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We argue that primordial dark matter halos could be generated during radiation domination by long-
range attractive forces stronger than gravity. In this paper, we derive the conditions under which these
structures could dominate the dark matter content of the Universe while passing microlensing constraints
and cosmic microwave background energy injection bounds. The dark matter particles would be clumped
in objects in the solar mass range with typical sizes of the order of the solar system. Consequences for direct
dark matter searches are important.
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I. INTRODUCTION

The formation of bound objects in the standard cosmo-
logical ΛCDM scenario is restricted to small redshifts. This
result is based on (i) gravity being the dominant attractive
force for the clumping of matter, and (ii) the assumption of
a nearly scale-invariant spectrum of primordial density
perturbations at all scales. These two assumptions entail
the absence of significant structure formation prior to
matter-radiation equality. None of these conditions must
be necessarily fulfilled in alternative cosmologies. Strong
deviations from scale invariance leading to the formation of
ultracompact minihalos (UCMHs) [1,2], axion miniclusters
[3,4], or primordial black holes (PBHs) [5–10] are expected
to appear, for instance, in scenarios displaying nontrivial
features along the inflationary trajectory [11–20]. Alter-
natively, compact objects could be generated by the action
of an additional attractive force stronger than gravity, able
to enhance the growth of perturbations during matter or
radiation domination. Light scalars are a natural possibility
for mediating such a force. A realization of this scenario
was recently advocated in Ref. [21] (see also Ref. [22]).
The main ingredient of the proposal was the existence of a
long-range interaction mediating between particles in a
beyond the Standard Model sector and leading eventually
to the formation of primordial black holes. In this paper, we
focus on an alternative outcome of the scenario: the
formation of primordial dark matter halos (PDMHs).
We consider a specific implementation of the above fifth-

force framework based on a light scalar field—potentially,

but not necessarily, identified with a dynamical dark energy
component—and a beyond the Standard Model fermion
playing the role of cold dark matter. The two species are
assumed to be subdominant with respect to the Standard
Model component during the relevant cosmological
epochs, i.e., before and during PDMH formation. The
fermions couple to the scalar field, which mediates an
attraction that can be stronger than gravity, as typically
happens in variable gravity scenarios [23–25]. For a
sufficiently strong coupling, the system approaches an
attractor solution during radiation domination where the
subdominant scalar and fermion components track the
background energy density, such that the cosmological
fractions of the three species remain constant [21,26–30].
This solution has a strong impact on the evolution of
fermionic density perturbations, which start to grow under
the action of the fifth force and eventually lead to the
formation of virialized halos with a mass only depending
on the strength of the fermion-scalar coupling.
The mass of the dark matter fermion decreases as the

scalar field changes with time. As an example, it may
change from 1 MeV to 0.1 keV between the onset of the
scaling regime and virialization. This corresponds to a
scalar mediated attraction 100 times stronger than gravity
and a final mass of the bound objects constrained by
observations to lie between 10−8 and 104 M⊙.
This paper is organized as follows. The main ingredients

of the model are reviewed in Sec. II where, upon discussing
the background evolution, we extend the treatment of
fluctuations in Ref. [21] to the nonlinear regime. The
conditions leading to the formation of primordial dark
matter halos are discussed in Sec. III, where we present
analytical estimates for the virialization radius, the mass-
radius relation, and the properties of the constituent

*stefano.savastano@studio.unibo.it
†l.amendola@thphys.uni-heidelberg.de
‡javier.rubio@helsinki.fi
§c.wetterich@thphys.uni-heidelberg.de

PHYSICAL REVIEW D 100, 083518 (2019)

2470-0010=2019=100(8)=083518(14) 083518-1 © 2019 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/275655827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4552-7733
https://orcid.org/0000-0002-2563-9826
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.083518&domain=pdf&date_stamp=2019-10-14
https://doi.org/10.1103/PhysRevD.100.083518
https://doi.org/10.1103/PhysRevD.100.083518
https://doi.org/10.1103/PhysRevD.100.083518
https://doi.org/10.1103/PhysRevD.100.083518


particles. The comparison of the fifth-force created struc-
tures with observations is performed in Sec. IV. Finally
Sec. V contains our conclusions.

II. FIFTH-FORCE INTERACTIONS

We consider a minimal extension of the Standard Model
with Lagrangian density

Lffiffiffiffiffiffi−gp ¼ M2
P

2
Rþ LR þ LðϕÞ þ Lðϕ;ψÞ: ð1Þ

HereMP ¼ ð8πGÞ−1=2 ¼ 2.435 × 1018 GeV is the reduced
Planck mass, R is the Ricci scalar, and LR denotes a
Standard Model radiation component that we assume to
dominate the Universe at early times. The term

LðϕÞ ¼ −
1

2
∂μϕ∂μϕ − VðϕÞ ð2Þ

stands for the Lagrangian density of a canonically norma-
lized scalar field ϕ. This beyond the Standard Model
component is taken to be interacting with a fermion field
ψ via a field-dependent mass term mψðϕÞ,

Lðϕ;ψÞ ¼ iψ̄ðγμ∇μ −mψ ðϕÞÞψ : ð3Þ

The interaction strength is given by an effective coupling

βðϕÞ≡ −MP
∂ lnmψðϕÞ

∂ϕ ; ð4Þ

measuring the change of the fermion mass with the scalar
field ϕ. For jβj ≈ 1 this coupling mediates an attraction of
gravitational strength. The typical values of jβj considered
in this paper will be, however, larger than unity, leading
therefore to a pull stronger than gravity and an additional
power injection mechanism in this sector. In particular, we
will consider a range 3≲ β ≲ 30 in order to pass several
observational constraints that will be discussed below.1

The effective coupling (3) generates an energy-momen-
tum transfer among the scalar and fermion components,
namely

