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In this article, we consider the following problem. Given a directed graphG, output all walks ofG that are sub-

walks of all closed edge-covering walks of G. This problem was first considered by Tomescu and Medvedev

(RECOMB 2016), who characterized these walks through the notion of omnitig. Omnitigs were shown to be

relevant for the genome assembly problem from bioinformatics, where a genome sequence must be assembled

from a set of reads from a sequencing experiment. Tomescu and Medvedev (RECOMB 2016) also proposed an

algorithm for listing all maximal omnitigs, by launching an exhaustive visit from every edge.

In this article, we prove new insights about the structure of omnitigs and solve several open questions

about them. We combine these to achieve an O (nm)-time algorithm for outputting all the maximal omnitigs

of a graph (with n nodes andm edges). This is also optimal, as we show families of graphs whose total omnitig

length is Ω(nm). We implement this algorithm and show that it is 9–12 times faster in practice than the one

of Tomescu and Medvedev (RECOMB 2016).
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1 INTRODUCTION

In many computational problems, we are interested in just a simple answer to a problem, e.g., any
shortest route from A to B. However, other problems are only approximately modeled by a mathe-
matical formulation, and the best solution may depend on more complex criteria. One established
way of coping with this is to enumerate all solutions, or only the first k best solutions (called k-

best enumeration; see Eppstein (2015) for a survey). However, in many cases, this is unfeasible; for
example, if there is a large number of optimal solutions.

Another way of coping with this problem is to output only the partial solutions that are com-
mon to all solutions. In the bioinformatics community, this problem has been studied for the se-
quence alignment problem (formulated as finding the character alignments common to all optimal
alignments of two biological sequences, see, e.g., Vingron and Argos (1990), Vingron (1996), Chao
et al. (1993), Friemann and Schmitz (1992), and Zuker (1991)), for the problem of filling a missing
sequence inside a genome (formulated as finding the walks common to all walks of a given length
in a graph (Salmela and Tomescu 2019)), or for the genome assembly problem, as we will review
in more detail in Section 1.2.

In the combinatorial optimization community, the closest notion related to safety is that of
persistency. Problems about persistency are often formulated as follows: we are given a problem
on undirected graphs, and we need to partition the nodes or edges of the graph into (i) those present
in all solutions to the problem (the persistent ones (Costa 1994)), (ii) those present in no solution,
and (iii) those present in some solutions. This was first studied in connection with persistent edges
present in all maximum matchings of a bipartite graph (Costa 1994), and later developed for more
general assignment problems (Cechlárová 1998). It was also studied for all maximum stable sets of
a graph (Boros et al. 2002). Persistency has also been generalized to sets of nodes or edges via the
notions of transversal and blocker; see, e.g., Zenklusen et al. (2009), Costa et al. (2011), and Pajouh
et al. (2014).

In this article, we study a graph problem motivated by the genome assembly problem from
bioinformatics. More specifically, given a directed graph G, we need to find the walks of G that
are common to all closed edge-covering walks ofG. (A walkw is closed, or circular, if its first node
is the same as its last node, and it is edge-covering if all edges of G appear in w .) The problem of
characterizing such walks was solved in Tomescu and Medvedev (2016). These walks were called
omnitigs (see Definition 2.1), and an algorithm for finding all maximal omnitigs was presented
(maximal means that it cannot be extended to the left or right without losing the property of being
an omnitig). The asymptotic running time of this algorithm was not fully analyzed in Tomescu
and Medvedev (2016) except to say it was polynomial time. However, it is based on launching an
exhaustive visit from every edge of the graph, and extending all such possible walks as long as
they remain omnitigs. Its running time remained several orders of magnitude slower than popular
assembly heuristics, and improving it was recognized as an important open problem.

We should also note that our problem formulation is similar to the problem of finding the walks
common to all closed Eulerian walks of a graph (i.e., those that cover every edge of the graph
exactly once). This problem was mentioned in Nagarajan and Pop (2009), which also proposed a
solution to it based on the cycle-graph decomposition of the graph. This decomposition was used
in Waterman (1995) to characterize Eulerian graphs with a unique closed Eulerian walk. However,
despite this formal similarity, our problem requires a different set of techniques as the Eulerian
case.

In Section 1.1 below, we summarize the main results of this article, and in Section 1.2, we explain
the biological relevance of this problem.
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1.1 Contributions and Approach

The main result of this article is an algorithm (Algorithm 3 from Section 4.4) running in timeO (nm)
for outputting all maximal omnitigs of a graph (m is the number of edges, n is the number of nodes,
and from here onward in this article, all graphs are directed). This algorithm is also optimal, in the
sense that there are families of graphs for which the total length of their omnitigs is Ω(nm) (see,
e.g., Figure 9).

This algorithm is based on three insights.

(1) A structural result connecting branches of a graph (i.e., edges whose source node has out-
degree at least two) with left-maximal omnitigs (Theorem 3.7 from Section 3). In particular,
there can be only one left-maximal omnitig ending with a given branch, and the structure
of such omnitigs is almost fully characterizable. This also implies that the number of max-
imal omnitigs is at most m and their individual lengths are bounded by 3n − 1. We also
give families of graphs that achieve these upper bounds, showing that they are tight. Pre-
viously, only an upper bound of nm was known on the number of maximal omnitigs and
an upper bound of nm on their lengths (Tomescu and Medvedev 2016).

(2) A partial order between branches, based on whether or not they are connected by “simple”
omnitigs (Definition 4.2), which we prove to be acyclic. This allows us to reuse computa-
tion when recursively computing the left-maximal omnitig ending with a given branch.

