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Abstract
Purpose We aimed to investigate if hereditary factors, leisure-time physical activity (LTPA) and metabolic health interact 
with resting fat oxidation (RFO) and peak fat oxidation (PFO) during ergometer cycling.
Methods We recruited 23 male monozygotic twin pairs (aged 32–37 years) and determined their RFO and PFO with indirect 
calorimetry for 21 and 19 twin pairs and for 43 and 41 twin individuals, respectively. Using physical activity interviews 
and the Baecke questionnaire, we identified 10 twin pairs as LTPA discordant for the past 3 years. Of the twin pairs, 8 pairs 
participated in both RFO and PFO measurements, and 2 pairs participated in either of the measurements. We quantified the 
participants’ metabolic health with a 2-h oral glucose tolerance test.
Results Fat oxidation within co-twins was correlated at rest [intraclass correlation coefficient (ICC) = 0.54, 95% confidence 
interval (CI) 0.15–0.78] and during exercise (ICC = 0.67, 95% CI 0.33–0.86). The LTPA-discordant pairs had no pairwise 
differences in RFO or PFO. In the twin individual-based analysis, PFO was positively correlated with the past 12-month 
LTPA (r = 0.26, p = 0.034) and the Baecke score (r = 0.40, p = 0.022) and negatively correlated with the area under the curve 
of insulin (r = − 0.42, p = 0.015) and glucose (r = − 0.31, p = 0.050) during the oral glucose tolerance test.
Conclusions Hereditary factors were more important than LTPA for determining fat oxidation at rest and during exercise. 
Additionally, PFO, but not RFO, was associated with better metabolic health.
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Introduction

Fat oxidation rates at rest (Goedecke et al. 2000; Robinson 
et al. 2016) and during exercise (Venables et al. 2005; Ran-
dell et al. 2016; Fletcher et al. 2017) vary among individu-
als. The key determinants of resting fat oxidation (RFO) are 
not precisely identified in the scientific literature. During 
exercise, the main determinant of substrate use is exercise 
intensity (Romijn et al. 1993). The peak fat oxidation (PFO) 
rate is usually achieved at moderate exercise intensities 
(~ 40–60% of maximal oxygen uptake) (Venables et al. 2005; 
Randell et al. 2016; Fletcher et al. 2017), and the rate can be 
regarded as the highest systemic capacity to oxidise fat. The 
exercise intensity, where PFO is reached, is called  FATMAX 
(Achten et al. 2002). As reviewed by Maunder et al. (2018), 
the most important determinants of PFO are training status 
and testing modality, biological sex, as well as habitual and 
acute nutrition. Large cross-sectional studies have accounted 
for only 34–47% of the variance in PFO (Venables et al. 
2005; Randell et al. 2016; Fletcher et al. 2017). Thus, a large 
part of the inter-individual variability in PFO remains unex-
plained. Genetic differences likely play an important role 
because several physical and performance traits, including 
maximal oxygen uptake (Bouchard et al. 1998), lean body 
mass (LBM), muscle strength (Arden and Spector 1997) 
and skeletal muscle fiber-type proportion (Simoneau and 
Bouchard 1995) have significant genetic components. Stud-
ies investigating the respiratory exchange ratio (RER) at rest 
and during exercise have demonstrated that the relative use 
of fatty acids in both conditions show familial resemblance 
(Bouchard et al. 1989; Toubro et al. 1998). However, to our 
knowledge, no researcher has studied the absolute fat oxida-
tion rates at rest and during exercise among monozygotic 
(MZ) twins.

Previous observational studies (Venables et al. 2005; 
Randell et al. 2016; Fletcher et al. 2017) have highlighted 
the influence of modifiable lifestyle factors, such as physi-
cal activity, on the capacity to oxidise fats. As genes also 
affect physical activity participation (Stubbe et al. 2006; 
Mustelin et al. 2012; Aaltonen et al. 2013), observational 
studies possibly overestimate the influence of physical 
activity. Experimental studies can provide evidence on the 
cause-and-effect relationship; however, long-term exercise 
training trials investigating fat oxidation are rare because 
they are expensive and arduous to perform. An option to 
counteract the shortcomings and the difficulties of both 
study designs is to compare the fat oxidation capacity of 
MZ co-twins who are discordant in long-term physical 
activity. This study design controls for genetic predisposi-
tion and mostly for the impact of the childhood environ-
ment. Therefore, the possible difference between co-twins 
likely results from different physical activity habits.