∇νT
μν
ðϕÞ ¼

βðϕÞ
MP

TðψÞ∂μϕ; ð5Þ

∇νT
μν
ðψÞ ¼ −

βðϕÞ
MP

TðψÞ∂μϕ; ð6Þ

with TðψÞ ¼ Tμν
ðψÞgμν the trace of the ψ-field energy momen-

tum tensor. This type of scenario has been extensively

studied in the literature [21,22,26,27,30–55]. In distinction
to growing neutrino quintessence models [37], the mass of
the dark matter fermion in the scenario at hand is in the
MeV range and is therefore much larger than neutrino
masses. This leads to distinct characteristic length scales
and time distances. Different choices of βðϕÞ correspond to
different realizations. A simple possibility is to consider an
effective coupling βðϕÞ ¼ −gMP=ðm0 þ gϕÞ following
from a renormalizable Yukawa interaction mψðϕÞψ̄ψ ¼
m0ψ̄ψ þ gϕψ̄ψ , with m0 a mass parameter and g a
dimensionless coupling. A value of jβj substantially larger
than unity follows even for small g if the fermionic mass
term m0 is sufficiently below MP. Alternatively, one could
consider a setup involving a constant β coupling. This
describes dilatoniclike interactions

mψðϕÞψ̄ψ ¼ m0 exp ð−βϕ=MPÞψ̄ψ ð7Þ
as those naturally appearing in scalar-tensor theories when
written in the Einstein frame [23–25]. For the sake of
simplicity, we will restrict ourselves to the latest possibility,
understanding it as an approximation of the real dynamics
for the relevant temporal scales and in the absence of
significant backreaction effects.

A. Background evolution

Assuming a flat Friedmann-Lemaître-Robertson-Walker
universe and a perfect fluid description, the background
evolution equations following from the expressions (5)
and (6) can be written as

_ρϕ þ 3Hðρϕ þ pϕÞ ¼
β

MP
ðρψ − 3pψ Þ _ϕ; ð8Þ

_ρψ þ 3Hðρψ þ pψÞ ¼ −
β

MP
ðρψ − 3pψ Þ _ϕ; ð9Þ

with H the Hubble rate and ρi and pi the average energy
density and pressure of the i ¼ ϕ;ψ components. We
consider a scenario where the radiation fluid is the dominant
energy component during the period of formation of dark
matter halos. Both the heavy fermion and the scalar field
constitute therefore a subleading fraction of the total energy
density of the Universe and will adapt their evolution to the
dominant radiation counterpart. The interaction term at the
right-hand side of Eqs. (8) and (9) is active whenever the ψ
particles are nonrelativistic (i.e., for TðψÞ ≠ 0 or ρψ ≠ 3pψ ).
In this limit and for β ≫ 1, the model admits an attractor
solution where the scalar and fermion energy densities track
the background radiation component (see Fig. 1). During this
regime we have [21,26–30]

ϕ0 ¼ MP=β; ð10Þ
with the prime denoting derivatives with respect to the
number of e-folds dN ≡Hdt and

1For concreteness, we assume β > 0, although the scenario
remains qualitatively valid for negative and large values of β
as well.
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Ωψ ¼ 1

3β2
; Ωϕ ¼ 1

6β2
; ΩR ¼ 1 −

1

2β2
: ð11Þ

Here Ωi ≡ ρi=ð3M2
PH

2Þ stands for the energy density
parameters for the i ¼ R;ϕ;ψ components and ρi ∼ a−4.
During the scaling solution the fermion mass decreases
according to

m0
ψ ¼ dmψ

dϕ
ϕ0 ¼ −β

mψ

MP
ϕ0 ¼ −mψ ⇒ mψ ∼ a−1 ð12Þ

and independently of β.
Depending on the initial conditions following the end of

inflation, the fixed point (11) could be reached immediately
after this era or at later times. We denote by ain the scale
factor at the time the scaling solution is reached. We will
discuss how “initial values” of the density contrast at ain
will grow and form extended objects. The time at which the
scaling solution is reached will be an important parameter
for setting the characteristic scales of our scenario. As
shown in detail in Sec. III, if the PDMHs constitute the
entire dark matter component, a typical redshift at which
the scaling solution has to set in for a fiducial coupling
β ¼ 4 is

zin ≈ 3 × 108: ð13Þ

Assuming thermal equilibrium, the masses of the ψ-
particles at this time are of order mψ ðzinÞ ∼O ðMeVÞ or
larger. If this hypothesis is dropped, the estimate of the
mass scale becomes more complicated. Given a universal
reheating production at the end of inflation, one would
expect an initial momentum distribution in the ψ -sector
similar to that of photons. Then, even if not in thermal
contact, the two species could have maintained a similar

temperature, except for the subsequent increase of the
photon entropy due to pair annihilation. In this case, the
mass of the ψ-particles at zin must exceed the photon
temperature since the ψ-particles need to be nonrelativistic
for the existence of the scaling solution. Our estimate for
the lower bound on the mass remains valid as an order of
magnitude.
Once the scaling solution is reached, it can extend up to

matter-radiation equality. The main restriction to this
possibility is associated with big bang nucleosynthesis.
In particular, the presence of the additional relativistic
components modifies the expansion rate of the Universe as
compared to the standard hot big bang theory and with it
the relative abundance of light elements. The tight con-
straints on these quantities translate into an upper bound on
the density parameters, ΩϕjBBN þΩψ jBBN < 0.045 [56],
roughly corresponding to a mild restriction β ≳ 3. This
constraint can be evaded if the ψ-particles become non-
relativistic only after big bang nucleosynthesis2 since the
corresponding density parameter would be then the very
small one inherited from the primordial abundance and not
the one dictated by the attractor solution (11). For sim-
plicity, however, we will conservatively assume the above
restriction on β.

B. Growth of fluctuations

In a standard gravitational context, the density contrast
evolution can be inferred from the Navier-Stokes equations.
For coupled cosmologies, these equations extend to [31]

δ0ψ ¼ −∇ið1þ δψ Þviψ ; ð14Þ

vi
0
ψ ¼ −

�
1þH0

H
−

ffiffiffi
6

p
β

�
viψþ

− vjψ∇jviψ −H−2∇iΦ̂; ð15Þ

ΔΦ̂ ¼ 3

2
H2ðYδψΩψ þ ΩRδRÞ; ð16Þ

where we have defined the density contrasts δR;ψ for
radiation and ψ , respectively, and a velocity field

viψ ¼ xi
0

2aH
: ð17Þ

Here, xi are the co-moving coordinates, H≡ aH is the
conformal Hubble rate, and the bar refers to the background
value. ThemodifiedNewtonian potential Φ̂≡Φ −

ffiffiffi
6

p
δϕ is

sourced by the ψ-field fluctuations via themodified Poisson
equation (16), with

FIG. 1. Evolution of the different density fractions for β ¼ 10
and an exponential potential for the scalar field ϕ. The coupling β
is switched off at virialization (cf. Sec. III), here taken to occur at
a redshift z ¼ 106. After a transition phase, the energy densities
of ϕ and ψ components set on the scaling solution during
the radiation-dominated epoch. After the scaling regime the
evolution is very close to standard ΛCDM.