(3) A connection between omnitigs and strong bridges of a graph (i.e., those edges whose
removal disrupts strong connectivity (Italiano et al. 2012)). In particular, omnitigs that do
not start with a strong bridge are easy to find (Lemma 4.7). Since there are at most O (n)
strong bridges in a graph, this implies that also the number of hard cases is O (n), and not
O (m).

We also implement the new algorithm, and show in Section 5 that it is 9–12 times faster in prac-
tice than the one of Tomescu and Medvedev (2016). Finally, at the end of Section 4, we demonstrate
that the Y-to-V transformation, used as pre-processing step in the implementation of Tomescu and
Medvedev (2016) to simplify the input, can result in some omnitigs not being present in the out-
put. This transformation is a well-known method (e.g., Medvedev et al. (2007), Jackson (2009), and
Kingsford et al. (2010)) for reducing the graph used in assembly.

1.2 Biological Motivation

This section presents the relevance of our problem to the genome assembly problem from bioin-
formatics. The rest of the article can be read independently from this section.

Genome assembly is the problem of reconstructing a genome sequence from a set of reads from
a sequencing experiment. Genome graphs have been the basis of most assembly algorithms. There
is the edge-centric de Bruijn graph (Idury and Waterman 1995; Pevzner et al. 2001), where every
k-mer (string of length k) of the reads becomes a node and every (k + 1)-mer of the reads be-
comes an edge, or the node-centric de Bruijn graph, where the nodes are the same but the edges are
(k − 1)-overlaps between nodes. In a string graph, every read becomes a node and large enough
non-transitive overlaps between reads are represented as edges (Myers 2014; Simpson and Durbin
2012). In Tomescu and Medvedev (2016), these graphs were unified under the “genome graph”
model. Theoretical formulations of the assembly problem define what a genome reconstruction is:
typically, this is a walk in a genome graph, subject to some constraints. For example, a genome
reconstruction could be a closed edge-covering walk (Iu et al. 1988; Narzisi et al. 2014; Pevzner
1989), or a closed Eulerian walk (Kapun and Tsarev 2013; Medvedev and Brudno 2009; Medvedev
et al. 2007; Nagarajan and Pop 2009).

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 48. Publication date: July 2019.



48:4 M. Cairo et al.

However, algorithms to find an entire genome reconstruction are rarely implemented in practice
because there is usually more than one valid genome reconstruction. When assemblers have no
way to distinguish different reconstructions, they instead output contigs, which are stretches of
DNA that are assumed to be in the genome. To bridge theory and practice, Tomescu and Medvedev
(2016)) proposed an alternative formulation of the contig assembly problem. A string is considered
safe if it is guaranteed to occur in every valid genome reconstruction. A contig assembly algorithm
should ideally be safe (i.e., only outputting safe strings) and complete (i.e., every safe string should
be output by the algorithm).

The notion of a safe and complete algorithm embodies several previous results. Contig assembly
was first approached by finding unitigs (Kececioglu and Myers 1995), namely those paths whose
internal nodes have in- and out-degree one. Later, some generalizations of unitigs have been con-
sidered. For example, Pevzner et al. (2001) considered paths whose internal nodes have out-degree
one, with no restriction on their in-degree; Medvedev et al. (2007), Jackson (2009), and Kingsford
et al. (2010) considered the unitigs of a genome graph simplified with the so-called Y-to-V transfor-

mation (we further discuss this at the end of Section 4). Although no underlying notion of genomic
reconstruction was explicit in these studies, it can be shown that the resulting paths are safe for
closed edge-covering walks. However, as (Tomescu and Medvedev 2016) notices, such approaches
do not find all the safe strings. Also other studies have indeed given safe and complete algorithms
for some reconstruction notions. Nagarajan and Pop (2009)) attribute to Waterman (1995) the char-
acterization of the walks common to all closed Eulerian walks. For edge-weighted genome graphs,
Nagarajan and Pop (2009) claim that a simple algorithm exists for finding all those walks common
to all shortest closed edge-covering walks.

Tomescu and Medvedev (2016)) considered the genomic reconstruction notion of a closed edge-
covering walk. This model is strictly more general than the above two ones, and, thus, safe strings
for it are also safe for them. Moreover, it is also more realistic because the Eulerian notion assumes
that all positions in the genome are sequenced exactly the same number of times, while the mini-
mality criterion from other notions may over-collapse repeated regions. However, it still assumes
that the reads are error-free, single-stranded, come from a circular genome, and every position in
the genome appears in some read. We refer to Tomescu and Medvedev (2016) and the experimen-
tal results therein for further details on the practical merits of omnitigs for the genome assembly
problem.

2 BACKGROUND AND NOTATION

In this article, a graph is a tuple G = (V ,E, s, t ), where V is a finite set of nodes, E is a finite set of
edges, and s, t : E → V assign to each edge e ∈ E its source node s (e ) and its destination node t (e ).
Parallel edges and self-loops are allowed. We say that an edge e goes from s (e ) to t (e ). The reverse

graph of G is defined as GR = (V ,E, t , s ).
A walk onG is a sequencew = (v0, e1,v1, e2, . . . ,v�−1, e�,v� ), � ≥ 0, wherev0,v1, . . . ,v� ∈ V are

nodes and each ei is an edge fromvi−1 tovi . We say thatw goes from s (w ) = v0 to t (w ) = v� and has
length |w | = �. A walkw is called empty if |w | = 0, and non-empty, otherwise. (There exists exactly
one empty walk ϵv = (v ) for every node v ∈ V , and s (ϵv ) = t (ϵv ) = v .) A walkw is called closed if
it is non-empty and s (w ) = t (w ); otherwise, it is open. A path is a walk whose nodes v0,v1, . . . ,v�

are all distinct, except that v� = v0 is allowed (in which case, we have either a closed or an empty
path). A graph is strongly connected if there is a path (or, equivalently, a walk) from any node to
any other node.