Besides investigating the determinants of fat oxidation 
capacity, researchers have been interested in understand-
ing whether fat oxidation capacity interacts with metabolic 
health. This seems plausible as efficient utilization of fatty 
acids could protect from e.g. insulin resistance (Phielix 
et al. 2012). Indeed, some studies have found an association 
between systemic fat oxidation and better metabolic health 
status (Hall et al. 2010; Rosenkilde et al. 2010; Robinson 
et al. 2015). However, obesity-related increase in fatty acid 
availability has also been linked to higher fat oxidation levels 
(Perseghin et al. 2002; Hodson et al. 2010; Ara et al. 2011; 
Dandanell et al. 2017a). Thus, it remains debated whether 
higher fat oxidation capacity is beneficial to metabolic health 
and more research is needed.

In this study, our goal was to investigate the influence of 
internal (genetics) and external (physical activity) factors 
on fat oxidation at rest and during exercise. Additionally, 
we aimed to examine the association between fat oxidation 
capacity and oral glucose tolerance test (OGTT)-induced 
metabolic response.

Materials and methods

Participants and study design

This study is part of the FITFATTWIN study, whose pur-
pose was to identify possible pairwise differences in health 
and fitness parameters between male MZ co-twins (aged 
32–37  years). The recruitment process was previously 
reported in detail (Rottensteiner et al. 2015). In short, the 
studied MZ twin pairs were identified from the longitudi-
nal FinnTwin16 cohort, which follows Finnish twins born 
from October 1974 to December 1979. The co-twins from 
202 male MZ pairs provided data on their physical activi-
ties in an online survey, which formed the fifth wave of the 
FinnTwin16 study data collection. This data was used to 
identify co-twins who were potentially discordant in leisure-
time physical activity (LTPA). From the whole population, 
39 twin pairs met the initial selection criteria and were 
selected to participate in a telephone interview, consisting 
of questions about their physical activities and health hab-
its. Based on the interview, 20 twin pairs were invited to 
participate in the study; of these, 17 twin pairs accepted the 
invitation. Additionally, 6 twin pairs who were identified as 
concordant in LTPA were recruited from the FinnTwin16 
cohort. These pairs were selected to represent varying physi-
cal activity levels, from sedentary to athletic. Thus, a total 
of 23 twin pairs participated in the laboratory measurements 
performed on 2 consecutive days. The complete timetable 
of the measurements was reported earlier as supplementary 
material in Rottensteiner et al. (2015).
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Of the 23 twin pairs, 19 pairs participated in the exer-
cise test and 22 pairs participated in the resting metabolism 
measurement (18 pairs took part in both measurements). 
One twin individual’s resting metabolism measurement 
was excluded due to hyperventilation. Thus, the analyses of 
genetic influence on PFO and RFO were conducted among 
19 and 21 twin pairs, respectively. In total, PFO and RFO 
were determined for 41 and 43 twin individuals, respectively, 
and the twin individual-based analyses were conducted in 
these groups. One twin pair declined to participate in the 
OGTT, and the analyses between PFO or RFO and OGTT 
variables were performed in groups of 39 and 41 twin indi-
viduals, respectively.

Based on detailed LTPA interviews and a questionnaire 
(see the next subsection), 10 of the 23 twin pairs were identi-
fied as LTPA-discordant for the past 3 years. The determi-
nation of discordance was thoroughly explained by Rotten-
steiner et al. (2015). Of the 10 LTPA-discordant twin pairs, 
8 pairs participated in both metabolism measurements, and 
2 pairs took part in one of the measurements. Therefore, a 
pairwise comparison on the effect of LTPA on PFO or RFO 
was performed between 9 twin pairs, respectively.

Leisure‑time physical activity (LTPA)

The LTPA level was determined with two separate inter-
views and the Baecke questionnaire. A brief retrospective 
interview (Waller et al. 2008; Leskinen et al. 2009; Rot-
tensteiner et al. 2015), including structured questions on the 
LTPA’s average frequency, duration, and intensity, as well 
as the average frequency and duration of commuting, was 
used to estimate the total LTPA volume at 1-year intervals 
over the past 6 years. The LTPA volume was calculated by 
multiplying the activity’s monthly frequency, minute dura-
tion and metabolic equivalent of task (MET)-intensity and 
commuting physical activity was calculated by multiplying 
the standard 4-MET intensity with the daily commuting min-
ute duration and the weekly frequency (5 times a week). The 
total LTPA volume was expressed as the sum score of the 
daily MET-hours, and the mean LTPA (MET-h/day) over 
the past 3 years (3-year LTMET index) was used to describe 
each participant’s activity level.

