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ABSTRACT

Context. Thermal dust emission carries information on physical conditions and dust properties in many astronomical sources. Because
observations represent a sum of emission along the line of sight, their interpretation often requires radiative transfer (RT) modelling.
Aims. We describe a new RT program, SOC, for computations of dust emission, and examine its performance in simulations of
interstellar clouds with external and internal heating.
Methods. SOC implements the Monte Carlo RT method as a parallel program for shared-memory computers. It can be used to study
dust extinction, scattering, and emission. We tested SOC with realistic cloud models and examined the convergence and noise of the
dust-temperature estimates and of the resulting surface-brightness maps.
Results. SOC has been demonstrated to produce accurate estimates for dust scattering and for thermal dust emission. It performs
well with both CPUs and GPUs, the latter providing a speed-up of processing time by up to an order of magnitude. In the test cases,
accelerated lambda iterations (ALIs) improved the convergence rates but was also sensitive to Monte Carlo noise. Run-time refinement
of the hierarchical-grid models did not help in reducing the run times required for a given accuracy of solution. The use of a reference
field, without ALI, works more robustly, and also allows the run time to be optimised if the number of photon packages is increased
only as the iterations progress.
Conclusions. The use of GPUs in RT computations should be investigated further.
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1. Introduction

Most knowledge of astronomical sources is based on radia-
tion that is produced and processed by inhomogeneous objects
viewed from a single viewpoint. This also applies to interstellar
medium, the line emission from gas, and the continuum emission
from interstellar dust. Radiative transfer (RT) defines the rela-
tionships between the physical conditions in a radiation source
and the observable radiation. Therefore, RT modelling is needed
to determine the source properties or, more generally, the range
of properties consistent with observations.

Many RT programs exists for the modelling of dust contin-
uum data (e.g. Bianchi et al. 1996; Dullemond & Turolla 2000;
Gordon et al. 2001; Bjorkman & Wood 2001; Juvela & Padoan
2003; Steinacker et al. 2003; Wolf 2003; Harries et al. 2004;
Ercolano et al. 2005; Juvela 2005; Pinte et al. 2006; Jonsson
2006; Chakrabarti & Whitney 2009; Robitaille 2011; Lunttila &
Juvela 2012; Natale et al. 2014; Baes & Camps 2015) and
benchmarking projects have quantified the consistency between
the different methods and implementations (Ivezic et al. 1997;
Pascucci et al. 2004; Gordon et al. 2017). Part of these codes can
also be used in studies of polarised scattered or emitted radiation
(Whitney et al. 2003; Pelkonen et al. 2007; Bethell et al. 2007;
Reissl et al. 2016; Peest et al. 2017).

Radiative transfer is computationally demanding because
each source location is in principle coupled with all the other
positions (Steinacker et al. 2013), the coupling changing with
wavelength. Emission calculations may need iterations where
temperature estimates and estimates of the radiation field are
updated alternatingly. Most codes for dust emission and scat-
tering modelling are based on the Monte Carlo method, the

simulation of large numbers of photon packages that repre-
sent the actual radiation field. In “immediate re-emission” codes
(Bjorkman & Wood 2001), every interaction with the medium
leads to a re-evaluation of the dust emission from the corre-
sponding model cell. In other Monte Carlo codes the information
about the absorbed energy is stored during the simulation step,
after which the temperatures of all cells are updated. Models
with high dust temperatures and high optical depths may require
a significant number of iterations.

In the case of large 3D models, the run times become
long and some parallelisation of the computations may be nec-
essary (Robitaille 2011; Verstocken et al. 2017). The Monte
Carlo method allows for straightforward parallelisation of the
radiation-field simulations at the level of individual photon pack-
ages or between frequencies (if the basic simulation scheme
allows this) or even based on the decomposition of the computa-
tional domain (Harries 2015). However, naive parallelisation –
where each computing unit performs independent simulations
with different random numbers – may also be the most efficient.

The parallelisation between nodes is typically handled with a
Message Passing Interface (MPI1) and within a node (on a single
shared-memory computer), for example, with OpenMP2, lower-
level threads, or other language-specific (or vendor-specific)
tools. Further speed-up could be obtained with graphics pro-
cessing units (GPUs) that are theoretically capable of more
floating-point operations per second than even high-end CPUs.
The use of GPUs has been hindered by the more complex pro-
gramming model and the limited device memory. However, the

1 http://mpi-forum.org/
2 www.openmp.org
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massive parallelism provided by GPUs is well suited for RT cal-
culations and some applications to astronomical RT already exist
(Heymann & Siebenmorgen 2012; Malik et al. 2017). These use
the CUDA parallel programming platform, which is proprietary
to NVIDIA and cannot be used with GPUs of other manu-
facturers. Furthermore, CUDA programs are written explicitly
for GPUs and cannot be run on CPUs. Programming GPUs is
becoming more approachable as directive-based programming
models are becoming available. The support for GPUs (and
“accelerators” such as Intel Xeon Phi, AMD Radeon Instinct,
etc.) is maturing in OpenMP. This enables heterogeneous com-
puting, that is, the same program running on both GPUs and
CPUs. However, in this paper we describe the continuum RT pro-
gram SOC, which is written using OpenCL libraries3. OpenCL
is an open standard for heterogeneous computing. Thus, SOC
can in principle be run unaltered on CPUs, GPUs, and even other
accelerators. OpenCL is supported by many vendors and further-
more has fully open source implementations, making it more
future-proof against the current rapid changes and evolution of
the GPU computing frameworks.

SOC has been compared to other continuum RT programs
in Gordon et al. (2017). In this paper we describe in more
detail some of the implementation details and examine the effi-
ciency of SOC and some of the implemented methods in the
modelling of dust emission from interstellar clouds. In a future
paper, SOC will be used to produce synthetic surface-brightness
maps for a series of MHD model clouds and, based on these,
to construct synthetic source catalogues with the pipeline used
for the original Planck Galactic Cold Cores Catalogue (PGCC;
Planck Collaboration XXVIII 2016). One of these MHD models
is already used in the tests in the present paper.

The contents of the paper are the following. In Sect. 2,
we discuss the implementation of the SOC programme. In the
results section, Sect. 3, we describe tests on the SOC per-
formance. These include, in particular, problems that require
iterations to reach final dust temperature estimates (Sects. 3.3
and 3.4). The findings are discussed in Sect. 4 and the final con-
clusions are listed in Sect. 5. In Appendix A, we further discuss
the calculation of emission from stochastically heated grains.

2. Methods

In this section, we present some details of the SOC implementa-
tion and the model clouds used in the subsequent tests.

2.1. SOC radiative transfer program

SOC is a Monte Carlo RT program for the calculation of dust
emission and scattering. It has been used in some publications
(Gordon et al. 2017; Juvela et al. 2018a,b) but here we provide a
more comprehensive description of some of the implementation
details.

2.1.1. Basic program

SOC uses OpenCL libraries, enabling the program to be run on
both CPUs and GPUs. This has affected some of the design
decisions. The program is run on a host, which calls specific
routines referred to as kernels that are executed on a device.
The host is the normal computer (CPU) while the device can
be a CPU (using the same resources as the host), a GPU, or
another accelerator. Thus, the memory available on the device

3 https://www.khronos.org/opencl/

may be more limited than usual. SOC has separate kernels to
carry out the simulation of photon packages at a single frequency
in order to solve the dust temperatures based on the computed
absorbed energy (non-stochastically heated grains only), and,
based on that solution, to produce surface-brightness maps at
given frequencies.

