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Abstract

The Burrows-Wheeler Transform (BWT) is an important technique both in data
compression and in the design of compact indexing data structures. It has been
generalized from single strings to collections of strings and some classes of labeled
directed graphs, such as tries and de Bruijn graphs. The BWTs of repetitive datasets
are often compressible using run-length compression, but recently Baier (CPM 2018)
described how they could be even further compressed using an idea he called tunnel-

ing. In this paper we show that tunneled BWTs can still be used for indexing and
extend tunneling to the BWTs of Wheeler graphs, a framework that includes all the
generalizations mentioned above.

Introduction

The Burrows-Wheeler transform (BWT) is a cornerstone of data compression and
succinct text indexing. It is a reversible permutation on a string that tends to com-
press well with run-length coding, while simultaneously facilitating pattern matching
against the original string. Recently, practical data structures have been designed on
top of the run-length compressed BWT to support optimal-time text indexing within
space bounded by the number of runs of the BWT [1].

However, run-length coding does not necessarily exploit all the available redun-
dancy in the BWT of a repetitive string. To this end, Baier recently introduced the
concept of tunneling to compress the BWT by exploiting additional redundancy not
yet captured by run-length compression [2]. While his representation can achieve
better compression than run-length coding, no support for text indexing is given.

Meanwhile, the concept of Wheeler graphs was introduced by Gagie et al. as an
alternative way to view Burrows-Wheeler type indices [3]. The framework can be used
to derive a number of existing index structures in the Burrows-Wheeler family, like
the classical FM-index [4] including its variants for multiple strings [5] and alignments
[6], the XBWT for trees [7], the GCSA for directed acyclic graphs [8], and the BOSS
data structure for de Bruijn graphs [9].

In this work, we show how Baier’s concept of tunneling can be neatly explained
in terms of Wheeler graphs. Using the new point of view, we show how to support
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FM-index style pattern searching on the tunneled BWT. We also describe a sam-
pling strategy to support pattern counting and locating and character extraction,
making our set of data structures a fully-functional FM-index. Supporting FM-index
operations was posed as an open problem by Baier [2].

We also use the generality of the Wheeler graph framework to generalize the
concept of tunneling to any Wheeler graph. This result can be used to compress any
Wheeler graph while still supporting basic pattern searching to decide if a pattern
exists as a path label in the graph. This has applications for all index structures that
can be explained in terms of Wheeler graphs.

Preliminaries

Let G = (V,E, λ) denote a directed edge-labeled multi-graph, in which V denotes
the set of nodes, E denotes the multiset of edges and λ : E → A denotes a function
labeling each edge of G with a character from a totally-ordered alphabet A. Let ≺
denote the ordering among A’s elements. We follow the definition of Gagie et al. [3].

Definition 1 (Wheeler graph). The graph G = (V,E, λ) is called a Wheeler graph

if there is an ordering on the set of nodes such that nodes with in-degree 0 precede
those with positive in-degree and for any two edges (u1, v1), (u2, v2) labeled with
λ((u1, v1)) = a1 and λ((u2, v2)) = a2, we have

(i) a1 ≺ a2 ⇒ v1 < v2,

(ii) (a1 = a2) ∧ (u1 < u2) ⇒ v1 ≤ v2.

We note that the definition implies that all edges arriving at a node have the
same label. We call such an ordering a Wheeler ordering of nodes, and the rank of
a node within this ordering the Wheeler rank of the node. Given a pattern P ∈ A∗,
we call a node v ∈ V an occurrence of P if there is a path in G ending at v such that
the concatenation of edge labels on the path is equal to P . The Wheeler ranks of all
occurrences of P form a contiguous range of integers, which we call the Wheeler range

of P . Finding such a range is called path searching for P .
Given a Wheeler ordering of nodes, we define the corresponding Wheeler ordering

of edges such that for a pair of edges e1 = (u1, v1) and e2 = (u2, v2), we have e1 < e2
iff λ(e1) ≺ λ(e2) or (λ(e1) = λ(e2) and u1 < u2). When referring to edges, the term
Wheeler rank refers to the rank of the edge in the Wheeler ordering of edges, and
Wheeler range refers to a set of edges whose Wheeler ranks form a contiguous interval.