A more thorough interview was used to estimate the past 
12-month LTMET index. The interview was based on the 
Kuopio Ischemic Heart Disease Risk Factor Study Question-
naire (Lakka and Salonen 1997), with additional physical 
activities. The participants were asked about the number of 
times per month (and the average duration) they participated 
in 20 different types of physical activities or other physi-
cal activities specified by each respondent. The participants 
were also asked to classify the intensity of each activity 
based on a 4-level scale. Like the past 3-year LTMET index, 
the 12-month LTMET index was calculated as MET-h/day. 

The participants also completed a 16-item Baecke question-
naire, which measured their recent work, sports and LTPA 
(Baecke et al. 1982). The total sum score was used for the 
twin individual-based analysis.

Peak oxygen uptake  (VO2peak) and peak fat 
oxidation (PFO)

A graded incremental exercise test with a gas-exchange 
analysis was performed on the first day of the laboratory 
visit. The participants were instructed to avoid vigorous 
exercise and alcohol use 48 h and avoid eating 2 h prior 
to testing. The exercise test was performed with an electri-
cally braked bicycle ergometer (Ergoselect 200, Ergoline 
GmbH, Germany). The testing began with a 2-min stage at 
20 W, followed by a 2-min stage at 25 W. Next, the work 
rate increased by 25 W every 2 min until volitional exhaus-
tion. The breath-by-breath gas exchange was recorded with 
a Vmax Encore 29 metabolic cart (Sensormedics, Yorba 
Linda, CA, USA), which was calibrated according to the 
manufacturer’s instructions before each measurement. The 
volume of oxygen  (VO2) inspired and the volume of carbon 
dioxide  (VCO2) expired were averaged at 30-s intervals for 
the whole test duration. The  VO2peak was determined as the 
average of the two highest consecutive  VO2-measurements. 
Fat oxidation was calculated for each exercise stage from the 
last 30-s period with Frayn’s (1983) equation, assuming that 
the urinary nitrogen excretion was negligible. The highest 
calculated fat oxidation rate was selected as the PFO and the 
corresponding exercise intensity as the  FATMAX (%VO2peak). 
Each participant’s heart rate and cardiac function were 
monitored continuously with a 12-lead electrocardiography 
system (CardioSoft v.5.02 GE Medical System Corina, GE 
Medical System Inc., USA). The rating of perceived exertion 
(RPE) was determined at the end of each stage with the Borg 
(6–20) scale (Borg 1982). The exercise test was classified 
as maximal if the RPE was 19–20/20 or the RER was > 1.1 
at the end of the test. The exercise test protocol was sub-
maximal for 4 subjects. Among the participants tested with 
the submaximal protocol, their fat oxidation rates declined 
before their last performed exercise stage. Thus, their PFO 
results were included in the study, and their  VO2peak was 
extrapolated based on the submaximal results.

Body composition

Each participant’s body composition was measured in the 
morning of the second measurement day, following over-
night fasting. For the body mass and height measurements, 
the participants were barefoot and wore light outfits. Their 
body mass and height were respectively measured using an 
electronic scale with a 0.1-kg accuracy and a stadiometer 
with a 0.5-cm accuracy. Their total mass, LBM, fat mass and 
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body fat percentage were measured with dual-energy x-ray 
absorptiometry (DXA) (DXA Prodigy, GE Lunar Corp., 
Madison, WI, USA).

Resting metabolism

Each participant’s resting metabolism was measured (after 
the DXA measurement) in a dimly light room. Similar to the 
exercise test, the same Vmax Encore 29 metabolic cart was 
used and calibrated accordingly. First, the participants rested 
10 min in a supine position. Then, their gas exchange was 
recorded for 16 min using the ventilated canopy method, and 
their  VO2 and  VCO2 were averaged at 1-min intervals. First 
5 min measurement data were excluded. Resting metabo-
lism variables were calculated from a steady-state measure-
ment period  (VO2 and  VCO2 coefficient of variation ≤ 10% 
between minutes). The average steady-state duration was 
9.2 ± 2.7 min. The resting energy expenditure (REE) was 
calculated with the modified Weir equation (Weir 1949; 
Mansell and Macdonald 1990), and Frayn’s (1983) equa-
tion was used to calculate the RFO. A protein correction 
factor of 0.11 mg/kg/min was applied to take into account 
the nitrogen exertion (Flatt et al. 1985; Hall et al. 2010; Rob-
inson et al. 2016).