In Gordon et al. (2017), we used an earlier version that
employed modified Cartesian grids. Current SOC uses cloud
models defined on hierarchical grids. The root grid is a regular
Cartesian grid with cubic cells. Refinement is based on octrees
where each cell can be recursively divided into eight sub-cells
of equal size. In the following we refer to such a set of eight
cells as an octet and the number of hierarchy levels as nL. The
root grid is the level L = 1 and a grid consisting only of the root
grid has nL = 1. The cells of the model cloud form a vector that
starts with the cells of the root grid, followed by all cells of the
first hierarchy level, an so forth. The links from parent cells to
the first cell in the sub-octet are stored in the same structure,
encoding the index of the first child cell as a negative value in
place of the density value in the parent cell. Because each octet
is stored as a consecutive element of the density vector, smaller
auxiliary arrays are sufficient to store the reverse links from the
first cell of an octet to its parent cell. Neighbouring cells could
be located faster by using explicit neighbour lists (Saftly et al.
2013). However, to reduce memory requirements, an important
consideration especially on GPUs, we are currently not using
that technique. Therefore, each time a photon package is moved
to a new cell, a partial traversal of the hierarchy is required, up
to a common parent cell and then down to the new leaf node
that corresponds to the next cell along the path of the photon
package.

The SOC program is based on the usual Monte Carlo simula-
tion where the radiation field is simulated using a pre-determined
number of photon packages, each standing for a large number
of real photons. SOC concentrates on the RT problem and does
not have built-in descriptions of specific dust models, radiation
sources, or cloud models (density distributions). These inputs
are read from files that are specified in the SOC initialisation
file. They include the cloud hierarchy with the density values,
the dust cross sections for absorption and scattering, and scatter-
ing functions tabulated as functions of frequency and scattering
angle.

The simulation is done using a fixed frequency grid. There-
fore, at each step of the calculations, the kernel only needs data
related to a single frequency. These include the densities and,
for the current frequency, the optical depth and a counter for the
number of absorbed photons. The density vector (one floating-
point number per cell) includes basic information about the grid
geometry. The information about parent cells is less than one
eighth of this (link for first cell of each octet, excluding the root
level). The host sets up the data for the current frequency and
these are transferred to the device. After the kernel has com-
pleted the simulation of the radiation field, the information of the
number of absorptions in each cell can be returned to the host.
The host loops over simulated frequencies, calls the kernel to do
the simulations, and gathers information of absorption events.

For stochastically heated grains, the information about
absorbed energy is converted to dust emission using an external
program such as DustEM (Compiègne et al. 2011) or the pro-
gram we used in Lunttila & Juvela (2012) and in Camps et al.
(2015). On the host side this requires the storage of large arrays
that for modern computers would not set serious limits on the
size of the computed models. However, in SOC these are stored
as memory-mapped files. Memory-mapped files reside on disk
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but can be used in the program transparently as in normal arrays.
The operating system is responsible for reading and writing the
data, as needed, without the data ever being in the main mem-
ory all at the same time. Thus, the main limitation remains the
device memory and the amount of data per single frequency.

If grains are assumed to be in equilibrium with the radiation
field, the emission is calculated by SOC itself, again using a sep-
arate kernel. The integral of the absorbed energy over frequency
can be gathered directly during the simulations, without the
need for large multi-frequency arrays. The absorption informa-
tion remains on the device, and only the computed dust emission
is returned to the host. As the final step, the host calls a map-
ping kernel to make surface-brightness maps for the desired
frequencies and directions.

SOC can also produce images of scattered light; however,
these are usually made with separate runs that employ methods
such as forced first scattering, peel-off, and potentially additional
weighting schemes (Juvela 2005; Baes et al. 2016). Apart from
the use of different spatial discretisation, SOC results for scat-
tering problems have already been discussed in Gordon et al.
(2017). We concentrate in this paper on the dust emission and
especially the methods described in the following section.

2.1.2. Additional methods

SOC implements some features beyond the basic Monte Carlo
scheme. These include forced first scattering and accelerated
lambda iterations (ALI). ALI (also called accelerated Monte
Carlo or AMC) is computed using a diagonal operator that solves
explicitly for the cycle of photons that are absorbed within the
emitting cell (see Juvela 2005). The use of ALI incurs an addi-
tional cost of storing on the device one additional floating point
number per cell, which is needed to keep track of the photon
escape probabilities for each cell. SOC includes optional weight-
ing for the scattering direction (Juvela 2005) and the step length
between scattering events. The latter is similar in nature to the
method described in Baes et al. (2016) but, to avoid explicit inte-
gration to the model boundary, the probability distribution of
the simulated free path is based on the sum of two exponen-
tial functions of optical depth, with user-selected parameters.
The weighting is applied only on the first step of each photon
package.

SOC can use a reference field to reduce the noise, espe-
cially in calculations that involve several iterations (Bernes 1979;
Juvela 2005). In this method, each simulation step only estimates
a correction to the average radiation field determined by the pre-
vious iterations. This requires that the absorptions caused by the
reference field also be stored, adding storage requirements by
one number per cell and frequency. For grains at an equilibrium
temperature, this reduces to a single number per cell (the total
absorbed energy). In an ideal case, the overall noise would then
decrease as nI

−1/2, as the function of the number of iterations –
assuming that the number of photon packages per iteration, nP,
is constant. However, because the temperatures also change dur-
ing the iterations, the noise is likely to decrease more slowly,
especially during the first iterations.

Iterations are needed if the model includes high optical
depths and dust is heated to such high temperatures that its emis-
sion no longer freely escapes the model volume. In the context
of interstellar clouds, this means dust near embedded radiation
sources, possibly in a very small fraction of the whole model
volume. In these cases, the reference field can be used for further
optimisation. After the first iteration, the reference field already
contains the information of all constant sources, such as the

embedded point sources or the background radiation, and they
can be omitted from the subsequent iterations. Furthermore, it is
possible to divide the cells into two categories. Passive cells are
those whose emission (resulting from their temperature change
during the iterations) is too low to affect the temperature of other
cells. Active cells are correspondingly those whose temperature
does change with iterations, affecting the temperature of other
cells. Once the former are included in the reference field (if their
emission is indeed significant at all), on subsequent iterations
only emission from the active cells needs to be simulated. In
SOC, the host can examine the changes of emission between iter-
ations and can thus omit the creation of photon packages for cells
for which the emission has not changed. However, in practice the
same is accomplished by weighted sampling where the number
of photon packages emitted from each cell is determined by the
cell luminosity.

Finally, SOC offers the option to change the spatial resolu-
tion also during iterations. One could start with a low-resolution
model, doing fast iterations, and only later refine to the final res-
olution needed. This could result in savings in the run times,
depending on the optical depths and the intensity of the dust re-
emission. On the other hand, a lower spatial resolution means
optical depths for individual cells, which tends to slow the con-
vergence of temperature values down, especially when ALI is
not used. The run-time refinement is briefly tested in Sect. 3.4

The present SOC does not carry out the RT simulation with
polarised radiation but can nevertheless be used to calculate syn-
thetic maps of polarised dust emission. SOC can determine for
each cell the intensity and the anisotropy of the radiation field.
Other scripts are used to calculate the resulting polarisation-
reduction factors, for example, according to the radiative torques
theory, thus also including the information about the magnetic
field orientation. The procedure is essentially identical to the
computations presented in Pelkonen et al. (2009). The infor-
mation of the polarisation reduction and of the magnetic field
geometry are read into SOC, which then produces synthetic
maps of the Stokes parameters. The calculations ignore the
effects on the total intensity that result from the cross sections
being dependent on the angle between the magnetic field and
the direction of the radiation propagation. This is usually not a
severe approximation (especially when compared to the many
other sources of uncertainty). However, based on SOC, another
program is now in preparation where all calculations are done
using the full Stokes vectors, taking into account the degree to
which the grains in each cell are aligned with the magnetic field
(Pelkonen, in prep.).