We use a slightly modified version of the representation of Wheeler graphs pro-
posed by Gagie et al. [3]. Suppose we have a Wheeler graph with n nodes and m
edges. Then we represent the graph with the following data structures:

• A string L[1..m] = L1 · · ·Ln where Li is the concatenation of the labels of the
|Li| edges going out from the node with Wheeler rank i such that the labels
from a node are concatenated in their relative Wheeler order.

• An array C[1..|A|] such that C[i] is the number of edges in E with a label
smaller than the ith smallest symbol in A.



• A binary string I[1..n+m+ 1] = X1, · · · , Xn · 1 where Xi = 1 · 0ki and ki is the
indegree of the node with Wheeler rank i.

• A binary string O[1..n+m+ 1] = X1, · · · , Xn · 1 where Xi = 1 · 0li and li is the
outdegree of the node with Wheeler rank i.

Given these data structures, we can traverse the Wheeler graph with the following
two operations: First, given the Wheeler rank i of a node, find the Wheeler rank
of the k-th out-edge labeled c from the node using Eq. (1) below; second, given the
Wheeler rank j of an edge, find the Wheeler-rank r of its target node with Eq. (2):

C[c] + rankc(L, select1(O, i) − i) + k, (1)

rank1(I, select0(I, j)), (2)

where, given a string S, rankc(S, i) denotes the number of occurrences of character c
in S[1..i] and selectc(S, i) denotes the position of the i-th occurrence of c in S. For
the binary strings I and O, these operations can be carried out in constant time using
o(|I| + |O|) extra bits [10]. For string L, operation rank can be carried out in time
O(log logw |A|) on a w-bit RAM machine using o(|L| log |A|) extra bits [11, Thm. 8].

Given a Wheeler range [i, i′] of nodes, we can find the Wheeler rank of the
first and last edge labeled c leaving from a node in [i, i′] with a variant of Eq. (1):
C[c] + rankc(L, select1(O, i)− i) + 1 and C[c] + rankc(L, select1(O, i

′ + 1)− (i′ + 1)),
respectively; then we apply Eq. (2) on both edge ranks to obtain the corresponding
node range (the result is a range by the path coherence property of Wheeler graphs
[3]). This operation enables path searches on Wheeler graphs.

Tunneling

We adapt Baier’s concept of blocks on the BWT [2] to Wheeler graphs.

Definition 2 (Block). A block B of a Wheeler graph G = (V,E, λ) of size s and
width w is a sequence of w-tuples (v1,1, . . . , vw,1), . . . , (v1,s, . . . , vw,s) of pairwise dis-
tinct nodes of G such that

(i) For 1 ≤ i ≤ w − 1 and 1 ≤ j ≤ s, the node vi+1,j is the immediate successor of
vi,j with respect to the Wheeler ordering on V .

(ii) For 1 ≤ i ≤ w, let Vi = {vi,j | 1 ≤ j ≤ s}, Ei = E∩(Vi×Vi), and λi = λ
∣

∣

Ei

. The

subgraphs ti = (Vi, Ei, λi) are isomorphic subtrees of G, preserving topology
and labels. For 1 ≤ i ≤ w − 1, let fi : ti → ti+1 denote the corresponding
isomorphisms, thus vi+1,j = fi(vi,j) for all 1 ≤ j ≤ s.

(iii) For 1 ≤ i ≤ w, let vi,1 denote the root node of ti. In particular, vi,1 is the only
node of indegree 0 in ti. All edges leading to a node in {vi,1 | 1 ≤ i ≤ w} are
labeled with the same character. The indegrees of these nodes may differ.

(iv) For 1 ≤ i ≤ w and 2 ≤ j ≤ s, the nodes vi,j are of indegree 1 in G (and by (i)
and (ii), of indegree 1 in the corresponding subtree ti, that is, the only edge in
G leading to such a node vi,j belongs to the subtree ti).
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Figure 1: Tunneling a block of size 7 and width 2 in a Wheeler graph.

(v) For every integer 1 ≤ j ≤ s and character c ∈ A, exactly one of the following
conditions holds:

(a) For every 1 ≤ i ≤ w, there is exactly one out-edge of vi,j labeled with
c, which is contained in Ei. There are no out-edges of vi,j labeled with c
leading to non-block nodes.

(b) For every 1 ≤ i ≤ w, there is no out-edge of vi,j labeled with c contained
in Ei. There may be out-edges of vi,j labeled with c leading to non-block
nodes. The number of such out-edges for each node may differ.