In the rest of this article, a strongly connected graph G = (V ,E, s, t ) is given, with |V | = n and
|E | =m ≥ n. We adopt the following conventions. Lettersu,v denote nodes; letters e, f ,д,h denote
edges, which are identified with the corresponding length-1 walks; letters p,q, r denote paths;
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Fig. 1. Examples of walks e1 · · · e� , which are not omnitigs due to the existence of a path p satisfying the

conditions of Definition 2.1. In the first row, p = f1 · · · f |p | with |p | > 1. In the second row, p = f . In the left

column, p is a non-empty open path. In the right column, p is a closed path.

and letters w,x ,y, z denote generic walks (each letter possibly with subscripts or superscripts).
Juxtaposition ww ′ denotes the concatenation of walks w and w ′, where t (w ) = s (w ′) is implicitly
assumed. We start from the following definition of omnitigs offered in Tomescu and Medvedev
(2016). See also Figure 1.

Definition 2.1 (Omnitig). A non-empty walkw = e1 · · · e� is an omnitig if, for every 1 ≤ i < j ≤ �,
there is no non-empty path from s (ej ) to t (ei ), with first edge different from ej , and last edge
different from ei .

The main result from Tomescu and Medvedev (2016) is that those walks that are sub-walks of
all closed edge-covering walks of a strongly connected graph are precisely its omnitigs. Clearly
every edge is an omnitig and any proper subwalk of an omnitig is an omnitig. Figure 1 illustrates
examples of walks that are not omnitigs. An omnitig w is right-maximal (resp., left-maximal) if
there is no walk we (resp., ew), which is an omnitig. An omnitig is maximal if it is both left-
and right-maximal. We note that in Tomescu and Medvedev (2016), two types of omnitigs were
considered, depending on the genome model used. Here, we use omnitigs to refer the edge-centric
omnitigs from Tomescu and Medvedev (2016).

3 STRUCTURE OF MAXIMAL OMNITIGS

In this section, we prove some structural properties of maximal omnitigs. To better understand
the ways in which omnitigs might possibly overlap, we propose the notion of branch and univocal

walk. A node u is called branching if its out-degree is more than one. In this case, any edge e
with s (e ) = u is called a branch, and any two distinct edges e � e ′ with s (e ) = s (e ′) = u are called
siblings. The set of all branches is denoted by B ⊆ E. An edge is called an R-branch if it is a branch
in GR . A walk is called univocal if none of its edges is a branch and R-univocal if none of its edges
is an R-branch. Figures 2 and 3 illustrate these definitions.

We start by showing some facts about branches and univocal walks.

Lemma 3.1. If G contains at least a branch, then every univocal walk is an open path.

Proof. A minimal counterexample is a univocal closed path p. Since every path from s (p) is a
prefix of p, andG is strongly connected, then p contains every node in the graph, and there are no
branches. �

Lemma 3.2. If w is an omnitig and q is a univocal path from t (w ), then wq is an omnitig.

Proof. Let p be a path certifying that wq is not an omnitig by Definition 2.1. If s (p) is a node
of q, then a whole suffix of q is a prefix of p, since q is univocal; in this way, the property that the
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Fig. 2. Examples of edges e and e ′, which are sibling branches (first row) and R-branches (second row).

Several cases involving parallel edges and self-loops are depicted.

Fig. 3. Examples of univocal walk (top, solid edges only) and R-univocal walk (bottom, solid edges only).

Dashed edges are allowed to exist in the graph.

first edge of p differs from ej would be contradicted. Therefore, s (p) is a node of w , but then p is a
path actually certifying that w is not an omnitig—again, a contradiction. �

Lemma 3.3. Every left-maximal omnitig contains a branch.

Proof. Let w be a counterexample, i.e., a left-maximal omnitig, which is univocal. Let e be any
edge with t (e ) = s (w ) (at least one exists sinceG is strongly connected). The edge e is an omnitig,
and thus, by Lemma 3.2, ew is an omnitig, violating the left-maximality of w . �

The crucial observation underlying our algorithm is that any omnitig containing a branch can
be extended in an unique way to the left to obtain a left-maximal omnitig. This is expressed in
Theorem 3.7 below. To prove Theorem 3.7, we need the following lemmas.

Lemma 3.4. Let f qe be an omnitig where q is an open path and e is a branch. Take any sibling e ′

of e and a closed path e ′p starting with e ′. Then, f q is a suffix of e ′p.

Proof. Let f qe be a minimal counterexample. Then, f qe and qe are both omnitigs, and by
minimality, q is a suffix of e ′p, whereas f q is not. Since q is an open path, then q � e ′p, so q
is actually a suffix of p. Thus, we can regard e ′p as obtained by concatenating its suffix q to its
remaining prefix r , i.e., e ′p = rq. Here, r is a non-empty path and fulfills all conditions stated in
Definition 2.1: it starts with e ′ � e , and ends with an edge f ′ � f (otherwise, f q would be a suffix
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Fig. 4. Illustration of Lemmas 3.4 and 3.6 for the two cases p � q (left) and p = q (right). Dotted lines indicate

(possibly empty) open paths.

Fig. 5. Illustration of the proof of Lemma 3.5 for the two cases t (q′) in q (left) and t (q′) in r (right). Dotted

lines indicate (possibly empty) open paths.

of rq = e ′p). This shows that f qe is not an omnitig: a contradiction. See Figure 4 for an illustration
of this proof. �

Lemma 3.5. Let e ′pe be a walk where e and e ′ are siblings and e ′p is a closed path. Then, e ′pe is

an omnitig iff p is univocal and e ′ is the only sibling of e .

