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Abstract

Background: Despite improvement in short-term outcome of kidney transplants, the long-term survival of kidney
transplants has not changed over past decades. Kidney biopsy is the gold standard of transplant pathology but it’s
invasive. Quantification of transplant blood flow could provide a novel non-invasive method to evaluate transplant
pathology. The aim of this retrospective cross-sectional pilot study was to evaluate positron emission tomography
(PET) as a method to measure kidney transplant perfusion and find out if there is correlation between transplant
perfusion and histopathology.

Methods: Renal cortical perfusion of 19 kidney transplantation patients [average time from transplantation 33 (17–
54) months; eGFR 55 (47–69) ml/min] and 10 healthy controls were studied by [15 O]H2O PET. Perfusion and
Doppler resistance index (RI) of transplants were compared with histology of one-year protocol transplant biopsy.

Results: Renal cortical perfusion of healthy control subjects and transplant patients were 2.7 (2.4–4.0) ml min− 1 g− 1

and 2.2 (2.0–3.0) ml min− 1 g− 1, respectively (p = 0.1). Renal vascular resistance (RVR) of the patients was 47.0 (36.7–
51.4) mmHg mL− 1min− 1g− 1 and that of the healthy 32.4 (24.6–39.6) mmHg mL− 1min−1g−1 (p = 0.01). There was a
statistically significant correlation between Doppler RI and perfusion of transplants (r = − 0.51, p = 0.026). Transplant
Doppler RI of the group of mild fibrotic changes [0.73 (0.70–0.76)] and the group of no fibrotic changes [0.66 (0.61–
0.72)] differed statistically significantly (p = 0.03). No statistically significant correlation was found between cortical
perfusion and fibrosis of transplants (p = 0.56).

Conclusions: [15 O]H2O PET showed its capability as a method in measuring perfusion of kidney transplants. RVR of
transplant patients with stage 2–3 chronic kidney disease was higher than that of the healthy, although kidney
perfusion values didn’t differ between the groups. Doppler based RI correlated with perfusion and fibrosis of
transplants.

Keywords: Kidney transplant, Renal perfusion, Kidney biopsy, Positron emission tomography, Chronic kidney
disease

Introduction
Renal allograft survival has improved over past decades
mainly because of increased first-year survival [1, 2].
However, long-term transplant outcome and yearly graft
attrition rate of 2,5–5% has remained the same [1, 3, 4].
Changes in renal tissue oxygenation and microvascula-

ture are considered as major determinants of progres-
sion of chronic kidney disease (CKD), irrespective of its

cause [5, 6]. Microvascular and endothelial dysfunction
has shown to be associated to kidney transplant failure,
too [7]. In human allograft biopsy studies, especially
angioregression and loss of peritubular capillaries seem
to be associated with development of interstitial fibrosis
and graft dysfunction [8–11].
Kidney biopsy, which is the gold standard of evalu-

ation of transplant parenchyma, is invasive and prone to
sampling errors [12]. On the other hand, creatinine is a
late marker of kidney dysfunction. Assessment of trans-
plant perfusion could perhaps be used to study kidney
function.
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Quantification of renal blood flow (RBF) has been
challenging because of complicated vascular structure of
the kidneys as well as difficulties in finding quantitative
and noninvasive measuring techniques. Several semi-
quantitative methods have been used to evaluate renal
allograft perfusion like scintigraphy [13], dynamic tissue
Doppler [14] and real-time contrast-enhanced sonog-
raphy [15]. In recent years also magnetic resonance im-
aging (MRI) has provided new techniques to study
transplant function [16–18].
Doppler-echo with resistance index (RI) is based on

blood velocity and blood pressure, thus it measures per-
fusion indirectly. RI has been used to monitor allograft
function at predetermined time points after transplant-
ation as well as in acute settings. However, conflicting
data has been reported of its value in reflecting allograft
condition and histology [19–22].
[15O]H2O positron emission tomography (PET) is a

non-invasive and quantitative method to measure re-
gional one-kidney perfusion without contrast agent [23].
However, it has only been used in evaluation of perfu-
sion of native kidneys, not in transplants [24–30]. Fur-
thermore, the correlation between transplant perfusion
and histology is not well established in humans [14, 31,
32]. In this pilot study our aim was to measure cortical
perfusion of kidney transplants by means of [15O]H2O
PET and compare transplant perfusion to transplant bi-
opsy and Doppler RI.