Metabolic health

A standard 2-h OGTT followed the resting metabolism 
measurement. After the collection of their fasted blood 
samples, the participants ingested a 75-g glucose solution 
(GlucosePro, Comed LLC, Tampere, Finland). Next, their 
blood samples were collected at 30-min, 1-h and 2-h inter-
vals post-ingestion. All blood samples were collected from 
each participant’s antecubital vein when he was in a supine 
position. The plasma glucose concentration was analysed 
with Konelab 20 XT (Thermo Fisher Scientific, Vantaa, 
Finland) and the serum insulin concentration was analysed 
using IMMULITE® 1000 (Siemens Medical Solution Diag-
nostics, Los Angeles, CA, USA). The Matsuda index was 
determined based on the equation: 10,000/square root of 
[(fasting glucose × fasting insulin)  ×  (mean glucose  ×  
mean insulin during OGTT)] (Matsuda and DeFrozo 1991). 
Additionally, the area under the curve (AUC) was calculated 
for insulin and glucose with the trapezoidal method.

Ethical approval

Good clinical and scientific practices and guidelines, as well 
as the Declaration of Helsinki, were followed while conduct-
ing the study. The study was approved by the Ethics Com-
mittee of the Central Finland Health Care District (Dnro 

4U/2011). All participants provided their written informed 
consent before the laboratory measurements.

Statistical analysis

Statistical analysis was carried out with IBM SPSS Statistics 
24.0 and Stata 15.0. A one-way random model was used 
to calculate the intraclass correlation coefficients (ICCs) 
between the MZ co-twins. An ICC compares within-pair 
variation with between-pair variation and thus explains 
how similar the co-twins are when compared with the other 
pairs. Pairwise correlations and differences were analysed 
with Pearson correlation coefficient and paired-sample t 
test, respectively. Twin individual-based correlations were 
analysed with simple linear regression, and the within-pair 
dependency was taken into account (Williams 2000) with the 
clustering option of Stata. In all regression analyses, RFO 
or PFO was treated as the dependent variable. All the vari-
ables or the regression analysis residuals were determined 
normally distributed with the Shapiro–Wilk test or with the 
visual inspection of the histograms and the normality plots. 
The p value 0.05 was selected to represent statistical sig-
nificance. For clarity, RFO or PFO without a unit symbol is 
used in the text when the statistical significance persists both 
when using absolute or LBM relative values in the analysis.

Results

Participant characteristics

Table  1 presents the participant characteristics. Over-
all, the study population consisted of healthy men (aged 
32–37 years) with varying physical activity, body composi-
tion and cardiorespiratory fitness levels.

Hereditary factors and metabolism at rest 
and during exercise

The calculated ICCs of the resting metabolism variables 
and PFO showed significant resemblance between co-twins 
(Table 2). We also categorised the co-twins as more active 
or less active based on their 12-month LTMET index to 
calculate pairwise correlations (Figs. 1 and 2). This divi-
sion did not lead to significant mean differences between 
the groups in RFO (0.001 g/min, p = 0.68) or PFO (0.02 g/
min, p = 0.47).

LTPA and metabolism at rest and during exercise

Table 3 presents the results of the pairwise comparison 
between the LTPA-discordant co-twins (n = 9–10). Fig-
ure  3 illustrates individual RFO and PFO results and 
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within-pair relationships. As reported earlier (Rotten-
steiner et al. 2015), long-term LTPA-discordant co-twins 
had different body fat percentage and cardiorespiratory 
fitness levels. However, there were no differences in REE, 
RER at rest or RFO between active and inactive co-twins. 
On average, the active co-twins tended to have higher PFO 
rates and lower  FATMAX when compared with the inac-
tive co-twins, but the differences were not statistically sig-
nificant. In the twin individual-based analysis (Table 4), 
only PFO (g/min) was positively correlated with the 
12-month LTMET index (r = 0.26, p = 0.034), the Baecke 

score (r = 0.40, p = 0.022) and  VO2peak (l/min) (r = 0.51, 
p = 0.028).

Fat oxidation at rest and during exercise 
and metabolic health

RFO or PFO were not correlated with fasting glucose, fast-
ing insulin or the Matsuda index in the twin individual-based 
analysis (Table 4). PFO (g/min) negatively correlated with 
the AUC of insulin (r = − 0.42, p = 0.015) and the AUC of 
glucose (r = − 0.31, p = 0.050). In contrast, RFO positively 

Table 1  Characteristics of the 
participants (n = 46)

AUC  area under the curve, BMI body mass index, LBM lean body mass, MET metabolic equivalent of task, 
OGTT  oral glucose tolerance test, PFO peak fat oxidation, REE resting energy expenditure, RER respira-
tory exchange ratio, RFO resting fat oxidation, VO2peak peak oxygen uptake
a n = 41
b n = 43
c n = 44 participants