2This could happen for instance, if they were in thermal
equilibrium and had a mass much smaller than 0.1 MeV.
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Y ≡ 1þ 2β2 ð18Þ

an effective coupling encoding the combined strength of
the fifth force and gravity. This force equals the gravita-
tional pull for β ¼ 1=

ffiffiffi
2

p
and becomes significantly

stronger than it for β ≫ 1=
ffiffiffi
2

p
. In Eqs. (14)–(16) we have

neglected the small contribution of ϕ perturbations since
they do not experience a significant growth due to their unit
speed of sound.
In the absence of shear or rotational components in the

initial velocity field, the set of Eqs. (14)–(16) can be
compacted in a single differential equation describing
the nonlinear growth of matter density fluctuations,

δ00ψ þ
�
1þH0

H
−
βϕ0

Mp

�
δ0ψ

−
3

2
ðYδψΩψ þΩRδRÞð1þ δψ Þ −

4

3

δ02ψ
ð1þ δψÞ

¼ 0: ð19Þ

During the scaling regime (11) the background evolution of
the Universe is essentially dominated by the radiation
component and we can safely approximate H0 ≃ −H.3

Taking this into account together with Eqs. (10) and
(11), Eq. (19), for large jβj, becomes independent of β,

δ00ψ − δ0ψ − ð1þ δψÞδψ −
4

3

δ02ψ
ð1þ δψÞ

¼ 0; ð20Þ

where we have neglected a small ΩRδR contribution. In
Fig. 2 we show the numerical solution of Eq. (20) for δψ as
a function of the number of e-folds N ¼ logða=ainÞ.
At early times, the perturbations in the ψ fluid are small

and the linearized version of Eq. (20) admits a solution4

[21,27–30]

δψ ¼ δψ ;in

�
a
ain

�
p
; p ¼ 1

2
ð1þ

ffiffiffi
5

p
Þ ≈ 1.62; ð21Þ

with ain ≡ aðtinÞ the scale factor at the onset of the scaling
regime. The growth of initial inhomogeneities following
from the sizable exponent p brings them rapidly into a
nonlinear regime. The precise onset of nonlinearities
depends on the initial value δψ ;in, which should be a priori
determined by requiring compatibility with inflation. Some

assumption about the full initial power spectrum δψ ;in is
needed. In particular, the temperature fluctuations in the
cosmic microwave background (CMB) allow one to recon-
struct the primordial power spectrum only at scales below
the present horizon size and above a fraction of the sound
horizon at recombination, namely 10 − 104 Mpc. Although
this limited range can be extended down to ∼10−4 Mpc by
other measurements of the Lyman-α forest, weak gravita-
tional lensing probes, and spectral distortions [57–59], the
amplitude and scale dependence of the primordial power
spectrum is essentially unconstrained at the very small
scales 10−13 Mpc we will be interested in. Contrary to
standard PBHs and UCMHs formation scenarios, which
rely on the assumption of a boosted primordial power
spectrum at the scales of interest [1,2,5,9], we will adopt
here a rather conservative point of view and assume the
spectrum of ψ perturbations to be commensurable with that
of curvature perturbations at CMB scales. In the following
sections, we explore the predictions of our model for
different initial conditions, focusing for concreteness on
a confidence interval 10−8 ≤ δψ ;in ≤ 10−4 at solar mass
scales k⊙ ≃ 1013 Mpc−1 (cf. Sec. III B).

III. PRIMORDIAL DARK MATTER HALOS

The evolution presented in the previous section should
be understood just as an approximation of the real dynam-
ics. On the one hand, the initial velocity perturbations in the
ψ fluid are expected to modify the simplistic spherical
collapse and to favor the formation of virialized dark matter
halos. On the other hand, the raising of the density within
the collapsing regions is expected to trigger the screening of
the fifth force. We will assume this to happen at some time
between the onset of the scaling regime and virialization, so
the created PDMHs stop growing and behave just as an
ordinary dark matter fluid from thereon. There may be,
however, some residual interaction of the dark sector with

FIG. 2. Comparison between the growth of overdensities
following from Eq. (20) and its linearized counterpart. The
dashed-horizontal line δ ¼ 1 is added for reference. Here ain
denotes the onset of the scaling solution.

3Accounting for the variation in the number of relativistic
degrees of freedom (d.o.f.) gðaÞ as the Universe expands has a
minimal impact in this result. Indeed, denoting γðaÞ ¼
ðg=geqÞ−1=3 with geq ≈ 3.36, one has H0 ≃ −Hð1 − γ0=ð2γÞÞ.
In the temperature range T ¼ 100 GeV to T ¼ 0.1 MeV, the
correction is smaller than 0.12 and can be safely neglected.

4As a funny coincidence, we note that p equals the golden ratio
φ. The general solution for any β is p ¼ ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2β−2

p
Þ=2. We

disregard the decaying mode.
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the scalar field, resulting in an effective coupling strength
βeff much smaller than β [44–46].
As we will discuss in detail in Sec. III C, we assume here

that PDMHs are effectively screened after virialization
(a > aV) and behave as nonrelativistic matter from there
on, i.e., ρPDMH ∼ a−3. Furthermore, we assume that the
system evolution at virialization can be still approximated
by the scaling solution (11). During radiation domination,
the PDMHs density parameterΩPDMHðaÞwill consequently
increase with time up to attaining a value

ΩPDMHðaeqÞ ¼ ΩPDMHðaVÞ
aeq
aV

¼ 1

3β2
aeq
aV

ð22Þ

at matter-radiation equality. Here, aeq is the scale factor at
equality and aV denotes its value at virialization. In order to
avoid the overclosure of the Universe, we will require
ΩPDMHðaeqÞ ≤ 1=2. While an additional dark matter com-
ponent is generically needed if this inequality is not
saturated, the created PDMHs can constitute the whole
dark matter component in the Universe in the limiting case
ΩPDMHðaeqÞ ¼ 1=2. In what follows, we will focus on this
minimalistic possibility. In this case, the epoch of virial-
ization is fixed by the condition

log
aeq
aV

¼ log
3β2

2
≈ 3; ð23Þ

where for the last equality we have chosen a fiducial
coupling β ¼ 4.

