , yB) of
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the two parties and outputs the distance d between them. In the following, we
define an ideal functionality of PPLP.

An ideal functionality FPPLP of our upcoming PPLP protocol with private
inputs xA, yA and xB , yB and a public distance set T with threshold τ ∈ N, is
defined as:

FPPLP : (xA, yA, Ti, xB , yB ,T)→ (⊥, (Dist(xA, yA, xB , yB) ∈ T?1 : 0)).

We say that a PPLP protocol Π securely realizes functionality FPPLP if:
for all Probabilistic Polynomial Time (PPT) adversaries A, there exists a PPT
simulator S, such that

REAL(Π, T ,A) ≈ IDEAL(FPPLP, T ,S),

where ≈ denotes computational indistinguishability.

4.1 ΣDGK: A PPLP Scheme from DGK

We fist introduce our PPLP protocol ΣDGK from DGK (KGenD, EncD, DecD as
shown in Table 1), which provides a fast pre-computation phase. This PPLP
scheme running between two parties A and B is shown in Figure 3. A learns the
location proximity result, i.e., whether or not the distance between A and B is
smaller than a pre-defined threshold T .

Remark 1. In our PPLP scheme, we consider some possible optimizations on
generating the blinded distance. We separate the ciphertexts C1, C2, and C3

into two steps. We observe that the exponentiations (e.g., R1 = hr̃1) related
to the random values (r̃1, r̃2, r̃3) of these ciphertexts can be precomputed. Note
that each computation of Ri = hr̃i needs a full exponentiation with 2.5φ bits
exponent (e.g., φ = 256). In contrast, the size of the location coordinate and the
blinded distance, i.e., the encrypted message, is much smaller, e.g., ρ = 16 bits.
Hence, an exponentiation related to a message (e.g., g−2xA) can be done more
efficiently online. For the online phase, we only need to compute the exponenti-
ations related to the messages, so that only three exponentiations with ‘small’
exponents (depending on the message space) are required at party A. We can
do similar pre-computations at party B. Furthermore, in order to compute the
ciphertext Cd at party B, we can use simultaneous multi-exponentiation (with
variable bases) [23, Algorithm 14.88] to speed up the computation. Then, the
computation of Cd roughly needs 1.3 times that of a regular modular exponen-
tiation.

Theorem 1. If DGK is semantically secure and the hash function H is modeled
as random oracle, then the proposed PPLP scheme ΣDGK in Fig. 3 is a secure
computation of FPPLP in the honest-but-curious model.

Proof. We present the security analysis with respect to two aspects: (i) no cor-
rupted party B can learn the input set of an honest party A; (ii) no corrupted
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Initialization
Party A

((p, q, vp, vq), (n, g, h, u)) =

(skDA, pk
D
A)

$← KGenD(κ)

Party B
Insert the sum of all suares up to

τ2 in T = {d1, . . . , dm}

−
pkPA

−−−−−−−−−−−−−→

Setup Phase

(r̃1, r̃2, r̃3)
$← RD (r, s, w)

$← Z∗u, r̃
$← RD

For i ∈ [3]: Define a space X = [x1, . . . , xm]

Ri := hr̃i BF.init(m)
For i ∈ [m] :

d̃i = s · (r + di) mod u

xi := H(d̃i||w)
BF.insert(xi)

Cr = EncD(pkDA, r · s)
R := hr̃

←−
BF

−−−−−−−−−−−−−
Store ({Ri}i∈[3],BF) Store (Cr, s, R)

Online Phase

Input: Location (xA, yA) Input: Location (xB , yB)

U := x2
A + y2A Cz = EncD(pkDA, s · (x

2
B + y2B))

C1 := gU · R1

C2 := g−2xA · R2

C3 := g−2yA · R3

−
{C1, C2, C3}
−−−−−−−−−−−−−→

Cd = (C1 · C
xB
2 · CyB

3 )s · Cz

:= (C1 · C
xB
2 · CyB

3 )s · gZR
C̃d := Cd · Cr

←−
C̃d, w

−−−−−−−−−−−−−
d̃ := DecD(skA, C̃d)

d := H(d̃||w)

Output BF.check(d)

Fig. 3: Our PPLP protocol ΣDGK using DGK encryption.

party A can learn the resulting distance. The security against corrupted party B
is guaranteed by the security of DGK, since all inputs of A are encrypted. Hence,
the simulator S can just replace the real ciphertexts with random ones. Any ad-
versary distinguishing this change can be used to break DGK.