Methods
Study subjects
Nineteen kidney transplant patients and 10 healthy con-
trols were included in the study. Patients were recruited
from the nephrology outpatient clinic of Turku Univer-
sity Central Hospital during 2017–2018. Kidney trans-
plantations of the patients were performed between 1/
2011–2/2017. There were 58 kidney transplantations
during that period. Because our aim was to study micro-
vascular function, only patients with no signs of cardio-
vascular, cerebrovascular or peripheral artery disease
were selected from those 58 patients with kidney trans-
plant. We also excluded patients with eGFR< 30ml/min.
Furthermore, patients with reduction of eGFR more than
20ml/min between the time points of kidney biopsy and
PET-imaging were excluded. None of the healthy controls
had any sign of vascular disease or used any medication.

Study design
PET-imaging and laboratory examinations were per-
formed in all study subjects. Ambulatory 24 h blood
pressure monitoring [33] was additionally assessed
within 1 month after PET imaging during normal medi-
cation in transplant patients. Measuring of RI by Dop-
pler echo [34] was a part of clinical routine follow up of

transplant patients. The time interval between Doppler
echo and PET imaging was on average 1–6months.
Protocol transplant biopsy was performed 1 year after
the transplantation.

PET-imaging
The imaging studies were carried out after a 10-h over-
night fast. Caffeine and alcohol were prohibited for 1 day
before assessment. Patients were instructed to take their
medication as usually on study day except angiotensin
converting enzyme (ACE)-inhibitors and angiotensin re-
ceptor blockers (ARB), which were discontinued 3 days
before imaging.
The subjects were positioned supine in the camera

[Discovery 690 PET/computed tomography (CT)] scan-
ner, GE Medical Systems, Waukesha, Wisconsin, USA).
Venous catheter was placed in an antecubital vein for in-
jection of [15O]H2O. A low dose helical CT scan with
automatic dose modulation (120 kVp, 10–80 mAs, noise
index 30, pitch of 1.375, rotation time of 0.5 s) was acquired
during normal breathing before the PET scan to correct for
photon scatter and attenuation. Thereafter 700MBq of
[15O]H2O was given and PET scanning was conducted.
Blood pressure and heart rate (HR) were measured by an
automatic oscillometric blood pressure machine.

Image processing and correction
The PET scan protocol consisted of 26 frames over a
total of 360 s (15 × 4, 4 × 10, 4 × 20, 3 × 60). PET data
were corrected for dead time, decay and measured pho-
ton attenuation. Scatter correction was limited. PET im-
ages were reconstructed using OSEM (VUE Point FX),
with 2 iterations and 24 subsets, FOV 35 cm and matrix
256 X 256, and filter cutoff 2.0 mm.

Calculation of renal blood flow
Regions of interest (ROI) for the whole cortical region of
the kidney were drawn on a summed reconstructed
image on an average of six coronal planes using Carimas
software [35] (Fig. 1). For the calculation of renal perfu-
sion from the PET study in the healthy, the input func-
tion was estimated using an average time activity curve
(TAC) from descending aorta cavity ROIs [26] drawn on
average 6 planes. ROI was drawn automatically around
the aorta on static images using a threshold of 80% of
the maximum activity for the aorta [26]. In transplant
patients TAC was taken from external iliac artery be-
cause aorta was not seen undivided in the scanning field
of kidney transplant (Additional files 1, 2, 3 and 4).
Renal perfusion was estimated from renal cortex and

image-derived input function by nonlinear fitting of a
one-tissue compartmental model [30] with four parame-
ters: K1, k2, Va, and delay, where K1 and k2 are the uni-
directional transport rates of [15O]H2O into and from
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tissue, Va is the vascular volume fraction, and delay par-
ameter accounts for the difference of radioactivity appear-
ance times between the blood and tissue curves. K2

multiplied by physiological partition coefficient (pphys) is
renal perfusion (ml min− 1 g− 1) [30]. Renal vascular resist-
ance (RVR) was calculated according to formula: mean ar-
terial pressure (MAP)/renal perfusion.

