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The gauge-gravity duality and analog gravity both relate a condensed matter system to a gravitational
theory. This makes it possible to use gravity as an intermediary to establish a relation between two different
condensed matter systems: the strongly coupled system from the gauge-gravity duality and the weakly
coupled gravitational analog. We here offer some examples for relations between observables in the two
different condensed matter systems. In particular, we show how the equations characterizing Green
functions and first order transport coefficients in holographic models can be mapped to those describing
phenomena in an analog gravitational system, which allows, in principle, to obtain the former by measuring
the latter.
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I. INTRODUCTION

The AdS=CFT correspondence [1–3] relates certain
conformal field theories (CFTs) with quantum gravitational
models that arise in string theory. The latter, gravitational,
theory describes a space-time with negative cosmological
constant, the so-called anti–de Sitter space-time (AdS),
while the former CFT is located on the conformal boundary
of AdS, i.e., in a space-time with one spacial dimen-
sion less.
The most intriguing feature of the AdS=CFT correspon-

dence is that when one of the theories is strongly coupled,
then the other is weakly coupled and vice versa. Especially
useful for practical purposes is the limit when string effects
and quantum effects are both negligible such that the
gravitational theory becomes weakly coupled, while the
CFT is strongly coupled. In this limit, certain gravitational
theories can be used as effective models for strongly
coupled condensed matter systems, a technique that can
still be applied when the usual methods of quantum field
theory fail. In this practical, bottom-up, approach, some-
times referred to as “applied holography”, quantities in the
field theory, foremost correlation functions, are calculated
via perturbations in the gravity theory around a fixed
background—see e.g., [4–6] for reviews.
Intriguingly, the concept of analog gravity also deals

with an approach, in a fundamentally different way, where a
curved space-time emerges in the description of condensed
matter systems, in the sense that it becomes an effective
way to do computations. Analog gravity is based on the
observation that small perturbations around a background
medium are described by an equation of motion which is

formally identical to that of fields propagating in a curved
space-time. Analog gravity hence links weakly coupled
gravity with a weakly coupled condensed matter system.
The relations underlying analog gravity have been known
since the mid 1980s [7,8] but only in recent years has the
topic begun to attract attention, quite possibly because
experimental realization has become more feasible [9–14].
Seeing the evident overlap, it lies at hand that one tries to

combine both relations—AdS=CFT and analog gravity—to
arrive at a relation between two condensed matter systems.
This can be done because AdS=CFT and analog gravity
both use a curved geometry as an effective description for a
condensed matter system, but the one condensed matter
system is strongly coupled and the other one is weakly
coupled (see Fig. 1). The combination of both relations
then—the “analog duality” [15,16]—links a strongly
coupled with a weakly coupled condensed matter system.
In analog gravity and holography alike, the curved

space-time merely constitutes a mathematical framework
by help of which computations can be performed. It has no
direct correspondence to the actual space-time geometry in
which the condensed matter systems are situated (usually
assumed to be flat space). Nevertheless, this effective
geometry can be employed as a mathematical intermediary
between the two different condensed matter systems, which
will then, in certain aspects, be dual to each other, meaning
that quantities in the one description can be identified with
quantities in the other description. The purpose of this
paper is to present some examples for the, so derived,
relations between observables in different condensed
matter systems.
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This topic that has been approached from various angles
in the last years [15–21] and ties into the overarching
scheme of quantum simulation (see, e.g., [22]). The aim of
quantum simulations is to custom-design systems which
mimic the behavior of a different, mathematically intrac-
table, situation, and then measure the results rather than
calculate them. The AdS=CFT duality does not lend itself
to this purpose because the gravitational dual does not
represent a real-world situation and cannot be simulated in
the laboratory. If the gravitational dual, however, is further
mapped onto an analog gravity system, then we are dealing
with a correspondence of which both sides are experimen-
tally accessible, thereby making quantum simulation
possible.
To make use of this joined relation, we need to develop a

dictionary between the two condensed matter systems, akin
to the dictionary that exists for the gauge-gravity duality.
The present paper is the first step towards this. By
construction, analog gravity, so far, is a relation only
between the perturbations of two systems; i.e., we are
looking only at the properties of the perturbations in the
fluid analog. This however fuses naturally with the frame-
work of “applied holography”, where quantities in the dual
strongly correlated field theory, foremost correlation func-
tions, are calculated via a perturbative procedure around a
fixed background, as well. Making use of this resemblance,
we concretely proceed to show how Green functions, and
the related transport coefficients, in the strongly correlated
CFT can be extracted from simulations in the weakly
coupled analog system. One main difference between the
two backgrounds is that the fluid analog will not, in
general, fulfill a form of Einstein’s field equations. As
the purpose, however, is to simulate the behavior of a
specific propagation in a particular metric, this does not
represent any obstruction as far as the concept outlined in
Fig. 1 is concerned. For the same reason—we only consider
small perturbations—we make no claims about whether or
not the derived relations remain valid for a small coupling
on the CFT side.

Another task in developing a comprehensive theory of
“analog duality” is to identify classes of metrics that have a
CFT dual and are analogues as well. Naturally, not every
CFT can be expected to have a gravity dual, and the class of
geometries which can be simulated with analog geometry is
also limited. In this paper, we will limit ourselves to study a
basic configuration in which we have merely two inde-
pendent degrees of freedom (d.o.f.) in the analog metric.
Those can be chosen to be a scalar potential, θ, that
generates the flow velocities, and the speed of sound, c.
This is, of course, fewer than the general metric d.o.f. in
GR. However, as we will see, given that the analog system
is coupled to a freely tunable external potential, many
phenomena of practical interest—especially the semiclass-
ical treatment of static stationary black holes, which are
also a key element in “applied holography”—can be
captured already with this simple setup.
The application that we will focus on in this present work

is the calculation of Green functions and the resulting first-
order transport coefficients. In holography, we have a
straightforward procedure to compute these quantities from
solutions of a system of partial differential equations in a
curved background geometry [23]. Mathematically, this is
exactly the type of equations which one also has in analog
gravity.
The task thus comes down to finding a pair of an analog