2.2. Test model clouds

The first tests were performed with spherically symmetric den-
sity distributions that were sampled onto hierarchical grids (see
Sect. 3.1).

Most tests employed a snapshots from the MHD simulations
described in Padoan et al. (2016a), which has already been used
for synthetic line observations of molecular clouds (Padoan et al.
2016b) and for studies of the star-formation rate (Padoan et al.
2017). These simulations of supernova-driven turbulence were
run with the Ramses code (Teyssier 2002) using a 250-pc box
with periodic boundary conditions. The runs started with zero
velocity, a uniform density n(H) = 5 cm−3, and a uniform mag-
netic field of 4.6 µG. The self-gravity was turned on after 45 Myr
and the simulations were then run for another 11 Myr. In the hier-
archical grid, the largest cell size is 0.25 pc but in high-density
regions the grid is refined down to 7.6 × 10−3 pc. In this paper,

A79, page 3 of 13



A&A 622, A79 (2019)

Table 1. Number of cells on each hierarchy level of the (10 pc)3 model
clouds with nL = 7.

Hierarchy level L Number of cells

1 8000
2 49 176
3 185 232
4 365 184
5 295 824
6 178 280
7 83 632

we use a (10 pc)3 sub-volume selected from the full (250 pc)3

model cloud. Table 1 lists the number of cells on each level of
this (10 pc)3 model with maximum refinement nL = 7. The largest
number of cells is found on the level nL = 4. Figure 1 shows
examples of surface-brightness maps computed for models with
nL = 1–4.

The RT problem is solved with SOC, assuming an external
radiation field according to Mathis et al. (1983; solar neigh-
bourhood values) and dust properties given by Compiègne et al.
(2011). We use a fixed-frequency grid that has 52 frequencies
placed logarithmically between 1011 and 3 × 1015 Hz (between
0.1 and 3000 µm). Tests are made assuming that the grains
remain in temperature equilibrium with the radiation field.

Even with external illumination only, the radiation field
intensity does not have significant large-scale gradients in the
MHD cloud models. This is caused by the inhomogeneity of
the models which leads to a relatively uniform intensity in the
low-density medium. Strong temperature variations are seen but
mainly at smaller scales, in connection with individual high-
column-density structures. Apart from the background radiation,
the other potential radiation sources are internal sources (mod-
elled as blackbody point sources) and the re-emission from the
heated dust itself.

3. Results

To examine the performance of SOC in simulations of external
and internal radiation sources and of dust emission, we start with
tests with simple spherically symmetric model clouds (Sect. 3.1).
In Sect. 3.2, we continue with more realistic models based on a
MHD simulation. Finally, the more demanding iterative com-
putations with internally heated and optically thick clouds are
discussed in Sect. 3.3.

To make the results more concrete, we quote timings for a
laptop that has a six-core CPU and a dedicated GPU4. The per-
formance is measured in terms of the wall-clock time, the actual
time that has elapsed, for example, between the beginning and
the end of a run.

3.1. Tests with spherical model clouds

First tests were conducted with small, spherically symmetric
models resampled onto a hierarchical grid. The root grid is
173 cells and is refined to nL = 2–5 levels with some 5000 cells
per level. Thus, about one eighth of the cells is refined and the
total number of cells is only ∼10 000–20 000, depending on nL.

4 The CPU is a six-core Intel Core i7-8700K CPU running at 3.70 GHz
and the GPU an NVidia GTX 1080 with 2560 CUDA cores.

nL = 1 nL = 2

nL = 3 nL = 4

13.2 13.4 13.6 13.8 14.0
I (100 m) (108 Jy sr 1)

Fig. 1. Examples of 100-µm surface-brightness maps computed for
3D model clouds with a maximum refinement to nL = 1–4 hierarchy lev-
els. In calculations involving internal heating (as in these examples),
point source is placed in an empty root grid cell at the centre of the
model volume.

A 10 000 K blackbody point source with a luminosity of L = 1 L�
is located at the centre, in a root grid cell with zero density. Oth-
erwise the density profile is Gaussian with a density contrast of
approximately 200 between the centre and the edges. The max-
imum column density is N(H2)∼ 1.3 × 1023 cm−2 but depends
slightly on the discretisation used. We characterise the noise of
the calculations by using the random mean squared (rms) noise
of the resulting 100 µm maps.

Figure 2 shows how the results change as a function of the
number of simulated photons packages and the model refine-
ment. The results show the expected n−0.5

P dependence of the
noise on the number of photon packages, irrespective of the
depth or the grid hierarchy. This applies to the simulations
of the point source, the diffuse background, and the emission
from the medium itself. Each map has a pixel size that cor-
responds to the smallest cell size of that particular model.
With larger L, the maps become more over-sampled (especially
towards the map edges), which has some effect on the computed
rms values. The actual noise per 3D cell measured by the dust
temperature is in refined regions proportional to 2L because the
number of photon packages hitting a cell decreases by a factor of
four for each additional level of the grid hierarchy.

Figure 2b compares results to the map obtained with the
highest refinement and the highest number of photon packages.
The differences are completely dominated by the difference
in discretisation. The dependence on the number of photon
packages is visible only when comparing runs with the same
gridding.

The last column in Fig. 2 shows the wall-clock run times,
including initialisations and the writing of the surface-brightness
maps for all frequencies. The map size in pixels depends on the
discretisation but the effects for the overall run times are not

A79, page 4 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834354&pdf_id=0


M. Juvela: SOC program for dust continuum radiative transfer

105 106

Packets

0.01

0.1

RM
S 1

(M
Jy

sr
1 ) a nL = 1

nL = 2
nL = 3
nL = 4

vs. same np
vs. largest np

105 106

Packets

0.1

1

10

RM
S 2

(M
Jy

sr
1 ) b

nL = 1
nL = 2
nL = 3
nL = 4

105 106

Packets

10

6

20
30
40

Ti
m

e
(s

)

c

Po
in

ts
ou

rc
eCPU

GPU

nL = 1
nL = 2
nL = 3
nL = 4

105 106 107

Packets

10 4

10 3

0.01

RM
S 1

(M
Jy

sr
1 ) d

105 106 107

Packets

10 4

10 3

0.01

RM
S 2

(M
Jy

sr
1 ) e

105 106 107

Packets

10Ti
m

e
(s

)

f

Ba
ck

gr
ou

nd

105 106 107

Packets

0.01

0.1

1

RM
S 1

(M
Jy

sr
1 ) g

105 106 107

Packets

0.1

1

10

RM
S 2

(M
Jy

sr
1 ) h

105 106 107

Packets

10

100

Ti
m

e
(s

)

i

Du
st

 e
m

iss
io

n

Fig. 2. Noise and run times as a function of the number of photon packages for a small spherically symmetric test model. Results are shown for
simulations of a point source (panels a–c), a diffuse background (panels d–f), and the dust emission from the model volume (panels g–i). First
column: rms noise of the 100 µm map as the difference of two identical runs (solid lines) and from the comparison to a run with the same volume
discretisation (same nL) but the highest number of photon packages (dashed lines). Shading is used to indicate the expected nP

−1/2 convergence as
a function of the number of photon packages. Second column: rms difference to a corresponding run with the highest number of photon packages
and the finest spatial discretisation (nL = 5). The wall-clock run times for CPU (solid lines) and GPU (dashed lines) computations are shown in the
last column. In each frame, the colours correspond to different values of nL, as indicated in frame c.

significant. On the test computer, the speed-up provided by the
GPU varies from ∼50% (for small number of packages, when the
initialisation overheads are significant) close to a factor of ten.
The behaviour is qualitatively similar for lower column-density
models where there are fewer multiple scatterings and the cost
associated to the creation of a photon package is larger rela-
tive to the tracking of the photon paths. The speed-up of GPU
relative to CPU increases with the number of photon packages,
except for the point-source simulations. Possible reasons for this
are discussed in Sect. 4.2.