As for a corrupted party A, we claim that A cannot obtain any useful infor-
mation from a blinded distance d̃i = s · (r+di) and the Bloom filter BF. We first
show that the inputs (i.e., blinded distances) of the random oracles are unique in
a query, so that each di is unique as well. Consider two possible blinded distances
d̃1 = s · (r+ d1) and d̃2 = s · (r+ d2) in a location proximity query. Since each di
is unique, so is d̃i. Hence, each xi is generated by the random oracle with unique
input in a query, so that it is independent of all others. In particular, there is
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no false negative. With respect to different queries, although A may obtain two
distances d̃1 = s1 · (r1 + d1) and d̃2 = s2 · (r2 + d2) such that d̃1 = d̃2, these two
distances are associated with different random numbers w1 6= w2. Hence, the
blinded distance d̃ and the random value w together would ensure the input of
the random oracle to be unique through all queries with overwhelming probabil-
ity. As a result, in the ideal world S could use randomly chosen strings to build
a set X in a location proximity query instead of the results from the random
oracle. Due to the properties of the Bloom filter, A cannot infer the position of
a di (after decryption) in X from BF, where di = H(d̃i||t) is inserted in BF.

Furthermore, since a distance d is blinded by freshly chosen random values r
and s, party A can neither infer r nor s from d̃ with an overwhelming probability.
Thus, A cannot decrypt the distance nor test ‘candidate’ d̃′ (of her own choice)
based on BF without knowing either r or s.

To summarize, the PPLP scheme is secure under the given assumptions.

4.2 ΣElG: A PPLP Protocol from ElGamal

In this section, we propose a PPLP protocol ΣElG from ElGamal (KGenE, EncE,
DecE as shown in Table 1). The construction of ΣElG is similar to ΣDGK. However,
we observe that the full decryption in the online phase is not necessary for
party A who only needs to know the location proximity result. Thus, we replace
DGK with the ECC-based lifted ElGamal scheme which results in better online
communication complexity. Moreover, when increasing the security parameter,
the performance of ECC operations is better than that of arithmetic modulo an
RSA modulus in DGK, so ΣElG is better suited for long-term security. The ΣElG

PPLP protocol is shown in Figure 4.

Theorem 2. If ElGamal is semantically secure and the hash function H is mod-
eled as random oracle, then the proposed PPLP scheme ΣElG in Fig. 4 is a secure
computation of FPPLP in the honest-but-curious model.

The proof of this theorem is analogous to that of Theorem 1 and thus omitted.

5 Comparison and Experimental Results

In this section, we compare our proposed protocols with the state-of-the-art
PPLP protocol of Hallgren et al. [16, 15]. We instantiate all primitives in our
PPLP protocols to achieve a security level of κ = 128 bits. The secret-shared
coordinates in our benchmarks are of bitlength ` = 32 bit and the secret-shared
squared results are of bitlength σ = 64 bit. However, we restrict the cleartext
domain of the coordinates to {0, . . . , 231.5−1} s.t. the squared Euclidean distance
fits into a 64-bit unsigned integer. This is sufficient for any coordinates on earth
with sub-meter accuracy.

We benchmark our prototype C++ implementations of our PPLP protocols
on two commodity servers equipped with Intel Core i7 3.5 GHz CPUs and 32
GB RAM. During our benchmarks, however, the maximum RAM requirements
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Initialization
Party A

(y, (p, P,Q, Y )) = (skEA , pk
E
A)

$←
KGenE(κ)

Party B
Insert the sum of all suares up to

τ2 in T = {d1, . . . , dm}

−
pkPA

−−−−−−−−−−−−−→

Setup Phase

(r̃1, r̃2, r̃3)
$← Z∗p (r, s, r̃, w)

$← Z∗p
Ri := r̃iP Define a space X = [x1, . . . , xm]
Fi := r̃iY BF.init(m)

For i ∈ [m] :

d̃i = s · (r + di)Q

xi := H(d̃i||w)
BF.insert(xi)