gravity system and a holographic dual of another system for
which the background geometries are identical. Then the
two models have a one-to-one correspondence that maps
transport coefficients and Green functions of the holo-
graphic model to perturbations of the analog gravity
system, provided boundary conditions are chosen appro-
priately. This means any experiment that realizes the
suitable analog gravity system can then be employed as
an analog dual to compute transport properties in the
strongly correlated condensed matter systems with the
corresponding holographic dual.
For the purposes of this paper, we take the point of

view that the gauge-gravity duality is not so much a

FIG. 1. Sketch of relations between the three different systems. A strongly coupled CFT can be described via gravity in an AdS space-
time via the gauge-gravity correspondence, while analog gravity can realize the same space-time as analog description of phenomena in
a weakly coupled system. Having aspects of both systems effectively described by the same gravity theory—albeit in a different way—
establishes a link between the two condensed matter theories.
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mathematical identity between specific theories (none of
which, as it happens, describes our real world) but that the
specific, known examples suggest the use of gravitational
theories for the description of strongly coupled systems in
general. That is, we take a phenomenological perspective,
in which we work out the consequences of what we
consider a well-motivated hypothesis, that is a junction
of two already known relations. We wish to mention in the
passing that in the study of AdS=CFT calculations for the
quark-gluon plasma, it has been found that the results
obtained by using the gravitational formalism reproduce
some of the behavior of quantum chromodynamics (QCD)
well, despite QCD being neither conformal nor super-
symmetric (see, e.g., [24,25]).
The paper is organized as follows. In order to be self-

contained, Secs. II and III provide short summaries of the
aspects of analog gravity and holography that are relevant
for what follows. In Sec. IV, we present several examples
which illustrate how transport coefficients can be deter-
mined by the solution of a scalar field in a curved geometry.
The reason to focus on a scalar equation is because it is
the situation generally considered in the current experi-
ment, and as we argue in general terms in Sec. V, where we
discuss how the results presented here can be generalized, a
suitable choice of parametrization always allows us to
reduce any kind of perturbation (scalar, vector, tensor)
to be formulated as a system of equations of scalar
fields. We then conclude the paper with Sec. VI, giving
a rough, short outline on how the type of simulations
suggested within the concept of “analog duality” could
actually be performed with currently available experimental
setups.
Units are chosen such that the speed of light and ℏ ¼ 1.

The reader be warned that c denotes the speed of sound in
the analog model and not the speed of light. Our metric
convention is the “mostly plus” signature, ð−1; 1;…; 1Þ.

II. ANALOG GRAVITY

We begin with briefly summarizing the key idea of
analog gravity. Consider we have a complex scalar field ϕ
with the Lagrangian,

L ¼ ημν∂νϕ∂μϕ
� −m2ϕϕ� þ Vðx; t;ϕ;ϕ�Þ: ð1Þ

Here and in the following, we will allow the potential to
have an explicit coordinate dependence because we have in
mind interactions that are designed in the laboratory. Such
interactions are typically induced by the presence of
external fields [26] and are chosen for the very purpose
of creating a specific quantum simulation. We assume that
the potential V breaks the globalUð1Þ symmetry in a stable
minimum. This minimum will define our background field.
η is the background metric of the space-time in which the
field resides and is assumed to be the Minkowski metric.

The complex scalar field ϕ can be expressed in terms of
two real scalar fields as ϕ ¼ φ expðiθÞ, so that the
Lagrangian takes the form,

L ¼ ημν∂νφ∂μφþ φ2∂νθ∂νθ −m2φ2 þ Vðx; t; θ;φÞ: ð2Þ

We can then derive the equation of motion for φ,

ημν∂ν∂μφþ 2m2φ ¼ ∂V
∂φ − 2φχ; ð3Þ

where

χ ≔ ημνð∂νθÞð∂μθÞ ð4Þ

is the kinetic term of the phase field θ. In the Thomas-Fermi
approximation, when particle numbers are approximately
conserved, the two sides of (3) are set to zero separately. In
this case, we can solve this equation to express φ as a
function of χ and insert this back into the Lagrangian. This
will generically result in an effective Lagrangian for θ of
the form,

Lθ ¼ L½χð∂θÞ; Vðt; x; θÞ�: ð5Þ

In particular, if the original potential was polynomial in ϕ,
the resulting Lagrangian will contain some (in general,
fractional) power of χ. This is a good effective theory so
long as the classical equations of motion are approximately
valid and φ is slowly varying. It is a common limit to use in
the treatment of Bose-Einstein condensates.
For the analog gravitational system denoted with θ0, a

background field that solves the Euler-Lagrange equations
for (5) and then consider a fluctuation around this solution,

θ ¼ θ0 þ εθ1 þ ε2θ2 þ � � � : ð6Þ

Demanding that this expansion again solves the Euler-
Lagrange equations leads to equations of motion for the
fluctuations θj when expanding in orders of ε [8]. Focusing
on the lowest order fluctuation, the equation of motion can
be brought into the form,

1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμν∂νθ1Þ −m2

effθ1 ¼ 0; ð7Þ

where the (inverse of the) “acoustic metric” is defined as

ffiffiffiffiffiffi
−g

p
gμν ¼ −

∂2L
∂ð∂νθÞ∂ð∂μθÞ

����
θ¼θ0

; ð8Þ

and the “effective mass” of the perturbation is

ffiffiffiffiffiffi
−g

p
m2

eff ¼ −
∂2L
∂θ∂θ þ ∂ν

� ∂2L
∂ð∂νθÞ∂θ

�����
θ¼θ0

: ð9Þ
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The significance of (7) is that this is the exact same
equation which also describes the propagation of a field
in a curved geometry with metric gμν. As a consequence,
fluctuations in a condensed matter system can be used to
simulate physics in curved space-time even though
the “real” space-time in which the system is located
remains flat.
Note that if the potential in (1) did respect the global