3.2. Tests with 3D model clouds

The following tests involve a 3D model based on MHD
simulations (see Sect. 2.2). We analyse maps that are computed
towards the three cardinal directions. The map pixel size corre-
sponds to the smallest model cells. The 10 pc × 10 pc projected
area is thus covered by maps with 1310 × 1310 pixels. The aver-
age column density is N(H2)∼ 2.4 × 1021 cm−2 (AV = 2.3 mag)
and the maximum column density ranges from 1.78 × 1023 cm−2

(AV = 172 mag) to 2.46 × 1023 cm−2 (AV = 238 mag), depend-
ing on the view direction. The values of visual extinction AV
given in parentheses correspond to the dust model used in the
simulations.

The model volume is centred on a site that will give birth
to a high-mass star. However, in these tests we run the models
either without internal heating or using a radiation source that

is located in the star-forming core but has an ad hoc luminosity
that is made so high that the dust temperatures converge only
after several iterations.

We start by checking how the noise behaves as a function
of the number of photon packages or the run time. Compared
to Sect. 3.1, the grid is now fixed but the model size is closer
to that of potential real applications. Figure 3 shows the results
for a single iteration. The noise decreases mostly approximately
according to the n−1/2

P relation. In the case of a point source, the
convergence is slightly faster because with lower package num-
bers some cells at the model boundaries may not be hit at all.
These cells get assigned an ad hoc constant temperature and, in
spite of their low number, have an impact on overall noise values.

Plots contain two relations for dust re-emission. In the default
method, the same number of photon packages is sent per cell
(with random locations and directions within each cell). For
uniform sampling, SOC also requires the number of photon pack-
ages (per frequency) to be a multiple of the number of cells.
Therefore, results for runs with a smaller number of requested
photon packages end up at the same location in the plot as the
actual number of photons packages just above nP ∼ 106. The
other relations (open symbols) correspond to simulations where
the number of emitted photon packages is weighted according
to the emission. These runs include, as constant contributions,
the heating from previous simulations of the external radiation
field and the point source. Hot dust (temperature above 100 K)
is found only near the central source. The convergence is slower
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Fig. 3. Test with high-resolution model in the case of only a point source
(panel a) or only background radiation (panel b), or including both as
constant radiation field components to examine the noise in the simu-
lation of dust re-emission. The rms errors as a function of the number
of photon packages are shown with black symbols. The circles, squares,
and triangles correspond to maps calculated toward three orthogonal
directions. The shading shows the expected N−1/2 convergence. The
lines and right-hand y-axis indicate the run times for CPU (blue) and
GPU (red). Panel c: open symbols and dashed lines correspond to an
alternative run with emission weighting.

than n−1/2
P because, in the case of emission weighting, the max-

imum number of photon packages sent from any single cell was
limited to 10 000 with a user-defined parameter. Such a cap may
sometimes be necessary to ensure proper sampling also for the
emission from cooler dust, which could be important locally in
regions far from the hottest dust. On the other hand, an increase
in nP will not improve the accuracy with which one simulates the
emission from cells that have already reached the cap value.

Apart from constant overheads at small photon numbers,
the run times are generally directly proportional to nP. The
speed-up provided by the GPU is approximately a factor of
four in the point-source and background radiation simulations
and slightly higher for the standard dust re-emission calculation.
The situation is very different when emission weighting is used.
Compared to the unweighted case, the run times are shorter on
CPU while on GPU they are longer. This is discussed further in
Sect. 4.2.

Without photon splitting or similar techniques, each addi-
tional level of the hierarchy should decrease the probability of
photon hits by a factor of four. Therefore, the noise should
increase proportionally to 2L, where L is the grid level (larger
L standing for smaller cells). Figure 4 shows the actual rms
error of dust temperatures as a function of the hierarchy level.
The 2L-dependence holds for the background radiation. In the
point-source simulation, the noise is constant or even decreases
at the highest levels because those cells are on average closer to

1 2 3 4 5 6 7
Hierarchy levels

10 3

10 2

10 1

100

101

102

RM
S

er
ro

r(
%

) point source

background emission

dust emission

emission-weighted dust emission

Fig. 4. Error of the computed dust temperatures as a function of the grid
hierarchy in a model with nL = 7. From top to bottom panels: curves
correspond to simulations of a point source (red curve), heating by
background radiation (black curve), and simulations of dust emission
when the contribution of the previous radiation sources is kept constant
(blue curves). The solid and dashed lines correspond to the default and
the emission-weighted simulations, respectively. The shaded regions
are used to illustrate the expected 2level dependence of the noise. All
calculations were done with 1.8 × 107 photon packages per frequency.

the source. For the simulated dust re-emission, the noise val-
ues are lower but increase rapidly on the highest refinement
levels. This is partly an artefact of the model setup where the
cells on low grid levels are heated mainly by sources other than
the dust re-emission and therefore in this test have a low noise.
The emission-weighting leads to lower noise values that also are
more uniform between cells of different size.

Run times should be proportional to the number of cells
(assuming that the sampling of the radiation field is kept uni-
form) but, in our case, deeper grid hierarchies are associated
with some overhead in the tracking of the photon packages.
Figure 5 shows the run times as a function of the number of
cells in models that are refined down to nL = 1–7. The number
of photon packages is kept at 1.8 × 107 so that plot shows only
the effect of discretisation. In the plot, the run times increase
slower than the number of cells because cells at higher hierar-
chy levels are hit by progressively fewer photon packages. To
ensure a certain signal-to-noise ratio (S/N) even for the refined
regions, the number of photon packages should be proportional
to 2nL (Fig. 4). An increase in the overhead is visible for deeper
hierarchies with nL = 5–7 although the run times are still almost
proportional to the number of cells. As indicated by Table 1,
even though the tracing of the photon paths through cells at high
refinement levels were significantly slower, the effect on the total
run times is limited because of the small fractional number of
those cells. Some GPU runs appear to deviate from the general
trends. Emission-weighted simulations of dust re-emission slow
down for deeper hierarchies (see Fig. 3 and discussion above)
and for nL = 5–7 are similar to the CPU run times. Further-
more, point-source simulations suffer from coarse discretisation
(nL ≤ 4), possibly because of the locking overheads for global
(multiple threads doing frequent updates to the same cells close
to the point source).

3.3. Iterative solution of dust temperature

Above we were only concerned with the simulations of the radi-
ation field. For optically thick models and especially in the case
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Fig. 5. Dependence of run times on the maximum refinement. The
colours correspond to simulations of the radiation from a point source
(red), external background (black), and dust re-emission (blue). For dust
emission, the dashed lines and open symbols correspond to a run using
emission weighting. The CPU run times are plotted with circles and the
GPU run times with squares. The shading indicates the trend for run
times proportional to the number of cells.

of internal radiation sources, the question of the convergence of
the temperature values becomes equally important. Calculations
could be sped up by reducing the number of iterations required
for a converged solution or by reducing the time per iteration.