Renal arterial resistance index and 24 h ambulatory blood
pressure monitoring
RI was assessed by means of Doppler ultrasound [34] in
patients with kidney transplant 1–6 months before PET-
imaging. Doppler RI was calculated according to for-
mula: (peak systolic velocity-end diastolic velocity)/peak
systolic velocity.
Twenty-four hour ambulatory blood pressure [33] was

monitored during normal medication 0–4 weeks after PET-
imaging. MAP was calculated according to formula: dia-
stolic blood pressure + (systolic blood pressure-diastolic
blood pressure)/3.

Laboratory tests
P-creatinine and U-Na were taken on the day of PET
imaging. P-creatinine was used in assessment of renal
function based on eGFR equation from The Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)-
study [36]. Sodium balance, which is known to affect
renal perfusion was estimated by measurement of U-Na.

Kidney transplant biopsy
Transplant protocol biopsy was taken 1 year after kidney
transplantation. An experienced nephropathologist evaluated

the biopsies according to Banff classification [37, 38]. We
assessed modified Banff’s fibrosis score [39] which was calcu-
lated after the sum of gs + ci + ct from the biopsy report. Gs
corresponded to the degree of glomerulosclerosis (0, no
global gs; 1, up to 25% gs; 2, 26–50% gs; and 3, > 50% gs)
and ci and ct corresponded to interstitial fibrosis and tubular
atrophy as classified in Banff [37, 38]. Thereby maximum
score was 9. Due to minor sclerotic changes in kidney biop-
sies (score 0–4/9) we combined scores 0 and 1 for a group of
no fibrosis and scores 2–4 for a group of mild fibrosis.
For evaluation of inflammatory changes we assessed

an inflammation score which was calculated after the
sum of g + i + t + ti from the biopsy report according to
Banff classification [37, 38]. G corresponded to glomeru-
litis, i to inflammation in unscarred cortical parenchyma,
t to tubulitis and ti to total inflamed cortical parenchyma
including scarred sections. Hence maximum score was
12. Because of minor inflammatory changes (score 0–6/
12) in biopsies we combined scores 0 and 1 for a group
of no inflammatory changes and scores 2–6 for a group
of mild inflammatory changes.

Statistics
Comparison between healthy control subjects and kid-
ney transplant patients was performed for categorical
variables with Fisher’s exact test (gender) and one-way
analysis of variance (for variables following normal dis-
tribution) or Wilcoxon rank sum test (for non-normal
data) for continuous variables. Same analysis method
was used to compare variables with no inflammatory
changes and mild inflammatory changes. In addition,
Pearson correlation coefficients were calculated when

Fig. 1 Cortex ROI in a transaxial slice of PET image
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association were examined. All statistical tests were per-
formed as 2-tailed, with a significance level set at 0.05.
The analyses were performed using SAS System, version
9.4 for Windows (SAS Institute Inc., Cary, NC, USA).

Results
Study subjects
Causes of CKD were as follows: 6 IgA nephropathies, 4
type I diabetic nephropathies, 1 lupus nephritis, 4 auto-
somal dominant polycystic kidney diseases, 2 medullary
cystic kidney diseases, 1 FSGS and 1 kidney disease with-
out a specific diagnosis. One of the patients had a
kidney-pancreas transplantation.
All the kidney transplant patients were on antihyper-

tensive medication. Seven of 19 patients had either
ACE-inhibitor or ARB. Calcium channel blocker was
used by 16 patients, beta blocker by 15 and diuretic by
8. There were 3 patients who had a combination of 4 an-
tihypertensives and 4 patients who had a combination of
3 antihypertensives. Statins were used by 11 patients.
Four patients used a combination of tacrolimus, myco-