U(1) symmetry, then the perturbation θ1 will be massless,
as is expected for the Goldstone boson. One can, however,
generate masses for θ1 by explicitly breaking the U(1)
symmetry. This corresponds to the familiar “tilt” of the
potential that, e.g., gives masses to pions due to the
breaking of chiral symmetry. We will make use of this
explicit symmetry breaking later on.
For practical purposes, it is often useful to rewrite (8) in

quantities that are more commonly used for gases and
fluids. For this, one notes that the Lagrange density (5)
defines a stress-energy-tensor,

Tμν ¼ −θμ
∂L

∂ð∂νθÞ
þ Lημν: ð10Þ

This can be rewritten as the stress stress-energy-tensor of a
fluid,

Tμν ¼ ðp0 þ ρ0Þuμuν þ p0ημν; ð11Þ

where four-velocity, pressure, and density of the back-
ground field are given by

uν ¼
∂νθffiffiffiffiffiffi−χp ; p0 ¼ L; ρ0 ¼ 2χ

∂L
∂χ − L; ð12Þ

such that the four-velocity is normalized as it should

ημνuμuν ¼ −1: ð13Þ

The field equations of the relativistic fluid are then identical
to the conservation of the stress energy,

∂νTμν ¼ 0; ð14Þ

and the acoustic metric and its inverse can be expressed as

gμν ¼ c
2

n−1

�
ρ0 þ p0

−2χ

�
− 2
n−1
�
ημν þ c2 − 1

c2
uμuν

�
; ð15Þ

gμν ¼ c
−2
n−1

�
ρ0 þ p0

−2χ

� 2
n−1½ημν þ ð1 − c2Þuμuν�: ð16Þ

Here, c is the speed of sound and defined by c−2 ¼
∂ρ0=∂p0.
In the nonrelativistic limit, one has p0 ≪ ρ0 and v2 ≪ c2

and then the acoustic metric is of the form,

gμνðt; x⃗Þ ∝
�
ρ0
c

�
− 2
n−1
� −1=c2 −vj0=c2

−vi0=c2 δij − vi0v
j
0=c

2

�
; ð17Þ

gμνðt; x⃗Þ ∝
�
ρ0
c

� 2
n−1
�−ðc2 − v20Þ −ðv0Þj

−ðv0Þi δij

�
: ð18Þ

In this limit, the equations of motion for the background
field are the familiar continuity equation and the Euler
equation,

∂tρ0 þ ∇⃗ · ðρ0v⃗0Þ ¼ 0; ð19Þ

ρ½∂tv⃗0 þ ðv⃗0 · ∇⃗Þv⃗0� ¼ F⃗: ð20Þ

If the fluid is nonviscous, has vanishing rotation (i.e., is
vorticity-free), and is barotropic, we can further simplify
this expression. The velocity field is then the gradient of a

scalar field v⃗0 ¼ −∇⃗ϕ and the density ρ0 is a function of p0

only. In this case, the Euler equation can be integrated once
and then be written as

∂tϕ ¼ hþ 1

2
ð∇⃗ϕÞ2; ð21Þ

where

hðpÞ ¼
Z

p

0

dp0

ρ0ðp0Þ ð22Þ

is the specific enthalpy.

III. THE HOLOGRAPHIC DICTIONARY

In this section, we will summarize how the AdS=CFT
correspondence connects observables of the boundary CFT
with the gravitational theory in the bulk. In Sec. IV, we will
then go through these observables again and further
connect them with observables of the analog gravity
system. As mentioned earlier, we will mostly follow the
bottom-up spirit of “applied holography,” which utilizes a
gravity theory as an effective “tool of computation” to
calculate field theory correlation functions via a perturba-
tive approach around a fixed background.
Since the CFT is located on the boundary of the space-

time in which the gravitational theory operates, the
AdS=CFT correspondence is frequently referred to as
“holographic.” Holography relates a gravitational theory,
i.e., one with dynamical geometry, in Dþ 1 dimensions to
a nongravitational field theory in D dimensions. Because
the Dþ 1 dimensional bulk is an AdS space-time, it is not
globally hyperbolic. This means that initial conditions
on a spacelike slice do not uniquely determine the propa-
gation of fields in this space-time. For a problem to be
well-defined, therefore, initial conditions have to be
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supplemented by additional conditions on the conformal
boundary when approaching spacial infinity. This is the key
ingredient of how holography is used to convert the
computation of observables in the strongly coupled CFT
on the boundary into a boundary value problem in the
curved geometry of the bulk.
We can picture the field theory dual as “living on the

boundary” since its d.o.f. are given by the asymptotic
behavior of the bulk fields. Schematically, using ΦI to
denote the collection of all bulk fields, including the
geometry, the boundary d.o.f. are obtained from asymptotic
scaling relations of the form,

ϕI ¼ lim
z→∞

z−hIΦI; ð23Þ

where the exponent hI depends on the field and z is the bulk
coordinate in AdS which approaches zero at the boundary.
In the dual field theory, these ϕI are sources that couple

to an operator OI, and their correlation functions are
evaluated as

hO1ðx1Þ…OmðxmÞi ¼ ð−iÞmþ1
δmSon−shell

δϕ1ðx1Þ…δϕmðxmÞ
����
ΦI≡Φð0Þ

I

:

ð24Þ
Another way to say this is that the gravitational action,

S ¼
Z

dxDþ1LBulk½∂μΦI;ΦI�; ð25Þ

evaluated “on shell”, i.e., on a solution Φð0Þ
I of the

corresponding Euler-Lagrange equations, serves as the
generating functional of connected correlators of the field
theory dual. The exponents hI in (23) are then related to the
conformal dimension of the corresponding operators OI .
Evaluating (24) may, at first sight, appear uselessly

difficult, given that the equations of motion in systems
with dynamical geometry are highly nonlinear and explicit
solutions for arbitrary boundary conditions are in general
not known analytically. What makes the formula useful,
though, is that it can be evaluated perturbatively. That is,
when a specific backgroundΦð0Þ