A. Virialization

The condition ΩPDMHðaeqÞ ¼ 1=2 in Eq. (22) translates
into a consistency relation

aV
aeq

¼ 2

3β2
; ð24Þ

meaning that virialization has to happen well within
radiation domination if β ≫

ffiffiffiffiffiffiffiffi
2=3

p
. The precise onset of

virial equilibrium is determined by the condition

2K þU ¼ 0; ð25Þ
where K and U are the kinetic and the potential energies of
the ψ-particle systems described as spherical overdensities.
Following Ref. [22], and in accordance with Birkhoff’s

theorem, the potential energy experienced by the collapsing
shell can be regarded as the sum of different contributions:
first, the one sourced by the fermions and the scalar field on
the overdense spherical region, which can be itself split into
a background component and a perturbation component
coupled also to the fifth force; and second, the potential
energy sourced by the other background fluids contained in
the shell. Accordingly, the potential experienced by a
spherical overdensity becomes

UðRÞ
M

¼ −
3

5
G
½M̄ þ YδM�

R
−
4π

5
Gðρr þ ρϕÞ; ð26Þ

or equivalently

UðRÞ
M

¼ −
3

5
YG

δM
R

−
4π

5
GρcrR2; ð27Þ

with ρcr ¼ 3M2
PH

2 the critical energy density and

δM ¼ M − M̄ ¼ 4π

3
ρcrΩψδψR3 ð28Þ

the difference between the overall shell mass M and the
background contribution M̄. Combining Eq. (27) with the
kinetic energy of the ψ-particles enclosed by the shell,

K ¼ 3

10
M _R2 ¼ 3

10
Me−4NR02; ð29Þ

we can recast the virialization condition (25) as

2R02 − ½YΩψδψ ðR;NÞ þ 1�R2 ¼ 0; ð30Þ

with δψðR;NÞ the density contrast.
The relation δψðR;NÞ in Eq. (30) can be obtained by

tracing the evolution of an initial spherical shell of radius
R0 enclosing a number of particles Nψ ¼ nψ ;0R3

0, with nψ ;0
the initial particle density. Taking into account the scaling
nψ ∼ a−3 and requiring the conservation of the number of
particles within the shell,

nψR3 ¼ nψ ;0R3
0; ð31Þ

we obtain

1þ δψðR;NÞ ¼ ð1þ δψ ;0Þ
�
R0

R

�
3

e3N; ð32Þ

with N ¼ lnða=ainÞ the number of e-folds of collapse.

B. Mass-radius relation

The energy density of the collapsing ψ particles can be
thought of as the sumof the contributions ofnψ particleswith
field-dependent massmψ , i.e., ρψ ¼ nψmψ . Considering the
scaling nψ ∝ a−3, together with the relativistic behavior of
the ψ-field energy density during the tracking regime,
ρψ ∼ a−4, we get a temporal evolution

mψ ∝ a−1; ð33Þ

in accordance with Eq. (12). This microscopical behavior
translates into an effective change of the mass
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M0 ≡ 4π

3
ρ̄ψR3

0 ð34Þ

contained within a shell of radius R0, which decreases as

MðNÞ ¼ e−NM0: ð35Þ

At this point, we can envisage two extreme possibilities
associated with different choices of the collapsing radiusR0.
First, we can consider an early screening scenario where R0

is identified with the radius of the initial horizon, namely
Rin ≡H−1

in . This corresponds to a situation in which the
screening mechanism is highly efficient and only those
particles within the Hubble radius at the moment the fifth
force starts acting can experience it and end up locked into
virialized halos. Second,we can contemplate a late screening
setup inwhich all thegrowing shellswithin theHubble radius
at virialization, RV ≡H−1

V , fall into the primordial dark
matter halo before the fifth force is fully screened. It is likely
that the actual screening process will take place somewhere
within these two limiting cases, which we now discuss in
detail:

(i) Early screening: If we identify the radius R0 in
Eq. (34) with that associated with the initial horizon
Rin ≡H−1

in , only an initial mass

M0 ¼
4π

3

ρψ ðainÞ
H3

in

≃
4π

3β2
M2

P

Hin
ð36Þ

will collapse into a PDMH. Taking into account the
reduction factor (35) following from the variation of
the M0 constituents up to virialization, we get a
PDMH mass

MPDMH ¼ e−NVM0; ð37Þ

with MPDMH ≡MðNVÞ and NV ¼ logðaV=ainÞ.
Note that MPDMH is significantly smaller than the
mass contained in the horizon at that time, namely

MHðNVÞ ¼
4π

3

ρψ ðNVÞ
H3ðNVÞ

≃
4π

3β2
M2

P

HðNVÞ
; ð38Þ

where in the last step we have employed the value
of the density parameter Ωψ according to the scaling
solution (11). Indeed, taking into account that
M ∼H−1 ∼ a−2 we get MHðNVÞ ¼ e2NVM0 and

MPDMH ¼ e−3NVMHðNVÞ: ð39Þ

Using Eqs. (24), (36) and (37) we can obtain explicit
relations among the coupling β, the initial radius of
the fluctuation, and the PDMHs mass [21], namely

jβj
585

¼ e−
NV
2

�
MPDMH

M⊙

�
−1=6

; ð40Þ

H−1
in ≃ 2 × 10−2

�
MPDMH

M⊙

�
2=3

AU; ð41Þ

with AU ¼ 1.49 × 108 km ¼ 4.85 × 10−12 Mpc de-
noting astronomical units.