phenolate and corticosteroid as immunosuppressive
medication, seven patients used a combination of cyclo-
sporine, mycophenolate and corticosteroid, a combin-
ation of cyclosporine and mycophenolate was used by
four patients and a combination of tacrolimus and my-
cophenolate by four patients. Fourteen patients were in
peritoneal dialysis (PD) and 4 in hemodialysis (HD) be-
fore kidney transplantation. One patient had gradus IA
and one patient had gradus IIA rejection during early
period after transplantation.
The control subjects didn’t use any medication. The demo-

graphics of the study subjects are shown in the Table 1.
Age, BMI and gender were similar in the healthy con-

trols and kidney transplant recipients (p > 0.05 in all).
There was a statistically significant difference in eGFR
and creatinine between controls and transplant patients
(p < 0.0001 both).

Hemodynamics
Hemodynamic parameters are shown in Table 2.
Transplant patients had statistically significantly higher

systolic blood pressure and MAP than the healthy con-
trols (p = 0.0004; p = 0.0019).

Renal perfusion
Renal perfusion values are shown in Table 3. There was
no statistically significant difference in renal perfusion
values between the healthy and kidney transplant pa-
tients (p = 0.099). RVR was higher in kidney transplant
patients than in the healthy controls and it reached a
statistical significance (p = 0.01).

Renal perfusion and other parameters in kidney
transplant patients
Renal perfusion and RVR didn’t correlate with eGFR
(r = 0.26, p = 0.28; r = − 0.13, p = 0.6, respectively).
Both renal perfusion and RVR correlated with 24 h

Table 1 Baseline characteristics

Kidney transplant
patients (N = 19)

Controls
(N = 10)

Age (years) 52 (23–70) 56 (48–64)

BMI (kg/m2) 28 (24–32) 25 (23–27)

Sex F/M (N) 10/9 7/3

eGFR on the day of
PET-imaging (ml/min)

55 (47–69)* 82 (79–87)

eGFR on the day of kidney
biopsy (ml/min)

60 (57–72)

P-Crea on the day of
PET-imaging (umol/l)

115 (97–131)* 73 (72–86)

U-Na (mmol/l) 63 (42–116) 58 (47–81)

fP-chol (mmol/l) 4.8 (4.1–5.5)

fP-LDL (mmol/l) 2.7 (2.4–3.3)

fP-HDL (mmol/l) 1.5 (1.3–1.8)

fP-Tg (mmol/l) 1.3 (1.0–1.8)

B-Hb (g/l) 141 (131–148)

fP-gluk (mmol/l) 5.5 (5.1–6.2)

U-prot (g/l) 0

Hypertension (N) 19 0

DM I/II (N) 4/0 0

Smoking (N) 0 0

Time in dialysis (months) 15 (12–27) 0

Age of kidney transplant (months) 33 (17–54)

Values are median (Q1-Q3) except age, which is expressed as median (Q0-Q4)
BMI Body mass index
*p < 0.05 controls versus kidney transplant patients

Table 2 Hemodynamic parameters

Kidney transplant patients
N = 19

Controls
N = 10

Blood pressure (mmHg) on study day

Systolic 153 (137–160)* 126 (123–133)

Diastolic 80 (76–85) 75 (70–79)

MAP 105 (99–107)* 93 (88–96)

Heart rate (beats/min) 63 (50–76) 56 (50–60)

24 h ambulatory blood pressure (mmHg)

Systolic 144 (136–148)

Diastolic 81 (75–86)

MAP 102 (96–108)

Heart rate (beats/min) 68 (56–72)

Values are median (Q1-Q3)
MAP Mean arterial pressure
*P < 0.05 controls versus kidney transplant patients
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ambulatory systolic blood pressure (r = − 0.56, p =
0.016; r = 0.59, p = 0.008, respectively) and 24 h am-
bulatory pulse pressure (r = − 0.56, p = 0.016; r = 0.6,
p = 0.008, respectively). There was a tendency to a
correlation between renal perfusion and age (r = −
0.41, p = 0.08) and between RVR and transplant age
(r = 0.41, p = 0.08). There was no correlation between
renal perfusion or RVR and B-Hb, U-Na and fP-
cholesterol (p > 0.05 in all).