We first examine the performance of the ALI method as a
function of the model discretisation. We are using ALI with a
diagonal operator that only separates the absorption-emission
cycles within individual cells. The effects should depend on the
discretisation. Higher spatial resolution means that the optical
depth of individual cells is smaller and therefore we can expect
less benefit from the use of ALI.

We use the same density field as in Sect. 3.2 and a single
internal radiation source. The original model described a (10 pc)3

volume where the effects of an even very luminous source would
remain local. Therefore, in this test the linear size of the cloud
was decreased by a factor of 20, the densities were increased by
a factor of 100, and the luminosity of the radiation source was
set so that the temperature of the closest cells is hundreds of
degrees. These ensure that dust re-emission is important over a
larger volume and that the dust temperatures converge only after
many iterations. The setup is only used to test the RT methods
and is not supposed to be a physically accurate description of a
star-forming core.

Figure 6 shows the convergence of temperature values for
the nL = 4 model for runs with nP ∼ 18 × 106. The convergence
is measured based on the average dust temperatures on only the
highest level of refinement (i.e. cells close to the point source),
comparing these to a non-ALI run with the same nP and 40 iter-
ations. Based on the rate of convergence in Fig. 6, the error of
that reference should be two orders of magnitude smaller than on
the final iterations shown in the figure.

The average temperature is initially increasing by ∼10 K per
iteration. After 20 iterations, this rate has decreased by a factor
of one hundred. ALI leads to a faster convergence and the rate
of convergence is about the same for all cells, irrespective of
their location with respect to the point source. In run times, the
overhead of ALI is some 5%, which is more than compensated
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Fig. 6. Convergence of dust temperature values as a function of itera-
tions and the run time on CPU. Temperatures are from the cells on the
finest level of refinement of a model with nL = 4. Panel a: average tem-
perature for basic runs (solid lines) and for ALI runs (dashed lines and
open symbols). The black line is the average for all cells on the level
L = 4 and the red curve is for 5% of the cells with the highest tempera-
tures. The blue and cyan curves correspond to the average of all L = 4
cells in runs with a reduced number of photon packages nP. Panel b:
errors relative to a run with 40 iterations and without ALI. Panel c: rms
errors for L = 4 cells calculated as the standard deviation between two
independent runs.

for by the faster convergence. The rms errors are similar with and
without ALI.

Figure 6 shows further how, depending on the requirements
on accuracy (bias and random errors), the run times could
be significantly shortened simply by reducing the number of
photon packages. The rms errors are naturally higher but this
does not affect the initial rate of convergence measured using
|〈∆T 〉|. However, with low photon numbers, the convergence
stops earlier and also the bias of the final temperature estimates
is larger. When nP is reduced by a factor of 64, the final bias
is ∆〈T 〉 ∼ 1 K. The bias is even more significant in the resulting
surface-brightness maps, analogous to the way LOS temperature
variation biases observational dust temperature estimates (Shetty
et al. 2009; Juvela & Ysard 2012); see Fig. 6.

In Fig. 6b the convergence of the ALI runs saturates at a
level |〈∆T 〉| ∼ 0.1 K. Qualitatively, this could be expected based
on the above results with lower photon number. However, we
measure convergence with respect to a reference solution that
is calculated with 40 iterations but without ALI. Like the
low-photon-number runs, the reference solution will have a sys-
tematic error that is larger than suggested by the extrapolation of
the initial linear trend in Fig. 6b. The fact that the |〈∆T 〉| curve
of the ALI run flattens relative to that reference solution suggests
that ALI may be more sensitive to Monte Carlo noise.

The emission maps and error maps for the final iteration of
Fig. 6 are shown in Appendix B.

3.4. Faster iterative solutions

When the convergence of temperature values requires many iter-
ations, the calculations can be sped up in at least three ways.

A79, page 7 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834354&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834354&pdf_id=0


A&A 622, A79 (2019)

10 1

100

101

|
T|

(K
)

a Basic
Ref
Ref+ALI

1 3 5 7 9 11 13 15 17 19
Iteration

0 200 400 600 800
Time (s)

100

101

RM
S

er
ro

r(
K)

b all L = 4 cells
hottest cells

Fig. 7. Results for the nL = 4 model when using a reference field.
All statistics refer to the average dust temperature of the cells on the
highest L = 4 level of the grid hierarchy. Panel a: temperature error rel-
ative to the solution obtained with the same setup after 20 iterations.
Panel b: rms temperature difference between two independent runs, the
red curves showing these separately for 5% of the cells with the highest
temperatures. Circles stand for the basic calculations (no ALI and no
reference field), squares to a reference field runs, and triangles to the
combination of the reference field and ALI techniques. Values are plot-
ted against the run time and the upper x-axis shows the corresponding
number of iterations in the basic run.

These include the use of sub-iterations, the use of a reference
field, and run-time model refinement.

The idea behind sub-iterations is that temperature updates
are sometimes restricted to an “active” subset of cells whose tem-
peratures and temperature changes are most relevant for the final
solution. This results in savings in the simulation step, because
emission is re-simulated only from a fraction of all cells, and in
the temperature updates, which are similarly restricted to a sub-
set of cells. Some overhead is caused by the necessity to use a
reference field to store the contribution of other cells to the total
radiation field. We do not test this method here because emis-
sion weighting provides similar savings in the simulation step.
Because our tests do not include stochastically heated grains, the
contribution of temperature updates to the total run times is at
the level of only 1%. For stochastically heated dust, the run times
could be dominated by the calculation of the temperature distri-
butions (see Appendix A) and a simpler version of sub-iterations
can be implemented simply by skipping the temperature updates
for weakly emitting cells.

The use of a reference field enables speed-up because, for
a given final noise level of the solution, the number of photon
packages per iteration can be lower. In the case of a hierarchical
grid, the most refined regions tend to have both the highest noise
and the slowest convergence. Therefore, some care must be taken
to ensure that the solution has truly converged in those regions.

Figure 7 shows results for the nL = 4 model when using a
reference field. This can be compared to the previous plots of
the rms noise in Fig. 4 and the convergence in Fig. 6. The
setup is identical (including background and a point source and
constant radiation sources) but the number of photon packages
per iteration has been decreased by a factor of 16. Examples
of the corresponding surface-brightness maps can be found in
Appendix B.

The run times are significantly shorter than in Fig. 6 but
only by a factor of approximately six rather than a factor of 16
between the number of photon packages. This is caused by the
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Fig. 8. Convergence of dust temperature values for models of differ-
ent refinement. The colour scale shows the difference of the average
dust temperature at the highest level of refinement (L = nL) compared to
the solution after 20 iterations. The number of hierarchy levels (nL) is
on the y-axis. Calculations are done without ALI and without a refer-
ence field. The contours are drawn at log10 a for a =−1.5, −1.0, −0.5,
0.0, and 0.5.

non-linearity seen in Fig. 2i, the lower efficiency of simulations
with low photon numbers that should disappear for sufficiently
large photon numbers. The convergence rate in Fig. 7b should
depend only on the use of ALI. Using ALI results in smaller
∆T errors but the difference is smaller than in Fig. 6b, proba-
bly because the larger noise on the first iteration decreases the
efficiency of ALI corrections. The effect of a reference field is
seen in Fig. 7b where it decreases that final rms error by a factor
of approximately three. The combination of ALI and a reference
field increases the run time per iteration by close to 30% while
the reference field alone is not associated with any overheads.