A very rough estimate of the mass-radius relation
can be obtained by assuming virialization to occur
close to a critical density contrast δc ∼Oð1Þ. Com-
bining this educated guess with Eqs. (32) and (41)
and assuming R0 ¼ Rin ≡H−1

in and δψ ;in ≪ 1 we get
RPDMH ∼H−1

in e
NV or equivalently

RPDMH ∼ 440 · eNV−10
�
MPDMH

M⊙

�
2=3

AU; ð42Þ

with

NV ¼ ln

�
aV
ain

�
¼ 1

p
ln

�
δc
δψ ;in

�
: ð43Þ

The typical values of NV are Oð10Þ. Together with
Eq. (23), this yields an estimate of the value of ain
needed for PDMHs to constitute the entire dark
matter. For β ¼ 4 one has

ain ≈ 3 × 10−6; zin ≈ 3 × 108: ð44Þ

Additionally, combining Eqs. (40) and (43), we can
derive an estimate of the coupling to mass relation as
a function of the initial density contrast δψ ;in, namely

jβj ≃ 585

�
δc
δψ ;in

�
−1=2p

�
MPDMH

M⊙

�
−1=6

: ð45Þ

Taking into account the nucleosynthesis constraint
β > 3 (cf. Sec. II A), this relation translates into an
upper bound onMPDMH, which as shown in Fig. 6 is
very sensitive to δψ ;in.

An accurate estimate δc ≃ 2.07 (with a weak
dependence on β and on δψ ;in) can be obtained by
numerically following the evolution of the system
according to Eq. (30). The result of this procedure is
shown in Figs. 2–4. Figures 5 and 6 display the
resulting radius and mass of PDMHs as a function of
the initial density contrast δψ ;in. For a fiducial value
δψ ;in ¼ 10−6, we obtain a mass-radius relation

RPDMH ¼ 100

�
MPDMH

M⊙

�
2=3

AU; ð46Þ

and a mass bound MPDMH < 16 M⊙ for β > 3;
cf. Eq. (45). Note, however, that this upper limit
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is very sensitive to the initial density contrast δψ ;in, as
clearly appreciated in Fig. 6. Indeed, for an initial
value δψ ;in ¼ 5 × 10−4, we obtain a much less
restrictive bound MPDMH < 104 M⊙.

(ii) Late screening: If the matter surrounding the grow-
ing perturbation within the initial horizon radiusH−1

in
falls into the primordial dark matter halos before the
fifth force is completely screened, the above esti-
mates should be modified. To evaluate the impact of
this potential infall, we focus on the limiting
situation in which the whole dark matter component
within the horizon radius at virialization is locked
into a halo. In this case, we get a much more
compact PDMH with radius

RPDMH≡H−1
V ¼2×10−2

�
MPDMH

M⊙

�
2=3

AU: ð47Þ

C. Screening

The treatment leading to the radius estimates in Eqs. (46)
and (47) implicitly assumes that, even if the fifth force
becomes eventually suppressed outside PDMHs, it remains
active within them. According to Refs. [53,55,60], this
could make the virialization stage transitory and lead to the
eventual dissolution of the halos. Note, however, that there
are many ways in which this could be avoided. One could

FIG. 3. Evolution of the overdensity radius as a function of the
number of e-folds log a=ain, with Rin ≡H−1

in the initial horizon
radius. The curves reach their maximum at turnaround and the
black dots indicate the radius at which the virialization condition
(30) becomes satisfied.

FIG. 4. Critical density contrast δc as a function of β for an
initial density contrast δψ ;in ¼ 10−6. For sufficiently large cou-
plings this quantity saturates to δc ≃ 2.2. This trend turns out to be
independent from the initial condition on δψ ;in.

FIG. 5. Solar-mass PDMHs radius following from the numeri-
cal evolution of the system according to Eq. (30) as a function of
the number of e-folds NV ¼ logðaV=ainÞ from the onset of the
scaling regime to virialization. As illustrated in the figure, the
value of NV depends on the initial density contrast at solar mass
scales, which we assume to be in the range 10−8 ≤ δψ ;in ≤ 10−4

(cf. Sec. II B). In accordance with Eqs. (42) and (43), the slope of
the blue line is proportional to −1=p.

FIG. 6. Mass of the PDMHs as a function of the initial density
contrast δψ ;in, and the fifth-force coupling, β. The region below
the red line represents the set of parameters evading microlensing
constraints; cf. Sec. IV B. The ending upward turn reflects
the upper limit of the microlensing constraints mass window
extension.
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consider for instance screening scenarios in which—in
clear analogy with electrostatics—the scalar charge in a
PDMH would end up confined to a very thin shell near its
surface [61,62]. Alternatively one could envisage a multi-
fermion dynamics with a locking mechanism [63,64] or a
potential relaxation of the constituent masses to a constant
value compatible with the above dynamics [22].
Whatever the mechanism stopping the evolution of the

constituent masses, the effective coupling Y in Eq. (30)
would approach unity in the latest stages of PDMHs
formation, leading to an increase of the virialization radius
for a given mass by a factor ∼3.5 as compared to the
estimates in Sec. III B. As will become clear in Secs. IVA
and IV B, this would not affect our conclusions regarding
compatibility with data, but rather strengthen them. For this
reason we will stick to the conservative values (46) and (47)
in what follows.

D. Mass of the ψ-particles

An order of magnitude estimate for the bare mass
parameter to be inserted into Eq. (3) can be obtained by
considering the temperature scales involved in PDMHs
formation. As a first guess, we assume thermal equilibrium.
Using the standard relation5 T ∼ a−1 together with
Eqs. (24) and (33) and omitting order one factors, we get

TðainÞ ¼ TðaVÞeNV ≈ β2TeqeNV ð48Þ

for the temperature at the onset of the scaling solution. In
order for the ψ particles to be nonrelativistic at this
temperature, and therefore to feel the fifth force, their
masses must exceed TðainÞ. For mðainÞ ¼ TðainÞ the
fermion mass at virialization must be of the order of
mψ ðaVÞ ≈ 0.01 keV, 0.1 keV, 1 keV for Teq ≃OðeVÞ,
NV ≃ 10 and β ¼ 3, 10, 30, respectively. This corresponds
to massesmψðainÞ ≈ 0.1 MeV, 1 MeV, 10 MeVat the onset
of the scaling regime, meaning that this occurs just around
the epoch of primordial nucleosynthesis. In Fig. 7 we plot
the initial fermion mass as a function of β for various δψ ;in.
Dropping the assumption of thermal equilibrium, the
momentum distribution of the ψ-particles may still be
peaked at the radiation temperature. The condition for the
fermions to be nonrelativistic becomes then mðainÞ ≥
TðainÞ. Our computed values should be then understood
as lower bounds. In fact, higher masses that become
nonrelativistic earlier might still reach the scaling solution
at the same time ain if their initial density is sufficiently low.
In this case, they would pass through an intermediate
regime in which their energy density decays slower than

radiation before finally joining the scaling attractor (11)
at ain.