Proof. (⇐= ) The only path satisfying Definition 2.1 must start with e ′, and hence be a prefix
of e ′p. (⇒). See Figure 5 for an illustration of this proof. First we show that e ′ is the only sibling
of e . Let e ′′ be any sibling of e , and take any closed path e ′′p ′. Then, e ′p is a suffix of e ′′p ′ by
Lemma 3.4. Being both closed paths, we have e ′p = e ′′p ′ and, in particular, e ′′ = e ′.

We now prove that p is univocal. Assume not, and write p = q f r where f is any branch. Let f ′

be a sibling of f , and f ′p ′ a closed path. Clearly, s ( f ′) = s ( f ) � s (e ); hence, f ′ does not appear in
the closed path e ′p = e ′q f r . Let q′ be the shortest prefix of p ′, where t (q′) is a node of p. Observe
that q′ exists since t (p ′) = s ( f ′) = s ( f ) is a node of p. Moreover, the last edge of q′, if any, does not
appear in e ′p. Notice that t (q′) is either a node of q or a node of r . If t (q′) is a node of q, then the
path f ′q′ shows that e ′q f is not an omnitig (Figure 5, left). Otherwise, if t (q′) is a node of r , then
the path e ′q f ′q′ shows that f re is not an omnitig (Figure 5, right). In either case, e ′pe = e ′q f re is
not an omnitig: a contradiction. �

Lemma 3.6. There is no omnitig of the form f qrqe where qr is a closed path, r is non-empty, e is a

branch, and f is an R-branch.

Proof. Assume for a contradiction that f qrqe is an omnitig violating the claim of the lemma.
Let e ′ be the first edge of r . We will prove that e ′ � e . Write r = e ′r ′ and observe that r ′q is an open
path, so e ′r ′qe satisfies the hypothesis of Lemma 3.4. Let e ′′ � e be a sibling of e and e ′′p a closed
path. Then, by Lemma 3.4, e ′r ′q is a suffix of e ′′p. In fact, since both e ′r ′q and e ′′p are closed paths,
then e ′r ′q = e ′′p and e ′ = e ′′ � e , as claimed.
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Fig. 6. Examples of graphs where the two cases of Theorem 3.7 occur, for p = д1д2 f1 f2 and p′ = f1 f2. In the

first case (left), p is univocal and the left-maximal omnitig is we = p′e ′pe = f1 f2e
′д1д2 f1 f2e . In the second

case (right), p is not univocal due to the edge f ′2 , and the left-maximal omnitig is we = д1д2 f1 f2e . Omnitigs

we are shown in red and have solid edges.

The very same argument applies on the reverse graph, since the notion of omnitig is symmetric,
as well as the statement of the lemma. Therefore, also the last edge f ′ of r is distinct from f . Now,
r is a non-empty path with first edge e ′ � e and last edge f ′ � f . Hence, r satisfies the conditions
of Definition 2.1, showing that f qrqe is not an omnitig. See Figure 4 for an illustration of this
proof. The following theorem characterizes the omnitigs ending with a given branch (see also
Figure 6). �

Theorem 3.7. There exists a unique left-maximal omnitig we , ending with a given branch e .

Moreover, for any sibling e ′ of e and a closed path e ′p, either:

—we = p ′e ′pe , where p ′ is the longest R-univocal path to s (e ), or
—we is a suffix of pe ,

where the first case occurs iff e ′ is the only sibling of e and p is univocal.

Proof. Consider any omnitig we . We show that we is either a suffix of pe or of the form we =
p ′′e ′pe , where p ′′ is an R-univocal path. This suffices to show that there is a unique left-maximal
omnitig we , and that one of the two cases occurs.

If w is an open path, then we is a suffix of pe by Lemma 3.4. Otherwise, take the shortest suffix
e ′′p of w , which is not an open path. Since p is an open path (e ′′p is the shortest suffix of w which
is not), then e ′′ = e ′ by Lemma 3.4.

Hence, a minimal counterexample for our claim is an omnitig of the form we = f qe ′pe where
q is R-univocal (hence, an open path by Lemma 3.1 applied to the reversed graph) and f is an
R-branch. Since t (q) = t (p) and q is R-univocal, then q is a suffix of e ′p. In fact, q is a suffix of p
since it is open. Hence, we can write e ′p = rq, where r is non empty, and we = f qrqe , violating
Lemma 3.6.

Finally, the conditions in which the first case occurs are stated in Lemma 3.5, noticing thatp ′e ′pe
is an omnitig iff e ′pe is an omnitig, by Lemma 3.2 applied in the reverse graph. �

Corollary 3.8. There are at mostm maximal omnitigs.

Proof. Any maximal omnitig has a branch by Lemma 3.3; hence, it has the form w = w ′er ,
where e is its last branch and r is univocal. By Theorem 3.7, w ′ is uniquely determined by e ,
and, by Lemma 3.2, r is the longest univocal path from t (e ), also uniquely determined by e . In
conclusion, every omnitig has a last branch and every branch is the last branch of at most one
maximal omnitig. �

Corollary 3.9. Every maximal omnitig traverses any node at most three times, and thus has

length at most 3n − 1.
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Fig. 7. A family of dense graphs Gk parametrized by k ≥ 1 where there are Θ(k ) nodes and Θ(k2) edges,

and the total length of maximal omnitigs is Θ(k3). This shows that the bound given in Corollary 3.10 is tight,

in the dense case. Indeed, the walk wi j = д1 · · ·дk fiei j f
′
j д1 · · ·дk is a maximal omnitig, for 1 ≤ i, j ≤ k , and

has length 2k + 3.