I is chosen, then the n-point
functions can be calculated by making a perturbative
expansion up to order n − 1.
For this to work, we assume that the equations of motion

are Hamiltonian, so that a particular solution is entirely
characterized by fπI;ϕIg, where πI are the conjugate
momenta to the fields ϕI . And as even higher derivative
theories can usually be brought to the form (25) and having
a Hamiltonian functional is generally to be expected in
physically realistic systems, this is indeed not a very
restrictive assumption for theories of practical interest.
The momenta can be expressed in terms of boundary
values of derivatives of the bulk fields ΦI, but can as well
be identified using the standard relation,

πI ¼ δSon-shell

δϕI
: ð26Þ

A specific solution to the equation of motion is selected by
fixing fπI;ϕIg on a characteristic surface—usually at the
AdS boundary—which gives rise to relation of the type,

πI ¼ πI½ϕJ�: ð27Þ

Next, one makes a perturbative expansion of the bulk fields
around the background solution,

ΦI → Φð0Þ
I þ εΦð1Þ

I þ ε2Φð2Þ
I þ � � � : ð28Þ

This induces an expansion of the momenta in terms of the
boundary fields which has the general form,

πI ¼ πIð0Þ þ εGIJϕð1Þ
J þ ε2CIJKϕð1Þ

J ϕð1Þ
K þ � � � : ð29Þ

The coefficients in this expansion then correspond to the
n-point correlation functions from (24). The special case of
the 2-point function corresponds to the holographic Green
function GIJ, which will be discussed further in Secs. IV B
and IV C.
The details of the relation (27) depend on the properties

of the space of solutions in which one studies a particular
problem or configuration. This often means that we must
apply further consistency conditions in the bulk. Usually,
these are conditions like demanding that the bulk geometry
is smooth or that curvature singularities are hidden behind a
regular event horizon (the latter to ensure that the geometry
remains nonsingular when time is Wick-rotated to the
Euclidean signature). In such cases, the consistency con-
ditions in the bulk usually boil down to a set of boundary
conditions at the event horizon.
The most straightforward aspects of the correspondence

relate the metric in the bulk with properties of the theory on
the boundary. Of particular interest are space-times with an
event horizon (in the following, referred to as black hole
space-times) because their duals describe strongly coupled
CFTs at finite temperature.
In such a case, if theAdS-space contains a black hole, then

the Hawking temperature associated with the black hole
horizon via the surface gravity corresponds to the temper-
ature of theCFTon theboundary. The entropydensity of both
systems is the same. From the metric in the bulk, one can
further extract the stress-energy-tensor on the boundary with
a suitable renormalization procedure that strips off the
infinities which the asymptotic limit brings [27].

IV. THE NEW DICTIONARY
OF ANALOG DUALITY

We here consider a model that has been widely used in
the literature as a phenomenological one to study electric
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transport, in particular, in holographic superconductors
[4,28]. It consists of a scalar field, ψ , which is charged
under a Uð1Þ gauge field, A, and minimally coupled to
Einstein gravity,

S ¼ −
Z

�ðR − 2ΛÞ − 1

2

Z
F ∧ �F

−
1

2

Z �
dþ i

q
L
A ∧

�
ψ† ∧ �

�
d − i

q
L
A ∧

�
ψ

−
m2

2L2

Z
ψ† ∧ �ψ : ð30Þ

The equations of motion from this action are a combi-
nation of Einstein’s field equations, the Maxwell equation,
and a Klein–Gordon equation for the scalar field,

Gμν þ Λgμν ¼ TM
μν þ Tsc

μν; ð31Þ

∇μFμν ¼ Jν; ð32Þ
�
∇μ − i

q
L
Aμ

�
2

ψ −
m2

L2
ψ ¼ 0: ð33Þ

With the usual stress-energy tensors for the field strength
and a charged scalar, respectively,

TM
μν ¼ FμκFν

κ −
F2

4
gμν;

Tsc
μν ¼

1

2

�
∇μ þ

iq
L
Aμ

�
ψ†

�
∇ν −

iq
L
Aν

�
ψ

−
1

4
gμν

�
jð∇μ − iqAμÞψ j2 þ

m2

L2
jψ j2

�
: ð34Þ

Frequently studied background solutions of these equa-
tions are time-independent space-time geometries with
translational symmetry in the transverse directions, such
that the metric, chosen of Painlevé-Gullstrand form for later
convenience, can be parametrized as

ds2

L2
¼ e2CðzÞ

z2

h
−fðzÞdt2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðzÞ

p
dtdz

þ dz2 þ dx2 þ dy2
i
; ð35Þ

where L is the typical length scale in the bulk and the
coordinate z goes to zero on the AdS conformal boundary.
Note that metrics of this type have recently been shown to
be analogues [29], meaning that (35) is by default in the
class of metrics that lie in the intersection of geometries
found in AdS=CFT as well as analog gravity.
For later convenience, we also introduce a frame, ei,

adapted to the diagonal form of the metric,

e0

L
¼ eC

ffiffiffi
f

p
z

�
dtþ

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
f

dz

�
;

e1

L
¼ eC

z
dx;

e2

L
¼ eC

z
dy;

e3

L
¼ eC

z
ffiffiffi
f

p dt: ð36Þ

In this case, ψ is also a function of z only, ψ ¼ ψðzÞ, and so
are gauge field and field strength,

A ¼ LaðzÞ
�
dtþ

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
f

dz

�
; ð37Þ

F ¼ LbðzÞdz ∧ dt: ð38Þ

Explicit expressions for C, f, a, ψ in closed form are only
known for ψ ≡ 0, when the metric reduces to the AdS
Reissner–Nordström space-time, which is given by

fðzÞ ¼ 1 − ðQ2 þ 1Þz3 þQ2z4;

CðzÞ ¼ 1; aðzÞ ¼ Qð1 − zÞ: ð39Þ

In the following, we focus mostly on the simple action (30)
as an illustrative example; we wish to emphasize that it was
shown in [30] that any metric of the form (35) can be
realized as an analog metric.