A block B = ((v1,1, . . . , vw,1), . . . , (v1,s, . . . , vw,s)), abbreviated B = (vi,j)1≤i≤w,1≤j≤s,
is called maximal in size if, for any choice of nodes v1, . . . , vw ∈ V , the sequences
of size s + 1 of w-tuples ((vi)1≤i≤w, (vi,1)1≤i≤w, . . . , (vi,s)1≤i≤w) and ((vi,1)1≤i≤w, . . . ,
(vi,s)1≤i≤w, (vi)1≤i≤w) do not form a block. The block is called maximal in width if, for
any choice of nodes v1, . . . , vs ∈ V , the sequences of (w+1)-tuples ((vj , v1,j, . . . , vw,j))1≤j≤s

and ((v1,j, . . . , vw,j, vj))1≤j≤s do not form a block. A block is called maximal if it is
maximal in both width and size.

Let G = (V,E, λ) denote a Wheeler graph containing a maximal block. We then
obtain a directed edge-labeled (multi-)graph Gt from G as follows:

(i) We merge the corresponding nodes and edges of the isomorphic subtrees ti, with
1 ≤ i ≤ w, in order to obtain a subtree t of G. In particular, for 1 ≤ j ≤ s,
we collapse the nodes of the w-tuple (v1,j , . . . , vw,j) to obtain a node xj of the
graph t. The labels of the merged edges coincide and stay the same.

(ii) All edges leading from a non-block node u to the root node vi,1 of the subtree
ti are redirected to lead to the node x1 of t, preserving their labels.



(iii) All edges leading from a node vi,j of subgraph ti to a non-block node u are
redirected to leave from the node xj of t, preserving their labels.

Formally, the graph Gt = (Vt, Et, λt) is defined as follows: The set of nodes of Gt

is defined as Vt = (V \ {vi,j | 1 ≤ i ≤ w, 1 ≤ j ≤ s}) ∪ {xj | 1 ≤ j ≤ s}. We define a
function ϕ : V → Vt mapping a node in G to its corresponding node in Gt by

ϕ(v) =

{

v if v /∈ {vi,j | 1 ≤ i ≤ w, 1 ≤ j ≤ s}

xj if v = vi,j for some integers 1 ≤ i ≤ w, 1 ≤ j ≤ s.

The multiset of edges Et is defined as the difference of multisets {(ϕ(u), ϕ(v)) |
(u, v) ∈ E} \ {(ϕ(u), ϕ(v)) | (u, v) ∈ Ei, 2 ≤ i ≤ w}. For every edge (x, y) ∈ Et, there
is a corresponding edge (u, v) ∈ E such that (x, y) = (ϕ(u), ϕ(v)). Thus, we define
λt((x, y)) = λ((u, v)). This is well-defined because only edges with the same label are
merged. We call tunneling the process of obtaining the graph Gt from G. See Fig. 1.

Lemma 3. Let G = (V,E, λ) denote a Wheeler graph containing a maximal block

B = (vi,j)1≤i≤w,1≤j≤s of width w and size s and let Gt = (Vt, Et, λt) denote the graph

obtained from G by tunneling. Then Gt is a Wheeler graph.

Proof. To show that Gt is a Wheeler graph, we must define a Wheeler ordering on Vt.
As only consecutive nodes of V are merged in order to obtain Gt, this induces a canon-
ical ordering on the nodes of Vt: Pick two nodes x 6= y of Vt. Let ϕ−1(x), ϕ−1(y) ⊆ V
denote the corresponding preimages under ϕ. By property (i) of Def. 2, the nodes of
ϕ−1(x) (respectively, ϕ−1(y)) are consecutive in Wheeler order. Thus, we either have
u < v for every u ∈ ϕ−1(x), v ∈ ϕ−1(y), or vice versa. We set x < y in the first case
and x > y in the second. This yields an ordering on the nodes of Vt such that for any
two nodes u 6= v of V , we have ϕ(u) < ϕ(v) ⇒ u < v and u < v ⇒ ϕ(u) ≤ ϕ(v).