Fig. 8. A family of graphs parametrized by k ≥ 0 where the bound given in Corollary 3.9 is tight. Let p =
f1 · · · fk . The maximal omnitigs are pepe ′p and pe ′pep: both traverse each node exactly three times; pepe ′p
is marked in red.

Proof. Any maximal omnitig has the formw = w ′er where e is its last branch. By Theorem 3.7,
either w ′ is an open path, or w = p ′e ′per where p ′,p, r are univocal, and hence open paths by
Lemma 3.1. Consider that open paths visit each node at most once. �

Corollary 3.10. The total length of maximal omnitigs is O (nm).

In a complete graph with node setV , |V | ≥ 3, and edge setV ×V , every single edge is a maximal
omnitig; hence, the bound given in Corollary 3.8 is tight. Figures 7 to 9 demonstrate graph families
showing that the bounds of Corollary 3.9 and Corollary 3.10 are also tight. That is, they contain
maximal omnitigs of length 3n − 1, and the total length of the maximal omnitigs can be Ω(nm).

4 THE ALGORITHM

4.1 Extending Omnitigs

We start by considering a procedure LongestSuffix that takes an omnitig w ′ and an edge e with
s (e ) = t (w ′), and computes the longest suffix of w = w ′e that is still an omnitig. A pseudo-code
for such a procedure is shown in Algorithm 1 below, and it is an adaptation of the ideas given in
Tomescu and Medvedev (2016).
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Fig. 9. A family of sparse graphs Gk parametrized by k ≥ 1 where there are Θ(k ) nodes and edges, and the

total length of maximal omnitigs is Θ(k2). This shows that the bound given in Corollary 3.10 is tight, in the

sparse case. Indeed, the walkwi = eiei+1 · · · ei+kei+k is a maximal omnitig, for 1 ≤ i ≤ k − 1, and has length

k + 1; walk w1 is marked in red.

ALGORITHM 1: Function LongestSuffix.

1 Function LongestSuffix(w )
Input: A non-empty walk w = w ′e where w ′ is an omnitig and e is a branch.
Returns: The longest suffix of w , which is an omnitig.

2 Denote w = w ′e = f1 · · · f�e .

3 Compute the set Se ⊆ V of nodes reachable from s (e ) without using e .

4 Let I be the largest index i ∈ {1, . . . , �} such that there exists an edge д � {e, fi } with
s (д) ∈ Se and t (д) = t ( fi ), taking I = 0 if no such index exists.

5 return fI+1 · · · f�e

Lemma 4.1. The function LongestSuffix can be implemented in O (m).

Proof. We need to show that Algorithm 1 is correct and takesO (m) time. We begin by proving
correctness.

Clearly, fI+1 · · · f�e is a suffix of w ′e . We first show it is also an omnitig. Assume the contrary.
Then, by Definition 2.1, and given that fI+1 · · · f� is an omnitig (since it is a suffix of w ′), there
exists an i with I + 1 ≤ i ≤ � and a non-empty path r = r ′д with s (r ) = s (e ) and t (r ) = t ( fi ) with
first edge different from e and last edge д different from fi . Also, r does not contain e , since it is
a path, and in particular д � e . Finally, the path r ′ certifies that t (r ′) ∈ Se . Hence, the index i > I
contradicts the choice of I .

We claim that, when I > 0, then fI · · · f�e is not an omnitig. By the definition of I , we know there
exists a path r avoiding e from s (e ) to s (д), where д � {e, fi } and t (д) = t ( fI ). If rд is a path, then
it certifies our claim, by Definition 2.1. Thus, we assume r = r1r2 with t (r1) = t (д) = s (r2). If the
last edge of r1 is different from fI , then r1 is a path that certifies our claim, by Definition 2.1. We,
hence, assume that fI is the last edge of r1; hence, the path r2 does not go through s ( fI ). Let r ′2 be the
shortest non-empty suffix of r2 with s (r ′2) belonging to fI · · · f�e . Notice that s (r ′2) � s ( fI ), because
w ′ is an omnitig. Moreover, r ′2 has no prefix that is a suffix of fI · · · f�e , because s (e ) is the first
node of r1, and r1r2 = r is a path. Therefore, r ′2д is a path that certifies our claim by Definition 2.1.

As for the running time, the computation of Se at line 3 can be performed in O (m) time with
a graph search such as a depth-first search (DFS) or a breath-first search (BFS). The index I can
be computed by scanning, for i = 1, . . . , �, all the edges д with t (д) = t ( fi ). This takes O (m) total
time thanks to Corollary 3.9. �

4.2 A Well-Founded Order on Branches

The strategy of our full algorithm is to first pick a branch e , since, by Lemma 3.3, every maximal
omnitig contains one, and then construct the only left-maximal omnitig ending with e , according
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to Theorem 3.7. To this end, we may need to compute the longest suffix of e ′p that is an omnitig;
however, this could require quadratic time to output a single left-maximal omnitig. Instead, we
show that it is possible to recycle the computational effort among different branches, in order to
pay linear time per-branch. We introduce the following notion of order between branches.

Definition 4.2. For any two distinct non-sibling branches e, f ∈ B, write f ≺ e if there exists an
omnitig f pe where p is univocal.

Lemma 4.3. For any e ∈ B, there is at most one f ∈ B such that f ≺ e .

Proof. Take a sibling e ′ of e and a closed path e ′p. Let f be the last branch on e ′p (it exists since
its first edge e ′ is a branch), and let f q be the suffix of e ′p starting with f , where q is univocal.