A. Background values

To illustrate the general idea, we will start with some
simple examples that build on the previous works [15,16].
As these papers show, one of the metrics most commonly
used for holographic models, that of a (charged) planar
black hole in asymptotic AdS, has an analog dual even
without introducing a conformal prefactor. We will denote
the position of the horizon in direction z as z0.
In the nonrelativistic limit and D ¼ 4, the speed of

sound, c, of the background fluid is constant and the
energy-density and velocity-field are given by

ρ0 ¼ cm2a2
L2

z2
; v0 ¼

ffiffiffi
c

p z
z0
; ð40Þ

where m is the mass of the particles which the analog fluid
is composed of and a is a parameter of a dimension mass
that quantifies the overall amplitude of fluctuations. The
velocity field points into the direction perpendicular to the
black hole horizon.
On the other hand, we know that the temperature of the

condensed matter system on the AdS boundary is given by

T ¼ 1

πz0L
; ð41Þ

from which we obtain the relation,
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1ffiffiffi
c

p ∂zv0

����
z¼z0

¼ T
L
; ð42Þ

where the quantities on the left side belong to the weakly
coupled analog gravity system, while those on the right side
belong to the strongly coupled CFT.
This relation in and by itself does not provide much

insight. It merely tells us which parameter in the one
system belongs to which parameter in the other system
and is therefore necessary for a quantitative comparison.
However, to better understand the systems themselves, we
want to have relations between quantities on the one side
corresponding to relations on the other side.
We can further extract the stress-energy-tensor of the

CFT from the metric, from which one obtains

hTκ
νi ¼ πz20=L

3diagð−3; 1; 1; 1Þ: ð43Þ

By using (42), one can then express the energy-density
of the CFT through the gradient of the velocity field of
the fluid.

B. Green functions

Of special interest for any field theory are the Green
functions or propagators, respectively. They are of central
importance because the Green functions are directly related
to measurable quantities like decay rates, cross sections,
and transport coefficients.
In the following, we use the common method of linear

response [23]. By virtue of the holographic dictionary, the
Green functions of the boundary CFT can be evaluated by
solving the equations of motion for perturbations of the
corresponding bulk fields with appropriately chosen
boundary conditions. The Green functions in the bulk
themselves are calculated by considering infinitesimal
perturbations around the metric (35) and the fields on it
(38) so that the equations of motion are still satisfied. These
resulting equations describe the propagation of these
perturbations through the space-time (35). This method
therefore results in a Klein-Gordon equation structurally
identical to the equations of perturbations in analog
gravity (7).
Thus, properties of the fundamental d.o.f. on either

side—correlation functions of an operator in the holo-
graphic field theory and sound propagation in the analog
fluid—directly correspond to each other through a relation
that is mediated by the bulk space-time. The geometry
translates different aspects of the two condensed matter
systems into each other; the systems are analog duals of
each other.
However, the equations for a generic perturbation in a

gravitational system will lead to a large system of coupled,
partial, differential equations. This makes the search for an
analog model that leads to the same equations a quite
daunting task.

Luckily, there are some interesting cases in which these
equations decouple, thereby greatly simplifying the calcu-
lation. In these cases, the Green functions can then be
computed using a perturbation δΦ of only a single scalar
field which satisfies an equation of motion of the general
form,

□δΦ − m̃2
effδΦ ¼ 0: ð44Þ

Here, □ is the d’Alembertian of the effective bulk back-
ground metric g, and m̃eff is an effective mass term.
To establish an analog duality, we will therefore have to

generate the particular mass m̃eff without altering the
background metric. A general argument that this is gen-
erally possible can be found in [29], here we give a practical
example on how to accomplish this for the given case of
interest. We could write down the equations that derive
from this, but solving them will not in general be possible.
We will instead look at a particular example for the
potential to illustrate how it works. For this, we will use
the case previously discussed in [15]. As shown in this
previous work, for the case of the planar black hole in 4þ 1
AdS space, the continuity equation works out to be just

∂zðρ0v0Þ ¼ 0: ð45Þ

The Euler equation then allows one to calculate the force
density Fz necessary to get the required pressure. In the
static case, it takes the form,

∂zðρ0ðv0Þ2zÞ þ c∂zp0 ¼ −Fz ¼ ∂zV: ð46Þ

Using

∂zp0 ¼ ∂zρ0
∂p0

∂ρ0 ¼ c∂zρ0; ð47Þ

one obtains

Fz ¼ 2c2ðLmaÞ2 γðzÞ
z3

: ð48Þ

Let us now suppose we have a potential of the form,

Vðz; θÞ ¼ a1ðzÞθ2 − a2ðzÞθ4; ð49Þ

which generates the background solution θ0. Since we
know the velocity profile, we can integrate it to get the field,
so we know the coordinate dependence of the entire
potential. In the case under consideration that is

θ0 ¼ const:þ
Z

dzðv0Þz ¼ const:þ
ffiffiffi
κ

p
z0

z2: ð50Þ

One can then use (48) to find suitable functions a1ðzÞ and
a2ðzÞ. But from (9), we further have
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m2
eff ¼ z2ð2a1ðzÞ − 12a2ðzÞθ20Þ; ð51Þ

which will in general not be the correct effective mass to
probe the Green function. Our task is then to find a new
potential,

Ṽðz; θÞ ¼ ã1ðzÞθ2 − ã2ðzÞθ4; ð52Þ

which still generates the background solution θ0 but
changes the effective mass meff to the m̃eff necessary to
obtain the equation of motion (44) for the perturbation.
This leads to the requirements,

∂V
∂θ

����
θ¼θ0

¼ ∂Ṽ
∂θ

����
θ¼θ0

;
1ffiffiffiffiffiffi−gp ∂2Ṽ

∂θ2
����
θ¼θ0

¼ m̃2
eff : ð53Þ

These equations can be solved to give

ã1ðzÞ ¼
z2ðm2

eff − m̃2
effÞ

8
þ a1ðzÞ; ð54Þ

ã2ðzÞ ¼
z2ðm̃2

eff −m2
effÞ

8θ20
þ a2ðzÞ: ð55Þ

By this, we have expressed ã1ðzÞ and ã2ðzÞ entirely
through functions whose z dependence is known already
due to the requirements on the background fluid and the
necessity to reproduce the effective mass.
This change of the potential will, of course, change the

equations of motion in general, but in such a way that it is
solved by the particular solution θ0. The analog acoustic
metric (8) for a perturbation will also remain unchanged.
What will change is only the effective mass of this
perturbation. One sees from the simple example given
above that this is generally possible, provided the potential
has at least two interaction terms, so that the minimum
can be kept while the second derivative at the minimum
changes.
Ultimately, it will be the experimental possibilities that

determine which z dependence of the interaction can be
realized, and thus, which types of perturbations and Green
functions can be simulated. Nevertheless, the calculation
presented here shows that rather simple adjustment of
couplings allow us to make a connection to the Green
functions in the dual system.