3.5. Run-time grid refinement

Before discussing tests with run-time model refinement, Fig. 8
shows how dust temperature errors depend on the number itera-
tions and the number of hierarchy levels (nL). Neither ALI nor
a reference field is being used and the discretisation is constant
throughout the calculations, which each correspond to one row in
the plot. The plot only measures the errors related to the conver-
gence of temperature values. The errors are calculated for cells at
the highest level (L = nL), in relation to the result obtained with
the same nLafter 20 iterations. Discretisation errors are therefore
excluded from the plot. The figure quantifies how an approximate
solution of a lower resolution model can be found with fewer
iterations. For example, an error of ∆T = 0.1 K (log10 ∆T = − 1)
for nL = 1 is reached in eight iterations while ∼20 iterations are
needed for nL = 4. The full-resolution model would need at least
30 iterations. For the idea of run-time grid refinement, this means
that the initial iterations with low-resolution models are not only
faster (time per iteration) but their number also should remain
small compared to the total number of iterations.

Figure 9 shows the results for a run with run-time refine-
ment of the model. Calculations start with the root grid only
(nL = 1). One level is added on iterations 5, 9, and 15, thereafter
the remaining run proceeds with the full nL = 4 model. When the
grid is refined, also the number of photon packages is quadru-
pled so that the final iterations have the same 18 million photon
packages per frequency as in previous tests (e.g. Fig. 4).

The initial iterations are very fast. However, Fig. 9 shows that
run-time refinement does not have a significant effect on the final
convergence. After the final refinement, the error |∆T | is half of
the value of the basic run that corresponds to the same run time.
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Fig. 9. Convergence of temperatures for basic runs with the
nL = 4 model (dashed lines) and with run-time refinement of the spa-
tial grid from nL = 1 to nL = 4 (solid lines). The results are shown for
the average of all L = 4 cells (black lines) and for the average of 5% of
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difference from a run with 40 iterations and the same nP. In the case of
run-time refinement, the open symbols correspond to initial iterations
with nL< 4; they are drawn at |∆T |= 100 K, and only indicate the run
times of those steps.

However, subsequent convergence remains almost identical to
the case where the nL = 4 grid was used on all iterations.

3.6. Variable number of photon packages

Apart from the number of cells, the number of photon pack-
ages is the main factor determining the run times. Therefore,
we investigated if a good solution can be found faster if the
number of packages was increased during the iterations. An
acceptable solution clearly requires both convergence and low
random errors. Figure 6 already suggested that these are not inde-
pendent and systematic error measured by ∆T also depends on
the random Monte Carlo noise.

In Fig. 10 we examine runs with 22 iterations where the final
number of photon packages nP is again 18 million. However, this
time the initial number of photon packages is smaller by a factor
of 200 and photon numbers are increased so that log nP grows
linearly over the iterations.

For the basic method and the reference field method the
rate of convergence is similar but the final rms error of the
reference field method is two times lower. In principle, if nP
were constant, the reference field method could result in an rms
noise that is smaller by a factor of N−1/2

I . The advantage is here
smaller because initial iterations employ a smaller number of
photon packages. More importantly, the reference field is less
efficient because the dust temperatures change significantly over
the iterations.

Unlike for example in Fig. 6, the use of ALI not only
increases the rms errors but also results in a slower convergence.
This is probably a result of large Monte Carlo noise on the initial
iterations that also renders the ALI updates noisy and thus inef-
fective. The combination of ALI and a reference field performs
somewhat better but the convergence measured against the run
time is still worse than without ALI. For reference, Fig. 6 also
shows the result for the combination of ALI and a reference field
when all iterations use 18 million photon packages. There the
convergence per iteration is much faster. When measured against
the actual run time, the convergence in |∆T | is initially similar
and later inferior to the variable |nP| runs.

4. Discussion

In this paper, we describe the implementation of the RT pro-
gramme SOC and quantify its performance in the modelling of
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Fig. 10. Convergence and rms errors of temperatures in runs where the
number of photon packages nP is increased by a factor of 200 over
the iterations. The final iterations use 18 million photon packages per
frequency. Results are shown for different combinations of ALI and
reference field methods, as indicated in panel a. For reference, the
red curves show the results for the constant nP of 18 million photon
packages per iteration. Markers are drawn for every second iteration.

dust emission from interstellar clouds. Unlike most benchmark
papers, we also examine the actual run times and especially the
relative performance of CPUs and GPUs.

4.1. Radiative transfer methods

SOC is based on Monte Carlo simulations and the tests show that
it behaves according to expectations. The Monte Carlo noise is
inversely proportional to the square root of the number of photon
packages. Similarly, the noise is dependent on the level of the
grid refinement, each additional hierarchy level approximately
decreasing the number of photon package hits by a factor of
four and increasing the rms noise by a factor of two. The exper-
iments with photon package splitting schemes are mentioned
only briefly in this paper because their success was found to be
limited. They do decrease somewhat the noise at higher refine-
ment levels and might be indispensable for deeper hierarchies.
However, in our tests photon package splitting did not lead to sig-
nificant savings in the actual computational cost. These methods
require further investigation. The penetration of external radia-
tion into high-density regions is decreased by backscattering and
therefore photon splitting might need to be combined with direc-
tional weighting to increase the probability of photon packages
reaching the highest column density regions.

In addition to the pure radiation field simulations, we studied
the convergence of the dust temperatures in optically thick mod-
els with internal heating sources. The ALI and reference field
methods were tested, also in relation to the other run parame-
ters like the number of photon packages per iteration and the
discretisation of the model volume.

ALI improves the temperature convergence but is relevant
only when both optical depths and dust temperatures are high.
In the context of interstellar clouds, benefits are noticeable only
near embedded heating sources, potentially in a very small frac-
tion of the whole model volume (although in relative terms a
larger fraction of grid cells). To reduce memory requirements
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(one additional number per cell) and run times, the use of ALI
could be restricted to selected cells. This would only be a small
complication in the RT implementation. However, in our tests
where ALI was included for all cells, the run time overhead was
not very significant, only some tens of percent.

The most straightforward way to speed up calculations is to
use fewer photon packages. This of course increases the noise
of the solution, but when the solution also requires a number
of iterations, it gives room for further optimisations. Significant
savings are possible if initial iterations are performed quickly,
with a low number of photon packages nP. Parameter nP can
be increased with iterations to ensure that random errors remain
comparable to the convergence errors. This turned out to work
less reliably in connection with ALI, which provided clear accel-
eration only when the random errors were kept low. The final rms
error of the solution also tended to be larger when ALI was used
(Figs. 7 and 10).

The most robust way to speed up computations was to grad-
ually increase nP, without ALI but using the reference field
method (Fig. 10). Without a reference field, the final accuracy
will be limited by the number of photon packages per iteration
(clearly demonstrated by Fig. 6). This determines the rms errors
but may also impact the convergence. With a reference field, the
rms errors decrease as iterations progress, making it also easier
to track the convergence. The fastest convergence in terms of the
run time was reached when the number of photon packages nP
was increased with iterations. Changes in nP must of course be
taken into account also in the reference field updates. Initial iter-
ations are therefore given a smaller weight, which is also useful
because the reference field is still far from the final solution.

ALI methods are very likely still necessary for models more
optically thick than the ones tested in this paper. The critical
quantity is the optical depth of individual cells, especially if the
ALI scheme does not explicitly consider longer distance inter-
actions. In general, hierarchical grids enable finer discretisation
of dense regions, which reduces the optical depth of individual
cells and thus reduces the benefits of using ALI. In this paper,
only the diagonal part of the Λ operator was separated. The next
step, explicit treatment of the radiative couplings between a cell
and its six Cartesian neighbours, may already be excluded by
the associated storage overhead. The implementation in connec-
tion with a hierarchical grid would also be significantly more
complicated.