Mean ± SD Minimum Maximum

Age 34.5 ± 1.5 32 37
Body composition
 Height (cm) 178 ± 7 157 190
 Body mass (kg) 76.7 ± 9.8 51.5 96.2
 BMI (kg/m2) 24.1 ± 2.7 19.8 33.6
 Lean body mass (kg) 56.8 ± 7.0 40.4 73.2
 Fat mass (kg) 16.7 ± 6.7 5.2 31.6
 Body fat percentage (%) 21.4 ± 6.7 7.6 36.0

Physical activity
 3-year-LTMET index (MET-h/day) 4.7 ± 4.6 0.2 18.3
 12-month-LTMET index (MET-h/day) 4.2 ± 4.6 0.1 27.7
 Baecke questionnaire (score) 8.3 ± 1.3 5.6 12.1

Cardiorespiratory  fitnessa

 VO2peak (l/min) 3.2 ± 0.6 2.3 4.6
 VO2peak (ml/kg/min) 41 ± 9 29 66
 VO2peak (ml/kg LBM/min) 55 ± 8 40 75

Resting  metabolismb

 REE (kcal/d) 1 685 ± 190 1 297 2 074
 RER 0.82 ± 0.04 75 89
 RFO (g/min) 0.06 ± 0.02 0.02 0.09
 RFO (mg/kg LBM/min) 1.0 ± 0.3 0.5 1.6

Fat oxidation during  exercisea

 PFO (g/min) 0.39 ± 0.14 0.13 0.81
 PFO (mg/kg LBM/min) 6.8 ± 2.2 2.4 13.7
 FATMAX (%VO2peak) 40 ± 10 26 72

Metabolic health
 Fasting glucose (mmol/l) 5.5 ± 0.5 4.7 6.6
 Fasting insulin (IU/ml) 3.9 ± 3.2 0.2 14.6
 2-h OGTT glucose (mmol/l)c 5.1 ± 1.1 3.1 7.6
 Matsuda  indexc 18.4 ± 17.8 2.3 64.6
 Insulin AUC (IU/ml/h)c 66.1 ± 38.4 17.6 186.8
 Glucose AUC (mmol/l/h)c 11.7 ± 2.4 8.2 19.4
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correlated (r = 0.31, p = 0.019) with glucose AUC when 
expressed relative to LBM.

Discussion

For the first time, our study data showed that fat oxidation 
rates at rest and during exercise were similar between MZ 
co-twins, even though the study group was enriched with 
pairs who had discordant LTPA habits. The co-twins also 
exhibited similar  FATMAX values and thus tended to reach 
PFO at the same absolute exercise intensities. Although we 
were unable to confirm the effect of long-term LTPA on fat 

oxidation capacity in our small sub-population of long-term 
LTPA-discordant MZ co-twins, PFO (g/min) was associated 
with LTPA in the twin individual-based analysis. We also 
observed that PFO (g/min), but not RFO, was associated 
with a favourable response to glucose loading.

This study’s major finding is that hereditary factors 
influence fat oxidation capacity. The finding supports those 
of Toubro et al. (1998) and Bouchard et al. (1989), who 
reported that RER at rest and during low-intensity cycling 
showed significant familial resemblance. In a study involv-
ing male MZ twin pairs (Bouchard et al. 1989), the ICCs of 
RER ranged from 0.63 to 0.54 during cycling at low intensi-
ties (50 W and 100 W, respectively). As the researchers also 
investigated the substrate use of dizygotic twins, they were 
able to control their analysis for the common environmental 
effect. Their calculated heritability estimates ranged from 
0.40 to 0.62. However, as RER only describes the relative 
use of energy substrates, this study broadens the concept by 
showing that absolute fat oxidation rates behave accordingly 
and supports the earlier suggestion that genes play a role in 
determining fat oxidation capacity during exercise (Jeuken-
drup and Wallis 2005; Randell et al. 2016). This assumption 
seems evident, as the large cross-sectional studies investigat-
ing fat oxidation during exercise have been able to describe 
only partly the observed inter-individual variability in PFO 
(Venables et al. 2005; Randell et al. 2016; Fletcher et al. 
2017).