C. Linear response and transport coefficients

Transport coefficients play an important role in relating
theoretical results to experiment. They measure how
rapidly a perturbed system is returning to equilibrium
and can thus be directly related to data gathered from
measurements. These coefficients are intimately related
with Green functions by an equation known as the Kubo
formula.

These quantities are related as follows. Suppose we have
a system in an equilibrium state ΦJ, and make a small
perturbation, δΦJ, away from equilibrium. The Green
function GIJ is defined as the function which encodes
the response δΠI ¼ GIJ · δΦJ. The corresponding transport
coefficients, call them γIJ, can then be expressed in the
form,

γIJ ∝ lim
ω→0

GIJðω; 0Þ
iω

; ð56Þ

where ω is the frequency of the perturbation. In this way,
we can extract transport coefficients in holographic models
by studying linear response around a given background
space-time [31].
Transport coefficients that are often considered in holo-

graphic models are the electrical conductivity (calculated
from the response to changes in the applied electric field)
and shear viscosity (calculated from the response to applied
transversal shear). In the following subsections, we will use
these as examples to demonstrate how a dictionary can be
established between the strongly coupled CFT and a
condensed matter system with an analog gravitational
description.

1. The scalar 2-point function

We will begin with the simplest case, the 2-point
function hOOi of a scalar operator O on the boundary
that is dual to a scalar bulk field. Such an operator could, for
example, describe a mass density, a charge density, or an
order parameter of a phase transition. A scalar 2-point
function is also used to study correlations in the Hawking-
radiation in curved space-times which have recently
attracted attention [12,32].
In general, perturbing such a scalar field will induce a

response in the metric g and, if the field is charged, in the
corresponding gauge field. However, for the case of the
scalar field ψ in (30), this complication is avoided when
one studies the probe limit or a background with ψ0 ¼ 0. In
particular, for the Reissner–Nordström solution (39) the
backreaction is quadratic in the perturbation δψ and
therefore, does not contribute to the 2-point function
obtained from the linear response. The equation of motion
for the scalar-field perturbation δψ in this background is
then simply the Klein–Gordon equation (33) in this back-
ground. From this, one can read off the effective mass for
the perturbation,

m̃2
eff ¼

1

L2

�
m2 −

q2Q2z2ð1 − zÞ2
1 − ð1þQ2Þz3 þQ2z4

�
; ð57Þ

wherem is the mass of the scalar field, q is the U(1)-charge
of the scalar field, and Q is the electric charge density of
the background. Using the procedure laid out in Sec. IV B,
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one can then adjust the potential to generate the desired
effective mass of the perturbation.

2. Conductivity

The electrical conductivity tensor, σ, is a measure of a
material’s ability to conduct an electric current. It can be
calculated by the Kubo formula,

σij ¼ lim
ω→0

Gij
emðω; 0Þ
iω

: ð58Þ

Here, the electromagnetic Green function Gij
em is defined

through the correlator of the electric current density, J , in
the holographic dual on the boundary,

hJ iJ ji: ð59Þ

To calculate the Green function via a linear response, we
study the response of the current δJ ν to a fluctuation of the
boundary value of the bulk gauge field δAμ. The compo-
nents of the Green function are then defined through the
relation,

δJ ν ¼ Gνκ
emδAκ: ð60Þ

This perturbation of the current on the boundary is,
essentially, the normal component of the bulk field strength
and thus, in appropriately chosen coordinates, identified via

δFμν ¼ e3½μδJ ν�: ð61Þ

In general, σij is a two-tensor. However, in the absence of a
magnetic flux, the off diagonal components—like the Hall
conductivity—vanish. Furthermore, when restricted to the
case of vanishing spatial momentum in the transversal
direction, there is only one independent component left in
the conductivity tensor, which can be chosen as the usual
longitudinal conductivity. This can described by the
response to a temporally modulated perturbation. We will
use here a perturbation in the x component of the gauge
field A.
Due to coupling to the metric, this will also require to

add a perturbation in an off diagonal metric component
because otherwise we would not obtain a closed and
consistent system of equations. Since we here consider
vector and tensor fields, it is convenient to use the back-
ground frame (36) to parametrize the perturbations of
relevance in this situation,

δAμ ¼ αðt; zÞe1μ; δgμν ¼
ffiffiffi
f

p
βðt; zÞe0ðμe1νÞ: ð62Þ

With the choice of parametrization (62), the functions
α and β can be related to a single function θðt; zÞ,

θ ¼ _α; 2zbe−Cθ ¼ _β0 þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
f

β̈; ð63Þ

where prime and dot denote derivatives with respect to z
and t, respectively. The scalar function θ is itself a solution
to the Klein–Gordon equation with effective mass,

m̃2
eff ¼

1

L2

�
3−

ðm2 þ q2Þψ2

2
− e2Cð1− zC0Þ− 5e−4Cz4b2

�
:

ð64Þ

The functions C, b, and ψ have to be determined from
solving the background equations of motion, i.e., the
combined Einstein-Maxwell-scalar equations (31)–(33).
Explicit expressions are in general not known in analytic
form, but it is straightforward to obtain their profile via
numerical integration. One can then again express the
requirements on the effective mass as a requirement on
the potential, as discussed in Sec. IV B.