Renal perfusion and other parameters in the healthy
Renal perfusion and RVR correlated with eGFR in the
healthy (r = 0.78, p = 0.0072; r =− 0.65, p = 0.041, respect-
ively). There was a negative correlation between renal perfu-
sion and age (r =− 0.68, p = 0.03). There was no correlation
between renal perfusion or RVR and U-Na (p > 0.05).

Doppler RI
Doppler RI of kidney transplants correlated statistically
significantly with renal perfusion, RVR, age, pulse pres-
sure on the PET-study day and 24 h ambulatory systolic
blood pressure (r = − 0.51, p = 0.026; r = 0.59, p = 0.008;
r = 0.46, p = 0.049; r = 0.66, p = 0.0023; r = 0.58, p =
0.012, respectively). There was no correlation between
Doppler RI and eGFR or transplant age (r = − 0.005, p =
0.98; r = 0.1, p = 0.7).

Histology of kidney transplants
Transplant biopsy was available in 17 of 19 patients.
The average number of glomeruli was 7 per biopsy.

There were 2 interlobular arteries in 3 biopsies, 1 inter-
lobular artery in 5 biopsies and 0 interlobular arteries in
11 biopsies. Sclerosed glomeruli were seen in 5 biopsies.
The highest proportion of sclerosed glomeruli was 30%.
None of the biopsies included arterial hyalinosis, arterial

intimal thickening, intimal arteritis, peritubular capillari-
tis or double contour of glomerular basement mem-
brane. No mesangial matrix expansion was seen. SV40T,
CMV and C4d were all negative. More histological data
is shown in Table 4.

Renal perfusion and fibrosis in kidney biopsy
There were 10 transplant biopsies in the group of no fi-
brosis (9 biopsies with score 0 and one biopsy with score
1) and 7 biopsies with mild fibrosis (5 biopsies with score
2, one biopsy with score 3 and one biopsy with score 4).
There was no statistically significant correlation be-

tween fibrosis and transplant perfusion (p = 0.56). Dop-
pler RI was statistically significantly higher in the group
of mild fibrosis than in the group of no fibrosis (p =
0.03). Twenty-four hour ambulatory MAP tended to be
higher in the group of mild fibrosis than in the group of
no fibrosis (p = 0.072). Comparison of renal perfusion,
24 h ambulatory MAP, transplant age and eGFR between
the groups is presented in Table 5.

Renal perfusion and inflammatory changes in kidney
biopsy
There were 9 biopsies in the group of no inflammatory
changes (7 biopsies with score 0 and 2 biopsies with
score 1), and 8 biopsies in the group of mild inflammatory
changes (3 biopsies with score 2, 3 biopsies with score 5
and 2 biopsies with score 6). No statistically significant dif-
ference was found in eGFR, renal perfusion, RVR, 24 h
MAP or Doppler RI between the groups (p > 0.05 in all).
There was a statistically significant difference in age of
transplant between the groups of mild inflammatory
changes and of no inflammatory changes [57 (30–70) and
22 (17–48) months, respectively, p = 0.03]. RVR tended to
be higher in the group of mild inflammatory changes than
in the group of no changes [50 (46–61) and 39 (33–47)
mmHg mL− 1 min− 1 g− 1, respectively, p = 0.05].