We identified a subpopulation of MZ twin pairs, where 
the co-twins differed in their past 3-year LTPA. As reported 
earlier (Rottensteiner et al. 2015, 2016; Tarkka et al. 2016; 
Hautasaari et  al. 2017), the LTPA discordance created 
diet-independent differences between active and inactive 

Table 2  The intraclass correlation coefficients (ICCs) between MZ 
co-twins

PFO peak fat oxidation, REE resting energy expenditure, RER respir-
atory exchange ratio, RFO resting fat oxidation
a n = 21 MZ twin pairs
b n = 19 MZ twin pairs

Variable ICC 95% CI p value

Resting  metabolisma

 REE (kcal/day) 0.58 (0.21 to 0.80) 0.002
 RER 0.51 (0.12 to 0.77) 0.007
 RFO (g/min) 0.54 (0.15 to 0.78) 0.004
 RFO (mg/kg LBM/min) 0.57 (0.20 to 0.80) 0.003

Fat oxidation during  exerciseb

 PFO (g/min) 0.67 (0.33 to 0.86) < 0.001
 PFO (mg/kg LBM/min) 0.59 (0.21 to 0.82) 0.002
 FATMAX (%VO2peak) 0.51 (0.09 to 0.77) 0.010

Fig. 1  Pairwise correlations of a absolute and b lean body mass (LBM) relative resting fat oxidation (RFO) in 21 MZ twin pairs
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co-twins in cardiorespiratory fitness, intra-abdominal adi-
posity, glucose homeostasis, and brain morphology and 
function. In this study, we found no differences between 

the co-twins in their systemic energy metabolism at rest 
or during exercise. In the twin individual-based analysis, 
only PFO (g/min) was associated with LTPA. In previous 

Fig. 2  Pairwise correlations of a absolute and b lean body mass (LBM) relative peak fat oxidation (PFO) during exercise in 19 MZ twin pairs

Table 3  Characteristics of the long-term-discordant MZ twin pairs

LBM lean body mass, MET metabolic equivalent of task, OGTT  oral glucose tolerance test, PFO peak fat oxidation, REE resting energy expendi-
ture, RER: respiratory exchange ratio, RFO resting fat oxidation, VO2peak peak oxygen uptake
* Data reported earlier (Rottensteiner et al. 2015)
a n = 9 MZ twin pairs
b n = 9 MZ twin pairs, one pair is different than in the exercise test-based variables

Variable Active (n = 10) Inactive (n = 10) Mean difference (95% CI) p value

Physical activity*
 3-year-LTMET index (MET-h/day) 5.0 ± 2.7 1.7 ± 1.3 3.3 (1.9 to 4.8) 0.001
 12-month-LTMET index (MET-h/day) 3.9 ± 1.2 1.2 ± 0.9 2.8 (2.0 to 3.5) < 0.001

Body composition*
 Lean body mass (kg) 56.9 ± 4.8 55.5 ± 6.1 1.4 (− 0.3 to 3.0) 0.094
 Fat mass (kg) 16.0 ± 4.5 19.2 ± 6.6 − 3.3 (− 6.7 to 0.2) 0.059
 Body fat percentage (%) 20.7 ± 4.0 24.0 ± 4.6 − 3.3 (− 6.2 to − 0.4) 0.029

Cardiorespiratory  fitnessa

 VO2peak (l/min) 3.3 ± 0.3 2.9 ± 0.5 0.4 (0.2 to 0.6) 0.001
 VO2peak (ml/kg  LBM/min) 58 ± 5 52 ± 5 7 (3 to 10) 0.001

Metabolism at  restb

 REE (kcal/day) 1735 ± 187 1675 ± 191 59 (− 48 to 166) 0.24
 RER 0.82 ± 0.03 0.80 ± 0.03 0.02 (− 0.01 to 0.04) 0.16
 RFO (g/min) 0.06 ± 0.02 0.06 ± 0.02 0.00 (− 0.01 to 0.01) 0.52
 RFO (mg/kg  LBM/min) 1.0 ± 0.3 1.1 ± 0.3 − 0.1 (− 0.3 to 0.1) 0.35

Fat oxidation during  exercisea

 PFO (g/min) 0.46 ± 0.20 0.38 ± 0.12 0.08 (− 0.02 to 0.18) 0.11
 PFO (mg/kg  LBM/min) 8.0 ± 3.1 6.9 ± 1.8 1.1 (− 0.7 to 2.9) 0.18
 FATMAX (%VO2peak) 40 ± 9 43 ± 8 − 4 (− 8 to 1) 0.077
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observational studies, PFO was associated with self-reported 
physical activity (Venables et al. 2005; Fletcher et al. 2017), 
and trained subjects (Nordby et al. 2006) or athletes (Dan-
danell et al. 2018) exhibited superior PFO compared with 
controls. However, it is highly likely that physical activity 
participation and fat oxidation capacity have shared genetic 
factors, and the relationship noted in observational stud-
ies is partly genetically mediated. In experimental studies, 
endurance-training interventions commonly increased PFO, 
at least in untrained populations (reviewed by Maunder et al. 
2018). Earlier mechanistic evidence from our laboratory 
also supports the role of physical activity as a modulator of 
PFO. In same-sex twin pairs, an over 30-year long physical 
activity discordance led to significant differences in myocel-
lular gene expression related to oxidative phosphorylation 
and lipid metabolism (Leskinen et al. 2010). The effects of 
physical activity on RFO have been investigated less, with 
mixed results. A modest increase in fat oxidation rates at 
rest has been reported in some (Barwell et al. 2009; Whyte 
et al. 2010) but not in all (Scharhag-Rosenberger et al. 2010) 
trials. When the current scientific evidence is taken together 
with our results, physical activity seems to be able to influ-
ence PFO, while its effect on RFO is questionable.