3. Shear viscosity

The shear viscosity, η, can be extracted from a response
to a perturbation of the metric,

η ¼ lim
ω→0

Gxy;xyðω; 0Þ
iω

; ð65Þ

where Gνμ;κλ is the Green function for the response in the
holographic stress-energy tensor T μν when the boundary
metric gκλ is perturbed; i.e., it corresponds to the 2-point
function,

hT μνT κλi: ð66Þ

Using linear response and the standard holographic calcu-
lation procedure [23], it can be extracted from the relation,

δT μν ¼ Gνμ;κλ · δgκλ: ð67Þ

In the specific case of using the background (35), the metric
is translationally and rotationally invariant in the xy
direction and does not couple to any tensor fields. One
then expects perturbations in the gxy component to decou-
ple. Indeed, when we consider a metric perturbation of the
form,

δgμν ¼ gðt; zÞe1ðμe2νÞ; ð68Þ

which is parametrized via a single scalar function g and the
background frame (36), then the resulting equation for θ is
a Klein-Gordon equation with effective mass equal to zero.
Once again, one can then amend the potential as discussed
in Sec. IV B to ensure that the perturbations are of this type.
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We also want to mention that a minimal coupling that
breaks isotropy in the xy direction, e.g., due to spatially
modulated backgrounds [33] would create an effective
mass for this perturbation. To simplify calculations, such
backgrounds can be approximated with Q lattices [34]. A
different way to study massless perturbations was recently
proposed in [35].

V. GENERALIZATIONS

In the previous section, we provided several examples
where a transport property of a system with a holographic
dual can be equivalently described by an analog model
depending on just one scalar field. For backgrounds like
(35) with a high degree of symmetry, this is simple to
achieve, and also for the somewhat more complicated cases
discussed in Sec. IV, perturbations can be separated into a
set of decoupled master equations and the correspondence
can still be achieved. In general, however, we expect that a
generic perturbation is only consistently described by a
system of several coupled partial differential equations,
which makes the situation far more complicated.
Constructing a particular example of an analog model
for holographic transport in the general case will be left for
future work. But we here want to argue that, besides the
logistical difficulty that stems from dealing with an
increased number of d.o.f., there are no other conceptual
obstructions to find an analog model.
To see this, let us first extend the discussion from Sec. II

to a case where the Lagrangian depends on more than one,
say N, fields, i.e., consider L½θI;μ; θI�. For notational
purposes, let Θ ≔ fθIgNI¼1. Again, perturbatively expand-
ing around a background,

Θ ¼ Θ0 þ εΘ1 þ ε2Θ2 þ � � � : ð69Þ

This can now be plugged into the corresponding action,

S½Θ� ¼ S½Θ0� þ ε

Z
EL½Θ0� ·Θ1

ffiffiffiffiffiffi
−g

p
dnx

þ ε2
Z

EL½Θ0� ·Θ2

ffiffiffiffiffiffi
−g

p
dnx

þ ε2

2

Z
ð∇μΘ

†
1 ·G

μν ·∇νΘ1 þΘ†
1 ·M ·Θ1Þ

ffiffiffiffiffiffi
−g

p
dnx:

ð70Þ

Hereby, EL½Θ0� denote the Euler-Lagrange equations for
the Lagrangian L and, furthermore, the N × N matrices, for
fixed μ, ν, Gμν½Θ0�, and M½Θ0� were introduced with
entries,

Gμν
IJ ½Θ0� ¼

∂2L

∂θðI;μ∂θJÞ;ν

����
Θ¼Θ0

; ð71Þ

MIJ½Θ0� ¼
∂2L

∂θI∂θJ − 2∇μ
∂2L

∂θðI;μ∂θJÞ;μ

����
Θ¼Θ0

: ð72Þ

With the assumption that the backgroundΘ0 is a solution of
the Euler-Lagrange equations, it follows that the equations
of motion up to order ε2 are satisfied if the perturbations θJ1
form a solution of

∇μðGμν
IJ ½Θ0�∇νθ

J
1Þ −MIJ½Θ0�θJ1 ¼ 0: ð73Þ

It will now be shown that a set of equations in exactly this
same form will result when the metric is made dynamical
and the action is minimally coupled to an Einstein-Hilbert
term, if perturbations are parametrized in a convenient way.
As already discussed in Sec. IV, when a ðp; qÞ tensor is

minimally coupled to gravity, the equations of motion for a
perturbation in this d.o.f. can be cast as a set of coupled
scalar partial differential equations by choosing a cova-
riantly constant frame eμa and parametrizing the perturba-
tion as

δT μ1…μp
ν1…νq ¼ εta1…ap

b1…bqe
μ1
a1…eμ1ape

b1
ν1…e

aq
ν1 : ð74Þ

Thus, the main caveat to directly conclude that a form like
(73) must result is because of the curvature term

R �R. In
that form, it depends not only on first, but also on second
order derivatives of the metric, respectively, the frame. It is
however known, that these can be reorganized by adding a
total derivative to the action, and an equivalent, though
somewhat more convoluted, way to write the Einstein-
Hilbert Lagrangian would be

L̃EH ¼ −dea ∧ eb ∧ �ðdeb ∧ eaÞ

þ 1

2
dea ∧ ea ∧ �ðdeb ∧ ebÞ: ð75Þ

With this and parametrizing the perturbation of the frame,

δeμa ¼ εΩa
beμb; ð76Þ

the action can, effectively, be written as a functional
depending on the fields fΩ; tg parametrizing the displace-
ment from a given, fixed, background, with the former
entering with at most first derivatives. It is then straightfor-
ward, though likely rather tedious, to find equations of
motion for the first order perturbation that is exactly of the
form (73). In practice, of course, some of these can be
expected to be trivially satisfied, since this form of para-
metrization will have some redundancies, given that the
action is to remain invariant under diffeomorphisms or
Lorentz boosts of the frame.
This simplifies the necessary amount of computation

compared to higher order correlation functions significantly,

SABINE HOSSENFELDER and TOBIAS ZINGG PHYS. REV. D 100, 056015 (2019)

056015-10



as the latter would, in addition, also require to evaluate
various Witten diagrams [2].