Discussion
This is the first study assessing kidney transplant perfu-
sion by non-invasive and quantitative PET-technique.
Although cortical perfusion was equal between the
healthy and the patients with kidney transplant (CKD
stage 2–3), RVR of the patients was statistically signifi-
cantly higher than that of the healthy. Furthermore,

Table 3 Renal perfusion values in the healthy and in patients
with kidney transplant

Kidney transplant
patients
N = 19

Controls
N = 10

Renal perfusion (ml min−1 g−1) 2.2 (2.0–3.0) 2.7 (2.4–4.0)

RVR (mmHgmL− 1min− 1g− 1) 47.0 (36.7–51.4)* 32.4 (24.6–39.6)

Values are median (Q1-Q3)
RVR Renal vascular resistance
*P < 0.05 controls versus kidney transplant patients

Table 4 Histological findings of kidney transplant biopsies according to Banff classification

Glomerulitis (g) Interstitial inflammation(i) Tubulitis (t) Total inflammation (ti) Interstitial fibrosis (ci) Tubular atrophy (ct)

Banff score 0 13 9 15 8 12 12

1 1 6 1 7 5 5

2 1 1 1 1 0 0

3 2 1 0 1 0 0

Numbers in the table are kidneys
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Doppler RI of transplants correlated with transplant per-
fusion and fibrosis. However, somewhat surprisingly,
there was no correlation between transplant fibrosis and
perfusion.

Renal perfusion values in other studies
Renal cortical perfusion in the healthy was 2.7 (2.4–4.0) ml
min− 1 g− 1 being similar with other studies by [15O]H2O
PET, in which renal cortical perfusion in the healthy has
varied between 1.6–4.7mlmin− 1 g− 1 [24, 25, 27, 29, 30,
40]. In our transplant patients the average eGFR was 57
(13) ml/min corresponding to moderate kidney impair-
ment. In [15O]H2O PET based renal perfusion studies lower
kidney perfusion has been demonstrated in patients with
CKD than in the healthy [25, 27]. In our study, there was
no statistically significant difference between renal
cortical blood flow 2.2 (2.0–3.0) ml min− 1 g− 1 of
transplanted kidneys and that of the healthy controls.
However, CKD stage was more advanced in the pa-
tients of previous studies than in the patients of our
study probably explaining the difference.

Renal vascular resistance (RVR)
RVR describes the resistance to blood flow offered by
renal blood vessels. Although renal perfusion values be-
tween the groups were the same RVR was higher in
transplant patients than in healthy controls probably
reflecting microvascular dysfunction in the kidneys of
transplant patients. Because systolic blood pressure and
MAP were statistically significantly higher in transplant
patients than in controls kidney perfusion values didn’t
differ between the groups. In other words, increased
blood pressure maintained renal perfusion in transplant
patients.
Hetzel et al. demonstrated similarly an increased RVR

in transplant patients compared to controls by PAH
(para-aminohippurate) – technique [41]. Also in their
study renal perfusion was the same between the groups
and blood pressure was statistically significantly higher
in transplant patients than in controls.
There are several reasons for microvascular dysfunction

in our study. Especially, calcineurin inhibitors are associ-
ated with increased vascular resistance [42, 43]. Persisting
sympathetic overactivation after transplantation [44] may
cause reduced perfusion due to vasoconstriction in kidney

transplant. In our study transplant patients had clearly
higher blood pressure than the healthy perhaps reflecting
sympathetic overactivation. Finally, possible CKD - related
microcirculatory changes like vascular rarefaction and
endothelial dysfunction may explain increased vascular
resistance [45].

Transplant perfusion and histology
Our initial hypothesis was, that the decrease in perfusion
would correlate to the changes in kidney transplant
histopathology. However, we could not verify any correl-
ation between transplant perfusion or RVR and fibrosis
grade of kidney biopsy. Inflammatory changes in kidney
biopsy and RVR tended to correlate.
In some Doppler based studies an inverse correlation

between transplant perfusion and fibrosis has been
shown [31, 32]. However, Schwenger [31] and Nankivell
[32] used a non-quantitative sonographic technique. On
the other hand, Pereira et al. showed an inverse correl-
ation between transplant perfusion based on quantitative
contrast-enhanced MRI and fibrotic changes [46]. The
reason for different results might be, that in the study of
Pereira et al. there was a higher grade of fibrosis in
transplants compared to that of ours. The relatively
small number of patients and the overall low biopsy fi-
brosis and inflammation scores were likely to contribute
to the lack of correlation between transplant fibrosis and
inflammation and perfusion in our study.