In the twin individual-based analysis, we observed that 
PFO (g/min) was associated with a favourable response to 
glucose loading. The observed inverse association between 
PFO (g/min) and insulin concentration during the OGTT 
was especially convincing. However, we found no associa-
tion between PFO and the Matsuda index, our main sur-
rogate of insulin sensitivity. As explained in the methods 
section, the Matsuda index is influenced by fasting values, 
which were not associated with PFO in our study. Previ-
ously, Robinson et al. (2015) showed that PFO was inversely 

associated with a fasting-based QUICKI index. As Robinson 
et al. (2015) had a larger sample size (n = 53) and measured 
the PFO in the fasting state, they were more able to find the 
associations between the PFO and the fasting-based values, 
which generally vary less among healthy individuals when 
compared with the responses to glucose loading. Here, we 
show that probably an even more noticeable inverse associa-
tion exists between PFO (g/min) and the insulin response to 
the OGTT. However, it should be mentioned that PFO does 
not always seem to be associated with a healthier metabolic 
phenotype because an obesity-related increase in fatty acid 
availability has also been linked to higher PFO (Ara et al. 
2011; Dandanell et al. 2017a).

In contrary to PFO, RFO was not associated with a 
healthy metabolic response to the OGTT. Previous stud-
ies have noted mixed findings. Rosenkilde et al. (2010) 
reported that in a population of overweight but otherwise 
healthy men, the group with low RER at rest had higher 
PFO and a healthier metabolic profile when compared with 
the group with high RER. However, there were no differ-
ences in fasting glucose or insulin levels between the groups. 
Some case–control studies (Perseghin et al. 2002; Hodson 
et al. 2010) have shown an elevated RFO in obese subjects 
when compared with their lean counterparts. An elevated 
RFO could potentially function as a protective mechanism 
against insulin resistance (Perseghing et al. 2002) and liver 
fat accumulation (Hodson et al. 2010) when lipid availability 
increases. Overall, further research is needed to clarify the 
interaction between systemic fat oxidation and metabolic 
health.

Our study has both strengths and limitations. A key 
strength was our ability to measure RFO and PFO in 21 and 
19 MZ twin pairs, respectively. This enabled us to investigate 

Fig. 3  a Resting fat oxidation (RFO) and b peak fat oxidation (PFO) 
during exercise in the leisure-time physical activity discordant MZ 
twin pairs (n = 9, 8 pairs successfully participated in both measure-

ments). Figures include group means and standard deviations. Col-
ours represent the same twin pairs in both charts. Note the different 
scale in the y-axis
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the influence of hereditary factors on RFO and PFO in a rea-
sonably sized study group. The calculated ICCs represent 
the upper bound of heritability, as differences between MZ 
twins are due to non-genetic factors. However, as MZ twin 
pairs share also many aspects of their development and envi-
ronment, the actual heritability of the trait may be lower. A 
more precise estimation of heritability would require several 
kinds of relatives (for quantitative trait modeling) or very 
large study population (for measurement of all genetic vari-
ation by whole genome sequencing). Despite our systematic 
nationwide search, we could only recruit 10 MZ twin pairs, 
where the co-twins were long-term LTPA-discordant, which 
weakened our study’s power to find significant pairwise 

differences. Furthermore, the participants’ MZ twin status 
made it more difficult to find significant twin individual-
based correlations because clustering was necessary to take 
into account the within-pair dependency. Additionally, since 
our study included only males, the results cannot be gener-
alised to females.