Finally, we also tested runs where the spatial discretisation
was refined during the iterations. A large cell size used on the
first iterations could increase the speed with which information
traverses an optically thick model, especially if ALI is used to
accelerate the convergence within the individual cells. In prac-
tice, the results were not very encouraging (Fig. 9). Iterations
with low nL are indeed very fast but changes in the gridding
cause large temperature jumps and the final convergence is not
improved. In the tested model, the temperature field contains
significant structure even at very small scales. A change in
discretisation significantly changes the RT problem itself (cf.
Fig. 2), also changing the optical depths between the radiation
sources and the cells. Our implementation of the re-gridding
procedure could be improved. We assigned the temperature of a
parent cell to all its children while 3D-interpolated values should
work better. In smooth models with small density and radiation
field gradients, the convergence would naturally be less disturbed
by changes in the grid.

We tested SOC using calculations with a single dust pop-
ulation and assuming that the grains are at an equilibrium
temperature. SOC will be developed further to allow the

modelling of multiple dust components. This requires only small
kernel modifications but implies an increase in the memory
usage. If the scattering function was constant, one could store for
each cell (instead of one number, the density) both the absorption
and scattering cross sections. However, to model the scatter-
ing accurately, the abundance of each dust population is needed
separately for each cell. This makes it possible to make run-
time Monte Carlo sampling from the ensemble of scattering
functions. However, this will also at least double the memory
usage.

Full RT modelling of dust emission requires both the eval-
uation of the radiation field and the estimation of the resulting
dust emission. When grains are assumed to remain at an equi-
librium temperature, the latter problem is not significant for
the overall computational cost. However, to model mid-infrared
emission from stochastically heated grains, the run times may
become dominated by this task, which includes the computation
of temperature-probability-density distributions for each cell,
grain population, and grain size. SOC delegates this to an exter-
nal program. However, in Appendix A we discuss how also these
calculations can be sped up by using GPU computing. The use
of GPUs in this context has already been discussed, for example
in Siebenmorgen & Heymann (2012).

4.2. Implementation and CPU versus GPU comparisons

The current SOC version is implemented in Python, which is
convenient for rapid development, but as an interpreted language
is not expected to be fast. In practice, this is not a problem
because most calculations are performed by the OpenCL ker-
nels that are compiled at run time. In CPU runs with 3D models
(nL = 2), some 93% of the total run time was used by the kernel
for the RT simulation, less than 1% by the dust temperature cal-
culations, and some 2.5% by the kernel for the map calculations.
The remaining part includes the execution of the Python host
code, the compilation of the OpenCL kernels, the data transfer
between the host and the device, and the reading and writing of
data files. In CPU runs these amount to little more than 3% of the
total run time, but in short GPU runs, because of the much faster
kernel execution, they can reach 30%. However, this would not
disappear entirely even if the host code were compiled. Indeed,
comparisons with previous SOC versions, where the main pro-
gram was written in C++, suggested at most ∼10% overhead due
to the use of Python.

Experience has shown that SOC is usually (but not always)
slightly faster than CRT (Juvela 2005), when both are run
using CPUs and the same non-hierarchical grids. In CRT the
critical parts have been parallelised using OpenMP. However,
comparisons are not trivial because of slight differences in the
implementations (e.g. how randomness is reduced in the case
of different radiation sources or how the run times scale with
the model size). Such tests would be useful, but only when
conducted systematically over a large number of test cases and
comparing the actual noise properties of the results.

Theoretical peak performance of modern GPUs is very high,
which could translate to much shorter run times and smaller
energy consumption (Huang et al. 2009; Said et al. 2016). In the
test system the theoretical ratio was over a factor of 20 in favour
of the GPU. In practice the theoretical speed-up is never reached,
mainly because of data-transfer overheads. This was true also in
the SOC tests where the GPU was typically faster only by a factor
of 2–10.

The relative performance of GPUs tends to improve with
increasing problem sizes, with increasing numbers of cells or, as
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in Fig. 2, with increasing numbers of photon packages. However,
there were also exceptions. In the case of point-source simula-
tions (Fig. 2c), this could be caused by the increasing overheads
in GPU atomic operations when many threads are simultane-
ously updating a small number of cells close to the source. The
same explanation may also apply to the problems seen when
using emission weighting on GPUs. Although emission weight-
ing results in lower noise for a given nP, on GPU it increased
(at nP ∼ 106) the run times by up to a factor of a few (Fig. 3c).
Also in this case, most updates concern a small number of cells,
those with the highest dust temperatures. The effect is accentu-
ated by high optical depths that result in frequent scatterings and
thus even more frequent updates. These effects will be smaller
for models with multiple point sources, a larger number of cells,
and lower optical depths. The problem could be alleviated by
interleaving the creation and tracking of photon packages so that
all threads do not create new photon packages in the same cells
and at exactly the same time. New OpenCL versions with native
support for atomic operations should further decrease the over-
heads. In Fig. 3c, the problem disappears for large nP but this
is only a side effect from the limit on the maximum number of
photon packages emitted from any single cell.

In contrast with the GPU results, calculations were faster
on a CPU when emission weighting was used. This could be
the result of improved cache utilisation, similar to the (factor
of ∼2) effect observed in Lunttila & Juvela (2012). In OpenCL,
the threads belonging to the same work group perform computa-
tions in lockstep. This means that all threads create and perform
initial tracking of photon packages at the same time and within
a small volume around the embedded radiation source. With a
smaller number of threads and larger cache memories, the net
effect can be positive on CPUs. The data for the most frequently
accessed cells may remain in cache during a whole run, but it is
difficult to say if this alone explains the observed speed up by
a factor of approximately five (Fig. 3c). The above examples at
least demonstrate that, although the same program can be run on
both CPUs and GPUs, best performance may require different
algorithm optimisations on different platforms.

5. Conclusions

The ability of SOC to produce correct results in dust RT prob-
lems has already been tested in Gordon et al. (2017). In this
paper, we concentrate on the performance of SOC and investi-
gate methods that could speed up the computations in problems
where the final dust temperatures are obtained only after sev-
eral iterations. We draw the following conclusions from our
tests.

– SOC performs well in comparison to for example the CRT
program (Juvela 2005) and modern GPUs provide a speed-
up of a factor of between two and ten compared to a
multicore CPU. Further reduction of run times should be
possible by fine-tuning the algorithms.

– The noise of the temperature solution behaves as expected:
it is inversely proportional to the square root of photon pack-
ages and increases by a factor of two for each additional
level of the spatial grid hierarchy. The tested photon split-
ting scheme did not significantly reduce the noise of high
hierarchy levels relative to the run time.

– In the test cases, ALI provided moderate acceleration for
the convergence of dust temperature values. The run time
overhead varied from case to case but was on the order of
10%, small compared to the potential benefits from the faster
convergence.

– The use of a reference field without ALI was found to be
the most robust alternative. The desired accuracy could be
reached in the least amount of time by doing the initial
iterations with fewer photon packages.

SOC will be developed further to accommodate multiple dust
populations; already in Appendix A we discuss tests on the use
of GPUs to speed up the calculations of stochastically heated
grain emission.
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Appendix A: Calculations with stochastically
heated grains

SOC concentrates on solving the RT problem and only solves
grain temperatures for grains in equilibrium with the radiation
field. For stochastically heated grains, these computations are
delegated to an external program, such as the one that in Camps
et al. (2015) was used in connection with the CRT code. Here
we present some results from tests on implementing similar rou-
tines with Python and OpenCL. We refer to the old code as the
C program and the new one as the OpenCL program.