First, take two nodes x 6= y of Gt, such that x has in-degree 0 and y is of positive
in-degree. As in the process of tunneling the in-degree of a node is not decreased,
every node u ∈ ϕ−1(x) is of in-degree 0 as well. Moreover, as y is of positive in-degree,
there is a node v ∈ ϕ−1(y), such that v is of positive in-degree. As G is a Wheeler
graph, we have u < v and thus x = ϕ(u) ≤ ϕ(v) = y. As by assumption, x 6= y, this
yields x < y. Therefore, nodes with in-degree 0 precede those with positive in-degree.

Now, take two edges (x, y) and (x′, y′) of G labeled with a and a′, respectively.
Without loss of generality, assume a � a′. Choose u ∈ ϕ−1(x), v ∈ ϕ−1(y), u′ ∈
ϕ−1(x′) and v′ ∈ ϕ−1(y′), such that (u, v) and (u′, v′) are edges of G. By definition
of Gt, the label on the edge (u, v) (resp., (u′, v′)) is a (resp., a′). We then have
(x, y) = (ϕ(u), ϕ(v)) and (x′, y′) = (ϕ(u′), ϕ(v′)). Consider the two cases of Def. 1:
(i) Let a ≺ a′. As G is a Wheeler graph, we have v < v′ and thus ϕ(v) ≤ ϕ(v′).
If ϕ(v) < ϕ(v′) we are done, so assume ϕ(v) = ϕ(v′). We then have v = vi,j and
v′ = vk,j for some nodes vi,j 6= vk,j of the block. By properties (ii) - (iv) of Def. 2, the
labels of the incoming edges of vi,j and vk,j are the same, contradicting a ≺ a′.
(ii) Let a = a′ and without loss of generality assume u < u′. This yields ϕ(u) ≤ ϕ(u′).
As G is a Wheeler graph, we obtain v ≤ v′, and thus ϕ(v) ≤ ϕ(v′).



Two blocks B1 = (vi,j)1≤i≤w1,1≤j≤s1 and B2 = (ui,j)1≤i≤w2,1≤j≤s2 of a Wheeler graph
G = (V,E, λ) are called disjoint if their corresponding node sets {vi,j | 1 ≤ i ≤ w1, 1 ≤
j ≤ s1} ⊂ V and {ui,j | 1 ≤ i ≤ w2, 1 ≤ j ≤ s2} ⊂ V are disjoint. Since, by Lemma
3, a graph obtained from a Wheeler graph by tunneling is still a Wheeler graph, we
can tunnel iteratively with disjoint blocks.

Definition 4 (Tunneled Graph). Let G be a Wheeler graph containing k pairwise
disjoint maximal blocks B1, . . . ,Bk. The tunneled graph Gt of G corresponding to
those blocks is defined as the Wheeler graph obtained from G by iteratively tunneling
all the blocks Bi, for 1 ≤ i ≤ k. Each maximal block Bi is also called a tunnel.

Note that tunnels more general than the tree form given in Def. 2 would break
the Wheeler graph rules of Def. 1 before or after tunneling, except that the nodes
of t1 and tw could be connected with outside nodes, all of Wheeler ranks smaller
and larger, respectively, than their corresponding tunnel edges. We could also handle
forests, but those can be seen as a set of disjoint tunnels.

Path searching on a tunneled Wheeler graph

Wheeler graphs can be searched for the existence of paths whose concatenated labels
yield a given string P [3], generalizing the classical backward search on strings [4].
We now show that those searches can also be performed on tunneled Wheeler graphs.

Given Gt, we can simulate the traversal of G as follows. A node v ∈ V is represented
by a pair 〈ϕ(v), off(v)〉, where ϕ(v) is the corresponding node in Gt as defined in the
previous section and off(v) is the tunnel offset of v. If the node ϕ(v) does not
belong to a tunnel, then it must be that off(v) = 1 and the pair represents just the
node v. Otherwise, ϕ(v) corresponds to multiple nodes (vi,j)1≤i≤w of some tunnel
B = (vi,j)1≤i≤w,1≤j≤s in G and the tunnel offset represents which of the original nodes
we are currently at, in Wheeler rank order. That is, if v = vi,j, then off(v) = i.

The idea is that, when our traversal enters a tunnel B, we remember which orig-
inal subgraph ti we actually entered, and use that information to exit the tunnel
accordingly. We mark the nodes of Gt that are tunnel entrances in a bitvector, and
the other tunnel nodes in another bitvector. We then distinguish three cases.