Assume f̃ ≺ e and let f̃ q̃e be an omnitig with q̃ univocal. By Lemma 3.1, q̃ is an open path, and by

Lemma 3.4, f̃ q̃e is a suffix of e ′pe; thus, f̃ = f and q̃ = q. �

Our algorithm for computing the left-maximal omnitig ending with a given branch e works as
follows. We first check whether the first case of Theorem 3.7 occurs by verifying the condition
provided therein. If not, then we consider the suffix f q of e ′p defined as in the proof of Lemma 4.3.
We have two cases.

— f qe is not an omnitig. Then, an invocation of LongestSuffix( f qe ) yields the only left-
maximal omnitig ending with e .

— f qe is an omnitig. Then, s ( f ) � s (e ) since f q is open; thus, f ≺ e . In this case, we apply
the procedure recursively to the branch f , obtaining an omnitigw ′′. Then, the left-maximal
omnitig ending with e must be a suffix ofw ′′qe and can be obtained as LongestSuffix(w ′′qe ).

Lemma 4.5 below is crucial in showing that the recursion is well-founded. As we will show
later, thanks to memoization, this recursive application allows to reuse the computational effort
and leads to a faster worst-case running time. To prove it, we will need the following observation.

Lemma 4.4. Let F ⊆ B be a non-empty set of branches, where every f ∈ F has a sibling f ′ � F .

There exists a closed path p, not containing any edge in F , with s (p) = s ( f ) for some f ∈ F .

Proof. Write F = {e1, . . . , ek } and let S = {s (ei ) | i = 1, . . . ,k }. For every i = 1, . . . ,k , fix any
sibling e ′i � F of ei and any closed path e ′ipi . Let qi be the shortest prefix of pi that ends with a
node in S . Observe that qi exists since t (pi ) = s (ei ) ∈ S . Moreover, qi does not contain any edge in
F . For each i = 1, . . . ,k , write i → j for that index j ∈ {1, . . . ,k } such that t (qi ) = s (ej ). Observe
that, by construction, there is (exactly) one such index j for every i . In particular, this implies that
the relation→ contains at least a cycle, because, e.g.,→ can be interpreted as the edge relation on
a graph with node set {1, . . . ,k }, and, thus, without sinks. Let i1 → i2 → · · · → it−1 → it → i1 be
any cycle. Consider the closed walk

w = e ′i1
qi1e

′
i2
qi2 · · · e ′it

qit
,

which starts with s (e ′i1
) = s (ei1 ) ∈ S and does not contain any edge in F by construction. The walk

w can be made into a closed path by removing any closed sub-walk strictly contained in w . �

Lemma 4.5. The relation ≺ is acyclic.

Proof. Assume that the relation ≺ is not acyclic. If there are cycles, then, more generally, there
exist sequences e0 ≺ e1 ≺ e2 ≺ · · · ≺ et−1 ≺ et where s (e0) = s (et ) (with possibly e0 � et ). Take a
minimal sequence of this form, where, by minimality, e1, . . . , et−1 all have distinct sources. Since
e0 ⊀ et , because s (e0) = s (et ), it follows that t ≥ 2. By Lemma 4.4 applied to F = {e1, . . . , et−1},
there exists a closed path p not containing any edge in F , with s (p) = s (ei ) for some i ∈ {1, . . . , t −
1}, and first edge e ′i , a sibling of ei . It suffices to show that p does not contain ei−1 ∈ F because this
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will bring the desired contradiction as follows. Since ei−1 ≺ ei , there exists an omnitig ei−1qei with
q univocal and, by Lemma 3.1, open. By Lemma 3.4, ei−1q is a suffix of pe ′i , which contradicts the
fact that p does not contain ei−1.

If i ≥ 2, then, by construction,p does not contain any edge in F , and, in particular, ei−1. Likewise,
if i = 1 and p does not contain e0, then we are also done.

Otherwise, if i = 1 andp does contain e0, sayp = re0r
′, then we might as well consider the closed

path p ′ = e0r
′r , which, by construction, does not contain et−1 ∈ F . We then replace i with t , the

path p with p ′, which starts with e0, a sibling of et , and apply the same reasoning as above. �

4.3 Exploiting Strong Bridges

To achieve the claimed O (nm) running time, we need a further improvement. We recall the defi-
nition of strong bridge in a strongly connected graph (Italiano et al. 2012).

Definition 4.6. An edge e is a strong bridge if, by removing e , the graph is no longer strongly
connected. Equivalently, there is a pair of nodes u,v , such that every path from u to v contains e .

The lemma below states that omnitigs containing non-strong-bridges have a simpler structure.

Lemma 4.7. If f q is an omnitig and an open path, and f is not a strong bridge, then q is univocal.

Proof. A minimal counterexample is an omnitig f qe , where f qe is an open path and e is a
branch. Fix a sibling e ′ of e , and take a closed path e ′p such that p does not contain f , which exists
since f is not a strong bridge. By Theorem 3.7, f q is a suffix of p: a contradiction since p does not
contain f . �

It is known that there are at most 2n − 2 = O (n) strong bridges in a given graph, and they can
be computed inO (m) time (Firmani et al. 2012; Italiano et al. 2012). The observation of Lemma 4.7
allows to handle those branches e , which are not strong bridges in a special way, and apply the
full algorithm only on the O (n) strong bridges. The procedure just described above is illustrated
in Algorithm 2.

ALGORITHM 2: Computing the only left-maximal omnitig ending with a branch e .