Cr = (Rr, Vr) = EncE(pkEA , r · s)
Rz := r̃P
Fz := r̃Y

←−
BF

−−−−−−−−−−−−−
Store ({Ri, Fi}i∈[3],BF) Store (Cr, s, Rz, Fz, w)

Online Phase

Input: Location (xA, yA) Input: Location (xB , yB)

u := x2
A + y2A z = x2

B + y2B
C1 := (R1, V1 = F1 + uQ) Cz := (Rz, Fz + zQ)
C2 := (R2, V2 = F2 − 2xAQ)
C3 := (R3, V3 = F3 − 2yAQ)

−
{C1, C2, C3}
−−−−−−−−−−−−−→

Cd := C1 · C
xB
2 · CyB

3 · Cz

C̃d := Cs
d · Cr

←−
C̃d, w

−−−−−−−−−−−−−
d̃ := DecE(skA, C̃d)

d := H(d̃||w)

Output BF.check(d)

Fig. 4: Our PPLP protocol ΣElG using ElGamal encryption.

were in the order of a few dozen megabytes. The two machines are connected via
Gigabit Ethernet. Each benchmarking result is averaged over 100 executions.

As shown in Tab. 3, our protocol ΣElG has the lowest online communication
and also more efficient arithmetic than ΣDGK due to the usage of ECC instead of
modular arithmetic over a 3072-bit RSA modulus. Therefore, we implemented
ΣElG, but not ΣDGK because we expect its runtimes to be worse. When utilizing
Bloom filters, we use a false positive rate of 2−ρ, where ρ is the statistical security
parameter (ρ = 40) as before.

The underlying framework for our ΣElG implementation is the mcl library5

that includes an optimized lifted ElGamal implementation. We use lifted ElGa-

5 https://github.com/herumi/mcl
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mal encryption over the elliptic curve secp256k1 with key size of 256 bits and
128-bit security. The mcl library supports point compression, and therefore each
elliptic curve point can be represented by 256 + 1 bits. An ElGamal ciphertext
consists of two elliptic curve points, i.e., 514 bits in total.

5.1 Communication

We compare the communication of our protocols in Tab. 3. As can be seen from
the table, the online communication and the setup communication of the ABY-
based protocols is constant, whereas for the public-key based protocols the setup

communication grows superlinearly with τ2
√

2 ln τ
. The online round complexity of

ABYY, ΣDGK, and ΣElG is minimal, but larger for ABYAY due to the multiplication
in Additive sharing and the conversion from Additive sharing to Yao sharing,
which need additional rounds of interaction.

Protocol ABYY (§3.1) ABYAY (§3.2) ΣDGK (§4.1) ΣElG (§4.2)

Setup Communication [Bytes] 209 555 117 155 ≈ 5.5 τ2√
2 ln τ

≈ 5.5 τ2√
2 ln τ

Online Communication [Bytes] 3 656 3 001 1 056 288

# Sequential Messages Online 2 4 2 2

Table 3: Communication in Bytes and round complexities of our PPLP protocols
for security level κ = 128 bit.

5.2 Benchmarks in a Local Network

In the following, we benchmark our protocols in a local Gigabit network with
an average latency of 0.2 ms. We depict the runtimes and total communication
of our PPLP protocols in Figure 5. We exclude the runtimes for the base-OTs
(0.48 s in the LAN setting) for ABYY and ABYAY, because they need to be run
only for the first execution of the protocol and hence are a one-time expense. In
the same manner, we exclude the one-time cost of generating the key pair and
sending the public key in ΣDGK and ΣElG (6 milliseconds in the LAN setting).

Figure 5 confirms that the complexity of ABYY and ABYAY is independent
of τ , whereas the complexity of ΣElG grows superlinearly in τ . The online run-

time also grows due to the growing size of the Bloom filter
(
≈ 5.5 τ2

√
2 ln τ

)
and

therefore the number of (non-cryptographic) hash functions that need to be com-
puted. ABYAY has the fastest online and setup runtime, and therefore, in total
performance, it is substantially better than all other protocols.