Doppler RI of transplants
Transplant RI and perfusion correlated inversely in our
study. Similar correlation has been shown early after
transplantation [16]. Transplant RI also correlated with
pulse pressure of 24 h ambulatory monitoring and recipi-
ent age. In accordance with these findings, Doppler RI is
known to be influenced by several extrarenal factors like
arterial blood pressure, vascular compliance, and age in
transplant recipients [21, 47, 48]. Like transplant RI, also
transplant perfusion correlated with pulse pressure of 24 h
ambulatory monitoring, and recipient age. However, the
latter didn’t reach a statistical significance.
Fibrosis of transplants seemed to increase in parallel with

increasing Doppler RI. Other studies have demonstrated
highly variable results concerning transplant histology and
RI. Like in our study, Radermacher et al. showed a

Table 5 Renal fibrosis and perfusion parameters

eGFR (ml/min) Renal perfusion
(ml min− 1 g− 1)

Renal vascular resistance
(mmHgmL− 1min− 1g− 1)

RI 24 h (mmHg) Transplant age (months)

No fibrosis (N = 10) 55 (43–69) 2.3 (2.0–3.0) 40.9 (36.7–51.4) 0.66 (0.61–0.72) 98 (94–102) 44 (22–63)

Mild fibrosis (N = 7) 54 (47–71) 2.1 (1.8–2.4) 49.8 (44.2–58.4) 0.73 (0.70–0.76)* 106 (99–110) 27 (17–48)

Values are median (Q1-Q3)
RI Renal artery resistance index measured by Doppler ultrasound, MAP Mean arterial pressure
*P < 0.05, controls versus kidney transplant patients
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correlation between transplant fibrosis and transplant RI
[20]. Gao et al. found a correlation between transplant fi-
brosis and Doppler flow velocities (end diastolic and peak
systolic velocity) but not RI [19]. On the contrary to our
findings, Naesens et al. showed no correlation between
transplant fibrosis and RI in protocol biopsies [21].

Kidney perfusion, RVR and eGFR
There was a statistically significant correlation between
eGFR and perfusion and RVR in the healthy but not in
the patients with kidney transplant. One reason for this
discrepancy might be variable perfusion contribution
from native kidneys in transplant patients although the
effect of native kidneys on perfusion is known to de-
crease after transplantation [49].

Limitations
There are some limitations in our study. Some trans-
plant biopsies were not representative according to Banff
criteria, especially arteries were partly lacking. However,
the number of vessels should not have influenced the fi-
brotic and inflammatory scores that we were interested
in. In addition, there was quite a long period between
PET-imaging and kidney biopsy which may have influ-
enced on our results. However, the average kidney func-
tion of patients was only mildly decreased during that
time likely indicating that kidney biopsy histology would
not have changed remarkably either. Furthermore, it is
likely that cortical ROIs included an unknown admixture
of medullary flow due to partial-volume effect and
spatial resolution thus decreasing perfusion values. How-
ever, that phenomenon was similar both in the healthy
and in the patients not influencing the difference in per-
fusion values between the groups. In addition, the state
of autonomic nervous system which is known to influ-
ence renal perfusion [29] may have varied between the
study subjects. However, it is not possible to exclude all
factors affecting the autonomic nervous system. Finally,
the number of study subjects was relatively small due to
difficulties to find transplant patients without manifest
CV disease.

Conclusion
In conclusion, this pilot study showed the capability of
PET-technique to measure kidney transplant perfusion.
RVR of patients with kidney transplant was increased
compared to healthy controls reflecting microvascular
dysfunction of transplants. Further studies on larger
number of transplant patients with advanced stage of
CKD and varying degrees of fibrosis are needed to reveal
the possible correlation between transplant fibrosis and
perfusion.
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