IV. OBSERVATIONAL CONSTRAINTS

In the absence of decays or annihilations of the con-
stituent dark matter particles, PDMHs will not be restricted
by gamma-ray observations [65,66]. Potential constraints
on these objects could come, however, from (i) CMB
energy injection bounds [67] (ii) microlensing observations
[68–74], and (iii) type Ia supernovae datasets [75].
For halo masses in the solar mass range MPDMH ∼M⊙,

the PDMHs radius following from an early screening and a
fiducial initial density contrast, δψ ;in ≃ 10−6, is roughly 3–4
times the distance to Neptune and therefore much larger
than the Schwarzschild radius RS ∼ ðMPDMH=M⊙Þ km in
the same solar mass range. On top of that, the trend
ðMPDMH=M⊙Þ2=3 in Eq. (46) implies that RPDMH grows
faster with MPDMH than the Einstein radius RE ∼
ðMPDMH=M⊙Þ1=2 and therefore that, for a sufficiently large
mass, the halo will be larger than RE. In the following
sections we show that these two properties are indeed
enough to pass the observational constraints (i) and (ii). The
more involved analysis of supernovae datasets is left for
future work.

A. Cosmic microwave background constraints

The radiation emitted during matter infall into collapsed
structures modifies the reionization history. The CMB
injections bounds due to primordial black holes have been
recently reassessed in the literature. In particular, the results
of Ref. [67] show that the consistency of both the temper-
ature and polarization spectra forbids these objects to
account for the total dark matter component if their masses
are in the range 102 M⊙ < M < 104 M⊙. Note, however,
that the luminosity of primordial black holes is mostly due
to the Bremsstrahlung radiation emitted in the vicinity of
the Schwarzschild radius since it is there where the accreted
gas acquires relativistic velocities. Since our PDMHs are
significantly larger than their Schwarzschild radius, we can

FIG. 7. Initial ψ-particle mass mψ ðainÞ as a function of β for
various choices of the initial density contrast δψ ;in.

5We ignore again an order unity correction γðaÞ≡
ðgin=geqÞ−1=3, with gin the initial number of relativistic d.o.f.
and geq ≈ 3.36 its value at matter-radiation equality.
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foresee that the CMB constraints on them are doomed to
disappear.
To make the above statement quantitative, we follow

closely the analysis in Ref. [67]. In particular, we consider
the radial accretion of hydrogen onto an isolated PDMH of
mass M surrounded by the almost uniform CMB radiation
fluid. The integrated luminosity of the fully ionized thermal
electron-proton plasma is given by

L ¼ 4π

Z
jr2dr ð49Þ

with r a radial coordinate and

j ¼ ασTn2eFðTÞ ð50Þ

the frequency-integrated emissivity. Here α denotes the
fine-structure constant, σT is the Thomson cross section,
and ne stands for the electron number density

ne ¼
_M

4πmpr2jvj
ð51Þ

with mp the proton mass,

jvj ¼
ffiffiffiffiffiffi
RS

r

r
ð52Þ

the infall velocity at a distance r, and RS ¼ 2GM the
Schwarzschild radius. The quantity

FðTÞ≡ TJðXÞ; ð53Þ

with

JðXÞ ≃

8>><
>>:

4
π

ffiffi
2
π

q
X−1=2ð1þ 5.5X1.25Þ; X < 1

27
2π

h
lnð2Xe−γE þ 0.08Þ þ 4

3

i
; X > 1

ð54Þ

a dimensionless function of the temperature T over the
electron mass me and γE ≈ 0.577 the Euler’s constant,
scales with the temperature as FðTÞ ∼ r−1 [67,76].
Expressing this function in terms of its value at the
boundary of the emitting sphere, FðTÞ ¼ FðTRÞ=r, and
taking into account Eqs. (51) and (52), we can express the
radiative efficiency ε≡ L= _M as

ε ¼ α

2mp

_M
LEdd

FðTRÞ
R

; ð55Þ

with

LEdd ¼
2RSmp

σT
ð56Þ

the Eddington luminosity.6 This expression coincides with
the primordial black hole radiative efficiency computed in
Ref. [67] when the emitting boundary is identified with the
Schwarzschild R ¼ RS and the function F is appropriately
rescaled as FðTRÞ ¼ FðTSÞRs. Note, however, that the
PDMH radii computed in the previous section are generi-
cally much larger than RS. This translates into a substantial
reduction of the radiative efficiency in Eq. (55) as com-
pared to the primordial black hole case. The analysis
presented in Appendix yields

FðTRÞ
FðTSÞ

≪ 1: ð57Þ

Since the energy deposit is proportional to FðTÞ, we can
conclude that this is significantly smaller for PDMHs as
compared to primordial black holes.

B. Microlensing constraints

The amount of primordial black holes playing the role of
dark matter in the mass window from 10−8 to 10 M⊙ is
strongly constrained by microlensing observations [68–74].
Pointlike objects with a mass larger than 10 M⊙ produce
microlensing patterns on timescales larger than the typical
observation times of MACHO and EROS collaborations,
and therefore microlensing constraints do not extend above
this mass. If the radius of the dark matter halos is smaller
than the Einstein radius, they act essentially as pointlike
lenses and the stringent microlensing constraints on pri-
mordial black holes inevitably apply to them, as to similar
compact objects. However, the pointlike approximation
breaks down for sufficiently large PDMHs, which should
then be described as extended lenses, as we do below. As
compared to a pointlike lens with the same mass, an
extended lens takes longer to provide a complete micro-
lensing pattern. Therefore, the heaviest PDMHs that the
examined microlensing experiments are able to constrain
could be potentially lighter than 10 M⊙, being this a rather
conservative value.
In the case of PDMHs with a radius larger than the

Einstein radius, an estimate of this bound can be obtained
approximating7 the timescale of microlensing phenomena
as T ¼ RPDMH=v, with v ≃ 200 km=s [77]. The longest
period of microlensing data acquisition of the MACHO and
EROS collaborations is about 6 yr [78,79]. Combining

6This is defined as the maximum luminosity of a source in
hydrostatic equilibrium.