Keeping out of tunnels. If we are at a pair 〈i, 1〉 not in a tunnel, compute j and
r with Eqs. (1) and (2), respectively, and it turns out that r is not marked as a tunnel
entrance, then we stay out of any tunnel and our new pair is 〈r, 1〉.

Entering a tunnel. Assume we are at a pair 〈i, 1〉, where i = ϕ(v) for some non-
tunnel node v, compute j and r with Eqs. (1) and (2), respectively, and then it turns
out that r = ϕ(u) is marked as a tunnel entrance. Then we have entered a tunnel
and the new pair must be 〈r, o〉, for some offset o we have to find out.

The w nodes (up)1≤p≤w ∈ V that were collapsed to form ϕ(u) are of indegree 0
within the subgraphs tp, but may receive a number of edges from non-tunnel nodes
(indeed, we are traversing one). Since all those edges are labeled by the same symbol



c, the Wheeler rank of all the sources of edges that lead to up must precede the
Wheeler ranks of all the sources of edges that lead to up′ for any 1 ≤ p < p′ ≤ w.

The problem is, knowing that we are entering by the edge with Wheeler rank j,
and that the edges that enter into r start at Wheeler rank select1(I, r) − r + 1, how
to determine the index o of the subgraph to we have entered. For this purpose, we
store a bitvector I ′[1..m], where m = |Et|, so that I ′[j] = 1 iff the jth edge of Et, in
Wheeler order, corresponds to the first edge leading to its target in G. Said another
way, I ′ marks, in the area of I corresponding to the edges that reach ϕ(u), which
were the first edges arriving at each copy up that was collapsed to form ϕ(u). We can
then compute o = rank1(I

′, j) − rank1(I
′, select1(I, r) − r).

Moving in a tunnel. Assume we are at a pair 〈i, o〉 inside a tunnel, for i = ϕ(u),
and want to traverse the kth edge labeled c leaving the pair. We then use the formulas
given after Eqs. (1) and (2) to compute the first and last edge labeled c leaving node
i. These form a Wheeler range [j1, j2]. We then apply Eq. (2) from j = j1 to find
the first target node r. If r is marked as an in-tunnel node, then we know that letter
c keeps us inside the tunnel, j1 = j2 (that is, there is exactly one out-edge by letter
c from each of the nodes (up)1≤p≤w that were collapsed to form ϕ(u), by part (a) of
item (v) of Definition 2), and thus our new node is simply 〈r, o〉.

If, instead, r is not an in-tunnel node, then letter c takes us out of the tunnel,
and we must compute the appropriate target node. Each of the nodes us may have
zero or more outgoing edges labeled c. The Wheeler ranks of the edges leaving up
precede those of the edges leaving up′, for any 1 ≤ p < p′ ≤ w. Thus, we use a
bitvector O′[1..m] analogous to I ′, where O′[j] = 1 iff the jth edge of Et in Wheeler
order corresponds to the first edge leaving a node in G by some letter c. In the
range O′[j1, j2], then, each 1 marks the first edge leaving from each up. The kth
edge labeled c leaving from uo is thus j = select1(O

′, rank1(O
′, j1) + o− 1) + k − 1.

If, for pattern searching, we want the last edge labeled c leaving from uo, this is
j = select1(O

′, rank1(O
′, j1) + o)− 1. We then compute the correct target node rank

r using Eq. (2).
Finally, there are two possibilities. If the new node r is marked as a tunnel

entrance, then we have left our original tunnel to enter a new one. We then apply the
method described to enter a tunnel from the values j and r we have just computed.
Otherwise, r is not a tunnel node and we just return the pair 〈r′, 1〉.

Therefore, we can simulate path searching in G by using just our representation
of Gt. Given a character c and the Wheeler range [i, i′] of a string S, we can find
the Wheeler range of the string Sc by following the first and last edge labeled with c
leaving from [i, i′], as described after Eqs. (1) and (2), and operate as described from
the corresponding ranks j and r. Thus, after |P | steps, we have the Wheeler range
of the nodes that can be reached by following the characters in P .

Theorem 5. We can represent a Wheeler graph G with labeled edges from the alphabet

[1..σ] in nt log σ + o(nt log σ) + O(nt) bits of space, where nt is the number of edges

in a tunneled version of G, such that we can decide if there exists a path labeled with

P in time O(|P | log logw σ) in a w-bit RAM machine.