1 Function OmnitigEndingWith(e )
Input: A branch e .
Returns: The only left-maximal omnitig we .

2 Let e ′ be any sibling of e and e ′p be any closed path starting with e ′.

3 Let f be the last branch of e ′p (possibly f = e ′) and f q the suffix of e ′p starting with f .

4 Let p ′ be the longest R-univocal path to s (e ).

5 if e has only one sibling e ′ and p is univocal, then return p ′e ′pe

6 if e is not a strong bridge, then return p ′e

7 w ′ ← LongestSuffix( f qe )

8 if w ′ � f qe , then return w ′

9 w ′′ ← OmnitigEndingWith( f ) � OmnitigEndingWith is memoized

10 return LongestSuffix(w ′′qe )

Lemma 4.8. The function OmnitigEndingWith in Algorithm 2 is correct.
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Proof. First of all, observe that the closed path e ′p exists sinceG is strongly connected, and that
q is univocal by construction. The first case of Theorem 3.7 is handled trivially by line 5. Hence,
assume the second case occurs.

If e is not a strong bridge (line 6), then we can apply Lemma 3.2 and Lemma 4.7 in the reverse
graph, obtaining that p ′e is a left-maximal omnitig. (Any omnitig дp ′e is an open path, by the
second case of Theorem 3.7, so Lemma 4.7 applies and дp ′ is R-univocal, contradicting the choice
of p ′.)

By Lemma 3.2, f q is an omnitig (the single edge f is trivially an omnitig), so the call
LongestSuffix( f qe ) at line 7 conforms to the preconditions of that function. In particular, by
Lemma 4.1, the returned walkw ′ is an omnitig. Ifw ′ � f qe , thenw ′ is the longest suffix ofpe , which
is an omnitig; thus, by the second case of Theorem 3.7, it is left-maximal. Otherwise, if w ′ = f qe ,
then f ≺ e since q is univocal by construction, and f q is open (whence s ( f ) � s (e ) = t (q)) being
a suffix of p by Theorem 3.7. By the acyclicity of ≺ (Lemma 4.5), the recursion is well-founded; so,
by induction, OmnitigEndingWith( f ) returns a left-maximal omnitig w ′′. By Lemma 3.2, w ′′q is
also a left-maximal omnitig, and the call LongestSuffix(w ′′q) at line 10 conforms to the precon-
ditions of that function. By Lemma 4.1, the returned walk LongestSuffix(w ′′qe ) is a left-maximal
omnitig. �

4.4 Putting All Together

The full algorithm (Algorithm 3) amounts to computing, for each branch e ∈ B, the left-maximal
omnitig ending with e , and then appending the longest possible univocal suffix.

ALGORITHM 3: Computing all the maximal omnitigs.

Input: A graph G whose set of branches is B.
Returns: The setW of maximal omnitigs of G.

1 W ← ∅
2 for e ∈ B do

3 w ← OmnitigEndingWith(e )

4 Let p be the longest univocal path from t (e ).

5 W ←W ∪ {wp}
6 end

7 Remove fromW the non-right-maximal walks.

8 returnW

Theorem 4.9. Algorithm 3 is correct and can be implemented to run in time O (nm).

Proof. It is clear from Lemma 4.8 and Lemma 3.2 that Algorithm 3 terminates and returns a set
W containing only left-maximal omnitigs. For correctness, we only need to show that, after the
for-loop,W contains all the maximal omnitigs. Consider any maximal omnitig w . By Lemma 3.3,
w contains a branch. Let e be the last branch of w , and write w = w ′ep where p is univocal. By
Lemma 3.2,w ′e is left-maximal (otherwise, alsow = w ′ep is not left-maximal), and p is the longest
univocal path from t (e ), (otherwise,w = w ′ep is not right-maximal). By Lemma 4.8, in the iteration
of the for-loop, relative to the branch e ∈ B, the call OmnitigEndingWith(e ) returnsw ′e , andw ′ep
is added toW .

To prove our bound on the running time, we observe that, when the function Omnitig−
EndingWith returns before line 7, then it takes O (n) time only. Indeed, the length of the open
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Fig. 10. Left: the walk e1e2e3e4 is a maximal omnitig. Right: after applying the Y-to-V reduction to node u,

only the omnitig e1e2e3 is maximal, and e3e4 does not appear in any omnitig.

Table 1. Wall-Clock Running Time Comparison between the Omnitig Algorithm

of Tomescu and Medvedev (2016) and Our Algorithm 3

# nodes # edges

time by
(Tomescu and

Medvedev 2016)
time by Algorithm 3 # omnitigs avg length

chr2 696,209 887,295 1,342 min 138 min 304,760 838
chr10 369,448 467,517 433 min 36 min 158,396 887
chr14 223,694 283,798 137 min 11 min 96,434 968

For fairness of comparison, the algorithms were run on a single thread, though we note that (Tomescu and Medvedev

2016) supports parallelization.

paths p and p ′ is O (n). Moreover, when the condition at line 5 occurs, then the path p is univocal;
its construction can be performed inO (n) time, without running a full visit of the graph. These ex-
ecutions of OmnitigEndingWith account for an overall running time O (nm), due to memoization,
since there are O (m) branches.

The execution continues after line 7 onlyO (n) times, since the number of strong bridges isO (n).
In this case, the running time is dominated by the calls to LongestSuffix, which take O (m) time
each by Lemma 4.1. Again, due to memoization, the overall running time is O (nm). The set of
strong bridges is computed once at the beginning, in linear time.