7This value should be understood just as an order of magnitude
estimate. In particular, since the distance where the entire event
takes place is clearly larger than RPDMH we should generically
expect a lower mass threshold.
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Eqs. (42) and (43), the heaviest PDMHs mass to whom
microlensing constraints can extend,M�

PDMH, is then related
to δψ ;in as

M�
PDMH ≃ 1.4 × 106ðδψ ;inÞ1=p M⊙: ð58Þ

Adopting a fiducial initial value δψ ;in ≃ 10−6, PDMHs
become constrained by microlensing experiments up to
M�

PDMH ≃ 3.36 M⊙. In general, the higher the initial
density contrast, the lower this bound.
The Einstein radius for MACHO/EROS microlensing

phenomena is given by [80]

RE ≃ 21.1

�
M
M⊙

�
1=2

½ξð1 − ξÞ�1=2 AU; ð59Þ

with ξ ¼ wd=ws, wd (ws) the distance between the observer
and the deflector (source) and M the mass of the lens,
identified in our case with that of the PDMHs. The
parameter ξ is restricted to the range 0 < ξ < 1 with
ξ ¼ 1=2 corresponding to a lens equally distant from the
source and the observer. In this case the Einstein radius is
maximized and amounts to RE ≃ 10.7ðM=M⊙Þ1=2 AU.
If we look at the solar and subsolar mass window, where

the microlensing constraints are effective, the radius of the
PDMHs in the late screening scenario is always smaller
than the Einstein radius. Therefore, they are regarded as
pointlike lenses and ruled out from providing the whole
dark matter component within this mass range.
In the early screening case, the virialization radius in

Eq. (46) for a fiducial density contrast δψ ;in ¼ 10−6, is bigger
than the Einstein radius for a halo masses MPDMH >
10−6 M⊙. Within this mass range, the primordial black hole
constraints do not directly apply to PDMHs and must be
reconsidered using an extended lens configuration, as we
illustrate below.

1. Cored isothermal sphere

To study how microlensing constraints are modified
when the predicted size of our structures is taken into
account, it is necessary to make some assumption on the
PDMHs density profile. The formation process of this
density profile is, however, complicated to model due to the
highly nonlinear character of the problem at hand and the
strong coupling regime under consideration. As a matter of
fact, even the characterization of the inner density profile of
dark matter halos in a ΛCDM cosmology is still quite
debated. WhileN-body simulations within the concordance
model predict the appearance of cuspy profiles both in
early- [81–83] and late-time [84,85] clumped dark matter
structures, different observations of dwarf spheroidals [86]
and low surface-brightness disk galaxies [87–89] do not
agree with this prediction, but rather suggest the existence
of central cores at small radii (for a review, see Ref. [90]).

It is also worthwhile to notice that the appearance of
cuspy density profiles in dark matter structures [81–85] is
strictly associated to ΛCDM and does not necessarily apply
to other cosmological scenarios. In particular, the above
numerical simulations are intrinsically Newtonian and
cannot account for additional interactions unless suitably
modified.
In the lack of a proper non-Newtonian N-body simu-

lation able to account for fifth-force effects during radiation
domination, we will assume our PDMHs to be similar to
the observed structures in the Universe, i.e., noncuspy. For
illustration purposes, we will assume their density
distribution to be described by a nonsingular isothermal
profile8 [91]

ρ ¼ ρ0
1þ ðr=RPDMHÞ2

; ð60Þ

with r the radial distance from the center of the sphere and
ρ0 the density at the center of the mass distribution,
obtained normalizing the mass enclosed by the virialization
radius RPDMH in Eq. (46) to the mass of the halo. This very
common profile in the literature of dark matter halos
describes a system of collisionless particles in hydrostatic
equilibrium [92]. Note, however, that other choices describ-
ing a cored system are possible as well. For instance, one
could consider a Burkert profile [93] without significantly
altering the results below, as we have explicitly verified. In
this sense, our conclusions can be considered independent
from the profile choice in Eq. (60).
For masses in the solar range, the virialization radius is

significantly smaller than the distance to standard micro-
lensing sources, which include, among others, stars in the
Large Magellanic Cloud at around 50 Kpc. This hierarchy
allows us to describe the PDMHs as thin lenses with respect
to the line of sight. We can additionally benefit from the
axial symmetry of the problem to describe the lensing
phenomenon in terms of a single deflection angle α on the
plane spanned by the positions of the source, the observer,
and the lens. Within this setup, the lens equation reads

yðxÞ ¼ x − αðxÞ ¼ x −
x0
x
½LðxÞ − rPDMH�; ð61Þ

with y, x standing respectively for the real and observed
position of the source on the deflector plane rescaled to the
Einstein radius, rPDMH ≡ RPDMH=RE, and

L2ðxÞ≡ x2 þ r2PDMH; x0 ≡ 2REπ

ð4 − πÞRPDMH
: ð62Þ

8For simplicity, we assumed the core of the density distribution
to coincide with PDMHs virialization radius. A more general
definition of the core radius is Rc ¼ RPDMHs=c, with c a constant
parameter. Picking c ≃ 10 would slightly change the analysis
presented in this section as it can be compensated by employing a
smaller fiducial value δψ ;in ∼ 10−7.
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Since Eq. (61) has a unique solution for

rPDMH > 2; ð63Þ

the lensing generated by each PDMH results in a single
deflected image for M > 10−5 M⊙. The magnification μ is
defined as the inverse of the lens mapping determinant and
can be recast as

μ−1ðxÞ ¼
�
1 −

x0
2LðxÞ

�
2

−
x20ðLðxÞ − rPDMHÞ4

4x4L2ðxÞ : ð64Þ

In the single image regime, there is only a contribution that
adds up to the total magnification function. For our
purposes, it would be enough to consider just the maximum
value this function can reach, regardless of the position of
the source or the image at which this is achieved. An
explicit solution of Eq. (61) is therefore not required. The
analysis of the total magnification function is carried out in

Figs. 8 and 9 for a fiducial density contrast δψ ;in ¼ 10−6.
Comparing these plots with the identification threshold μ >
μdetect ≃ 1.30 of the MACHO and EROS collabora-
tions [78,94], we can identify a mass window MPDMH ≳
0.03 M⊙ where the PDMHs cannot be detected by current
microlensing experiments. This result, combined with the
conditionMPDMH < 16 M⊙ inferred from nucleosynthesis,
identifies a viable mass window from 0.03 to 16 M⊙. Note,
again, that this range strongly depends on the initial density
contrast δψ ;in, as explicitly shown in Fig. 10. The window
where PDMHs are compatible with microlensing observa-
tions extends from 10−8 to 104 M⊙ for an initial density
contrast δψ ;in within 10−4=10−8.