VI. IMPLEMENTATION IN EXPERIMENT

Having established, that, for examples, of particular
importance in “applied holography” there is, in theory,
indeed the potential to employ analog gravity and quantum
simulation to develop new correspondences—as illustrated
in Fig. 1—the question becomes on how this relation could
be used in practice. While ultimately judging on feasibility
of conducting such a simulation lies at the hands of
experimentalists, we at least can summarize how such a
simulation could be performed with the technology avail-
able at the current day.
The main task is to find the relation (27), respectively, the

first order in the systematic approach (29), to extract the
Green function. This within a given tolerance ϵ, given by
the accuracy of the experiment and the precision one wants
to accomplish. Furthermore, any signal can be decomposed
into a sum of “elementary” excitations—usually pulses or
oscillations at different frequencies. Thus, one can choose a
finite set of such elementary excitations, call them χi, such
that any “source” ϕ and the “response” π would be
approximated within precision ϵ as a sum of χi.
Furthermore, as it is such a prominent aspect of quantum

gravity, Hawking radiation has been the subject of a great
number of experiments involving analog gravity. Thus,
refined techniques to extract and measure the emission
from the acoustic horizon have been developed. Therefore,
it would, in principle, be straightforward to repeat this
experiment for pulses sent in with various profiles decom-
posed into χj—remember, as the equation is hyperbolic and
second order, fixing ϕ and π at the boundary will
completely determine the profile of the pulse sent in.
From measuring the emission at the acoustic horizon,
one could therefore extract the information which linear
combination π ¼ P

jπ
j
iχj, given a signal with source

ϕ ¼ χi, would minimize emission from the (acoustic) black
hole such that, within given tolerance ϵ, it can be consid-
ered as vanishing. Comparing to (29) then reveals that the
extracted data πji essentially correspond to the coefficients
of the retarded Green function when expanded into χi ⊗ χj
and thus, furnishes an approximation within the desired
range of precision. In the case of generalizations to
multicomponent fields ϕJ and πI , one would simply have
to apply the above procedure to all the components.
Of course, the setup described above is rather basic and

was formulated with the assumption that an experiment
would be conducted with the same techniques and tech-
nology used in simulations of Hawking radiation—which is
likely not the most optimal approach in terms of efficiency.
It thus only gives an upper limit on necessary requirements
and measurements to perform a simulation within a given
precision, and possibilities to exercise more direct control

on the behavior at the horizon would obviously signifi-
cantly improve performance. Such techniques have, to our
knowledge, not been developed yet—mostly as there was
no need for such in simulations of Hawking radiation.
Nevertheless, given the innovativeness of researchers doing
quantum simulations and the pace at which the field
progresses, it would only be a question of time and more
exchange with experimenters to develop more sophisticated
setups to facilitate an experiment as outlined above.

VII. CONCLUSIONS

We have demonstrated here how a correspondence can
be established between two seemingly unrelated condensed
matter systems by combining the AdS=CFT duality with
analog gravity. The key reason why this correspondence
holds is that two phenomena—transport in the strongly
coupled system and the propagation of perturbations in the
weakly coupled system—are described by equations with
identical mathematical structure. This structure mediating
between the two different systems is the propagation of
fields on a Painlevé-Gullstrand type metric (35). This
geometry is quite commonly found in “applied hologra-
phy” models and is known to be an analog metric as well,
making it a very important member in the class of metrics
for which an “analog duality” can be established. Meaning
that these metrics, at least from a conceptual point of view,
are potential candidates to be simulated in experiment. How
this class of metrics can be extended and this correspon-
dence will generalize when higher order corrections are
taken into account remains to be seen in future work.
We however emphasize that while we have chosen a

specific model (30) to illustrate the concept, the consid-
erations made in Sec. IVare rather generic and will remain,
conceptually speaking, the same for the type of gravity
theories commonly considered in bottom-up AdS=CFT.
These relations derived here offer the possibility that

future experiments on weakly coupled condensates may be
used to explore the behavior of strongly coupled systems.
In particular, as strange metals are presently believed to be
“strange” because they do not have quasiparticles, the
link explored here provides an alternative way to better
understand such metals by studying the behavior of their
analog duals.
Intriguingly, different types of perturbations (scalar,

vector, tensor) leading to different types of Green functions
(and transport coefficients) can be simulated by a rather
simple effective Lagrangian (5) via just tuning the external
potential. This demonstrates how efficiently the analog
duality could simulate aspects of “holographic” materials,
for which one otherwise would potentially have to restruc-
ture experimental arrangements entirely.
Beyond that, one further point in which AdS=CFT tends

to struggle is in finding examples where much detail is
known on both sides of the duality. The “applied holog-
raphy” generally contents itself with doing computations
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on the gravity side, but establishing explicit information
about the interaction on the CFT side beyond underlying
symmetries and Ward identities is notoriously difficult to
accomplish—and therefore scarce to come by, apart from a
handful of examples that employ a d.o.f. that is not found in
any realistic system. Extending this duality with additional
links that can be exploited allows for alternative, indirect
ways to uncover more information about different sides in
the “web of correspondences.” The “analog duality” thus
provides an additional point in this “web” that can
potentially be used to bypass a route that would be too
difficult to tackle otherwise. For example, there is no
established “road map” on how to systematically check
for a gravitational dual description of a strongly correlated
system; it is mostly trial and error. Having an alternative
route via a weakly coupled system with an analog dual,

e.g., by being able to simulate Green functions, could
provide additional information to narrow down the search.
One final, and maybe even more exciting, application of

this work would be to experimentally test the AdS=CFT
correspondence—or at least its suitability for the systems
under consideration—by using the commutativity of the
correspondences illustrated in Fig. 1. The gravity side of
the AdS=CFT correspondence—which itself, strictly math-
ematically speaking, is still a conjecture—is generally not
accessible to experiment. By using analog gravity, this
can however be mapped to a weakly coupled condensed
matter system. And hence, if it was possible to measure
and compare the properties of two condensed matter
systems that are linked in the way discussed here, this
would implicitly prove the validity of the holographic
dictionary.
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