Another strength of our study was our protocol’s inclu-
sion of an OGTT; we did not depend on using fasting-
based values. This enabled us to conduct a more in-depth 
examination of the possible associations between fat oxi-
dation and metabolic health. However, our study protocol 
was not optimal for PFO determination, which should be 
considered when interpreting the results. Nutrition intake 

Table 4  Results of the twin individual-based analysis

AUC  area under the curve, BMI body mass index, LBM lean body mass, MET metabolic equivalent of task, OGTT  oral glucose tolerance test, 
PFO peak fat oxidation, REE resting energy expenditure, RER respiratory exchange ratio, RFO resting fat oxidation, VO2peak peak oxygen uptake

PFO (g/min) PFO (mg/kg LBM/min) RFO (g/min) RFO (mg/kg LBM/min)

Body composition
 BMI (kg/m2) r = 0.12

p = 0.53
r = 0.054
p = 0.76

r = 0.16
p = 0.25

r = 0.079
p = 0.58

 Lean body mass (kg) r = 0.41
p = 0.007

r = 0.33
p = 0.12

 Fat mass (kg) r = − 0.13
p = 0.57

r = − 0.091
p = 0.66

r = 0.08
p = 0.63

r = 0.10
p = 0.48

Self-reported leisure time physical activity
 12-month LTMET-index (MET-h/day) r = 0.26

p = 0.034
r = 0.10
p = 0.41

r = 0.14
p = 0.23

r = − 0.08
p = 0.46

 3-year-LTMET-index (MET-h/day) r = 0.30
p = 0.081

r = 0.20
p = 0.26

r = 0.22
p = 0.13

r = 0.05
p = 0.32

 Baecke questionnaire (score) r = 0.40
p = 0.022

r = 0.25
p = 0.13

r = 0.002
r = 0.98

r = − 0.15
p = 0.24

Cardiorespiratory fitness
 VO2peak (l/min) r = 0.51

p = 0.028
r = 0.21
p = 0.30

 VO2peak (ml/kg LBM/min) r = 0.36
p = 0.085

r = − 0.006
p = 0.97

Fat oxidation during exercise
 PFO (g/min) r = 0.30

p = 0.14
 PFO (mg/kg LBM/min) r = 0.29

p = 0.12
Glucose homeostasis and insulin sensitivity
 Fasting glucose (mmol/l) r = − 0.11

p = 0.42
r = − 0.16
p = 0.26

r = 0.084
p = 0.60

r = 0.05
p = 0.80

 Fasting insulin (µU/l) r = − 0.17
p = 0.33

r = − 0.13
p = 0.48

r = -0.10
p = 0.59

r = − 0.079
p = 0.63

 Matsuda index r = 0.10
p = 0.60

r = 0.026
p = 0.91

r = 0.18
p = 0.29

r = 0.067
p = 0.67

 Insulin AUC (µU/l/h) r = − 0.42
p = 0.015

r = − 0.35
p = 0.055

r = − 0.04
p = 0.85

r = 0.12
p = 0.58

 Glucose AUC (mmol/l/h) r = − 0.31
p = 0.050

r = − 0.27
p = 0.11

r = 0.21
p = 0.082

r = 0.31
p = 0.019
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the day before (Støa et al. 2016) and on the same day 
(Achten and Jeukendrup 2003; Edinburgh et al. 2018) will 
alter substrate use. In this study, we did not control for the 
nutrition intake before the exercise test. For example, this 
could partially explain why we did not find any association 
between RFO and PFO, as previously shown by Robinson 
et al. (2016). Moreover, we used 2-min exercise stages 
during PFO testing. The 2-min stages might be too short 
to reach a steady-state, especially for the subjects with 
lower cardiorespiratory fitness (Dandanell et al. 2017b; 
Chrzanowski-Smith et al. 2018). To assess whether the 
stage duration excessively affected the results, we com-
pared  VO2 and  VCO2 between intervals 90–105  s and 
105–120 s of the PFO-stage. There were no systematic 
differences in  VO2 or  VCO2 between the intervals. Mean 
coefficients of variation were 4 ± 4% and 4 ± 4% for  VO2 
and  VCO2, respectively. Coefficient of variation of  VO2, 
 VCO2 or both exceeded 10% in 3 out of 41 participants. 
Removing these participants from the analyses did not 
materially change the results. Therefore, the influence of 
the stage duration was considered acceptable. Also, the 
measured PFO (g/min) results were associated with the 
most important determinants described in the literature, 
and as expected, correlated between the MZ co-twins. 
Thus, the measurements seemed to reflect the PFO of our 
study participants.

In conclusion, we show that fat oxidation rates at rest 
and during exercise are similar between MZ co-twins. Our 
results support the suggestion that hereditary factors influ-
ence fat oxidation capacity. The internal factors likely set 
the baseline for fat oxidation capacity that the external 
factors can modulate. In our study, the role of physical 
activity seemed smaller, especially concerning RFO. Fur-
thermore, we observed that only higher capacity to utilize 
fatty acids during exercise associated with better metabolic 
health.
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