It remains to show how to implement line 7 in timeO (nm). First, the total length of the walks in
W is O (nm) because to each of the O (m) walks returned by OmnitigEndingWith, each of length
O (n) (by Corollary 3.9), we append a path, thus having length O (n). One way to remove the non-
right-maximal omnitigs fromW is to regard each walk inW as a string over the alphabet E, con-
struct a trie containing them, in time O (nm), and remove those ending in an internal node. See
Section 5 for a more direct method not using a trie. �

Finally, we would like to remark on the Y-to-V reduction. Letv be a node that has exactly one in-
neighboru and more than one out-neighborsw1, . . . ,wd . The Y-to-V reduction applied tov removes
v and its incident edges and adds an edge from u towi , for all 1 ≤ i ≤ d . The Y-to-V reduction was
suggested as a pre-processing step to the omnitig algorithm in Tomescu and Medvedev (2016) to
improve the running time. However, this reduction can destroy some omnitigs; see Figure 10. We
confirm this also experimentally: in Table 1 from Section 5, we show that on chr10 data, we obtain
160 more omnitigs than in Tomescu and Medvedev (2016, Table 1).

5 IMPLEMENTATION AND EXPERIMENTS

We implemented Algorithm 3 using the code base of Tomescu and Medvedev (2016), available at
https://github.com/alexandrutomescu/complete-contigs.
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We now discuss additional optimizations we added to our code. They do not effect the correct-
ness or the worst-case running time of the algorithm; however, they do improve its speed on real
data.

First of all, it is not necessary to call LongestSuffix both on f qe and w ′′qe . Since it is known
that the answer is a suffix of pe , in the second case of Theorem 3.7, it is sufficient to call
LongestSuffix(pe ) to obtain all the needed information. Indeed, despite this call may not satisfy
the preconditions stated in Algorithm 1, the answer is still valid as long as it is shorter than, re-
spectively, f qe and w ′′qe . This observation is crucial for parallelization since the computation of
LongestSuffix(pe ), bottleneck of the algorithm, is independent of the recursive structure and thus
can be performed for each branch e ∈ B in an easily-parallelizable for-cycle. Actually, only the
length of LongestSuffix(pe ) is relevant for the following execution since the path f q can be easily
reconstructed from f by taking the longest univocal path q from t ( f ). Hence, the output of the
computation of LongestSuffix(pe ), for each branch e ∈ B amounts to a table ofO (m) numbers and
edges. This phase is followed by the recursive reconstruction of the omnitigs, which is harder to
parallelize but takes only time linear in the size of the output.

A second optimization, which yields significant speed-ups in practice, is to stop the DFS/BFS as
soon as sufficient information is gathered. Specifically, by considering the longest R-univocal path
p ′ to t (p ′) = s (e ), it is possible to know when OmnitigEndingWith(e ) = p ′e without running the
full visit. Indeed, as soon as we know that s ( f ), s ( f ′) ∈ Se , for two distinct R-branches f and f ′

with t ( f ) = t ( f ′) = s (p ′) (and distinct from e), then p ′e is necessarily left-maximal.
Finally, line 7 of Algorithm 3 can be implemented without a trie (as suggested in the proof of

Theorem 4.9). For each wp that we add to W , let ewp denote that branch that created w , namely
w = OmnitigEndingWith(ewp ). If ewp appears in another left-maximal omnitig w ′ not as the last
branch of w ′, then, by Theorem 3.7, wp is a proper prefix of w ′. Thus, it is not right-maximal and
can be removed fromW .

Each such branch that is not the last one in a maximal omnitig can be detected and marked
during the execution of Algorithm 2, as follows. If we return in line 5, then we mark e ′ together
with all branches in p ′. If we return in line 6, then we mark all branches in p ′. If execution reaches
line 10, then we mark f .

As already discussed in Tomescu and Medvedev (2016), the notion of genomic reconstruction
intended as a single closed edge-covering walk corresponds to reads (i) sequenced from a single
circular chromosome, (ii) without gaps in coverage, (iii) without errors, and (iv) without reverse
complements. We leave as future work the removal of these assumptions and focus the experi-
ments in this article on the running time improvements of the new algorithm compared to the one
in Tomescu and Medvedev (2016). As such, and since the practical merits of omnitigs for genome
assembly were discussed in Tomescu and Medvedev (2016), we performed three experiments as fol-
lows. We circularized three reference sequences of human chromosomes 2, 10, and 14. Each had a
length of 243, 136, and 107 million nucleotides, respectively. For each, we simulated reads of length
k = 55 covering every position in the genome, and built the edge-centric de Bruijn graph, using
k = 55. This type of genome graph is a common one on which contig assembly is performed. The
algorithms were run on a machine with Intel Xeon 2.10GHz CPUs. Because the Y-to-V transfor-
mation is not omnitig-preserving, we disabled it from the code of Tomescu and Medvedev (2016).

As shown in Table 1, the new algorithm was 9–12 times faster on a single thread, suggesting that
our theoretical improvements indeed translate into faster running times. For the largest dataset,
our algorithm took just over 2 hours, while Tomescu and Medvedev (2016) took over 22 hours.
We also observe, as expected, that the running time depends on the size of the graph and on the
number of omnitigs, and not on their length.
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6 CONCLUSION

Apart from its application to genome assembly, the problem addressed in this article is a fun-
damental graph theoretical one. It also fits into a line of research for finding all partial solutions
common to natural notions of walks in graphs, such as Eulerian walks (Waterman 1995) or shortest
edge-covering walks (Nagarajan and Pop 2009).

We presented here an algorithm for finding all maximal omnitigs and showed that it can be
an order of magnitude faster than a previous one based on exhaustive visits. Indeed, the running
time of this algorithm isO (nm), a bound that cannot be improved as it is, since we also exhibited a
family of instances where the total size of the maximal omnitigs is Ω(nm). It remains open whether
there exists an output-sensitive algorithm with a running time linear in the size of the output.

When applied to genome assembly, our algorithm remains significantly slower than finding
unitigs. However, we believe that an embarrassingly parallel implementation is possible, and that
it will improve running time by another order of magnitude in practice.
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