Tests were made using a single dust component and a
3D model cloud that consisted of 8000 cells, sufficient to get
accurate run-time measurements. The dust corresponds to astro-
nomical silicates as defined in the DustEM package Compiègne
et al. (2011). The grain size distribution extends from 4 nm to
2 µm and is discretised into 25 logarithmic size bins. All grains
were treated in the tests as stochastically heated while in real
applications the largest grains could be handled using the equi-
librium temperature approximation. The calculations employed
a logarithmic discretisation of enthalpies that in temperature
extend from 4 to 150 K for the largest grains and from 4 to
2500 K for the smallest. The model cloud was illuminated by
the standard interstellar radiation field (Mathis et al. 1983). The
column density of the cloud varied from N(H2)∼ 3 × 1019 cm−2

to N(H2) = 1 × 1022 cm−2. This ensured a wide range of radia-
tion field intensities, especially for the shorter wavelengths that
are relevant for mid-infrared dust emission. RT simulations used
a logarithmic grid of 128 frequencies between the Lyman limit
and 2 mm.

We used as the reference the C program and its routine
that solves the dust temperatures under the “thermal continu-
ous” cooling approximation as described in Draine & Li (2001).
The calculation reduces to a linear set of equations where the
unknowns are the fraction of dust in each enthalpy bin. The
C program pre-calculates weights for the integration of the
absorbed energy over frequency as well as the cooling rates that
in the thermal continuous approximation only extend downwards
to the next enthalpy bin. When the dust emission is solved cell-
by-cell, the program gets a vector of radiation field intensities (in
practice number of absorbed photons). In the transition matrix
R, the upward transitions (R j,i, i < j) are obtained by taking a
vector product of the intensity with the integration weights. The
pre-calculated cooling rates occupy the elements Ri−1,i above the
main diagonal. The diagonal elements Ri,i are determined from
detailed balance and are equal to the sum of the other column
elements multiplied by minus one. The matrix elements R j,i = 0,
i > j are zeros, which means that the linear equations can be
solved efficiently with forward substitutions. The C program is
parallelised with OpenMP, further optimisations including the
use of SSE instructions.

In the OpenCL program we tested first the use of an itera-
tive solver. Iterative solvers are attractive because one is typically
dealing with large 3D models where the neighbouring cells are
subjected to a very similar radiation field. By using the solution
of the preceding cell as the starting values for the next one, it is
likely that the number of iterations can be kept small. We tested
only basic Gauss-Seidel iterations with Jacobi (diagonal) pre-
conditioning. By using the solution of the first cell to start the
iterations for each of the other cells, less than ten iterations and
a maximum of ∼50 were needed to reach an accuracy that in the
final surface-brightness maps translated to rms errors of a couple
of per cent (over a spectral range spanning more than 10 orders
of magnitude in absolute intensity). On the CPU, using the same

number of CPU cores, the run time was nearly identical to that
of the C program. On a GPU, the OpenCL version was faster by
a factor of approximately five. In the case of the thermal con-
tinuous approximation, the explicit solution is already very fast.
Therefore, in a general case (R j,i , 0 for j < i), iterative solvers
should be a good option.

We could not exactly reproduce the results of the C program
even with more iterations. This may be due to the use of single-
precision floating point numbers. The use of double precision
would slow down the GPU computations, depending on the hard-
ware. Furthermore, although Gauss-Seidel iterations provided a
sufficient (but still a low-precision) solution in just a few iter-
ations, the convergence is not guaranteed. The rate matrix is
not diagonally dominant and the spectral radius of the iteration
matrix was either very close to or even larger than one. The itera-
tions should thus eventually diverge, which was indeed observed
if continued further beyond one hundred iterations. However,
when the problem is similar for a very large number of cells,
one could calculate better preconditioners with a small cost per
cell.

We also implemented an explicit forward-substitution algo-
rithm similar to that of the C program. This is the natural option
in the case of the thermal continuous approximation. The routine
worked reliably but only when part of the operations were per-
formed in double precision. The use of double precision resulted
in some 25% increase in the GPU run times but had no effect
on CPUs. The results were identical to the C program, almost
down to the machine precision. Because the algorithm is faster,
the run times were shorter than for the iterative solver. Com-
pared to the C program, the OpenCL routine was 5.6 times faster
when run on a CPU and 21 times faster when run on a GPU.
The speed-up on the CPU suggests that the parallelisation of the
C program was not optimal but the results also depend on other
factors, such as the memory and disk-access patterns. On the lap-
top, the OpenCL program ran about four times faster on the GPU
than on the six-core CPU.

The actual wall-clock run time on the laptop GPU was
some 0.5 ms per cell, which includes the calculations of the
dust temperature distributions and the resulting dust emission
at 128 frequencies. Assuming that modelling involved four dust
populations, this would translate to a rate of 500 cells per second
and a run time of some half an hour for a model of 106 cells.
The time required for the RT simulations is of the same order
of magnitude, the exact balance depending on the chosen fre-
quency, enthalpy, and grain size discretisations. The costs of RT
and dust temperature calculations both also scale approximately
linearly with the number of cells. It is therefore already feasi-
ble to directly solve the emission of stochastically heated grains
even for relatively large 3D models. Table look-up methods are
still relevant because they also reduce the number of frequen-
cies at which the radiation field needs to be estimated (Juvela &
Padoan 2003; Baes et al. 2011). Nevertheless, GPUs can speed
up the construction of large look-up tables and thus also improve
the accuracy of those methods.

Appendix B: Examples of surface-brightness
maps

In Sect. 3 we examined the accuracy of SOC results mainly in
terms of dust temperature. Here we present examples of surface-
brightness maps that correspond to the tests in Figs. 6 and 7,
the final result after 20 iterations. Surface-brightness errors are
shown by plotting the difference of two independent runs.
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Fig. B.1. Surface-brightness maps at 100 µm for the final iteration of
the non-ALI runs of Fig. 6. The three rows correspond, respectively, to
the default nP value of 1.8 × 107 and to nP values smaller by a factor
of 8 or 64. Left panels: 100 µm surface brightness Iν(100 µm). Right
panels: difference ∆Iν(100 µm) between two identical runs. All maps
are in units of 108 Jy sr−1.

Figure B.1 shows the maps that correspond to Fig. 6, the runs
without ALI where the number of photon packages per itera-

I , nP = 1.1 × 106

13.2

13.4

13.6

13.8

14.0 I , nP = 1.1 × 106

0.02

0.01

0.00

0.01

0.02

I , nP = 2.8 × 105

13.2

13.4

13.6

13.8

14.0 I , nP = 2.8 × 105

0.02

0.01

0.00

0.01

0.02

Fig. B.2. As in Fig. B.1 but for the runs of Fig. 7 with a reference field.
The number of photon packages is nP = 1.1 × 106 (upper panels) or four
time smaller (lower panels). Maps are in units of 108 Jy sr−1.

tion was 18 million or smaller by a factor of 8 or 64. The noise
is small enough to be visible only in the difference maps that
here only contain errors from the simulation of the re-radiated
dust emission. The error maps show a radial pattern because hot
dust is found only close to the central point source. The relative
contribution of re-radiated dust emission is smaller in directions
where more of the point-source radiation escapes the central
clump. This explains the general asymmetry of the pattern where
the errors tend to be smaller on the upper-left-hand side.

Figure B.2 shows the results when also the reference field
technique is used. The upper frames correspond directly to the
runs in Fig. 7.
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