As for the communication, ΣElG is more efficient than all other protocols for
τ < 256 (the communication of ΣDGK is similar) and afterwards ABYAY is again
the most efficient. Thus,ΣElG and ABYAY are beneficial for saving communication
fees in mobile data networks which charge per KB. However, ABYAY has more
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Fig. 5: Setup (a), online (b), and total (c) runtimes in milliseconds in a local
Gigabit network with 0.2 ms average latency, and total communication (d) in
Kilobytes of our PPLP schemes with security level κ = 128 bit in comparison
with the ElGamal-based PPLP scheme of Hallgren et al. [16, 15] with security
level κ = 112 bit.
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Fig. 6: Online (a) and total (b) runtimes in milliseconds of our PPLP protocols
in the mobile Internet setting with 45 ms average network latency and 16 Mbps
bandwidth.

communication rounds (cf. Table 3), so it is unclear if it is also more efficient in
high-latency networks which we will investigate next.

5.3 Benchmarks in a Simulated Mobile Network

To show the practicality of our PPLP protocols, we simulate a mobile Internet
connection, where we restrict the network bandwidth to 16 Mbps and the network
latency to 45 ms, which are typical average parameters for mobile Internet nowa-
days6. Although the mobile Internet is still much slower than the cable Internet,
most of the developed countries already support LTE7 that provides transfer
channels with bandwidth of dozens of Mbps and a typical transfer latency of
just a few dozen milliseconds. Moreover, free Wi-Fi is becoming ubiquitous es-
pecially in big cities8, which provides almost unlimited, fast, and low-latency
access to PPLP. Thus, the prerequisites for using our algorithms greatly differ
depending on the location of the deployment. Again, in the mobile Internet set-
ting, we exclude the time needed for the base-OTs (0.75 s) and for generating
the public key pair and sending the public key (0.05 s) as these are one-time
expenses.

We depict the online and total runtimes in the mobile Internet setting in
Figure 6. The online time for ΣElG is lowest due to the smallest communication
and the minimal round complexity, followed by ABYY which also has minimal

6 https://opensignal.com/
7 https://gsacom.com/
8 https://wifispc.com/
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Protocol ABYY (§3.1) ABYAY (§3.2) ΣElG (§4.2)

Minimal online rounds XXX ××× XXX
Low communication ××× XXX XXX
Mostly symmetric crypto XXX XXX ×××
Performance independent of τ XXX XXX ×××
Resulting use cases High latency, Low latency, High latency,

high bandwidth medium bandwidth low bandwidth
network; network; network;

weak device; weak device; powerful device;
arbitrary τ arbitrary τ small τ

Table 4: Summary and use-cases of our most efficient PPLP protocols.

round complexity, but up to factor 12× more communication (cf. Tab. 3). The
online time for ABYAY is by factor 2× larger due to the larger round complexity.
For the total runtimes, we see that ΣElG is the most efficient protocol for small
thresholds of τ ≤ 25 from when on the constant runtime of ABYY with 143 ms is
most efficient. The total runtime of ABYAY is not competitive and almost twice
as high as that of ABYY due to the higher round complexity9.

5.4 Summary

We briefly summarize the properties of and use-cases for our PPLP protocols in
Table 4. Since all our PPLP protocols have different strengths, we give possible
use-cases in the following: ABYY is advantageous in high-latency networks with
high bandwidth; ABYAY is better-suited for low-latency networks with medium
bandwidth and it is especially beneficial for computationally weak devices; ΣElG

runs fast in any network types for small values of τ .

6 Conclusion

In this work, we designed, implemented, and evaluated multiple practically ef-
ficient protocols for PPLP using STPC and AHPKE. Moreover, we introduced
optimizations for our protocols: using Bloom filter [4] for our AHPKE-based
protocols and using Conditional Swap [21] for our Boolean circuit-based proto-
cols. We made extensive use of the pre-computation for computationally heavy
parts of our protocols in the cases where the same parties perform PPLP several
times, which substantially improves performance. Finally, we evaluated our most
efficient protocols in a real-world mobile Internet setting and showed practical
total runtimes of below 200 ms and online runtimes of below 50 ms. We leave
implementation of our protocols on mobile devices as future work.

9 In the near future, today’s 4G mobile networks will be replaced by 5G, which will
significantly reduce the average network latency (average expected latency in 5G
networks is around 1 ms [18]). Therefore, in low-latency 5G networks ABYAY will
potentially be most efficient (see §5.2).
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29. Jaroslav Šeděnka and Paolo Gasti. Privacy-preserving distance computation and
proximity testing on earth, done right. In ASIACCS, 2014.
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