Wheeler graphs of strings

We now focus on a particular type of Wheeler graphs, which corresponds to the
traditional notion of Burrows-Wheeler Transform (BWT) [12] and FM-index [4] (only
that our arrows go forward in the text, not backwards), and show that the full self-
index functionality on strings can still be supported after tunneling. This is close to
the original tunneling concept developed by Baier [2], to which we now add search
and traversal capabilities.

Definition 6 (Wheeler graph of a string). Let T be a string over an alphabet A. The
Wheeler graph of the string T is defined as G = (V,E, λ) with V := {v1, . . . , v|T |+1},
E = {(vi, vi+1) | 1 ≤ i ≤ |T | + 1} and λ : E → A with λ((vi, vi+1)) = T [i], where T [i]
denotes the ith character in the string T .

In other words, the Wheeler graph of a string T is a path of length |T |+ 1, where
the ith edge is labeled with the ith character of T . There is exactly one valid Wheeler-
ordering, which is given by the colexicographic order of prefixes of T , i.e., node vi
comes before node vj iff the reverse of T [1..i−1] is lexicographically smaller than the
reverse of T [1..j − 1]. There is a close connection to the BWT: the Wheeler order is
given by the suffix array of the reverse of T and therefore the L-array corresponds to
the BWT of the reverse of T .

For this special case of Wheeler graphs, Def. 2 simplifies as follows: A block B in
G of width w and length s is a sequence of length s+1 of w-tuples (v1,1, . . . , vw,1), . . . ,
(v1,s+1, . . . , vw,s+1) of pairwise distinct nodes of G satisfying

(i) For 1 ≤ i ≤ w − 1 and 1 ≤ j ≤ s+ 1, the immediate successor of the node vi,j
with respect to the Wheeler ordering on V is vi+1,j.

(ii) For 1 ≤ i ≤ w and 1 ≤ j ≤ s, (vi,j, vi,j+1) is an edge of E.

(iii) For 1 ≤ j ≤ s, all the edges leading to the nodes in {vi,j | 1 ≤ i ≤ w} have the
same label.

The process of tunneling in a Wheeler graph G of a string then consists of collapsing
the nodes of each w-tuple (v1,j , . . . , vw,j) into a single node xj and collapsing the edges
in {(vi,j, vi,j+1) | 1 ≤ i ≤ w} into a single edge (xj , xj+1). Furthermore, all edges
leading to a node vi,1 for some integer 1 ≤ i ≤ w are redirected to lead to the node
x1 and all edges leaving from a node vi,s for some integer 1 ≤ i ≤ w are redirected to
leave from the node xs. The labels of the edges stay the same. Note that we ensure
that every path of the tunnel is followed by a non-tunnel node.

Suppose we have the Wheeler graph G = (V,E, λ) of a string T . Denote |T | = n.
Let Gt = (Vt, Et, λt) be a tunneled version of G with |Vt| = nt. We represent Gt with
the data structures L, C, I and O described in the preliminaries. We can do path
searches without the bitvectors I ′ and O′ used in the previous section, as in these
particular graphs they are all 1s. We now describe how to implement the operations
count, locate and extract, analogous to the operations in a regular FM-index, by
using sampling schemes that extend those of the standard FM-index solution.



First, for each tunnel of length at least lognt in Gt, we store a pointer and the
distance to the end of the tunnel for every (lognt)th consecutive node in the tunnel.
This information takes O(nt) bits of space and lets us skip to the end of the tunnel
in O(lognt) steps by walking forward until the end of the tunnel is found, or until we
hit a node with a pointer to the end. The stored distance value tells us how many
nodes we have skipped over.

Locating. We define a graph Gc, called the contracted graph, that is identical to Gt

except that tunnels have been contracted into single nodes. Let ψ : Gt → Gc be the
mapping such that nodes in a tunnel in Gt map to the corresponding contracted node
in Gc. Take the path Q = (q1, . . . , qn) of all nodes in G in the order of the path from
the source to the sink. Let Qc = ((ψ ◦ ϕ)(q1), . . . , (ψ ◦ ϕ)(qn)) be the corresponding
path in Gc. Let Q′

c be the same sequence as Qc except that every run of the same
node is contracted to length 1. Note that this path traverses all edges of Gc exactly
once, i.e., it is an Eulerian path. We store a sample for every (log n)th node in the
path on Q′

c, except that if a node represents a contracted tunnel, we sample the next
node (our definition of blocks guarantees that the next node is not in a tunnel). The
value associated with the sample is the text position corresponding to the node. This
takes space O(nc), where nc is the number of nodes in Gc.