V. CONCLUSIONS

We argued that primordial dark matter halos could be
generated at very large redshifts within the radiation
dominated era. The necessary ingredients are (i) a light
scalar field ϕ mediating an attractive interaction stronger
than gravity and (ii) some heavy d.o.f. ψ strongly interact-
ing with it with a suitable abundance. While the light scalar
field could be potentially identified with a dark energy
component, the heavy d.o.f. could play the role of usual
dark matter candidates. If the interaction among these two
species is large enough, the system enters a scaling regime
during radiation domination where the primordial pertur-
bations of the heavy field become significantly enhanced.
Assuming the eventual screening of the scalar force, we
determined the properties of the collapsing matter at
virialization. For an early screening and a fiducial density

FIG. 9. Early screening scenario. Magnification curves gen-
erated by PDMHs as a function of the observed image position x
for a fiducial density contrast δψ ;in ¼ 10−6.

FIG. 8. Early screening scenario. Maximum magnification
μ generated by PDMHs as a function of their mass for a fiducial
density contrast δψ ;in ¼ 10−6, with a lens configuration charac-
terized by ξ ¼ 1=2. The red dotted line displays the MACHO
collaboration identification threshold. FIG. 10. Early screening scenario. The white region represents

the allowed parameter space. The red region displays the set of
physical configurations ruled out by microlensing experiments.
The blue region identifies the values (MPDMH; RPDMH) precluded
by nucleosynthesis requirements (i.e., with β > 3). The black
dashed lines track the mass-radius relation resulting from our
model for distinct values of the initial density contrast δψ ;in.
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contrast δψ ;in ∼ 10−6, the PDMHs radius turns out to be
significantly larger than the corresponding Schwarzschild
and Einstein radii for halo masses between 0.03 to 16 M⊙,
being the upper bound imposed by nucleosynthesis con-
straints. This makes the created objects unobservable by
current microlensing experiments and significantly reduces
their energy injection in the cosmic microwave background
as compared to primordial black holes. After due consid-
eration of the various constraints, we find that a successful
scenario requires an effective coupling 3≲ β ≲ 30 and
initial ψ-particle masses larger than 0.1 MeV. This trans-
lates into a formation redshift z ∼Oð104–106Þ, signifi-
cantly exceeding the one associated with the first DM
clumps in a ΛCDM scenario. The initial PDMHs distri-
bution is essentially monochromatic, with a peak mass that,
after accounting for the uncertainties on the initial density
contrast δψ ;in, lies between 10−8 and 104 solar masses. For
all practical purposes, the created objects behave just like
macroscopic dark matter “particles” ranging in size from
10−2 to 103 AU and having an average density

ρ̄PDMH ≃ 2.2 × 10−13
�

M⊙

MPDMH

�
gr
cm3

; ð65Þ

and an abundance9

nPDMH ≃ 5 × 1013ðΩDMh2Þ
M⊙

MPDMH
Mpc−3: ð66Þ

Note that although comparable in size, the PDMHs are
much denser than the smallest virialized clumps appearing
in a ΛCDM scenario, ρ̄min

clump ≃ 7 × 10−22 gr=cm3 [96]. We
expect therefore our objects to be more resistant to tidal
disruption than standard DM halos.
Even though the results presented in this paper should be

understood just as an order of magnitude estimates, the
existence of PDMH in the solar mass range constituting the
whole dark matter component seems a priori plausible
within the present uncertainties. Many other interesting
aspects such as the precise implementation of the screening
mechanism [97] or the resistance to tidal disruptions
[1,96,98–100] are worthy to explore. Among other effects,

the survival of PDMHs till the present cosmological epoch
could have important consequences for direct dark matter
searches. In particular, even if our dark matter particles
could be potentially produced at accelerator experiments,
they would be hardly observable by direct detection probes
due to the drastic reduction of their free number density.
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APPENDIX: EFFECTIVE TEMPERATURE
SUPPRESSION AT THE BOUNDARY

To determine the factor FðTRÞ entering into the energy
deposit (55) we benefit from the detailed analysis in
Ref. [67]. According to this work,

TR ≃meF ðYðRÞÞ; ðA1Þ

with

F ðYÞ≡ Y

�
1þ Y

0.27

�
−1=3

; Y ≃ γYS; ðA2Þ

and γ ≡ RS=R. Assuming X ≪ 1 in Eq. (53), together with
Y ≫ 1 and γ ≪ 1, we can approximate

FðTRÞ ≃meγ
1=2Y1=2

S ; TS ≃ 0.65meY
2=3
S : ðA3Þ

Combining these equations we get

FðTRÞ ≈ 1.38meγ
1=2

�
TS

me

�
3=4

ðA4Þ

and

FðTRÞ
FðTSÞ

¼ 0.01γ1=2
me

mp

�
TS

me

�
3=4

�
ε

_m

�
−1
; ðA5Þ

where TS=me and ε= _m can be taken from Figs. 5 and 6 in
Ref. [67]. For TS=me ≃ 109 and ε= _m ¼ 10−5 we get a ratio

FðTRÞ
FðTSÞ

≃ γ1=2; ðA6Þ

which is numerically very small for PDMHs radii much
larger than RS.

9We neglect here potential accretion, merging, and disruption
effects and assume the primordial halos to be distributed in
galaxy halos 200 times denser than the cosmological background.
i.e., nPDMH ≈ 200ρDM=MPDMH. The resulting value of nPDMH is
commensurable to the ΛCDM abundance of dark matter subhalos
with masses> 0.01 M⊙. Note, however, that a direct comparison
of these two values seems hardly feasible given the monochro-
matic character of the PDMHs distribution as opposed to the
power-law distribution of standard subhalos [95].
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