We can then locate the text position of a node by walking to the next sample in
text order, using at most logn graph traversal operations in Gt. In this walk we may
have to skip tunnels, which is done in O(lognt) time using their stored pointers when
necessary. In the end, we subtract the travelled distance from the text position of
the sampled node to get the text position of the original node. We can view such
a search as a walk in Gc, where traversing a contracted-tunnel node takes O(lognt)
graph traversal steps and traversing a non-tunneled node takes just one. The worst
case time, dominated by the time to traverse tunnels, is O(logn log nt) steps.

Counting. Efficiently counting the number of occurrences of a pattern given its
Wheeler-range requires a sampling structure different from that used for locating. The
Wheeler-range could span many tunnels, whose widths are not immediately available.
Let us define w(v) as the width of the tunnel v belongs to, or 1 if v does not belong
to a tunnel. We can then afford to sample the cumulative sum of the values w(v) for
all the nodes v up Wheeler-rank k for every k multiple of log nt nodes, using O(nt)
bits of space. Within this space we can also mark which nodes belong to tunnels.

This allows us to compute the sum of values w(v) for any Wheeler range with
endpoints that are multiples of lognt, which leaves us to compute the width of only
O(lognt) nodes at the ends of the range. For these nodes, we add 1 if they are not
in a tunnel; otherwise we go to the end of the tunnel using the stored pointers and
compute the width of the tunnel by looking at the out-degree of the exit of the tunnel.
The total counting time is then O(log2 nt) graph traversal steps.

Extracting. To extract characters from T , we use a copy of the samples 〈Wheeler
rank of graph node v, text position of node v〉 we store for locating, but sorted by



text position. Also, at the end of every tunnel of length at least log nt, we store
backpointers to the nodes storing pointers to the end of the tunnel.

Suppose we want to extract T [i..j]. If we know the node u of Gt representing
position i, we can simply walk forward from that node to find the j − i + 1 desired
characters by accessing L at each position. Therefore it is enough to show how to
find the node u. We binary search our sample pairs to find the Wheeler rank of the
closest sample before text position i. This sample is at most log n nodes away (in
Gc) from u, so we can reach u in O(logn) steps in Gc, or equivalently, O(logn lognt)
steps in Gt. Note, however, that our target node u might be in a tunnel. If the tunnel
is of length less than lognt, we walk towards it normally. If u is inside a tunnel of
length at least lognt, instead, we use its pointers to skip to the end of the tunnel,
and from there take the backpointer to the nearest position before u; we then walk
the (at most) log nt nodes until reaching u.

The time needed to reach u is again dominated by the time to skip over and within
tunnels, so the total time complexity is O(logn lognt) graph traversal steps.

We note that, in all cases, our graph traversal steps are of a particular form,
because all the edges leaving from the current node are labeled by the same symbol.
That is, the c in Eq. (1) is always L[select1(O, i)]. This particular form of rank
is called partial rank and it can be implemented in constant time using o(|L| log |A|)
further bits [13, Lem. 2]. The following theorem summarizes the results in this section.

Theorem 7. We can store a text T [1..n] over alphabet [1..σ] in nt log σ+o(nt log σ)+
O(nt) bits of space, such that in a w-bit RAM machine we can decide the existence of

any pattern P in time O(|P | log logw σ), and then report the text position of any occur-

rence in time O(logn lognt) or count the number of occurrences in time O(log2 nt).
We can also extract any k consecutive characters of T in time O(k + log n lognt),
where nt ≤ n is the number of nodes in a tunneled Wheeler graph of T .

Future work

Open problems are: How to find the optimal blocks that minimize space? Can we
still support path searching if blocks are overlapping? Can the O(log2 n) times of
counting, locating, and extracting be reduced to O(logn), as in the basic sampling
scheme on non-tunneled BWTs? How to extend those operations to more complex
graphs, like trees? And can we count paths instead of path endpoints?
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index of alignment: A compressed index for similar strings,” Theoretical Computer
Science, vol. 638, pp. 159–170, 2016.

[7] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan, “Structuring labeled trees
for optimal succinctness, and beyond,” in Proc. 46th FOCS, 2005, pp. 184–193.
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